《精品》2020届高三入学调研考试试卷 理科数学(三)-解析版

合集下载

高考理科数学(3卷):答案详细解析(客观题,最新)

高考理科数学(3卷):答案详细解析(客观题,最新)

【答案】D
11.(解析几何)设双曲线
C:
x2 a2
y2 b2
1 (a>0,b>0)的左、右焦点分别为
F1,F2,离心率为 5 .P 是 C 上一点,且 F1P⊥F2P.若△PF1F2 的面积为 4,
则 a=
A.1
B.2
C.4
D.8
S
1 2
mn
4
【解析】设
PF1
m

PF2
n
,根据题意可得,
m2 n2 m n
C.4
D.6
【解析】∵ A B {(1, 7), (2, 6), (3,5), (4, 4)} ,∴A∩B 中元素的个数为 4.
【答案】C
2.(复数)复数
1 1 3i
的虚部是
A. 3 10
B. 1 10
1 C. 10
3 D. 10
【解析】
1 1 3i
(1
1 3i
3i) 1
3i
1 3i 10
即 2 2 2 p 2 p 0 ,解得 p 1,∴C 的焦点坐标为 ( 1 , 0) . 2
图 A5
第2页共8页
解法二: DE 4 p , OD OE 4 4 p ,
∵OD⊥OE,∴ OD 2 OE 2 DE 2 ,即 2(4 4 p) 16 p ,解得 p 1,
∴C 的焦点坐标为 ( 1 , 0) . 2
19 57
19 35
.
【答案】D
7.(三角函数,类文 11)在△ABC 中, cos C= 2 , AC 4 , BC 3 ,则 cos B 3
1
2 D. 3
【解析】由余弦定理得, AB2 AC2 BC2 2AC BC cos C 9 ,

广东惠州2020高三数学理第三次调研考试(解析版)

广东惠州2020高三数学理第三次调研考试(解析版)

惠州市2020届高三第三次调研考试理科数学 2020.1全卷满分150分,时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。

2.作答选择题时,选出每个小题答案后,用2B 铅笔把答题卡上对应题目的答案信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案,写在本试卷上无效。

3.非选择题必须用黑色字迹签字笔作答,答案必须写在答题卡各题指定的位置上,写在本试卷上无效。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.已知全集U R =,{}|21x A x =<,则U A =ð( ).2.设i 为虚数单位,复数212z ⎛⎫=+ ⎪ ⎪⎝⎭,则z 在复平面内对应的点在第( )象限.A .一B .二C .三D .四 3.已知20201log πa =,20201πb ⎛⎫= ⎪⎝⎭,1π2020c =,则( ).A .c a b <<B .a c b <<C .b a c <<D .a b c <<4.在直角坐标系xOy 中,已知角θ 的顶点与原点O 重合,始边与x 轴的非负半轴重合, 终边落在直线3y x =上,则3sin(2)2πθ-= ( ). A .45 B .45- C .35- D .125.在平行四边形ABCD 中,AB a =,AD b =,4AM MC =,P 为AD 的中点, 则MP = ( ). A .43510a b + B .4354a b + C .43510a b -- D .1344a b --6.设a R ∈,则“a =1:250l x ay +-=与直线2:420l ax y ++=平行”的 ( ) 条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要7.数列{}n a :1,1,2,3,5,8,13,21,34,……,称为斐波那契数列,它是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。

惠州2020高三第三次调研考理数-答案

惠州2020高三第三次调研考理数-答案

惠州市2020届高三第三次调研考试理科数学参考答案及评分细则一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DBDACADDADBC1.【解析】{21}{0}x A x x x =<=<,{0}U C A x x =≥,故选D.2.【解析】21313i i 2222z =+=-+(),所以对应的点在第二象限,故选B.3.【解析】20201log πa =2020log 10<=,20201πb ⎛⎫= ⎪⎝⎭()01∈,,1π2020c =1>,所以a b c <<.故选D.4.【解析】因为角θ终边落在直线3y x =上,所以tan 3θ=,21cos 10θ=, 所以3sin(2)2πθ-24cos 2(2cos 1).5θθ=-=--=故选A. 5.【解析】如图所示,MP →=AP →-AM →=12AD →-45AC →=12AD →-45(AB →+AD →)=12b -45(a +b )=-45a -310b .故选C. 6.【解析】依题意,知-4a =-12a ,且-52a ≠12,解得a =±2.故选A.7.【解析】1233243546521()()()()()n n n n S a a a a a a a a a a a a a a ++=++++=-+-+-+-+-2221n n a a a ++=-=-,所以201920211S a =-,故选D.8.【解析】11332815.14C C P C +==故选D. 9.【解析】()21sin 1xf x x e⎛⎫=- ⎪+⎝⎭1sin 1x x e x e ⎛⎫-= ⎪+⎝⎭是偶函数,排除C 、D ,又(1)0,f >故选A.10.【解析】如图:α//面CB 1D 1,α∩面ABCD =m ,α∩面ABA 1B 1=n ,可知n//CD 1,m//B 1D 1,因为△CB 1D 1是正三角形,m n 、所成角为60°. 则m 、n 所成角的正弦值为√32.故选D .11.【解析】设直线AB 的方程为:x =ty +m ,点A(x 1,y 1),B(x 2,y 2), 直线AB 与x 轴的交点为M(m,0),由{x =ty +my 2=x ⇒y 2−ty −m =0,根据韦达定理有y 1⋅y 2=−m , ∵OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =2,∴x 1⋅x 2+y 1⋅y 2=2,z结合y 12=x 1及y 22=x 2,得(y 1⋅y 2)2+y 1⋅y 2−2=0,∵点A 、B 位于x 轴的两侧,∴y 1⋅y 2=−2,故m =2.不妨令点A 在x 轴上方,则y 1>0,又F(14,0), ∴S △ABO +S △AFO =12×2×(y 1−y 2)+12×14y 1=98y 1+2y 1≥2√98y 1⋅2y 1=3.当且仅当98y 1=2y 1,即y 1=43时,取“=”号,∴△ABO 与△AFO 面积之和的最小值是3.故选B .12.【解析】 (x 0,x 0+1)区间中点为x 0+12,根据正弦曲线的对称性知f(x 0+12)=−1,①正确。

广东省惠州市2020届高三第三次调研考试理科数学试题(含答案)

广东省惠州市2020届高三第三次调研考试理科数学试题(含答案)

惠州市2020届高三第三次调研考试理科数学全卷满分150分,时间120分钟.一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.已知全集U R =,{}|21x A x =<,则UA =( ).2.设i 为虚数单位,复数2122z ⎛⎫=+ ⎪ ⎪⎝⎭,则z 在复平面内对应的点在第( )象限.A .一B .二C .三D .四 3.已知20201log πa =,20201πb ⎛⎫= ⎪⎝⎭,1π2020c =,则( ).A .c a b <<B .a c b <<C .b a c <<D .a b c <<4.在直角坐标系xOy 中,已知角θ 的顶点与原点O 重合,始边与x 轴的非负半轴重合, 终边落在直线3y x =上,则3sin(2)2πθ-= ( ). A .45 B .45- C .35- D .125.在平行四边形ABCD 中,AB a =,AD b =,4AM MC =,P 为AD 的中点, 则MP = ( ). A .43510a b + B .4354a b + C .43510a b -- D .1344a b --6.设a R ∈,则“a =1:250l x ay +-=与直线2:420l ax y ++=平行”的 ( ) 条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要 7.数列{}n a :1,1,2,3,5,8,13,21,34,……,称为斐波那契数列,它是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。

该数列从第3项开始,每项等于其前相邻两项之和,即21n n n a a a ++=+.记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( ). A .201920202S a =+ B .201920212S a =+ C .201920201S a =-D .201920211S a =-8.《易经》是中国传统文化中的精髓之一。

2020届高三调研考试卷理科数学(三)(解析附后)

2020届高三调研考试卷理科数学(三)(解析附后)

2020届高三调研考试卷理科数学(三)(解析附后)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|230}A x x x =+-≤,{2}B x =<,则AB =( )A .{|31}x x -≤≤B .{|01}x x ≤≤C .{|31}x x -≤<D .{|10}x x -≤≤2.已知复数122z =+,则||z z +=( )A .12 B .12-- C .32 D .32+3.已知1sin 4x =,x 为第二象限角,则sin2x =( )A .316-B .C . D4.在等比数列{}n a 中,若2a ,9a 是方程260x x --=的两根,则56a a ⋅的值为( )A .6B .6-C .1-D .1 5.设函数2sin cos ()(,0)x x xf x a R a ax +=∈≠,若(2019)2f -=,(2019)f =( )A .2B .2-C .2019D .2019-6.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中不正确的是( )注:90后指1990年及以后出生,80后指19801989-年之间出生,80前指1979年及以前出生.A .互联网行业从业人员中90后占一半以上B .互联网行业中从事技术岗位的人数超过总人数的20%C .互联网行业中从事运营岗位的人数90后比80前多D .互联网行业中从事技术岗位的人数90后比80后多7.已知实数x ,y 满足不等式10320x y x y x y -+≥⎧⎪+≥⎨⎪-≤⎩,则2z x y =+的最小值为( )A .4-B .5C .4D .无最小值8.我国古代《九章算术》将上下两个平行平面为矩形的六面体称为刍童.如图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和6,高为2,则该刍童的体积为( )A .0031 B .1043C .27D .18 9.已知向量(1,2)a =-,(1,)b m =,则“12m <”是,a b <>为钝角的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件10.已知A 为椭圆2229x y +=的左顶点,该椭圆与双曲线22221x y a b-=的渐近线在第一象限内的交点为B ,若直线AB 垂直于双曲线的另一条渐近线,则该双曲线的离心率为( )A .2 B .5C .2D 11.如图,正方形的四个顶点(1,1)A --,(1,1)B -,(1,1)C ,(1,1)D -,及抛物线2(1)y x =-+和2(1)y x =-,若将一个质点随机投入正方形ABCD 中,则质点落在图中阴影部分区域的概率是( )A .23 B .13 C .16 D .1212.不等式3ln 1x x e a x x --≥+对任意(1,)x ∈+∞恒成立,则实数a 的取值范围( )A .(,1]e -∞-B .2(,2]e -∞- C .(,2]-∞- D .(,3]-∞-二、填空题:本大题共4小题,每小题5分.13.设某总体是由编号为01,02,,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为__________.1818079245441716580979838619第1行 6206765003105523640505266238第2行14.51(2)2x y -的展开式中23x y 的系数为__________.15.设()sin 22f x x x =+,将()f x 的图像向右平移(0)ϕϕ>个单位长度,得到()g x 的图像,若()g x 是偶函数,则ϕ的最小值为__________.16.某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有种 .三、解答题:本大题共6大题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(12分)在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,sin (2)b A a B =. (1)求角B 的大小;(2)D 为边AB 上的一点,且满足2CD =,4AC =,锐角三角形ACD BC 的长.18.(12分)如图,在三棱锥P ABC -中,AC =,2AB BC =,D 为线段AB 上一点,且3AD DB =,PD ⊥平面ABC ,PA 与平面ABC 所成的角为45︒.(1)求证:平面PAB ⊥平面PCD ;(2)求二面角P AC D --的平面角的余弦值.19.(12分)某公司生产某种产品,一条流水线年产量为10000件,该生产线分为两段,流水线第一段生产的半成品的质量指标会影响第二段生产成品的等级,具体见下表:从第一道生产工序抽样调查了100件,得到频率分布直方图如图:若生产一件一等品、二等品、三等品的利润分别是100元、60元、100-元.(1)以各组的中间值估计为该组半成品的质量指标,估算流水线第一段生产的半成品质量指标的平均值;(2)将频率估计为概率,试估算一条流水线一年能为该公司创造的利润;(3)现在市面上有一种设备可以安装到流水线第一段,价格是20万元,使用寿命是1年,安装这种设备后,流水线第一段半成品的质量指标服从正态分布2(80,2)N ,且不影响产量.请你帮该公司作出决策,是否要购买该设备?说明理由.(参考数据:()0.6826P X μσμσ-<≤+=,(22)0.9548P X μσμσ-<≤+=,(33)0.9974P X μσμσ-<≤+=),20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,以原点为圆心,椭圆的短半轴为长为半径的圆与直线0x y -+=相切,过点(4,0)P 的直线l 与椭圆C 相交于A ,B 两点. (1)求椭圆C 的方程;(2)若原点O 在以线段AB 为直径的圆内,求直线l 的斜率k 的取值范围.21.(12分)设函数2()(,)xx ax bf x a R b R e++=∈∈. (1)若1x =-是函数()f x 的一个极值点,试用a 表示b ,并求函数()f x 的减区间;(2)若1a =,1b =-,证明:当0x >时,1()(21)f x x e≤-.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4−4:坐标系与参数方程】在平面直角坐标系xOy 中,直线l的参数方程为322x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C的极坐标方程为ρθ=.(1)求直线l 的普通方程和圆C 的直角坐标方程;(2)设圆C 与直线l 交于A ,B 两点,若点P的坐标为,求||||PA PB +.23.(10分)【选修4-5:不等式选讲】 已知函数()|||31|f x x m x m =----. (1)若1m =,求不等式()1f x <的解集;(2)对任意的x R ∈,有()(2)f x f ≤,求实数m 的取值范围.2020届高三调研考试卷理科数学(三)解析版一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|230}A x x x =+-≤,{2}B x =<,则AB =( )A .{|31}x x -≤≤B .{|01}x x ≤≤C .{|31}x x -≤<D .{|10}x x -≤≤ 【答案】B【解析】{|31}A x x =-≤≤,{|04}B x x =≤<, 所以{|01}AB x x =≤≤.故选B .2.已知复数122z =+,则||z z +=( )A .122- B .122-- C .322- D .322+【答案】C【解析】因为复数12z =+,所以复数z 的共轭复数12z =-,||1z ==,所以13||12222z z +=-+=-,故选C . 3.已知1sin 4x =,x 为第二象限角,则sin2x =( )A .316-B .C . D【答案】B【解析】因为1sin 4x =,x 为第二象限角,所以cos 4x ===-,所以1sin 22sin cos 2(4x x x ==⨯⨯=,故选B . 4.在等比数列{}n a 中,若2a ,9a 是方程260x x --=的两根,则56a a ⋅的值为( ) A .6 B .6- C .1- D .1 【答案】B【解析】因为2a 、9a 是方程260x x --=的两根, 所以根据韦达定理可知296a a ⋅=-,因为数列{}n a 是等比数列,所以5629a a a a ⋅=⋅,566a a ⋅=-,故选B .5.设函数2sin cos ()(,0)x x xf x a R a ax +=∈≠,若(2019)2f -=,(2019)f =( )A .2B .2-C .2019D .2019- 【答案】B【解析】因为2sin cos ()x x xf x ax +=,所以22sin()cos()sin cos ()()x x x x x xf x f x ax ax ---+-==-=-,因此函数()f x 为奇函数,又(2019)2f -=,所以(2019)(2019)2f f =--=-. 故选B .6.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中不正确的是( )注:90后指1990年及以后出生,80后指19801989-年之间出生,80前指1979年及以前出生.A .互联网行业从业人员中90后占一半以上B .互联网行业中从事技术岗位的人数超过总人数的20%C .互联网行业中从事运营岗位的人数90后比80前多D .互联网行业中从事技术岗位的人数90后比80后多 【答案】D【解析】A .由互联网行业从业者年龄分布饼状图可知,90后占了56%,故A 选项结论正确; B .由90后从事互联网行业岗位分布图可知,技术所占比例为39.65%,故B 选项结论正确; C .由互联网行业从业者年龄分布饼状图可知,在互联网行业从业者中90后明显比80前多,故C 选项结论正确;D .在互联网行业从业者中90后与80后的比例相差不大,故无法判断其技术岗位的人数是谁多,故D 选项结论不一定正确. 故选D .7.已知实数x ,y 满足不等式10320x y x y x y -+≥⎧⎪+≥⎨⎪-≤⎩,则2z x y =+的最小值为( )A .4-B .5C .4D .无最小值 【答案】C【解析】绘制不等式组表示的平面区域如图所示,目标函数即1122y x z =-+,其中z 取得最小值时, 其几何意义表示直线系在y 轴上的截距最小,据此结合目标函数的几何意义可知目标函数在点A 处取得最小值,联立直线方程320x y x y +=⎧⎨-=⎩,可得点的坐标为(2,1)A ,据此可知目标函数的最小值为min 2224z x y =+=+=. 故选C .8.我国古代《九章算术》将上下两个平行平面为矩形的六面体称为刍童.如图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和6,高为2,则该刍童的体积为( )A .0031 B .1043C .27D .18 【答案】B【解析】由题意几何体原图为正四棱台,底面的边长分别为2和6,高为2,所以几何体体积1104(436233V =+⨯=.故选B .9.已知向量(1,2)a =-,(1,)b m =,则“12m <”是,a b <>为钝角的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】B【解析】因为(1,2)a =-,(1,)b m =,所以12a b m ⋅=-+,则cos ,||||5a b a b a b ⋅<>==⋅,若12m <,则cos ,0||||5a b a b a b ⋅<>==<⋅, 但当2m =-时,a ,b 反向,夹角为180︒; 所以由12m <不能推出,a b <>为钝角; 反之,若,a b <>为钝角,则cos ,0a b <><且2m ≠-,即12m <且2m ≠-, 能推出12m <; 因此,“12m <”是,a b <>为钝角的必要不充分条件. 10.已知A 为椭圆2229x y +=的左顶点,该椭圆与双曲线22221x y a b-=的渐近线在第一象限内的交点为B ,若直线AB 垂直于双曲线的另一条渐近线,则该双曲线的离心率为( )A .2 B .5C .2D 【答案】D【解析】因为直线AB 垂直于双曲线的另一条渐近线,所以直线AB 的方程为(3)ay x b=+, 联立(3)ay x b b y x a⎧=+⎪⎪⎨⎪=⎪⎩,可得交点2222233(,)a abB a b a b ----, 代入椭圆方程整理得224b a =,即有225c a =.11.如图,正方形的四个顶点(1,1)A --,(1,1)B -,(1,1)C ,(1,1)D -,及抛物线2(1)y x =-+和2(1)y x =-,若将一个质点随机投入正方形ABCD 中,则质点落在图中阴影部分区域的概率是( )A .23 B .13 C .16 D .12【答案】B【解析】∵(1,1)A --,(1,1)B -,(1,1)C ,(1,1)D -, ∴正方形的ABCD 的面积224S =⨯=,根据积分的几何意义以及抛物线的对称性可知阴影部分的面积:122310012[1(1)]2()|3S x dx x x =--=-⎰1242[(1)0]2333=--=⨯=,则由几何槪型的概率公式可得质点落在图中阴影区域的概率是41343=.故选B .12.不等式3ln 1x x e a x x --≥+对任意(1,)x ∈+∞恒成立,则实数a 的取值范围( ) A .(,1]e -∞- B .2(,2]e -∞- C .(,2]-∞- D .(,3]-∞- 【答案】D【解析】题意即为3ln 1x a x x e x -≤--对(1,)x ∀∈+∞恒成立,即31ln x x e x a x ---≤对(1,)x ∀∈+∞恒成立,从而求31ln x x e x y x---=,(1,)x ∈+∞的最小值,而33ln 3ln 3ln 1x x x x x x e e e e x x ---==≥-+, 故313ln 113ln x x e x x x x x ---≥-+--=-,即313ln 3ln ln x x e x x x x----≥=-.当3ln 0x x -=时,等号成立,方程3ln 0x x -=在(1,)+∞内有根,故3min 1()3ln x x e x x---=-,所以3a ≤-,故选D .二、填空题:本大题共4小题,每小题5分.13.设某总体是由编号为01,02,,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为__________.1818079245441716580979838619第1行 6206765003105523640505266238第2行【答案】19【解析】由题意,从随机数表第1行的第3列数字1开始,从左到右依次选取两个数字的结果为18,07,17,16,09,19,,故选出来的第6个个体编号为19.14.51(2)2x y -的展开式中23x y 的系数为__________.【答案】20-【解析】由二项式定理可知,展开式的通项为5151()(2)2r r rr T C x y -+=-,要求解51(2)2x y -的展开式中含23x y 的项,则3r =,所求系数为32351()(2)202C -=-.15.设()sin 22f x x x =+,将()f x 的图像向右平移(0)ϕϕ>个单位长度,得到()g x 的图像,若()g x 是偶函数,则ϕ的最小值为__________.【答案】512π【解析】()sin 22sin(2)3f x x x x π==+,将()f x 的图像向右平移(0)ϕϕ>个单位长度得到()2sin(22)3g x x πϕ=-+,因为函数()g x 是偶函数,所以232k ππϕπ-+=+,122k ππϕ=-+,k ∈Z ,(0)ϕ>, 所以min 512πϕ=,故答案为512π.16.某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有种 . 【答案】60【解析】每个城市投资1个项目有3343C A 种, 有一个城市投资2个有212423C C C 种, 投资方案共3321243423243660C A C C C +=+=种. 三、解答题:本大题共6大题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(12分)在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,sin (2)b A a B =. (1)求角B 的大小;(2)D 为边AB 上的一点,且满足2CD =,4AC =,锐角三角形ACD BC 的长.【答案】(1)6B π=;(2)BC =【解析】(1)因为sin (2)b A a B =,所以sin sin sin (2)B A A B =,解得sin 2B B =,所以sin()13B π+=,因为(0,)B π∈,所以4(,)333B πππ+∈,32B ππ+=,解得6B π=.(2)因为锐角三角形ACD所以1sin 2AC CD ACD ⋅⋅∠=sin 4ACD ∠=,因为三角形ACD 为锐角三角形,所以1cos 4ACD ∠==, 在三角形ACD 中,由余弦定理可得:2222cos AD AC CD AC CD ACD =+-⋅⋅∠,所以4AD =,在三角形ACD 中,sin sin CD AD A ACD=∠,所以sin A =,在三角形ABC 中,sin sin BC ACA B=,解得BC =18.(12分)如图,在三棱锥P ABC -中,AC =,2AB BC =,D 为线段AB 上一点,且3AD DB =,PD ⊥平面ABC ,PA 与平面ABC 所成的角为45︒.(1)求证:平面PAB ⊥平面PCD ;(2)求二面角P AC D --的平面角的余弦值.【答案】(1)见解析;(2)5.【解析】(1)因为AC =,2AB BC =,所以2222)4AB BC BC =+=, 所以ABC ∆是直角三角形,AC BC ⊥;在Rt ABC ∆中,由AC =,30CAB ∠=︒,不妨设1BD =,由3AD BD =得,3AD =,2BC =,AC = 在ACD ∆中,由余弦定理得222222cos30323cos30CD AD AC AD AC =+-⋅︒=+-⨯⨯︒3=,故CD =所以222CD AD AC +=,所以CD AD ⊥;因为PD ⊥平面ABC ,CD ⊂平面ABC ,所以PD CD ⊥, 又PDAD D =,所以CD ⊥平面PAB ,又CD ⊂平面PCD ,所以平面PAB ⊥平面PCD .(2)因为PD ⊥平面ABC ,所以PA 与平面ABC 所成的角为PAD ∠,即45PAD ∠=︒,可得PAD ∆为等腰直角三角形,PD AD =,由(1)得3PD AD ==,以D 为坐标原点,分别以DC ,DB ,DP 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系,则(0,0,0)D,C ,(0,3,0)A -,(0,0,3)P . 则(0,0,3)DP =为平面ACD 的一个法向量. 设(,,)x y z =n 为平面PAC 的一个法向量, 因为(0,3,3)PA =--,(3,0,3)PC =-,则由00PC PA ⎧⋅=⎪⎨⋅=⎪⎩n n ,得30330z y z -=--=⎪⎩,令1z=,则x =1y =-,则1,1)=-n 为平面PAC 的一个法向量,故cos ,DP <>==n故二面角P AC D --的平面角的余弦值为5. 19.(12分)某公司生产某种产品,一条流水线年产量为10000件,该生产线分为两段,流水线第一段生产的半成品的质量指标会影响第二段生产成品的等级,具体见下表:从第一道生产工序抽样调查了100件,得到频率分布直方图如图:若生产一件一等品、二等品、三等品的利润分别是100元、60元、100-元.(1)以各组的中间值估计为该组半成品的质量指标,估算流水线第一段生产的半成品质量指标的平均值;(2)将频率估计为概率,试估算一条流水线一年能为该公司创造的利润;(3)现在市面上有一种设备可以安装到流水线第一段,价格是20万元,使用寿命是1年,安装这种设备后,流水线第一段半成品的质量指标服从正态分布2(80,2)N ,且不影响产量.请你帮该公司作出决策,是否要购买该设备?说明理由.(参考数据:()0.6826P X μσμσ-<≤+=,(22)0.9548P X μσμσ-<≤+=,(33)0.9974P X μσμσ-<≤+=),【答案】(1)80.2;(2)30万元;(3)见解析.【解析】(1)平均值为:720.1760.25800.3840.2880.1580.2⨯+⨯+⨯+⨯+⨯=.(2)由频率直方图,第一段生产半成品质量指标(74P x ≤或86)0.25x >=,(7478P x <≤或8286)0.45x <≤=,(7882)0.3P x <≤=,设生产一件产品的利润为X 元,则(100)0.20.250.40.450.60.30.41P X ==⨯+⨯+⨯=,(60)0.30.250.30.450.30.30.3P X ==⨯+⨯+⨯=,(100)0.50.250.30.450.10.30.29P X =-=⨯+⨯+⨯=,所以生产一件成品的平均利润是1000.41600.31000.2930⨯+⨯-⨯=元,所以一条流水线一年能为该公司带来利润的估计值是30万元.(3)374μσ-=,78μσ-=,82μσ+=,386μσ+=,设引入该设备后生产一件成品利润为Y 元,则(100)0.00260.20.31480.40.68260.60.536P Y ==⨯+⨯+⨯=,(60)0.00260.30.31480.30.68260.30.3P Y ==⨯+⨯+⨯=,(100)0.00260.50.31480.30.68260.10.164P Y =-=⨯+⨯+⨯=,所以引入该设备后生产一件成品平均利润为1000.536600.31000.16455.2EY =⨯+⨯-⨯=元,所以引入该设备后一条流水线一年能为该公司带来利润的估计值是55.2万元,增加收入55.23020 5.2--=万元,综上,应该引入该设备.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,以原点为圆心,椭圆的短半轴为长为半径的圆与直线0x y -+=相切,过点(4,0)P 的直线l 与椭圆C 相交于A ,B 两点.(1)求椭圆C 的方程;(2)若原点O 在以线段AB 为直径的圆内,求直线l 的斜率k 的取值范围.【答案】(1)22143x y +=;(2)(35k ∈-. 【解析】(1)由12c e a ==可得2243a b =,又b ==24a =,23b =. 故椭圆的方程为22143x y +=. (2)由题意知直线l 方程为(4)y k x =-. 联立22(4)143y k x x y =-⎧⎪⎨+=⎪⎩,得2222(43)3264120k x k x k +-+-=. 由2222(32)4(43)(6412)0Δk k k =--+->,得214k <.① 设11(,)A x y ,22(,)B x y ,则21223243k x x k +=+,2122641243k x x k -=+. ∴22212121212(4)(4)4()16y y k x k x k x x k x x k =-⋅-=-++.当原点O 在以线段AB 为直径的圆内时,∴22212121212(1)4()16OA OB x x y y k x x k x x k ⋅=+=+-++2222222264123287(1)416250434343k k k k k k k k -=+-⋅+=-<+++,②.由①②,解得55k -<<.∴当原点O 在以线段AB 为直径的圆内时,直线l 的斜率(k ∈. 21.(12分)设函数2()(,)x x ax b f x a R b R e++=∈∈. (1)若1x =-是函数()f x 的一个极值点,试用a 表示b ,并求函数()f x 的减区间;(2)若1a =,1b =-,证明:当0x >时,1()(21)f x x e≤-.【答案】(1)23b a =-,当4a <时,函数()f x 的减区间为(,1)-∞-,(3,)a -+∞,当4a >时,函数()f x 的减区间为(,3)a -∞-,(1,)-+∞;(2)见解析. 【解析】(1)由222(2)()(2)()x x x xx a e x ax b e x a x a b f x e e +-++-+-+-'==, 有(1)(12)0f a a b e '-=-+-+-=,得23b a =-. 此时有22(2)(23)(2)3()x x x a x a a x a x a f x e e-+-+---+--+'== (1)[(3)][(1)][(3)]x x x x a x x a e e++-----=-=-. 由1x =-是函数()f x 的一个极值点,可知31a -≠-,得4a ≠.①当31a ->-,即4a <时,令()0f x '<,得3x a >-或1x <-,函数()f x 的减区间为(,1)-∞-,(3,)a -+∞.②当4a >时,函数()f x 的减区间为(,3)a -∞-,(1,)-+∞.(2)由题意有21()x x x f x e+-=,要证1()(21)(0)f x x x e ≤->, 只要证:2(21)(1)0(0)x x e e x x x --+-≥>令2()(21)(1)(0)x g x x e e x x x =--+->有()(21)(21)(21)()x x g x x e e x x e e '=+-+=+-.则函数()g x 的增区间为(1,)+∞,减区间为(0,1),则min ()(1)0g x g ==. 故不等式1()(21)f x x e≤-成立.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4−4:坐标系与参数方程】在平面直角坐标系xOy 中,直线l的参数方程为32x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C的极坐标方程为ρθ=.(1)求直线l 的普通方程和圆C 的直角坐标方程;(2)设圆C 与直线l 交于A ,B 两点,若点P的坐标为,求||||PA PB +.【答案】(1)直线l的普通方程为3y x =-++圆C的直角坐标方程为22(5x y +=;(2)【解析】(1)由直线l的参数方程32x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数)得直线l的普通方程为3y x =-++.由ρθ=,得220x y +-=,即圆C的直角坐标方程为22(5x y +-=.(2)将直线l 的参数方程代入圆C的直角坐标方程,得22(3)()522-+=,即240t -+=,由于2440Δ=-⨯>,故可设1t ,2t是上述方程的两个实根,所以12124t t t t ⎧+=⎪⎨=⎪⎩ 又直线l过点P ,故1212||||||||PA PB t t t t +=+=+=23.(10分)【选修4-5:不等式选讲】已知函数()|||31|f x x m x m =----.(1)若1m =,求不等式()1f x <的解集;(2)对任意的x R ∈,有()(2)f x f ≤,求实数m 的取值范围.【答案】(1)(,3)-∞;(2)1123m -≤≤. 【解析】(1)()|1||4|1f x x x =---<,所以11(4)1x x x <⎧⎨---<⎩或141(4)1x x x ≤≤⎧⎨---<⎩或4141x x x >⎧⎨--+<⎩. 解之得不等式()1f x <的解集为(,3)-∞.(2)当31m m +>,12m >-时,由题得2必须在31m +的右边或者31m +重合, 所以231m ≥+;∴13m ≤,所以1123m -<≤;当31m m +=,12m =-时,不等式恒成立; 当31m m +<,12m <-时,由题得2必须在31m +的左边或者与31m +重合, 由题得231m ≤+,13m ≥,所以m 没有解. 综上,1123m -≤≤.。

黑龙江省哈尔滨市第三中学2020届高三数学上学期第三次调研试题理(含解析)

黑龙江省哈尔滨市第三中学2020届高三数学上学期第三次调研试题理(含解析)

【分析】
由题,可得
f
x 在
R
t
上单调递增,令
sin
x
cos
x
2
sin
x
4
0
,可得
2k x 5 2k k Z
4
4
,分别判断 1,2,3,4 的范围,从而判定选项
【详解】由题,
f
x 1 cos
x
0
,则
f
x在
R
上单调递增,
t sin x cos x

2
sin
x
4
0
,解得
f
x
4 x
a
,当
a

0 时,
f
x
0
恒成立,即
f
x 0, 在
上单调递增,
无法满足题意,故舍去;当 a
0
时,令
f
x
0
,可得
x
4 a
,则
f
x

0,
4 a
上单调递增,
4 a
,
上单调递减,且
x
0
时,
f
x
0
,故由题需满足
f
4 a
0 ,即 a
1
4e 4

由上式可得 a 0 ,因为 g(x) x2 ax 2 存在两个不同的零点,则 a2 8 0 ,即

1,3, 4,5, 6
A.
1, 4,5, 6
B.
2,3, 4, 6
C.
4, 5, 6
D.
【答案】A
【解析】
【分析】
先将
B
用列举法表示,得

2020年高三6月调研测试(三诊)理数试题及参考答案

2020年高三6月调研测试(三诊)理数试题及参考答案

12 2
12 2
2
第 10 题解析: f (x) sin 2x cos sin cos 2x sin(2x ) ,由题知 f (x) 的图象关于直线 x 5 对称, 12
故 2 5 k ( k Z ),即 k ,故选 A.
12
2
3
第 11 题解析:由题知 A 在第一象限, B 在第四象限,由 AB 3BP 知 xA 4xB ,则 yA 2 yB ,
x2 a2
y2 b2
1
(a
b
0) ,将其左右焦点和短轴的两个端点顺次连接得到一个面积为 4 的正方形.
(1)求椭圆 C 的方程;
(2)直线 l:y
kx
m
(k
0,m
0)
与椭圆
C
交于
P,Q
两点(均不在
y
轴上),点
A(0,
m 2
)
,若
直线 AP,PQ,AQ 的斜率成等比数列,且 OPQ 的面积为
6 2

一、选择题
1~6 BADDAC 7~12 DDBACB
第5
题解析: a2
a7
a9
3a6
27
a6
9 , S8
S9
a9
0 , d
a9
a6 3
3 ,选
A.
第 6 题解析: 110, 10 ,故 P( X 130) P( X 2 ) 1 0.9544 0.0228 ,估计学生人数为 2
(1)求 {an } 的通项公式;
(2)若数列{bn}满足 b1
0 , bn1
bn
1 ,设 cn
abnn,,
n n
为奇数 为偶数
,求数列{cn}的前 2n 项和.

2020年全国卷Ⅲ数学(理科)(解析版)

2020年全国卷Ⅲ数学(理科)(解析版)

2020年全国卷Ⅲ数学(理科)(解析版)本试卷共23题(含选考题).全卷满分150分.考试用时120分钟.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A .2B .3C .4D .6解析 选C.A ∩B ={(x ,y )|x +y =8,x ,y ∈N *,y ≥x }={(1,7),(2,6),(3,5),(4,4)}.故选C. 2.复数11-3i 的虚部是( )A .-310B .-110C.110D .310解析 选D.z =11-3i=1+3i 10=110+310i ,虚部为310.故选D.3.在一组样本数据中,1,2,3,4出现的频率分别为p 1,p 2,p 3,p 4,且∑i =14p i =1,则下面四种情形中,对应样本的标准差最大的一组是( ) A .p 1=p 4=0.1,p 2=p 3=0.4 B .p 1=p 4=0.4,p 2=p 3=0.1 C .p 1=p 4=0.2,p 2=p 3=0.3 D .p 1=p 4=0.3,p 2=p 3=0.2解析 选B.X 的可能取值为1,2,3,4,四种情形的数学期望E (X )=1×p 1+2×p 2+3×p 3+4×p 4都为2.5,方差D (X )=[1-E (X )]2×p 1+[2-E (X )]2×p 2+[3-E (X )]2×p 3+[4-E (X )]2×p 4,标准差为D (X ).A 选项的方差D (X )=0.65;B 选项的方差D (X )=1.85;C 选项的方差D (X )=1.05;D 选项的方差D (X )=1.45.可知选项B 的情形对应样本的标准差最大.故选B.4.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I (t )=K1+e-0.23(t -53),其中K 为最大确诊病例数.当I (t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( ) A .60 B .63 C .66D .69解析 选C.因为I (t )=K 1+e -0.23(t -53),所以当I (t *)=0.95K 时,K 1+e -0.23(t *-53)=0.95K ⇒11+e -0.23(t *-53)=0.95⇒1+e -0.23(t *-53)=10.95⇒e -0.23(t *-53)=10.95-1⇒e0.23(t *-53)=19⇒0.23(t *-53)=ln 19⇒t *=ln 190.23+53≈30.23+53≈66.故选C. 5.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( ) A.⎝⎛⎭⎫14,0 B .⎝⎛⎭⎫12,0 C .(1,0)D .(2,0)解析 选B.方法1:∵抛物线C 关于x 轴对称,∴D ,E 两点关于x 轴对称.可得出直线x =2与抛物线的两交点的坐标分别为(2,2p ),(2,-2p ).不妨设D (2,2p ),E (2,-2p ),则OD →=(2,2p ),OE →=(2,-2p ).又∵OD ⊥OE ,∴OD →·OE →=4-4p =0,解得p =1,∴C 的焦点坐标为⎝⎛⎭⎫12,0.故选B.方法2:∵抛物线C 关于x 轴对称,∴D ,E 两点关于x 轴对称.∵OD ⊥OE ,∴D ,E 两点横、纵坐标的绝对值相等.不妨设点D (2,2),将点D 的坐标代入C :y 2=2px ,得4=4p ,解得p =1,故C 的焦点坐标为⎝⎛⎭⎫12,0.故选B.6.已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉=( ) A .-3135B .-1935C.1735D .1935解析 选D.∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=25-12+36=49,∴|a +b |=7,∴cos 〈a ,a +b 〉=a ·(a +b )|a ||a +b |=a 2+a ·b |a ||a +b |=25-65×7=1935.故选D.7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( )A.19 B .13C.12D .23解析 选A.由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos C =42+32-2×4×3×23=9,所以AB =3,所以cos B =AB 2+BC 2-AC 22AB ·BC =9+9-162×3×3=19.故选A.8.右图为某几何体的三视图,则该几何体的表面积是( ) A .6+42 B .4+42 C .6+23 D .4+23解析 选C.如图,该几何体为其中三个面是腰长为2的等腰直角三角形、第四个面是边长为22的等边三角形的三棱锥,所以该几何体的表面积为3×12×2×2+12×22×22×32=6+2 3.故选C.9.已知2tan θ-tan ⎝⎛⎭⎫θ+π4=7,则tan θ=( ) A .-2 B .-1 C .1D .2解析 选D.2tan θ-tan ⎝⎛⎭⎫θ+π4=2tan θ-1+tan θ1-tan θ=7, 解得tan θ=2.故选D.10.若直线l 与曲线y =x 和圆x 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12解析 选D.圆x 2+y 2=15的圆心为原点,半径为55,经检验原点与选项A ,D 中的直线y =2x +1,y =12x +12的距离均为55,即两直线与圆x 2+y 2=15均相切,原点与选项B ,C 中的直线y =2x +12,y =12x +1的距离均不是55,即两直线与圆x 2+y 2=15均不相切,所以排除B ,C.将直线方程y =2x +1代入y =x ,得2(x )2-x +1=0,判别式Δ<0,所以直线y =2x +1与曲线y =x 不相切,所以排除A.故选D.11.设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为 5.P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( )A .1B .2C .4D .8解析 选A.由⎩⎪⎨⎪⎧c a =5,c 2=a 2+b 2,得⎩⎨⎧c =5a ,b =2a ,∴|F 1F 2|=2c =2 5 a .∵△PF 1F 2中,F 1P ⊥F 2P ,∴|F 1P |2+|F 2P |2=|F 1F 2|2=4c 2=20a 2.不妨设P 在C 的右支上,则|F 1P |-|F 2P |=2a . ∵△PF 1F 2的面积为4,∴12|F 1P ||F 2P |=4,即|F 1P |·|F 2P |=8.∴(|F 1P |-|F 2P |)2=|F 1P |2+|F 2P |2-2|F 1P ||F 2P |=20a 2-2×8=4a 2,解得a =1.故选A.12.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <c C .b <c <aD .c <a <b解析 选A.∵log 53-log 85=log 53-1log 58=log 53·log 58-1log 58<⎝⎛⎭⎫log 53+log 5822-1log 58=⎝⎛⎭⎫log 52422-1log 58<⎝⎛⎭⎫log 52522-1log 58=0,∴log 53<log 85.∵55<84,134<85,∴5log 85<4,4<5log 138,∴log 85<log 138,∴log 53<log 85<log 138,即a <b <c .故选A.二、填空题(本题共4小题,每小题5分,共20分) 13.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥0,2x -y ≥0,x ≤1,则z =3x +2y 的最大值为__________.解析 作出不等式组所表示的可行域,如图中阴影部分(含边界)所示.z =3x +2y 可化为y =-32x +12z .作直线y =-32x ,并平移该直线,易知当直线经过点A (1,2)时,z 最大,z max =7. 答案 714.⎝⎛⎭⎫x 2+2x 6的展开式中常数项是__________(用数字作答). 解析 ⎝⎛⎭⎫x 2+2x 6的展开式的通项为T r +1=C r 6(x 2)6-r ·⎝⎛⎭⎫2x r =C r 62r x 12-3r ,令12-3r =0,解得r =4,得常数项为C 4624=240.答案 24015.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为__________.解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22,故内切球的体积为43π⎝⎛⎭⎫223=23π. 答案23π 16.关于函数f (x )=sin x +1sin x 有如下四个命题:①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =π2对称.④f (x )的最小值为2.其中所有真命题的序号是__________.解析 ∵f (x )=sin x +1sin x 的定义域为{x |x ≠k π,k ∈Z },f (-x )=sin(-x )+1sin (-x )=-f (x ),而f (-x )≠f (x ),∴f (x )为奇函数,不是偶函数,①错误,②正确.∵f ⎝⎛⎭⎫π2-x =cos x +1cos x ,f ⎝⎛⎭⎫π2+x =cos x +1cos x ,∴f ⎝⎛⎭⎫π2-x =f ⎝⎛⎭⎫π2+x ,∴f (x )的图象关于直线x =π2对称,③正确. 当x ∈⎝⎛⎭⎫-π2,0时,f (x )<0,④错误.故选②③. 答案 ②③三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答) (一)必考题:共60分.17.(12分)设数列{a n }满足a 1=3,a n +1=3a n -4n . (1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n .解析 (1)解:a 2=5,a 3=7.猜想a n =2n +1. 证明:由已知可得a n +1-(2n +3)=3[a n -(2n +1)], a n -(2n +1)=3[a n -1-(2n -1)], …,a 2-5=3(a 1-3).因为a 1=3,所以a n =2n +1. (2)解:由(1)得2n a n =(2n +1)2n ,所以S n=3×2+5×22+7×23+…+(2n+1)×2n.①从而2S n=3×22+5×23+7×24+…+(2n+1)×2n+1.②①-②得-S n=3×2+2×22+2×23+…+2×2n-(2n+1)×2n+1,所以S n=(2n-1)2n+1+2.18.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:K2=n(ad-bc)(a+b)(c+d)(a+c)(b+d),.解析(1)解:由所给数据,得该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:(2)1100(100×20+300×35+500×45)=350.(3)解:根据所给数据,可得2×2列联表:人次≤400人次>400空气质量好 33 37 空气质量不好228根据列联表得 K 2的观测值k =100×(33×8-22×37)255×45×70×30≈5.820.由于5.820>3.841,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.19.(12分)如图,在长方体ABCD ­A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1. (1)证明:点C 1在平面AEF 内;(2)若AB =2,AD =1,AA 1=3,求二面角A ­EF ­A 1的正弦值.解析 设AB =a ,AD =b ,AA 1=c ,如图,以C 1为坐标原点,C 1D 1→的方向为x 轴正方向,建立空间直角坐标系C 1­xyz .(1)证明:连接C 1F .C 1(0,0,0),A (a ,b ,c ),E ⎝⎛⎭⎫a ,0,23c ,F ⎝⎛⎭⎫0,b ,13c ,EA →=⎝⎛⎭⎫0,b ,13c ,C 1F →=⎝⎛⎭⎫0,b ,13c ,得EA →=C 1F →,因为EA ∥C 1F ,即A ,E ,F ,C 1四点共面,所以点C 1在平面AEF 内.(2)解:由已知得A (2,1,3),E (2,0,2),F (0,1,1),A 1(2,1,0),AE →=(0,-1,-1),AF →=(-2,0,-2),A 1E →=(0,-1,2),A 1F →=(-2,0,1). 设n 1=(x ,y ,z )为平面AEF 的法向量,则⎩⎪⎨⎪⎧n 1·AE →=0,n 1·AF →=0,即⎩⎪⎨⎪⎧-y -z =0,-2x -2z =0,可取n 1=(-1,-1,1).设n 2为平面A 1EF 的法向量,则⎩⎪⎨⎪⎧n 2·A 1E →=0,n 2·A 1F →=0,同理可取n 2=⎝⎛⎭⎫12,2,1. 因为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-77,所以二面角A ­EF ­A 1的正弦值为427. 20.(12分)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积. 解析 (1)解:由题设可得25-m 25=154,得m 2=2516,所以C 的方程为x 225+y 22516=1.(2)解:设P (x P ,y P ),Q (6,y Q ),根据对称性可设y Q >0, 由题意知y P >0.由已知可得B (5,0),直线BP 的方程为y =-1y Q(x -5),所以|BP |=y P 1+y 2Q ,|BQ |=1+y 2Q .因为|BP |=|BQ |,所以y P =1.将y P =1代入C 的方程,解得x P =3或-3.由直线BP 的方程得y Q =2或8,所以点P ,Q 的坐标分别为P 1(3,1),Q 1(6,2);P 2(-3,1),Q 2(6,8).所以|P 1Q 1|=10,直线P 1Q 1的方程为y =13x ,点A (-5,0)到直线P 1Q 1的距离为102, 故△AP 1Q 1的面积为12×102×10=52;|P 2Q 2|=130,直线P 2Q 2的方程为y =79x +103,点A 到直线P 2Q 2的距离为13026, 故△AP 2Q 2的面积为12×13026×130=52.综上,△APQ 的面积为52.21.(12分)设函数f (x )=x 3+bx +c ,曲线y =f (x )在点⎝⎛⎭⎫12,f ⎝⎛⎭⎫12处的切线与y 轴垂直.(1)求b ;(2)若f (x )有一个绝对值不大于1的零点,证明:f (x )所有零点的绝对值都不大于1. 解析 (1)解:f ′(x )=3x 2+b .依题意得f ′⎝⎛⎭⎫12=0,即34+b =0,故b =-34. (2)证明:由(1)知f (x )=x 3-34x +c ,f ′(x )=3x 2-34.令f ′(x )=0,解得x =-12或x =12.f ′(x )与f (x )的情况为:因为f (1)=f ⎝⎛⎭⎫-12=c +14, 所以当c <-14时,f (x )只有大于1的零点.因为f (-1)=f ⎝⎛⎭⎫12=c -14, 所以当c >14时,f (x )只有小于-1的零点.由题设可知-14≤c ≤14.当c =-14时,f (x )只有两个零点-12和1.当c =14时,f (x )只有两个零点-1和12.当-14<c <14时,f (x )有三个零点x 1,x 2,x 3,且x 1∈⎝⎛⎭⎫-1,-12,x 2∈⎝⎛⎭⎫-12,12,x 3∈⎝⎛⎭⎫12,1. 综上,若f (x )有一个绝对值不大于1的零点,则f (x )所有零点的绝对值都不大于1.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2-t -t 2,y =2-3t +t 2(t 为参数且t ≠1),C 与坐标轴交于A ,B 两点. (1)求|AB |;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程. 解析 (1)解:因为t ≠1,由2-t -t 2=0得t =-2,所以C 与y 轴的交点为(0,12).由2-3t +t 2=0得t =2,所以C 与x 轴的交点为(-4,0).故|AB |=410.(2)解:由(1)可知,直线AB 的直角坐标方程为x -4+y12=1,将x =ρcos θ,y =ρsin θ代入,得直线AB 的极坐标方程为3ρcos θ-ρsin θ+12=0. 23.[选修4-5:不等式选讲](10分) 设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 的最大值,证明:max{a ,b ,c }≥34. 解析 (1)证明:由题设可知a ,b ,c 均不为零,所以ab +bc +ca =12[(a +b +c )2-(a 2+b 2+c 2)]=-12(a 2+b 2+c 2)<0.(2)证明:不妨设max{a ,b ,c }=a .因为abc =1,a =-(b +c ),所以a >0,b <0,c <0. 由bc ≤(b +c )24,可得abc ≤a 34,当且仅当b =c =-a 2时取等号,故a ≥34,所以max{a ,b ,c }≥34.。

惠州市2020届高三第三次调研考试 理科数学 参考答案与评分细则

惠州市2020届高三第三次调研考试 理科数学 参考答案与评分细则

惠州市2020届高三第三次调研考试理科数学参考答案及评分细则一、选择题2.【解析】21122z ==-+(),所以对应的点在第二象限,故选B.3.【解析】20201log πa =2020log 10<=,20201πb ⎛⎫= ⎪⎝⎭()01∈,,1π2020c =1>,所以a b c <<.故选D.4.【解析】因为角θ终边落在直线3y x =上,所以tan 3θ=,21cos 10θ=, 所以3sin(2)2πθ-24cos 2(2cos 1).5θθ=-=--=故选A. 5.【解析】如图所示,MP →=AP →-AM →=12AD →-45AC →=12AD →-45(AB →+AD →)=12b -45(a +b )=-45a -310b .故选C. 6.【解析】依题意,知-4a =-12a ,且-52a ≠12,解得a =.故选A.7.【解析】1233243546521()()()()()n n n n S a a a a a a a a a a a a a a ++=++++=-+-+-+-+-2221n n a a a ++=-=-,所以201920211S a =-,故选D.8.【解析】11332815.14C C P C +==故选D. 9.【解析】()21sin 1xf x x e⎛⎫=- ⎪+⎝⎭1sin 1x x e x e ⎛⎫-= ⎪+⎝⎭是偶函数,排除C 、D,又(1)0,f >故选A.10.【解析】如图: 面 , 面 , 面 ,可知 , ,因为△ 是正三角形,m n 、所成角为60°.则m 、n 所成角的正弦值为.故选D .11.【解析】设直线AB 的方程为: ,点 , , 直线AB 与x 轴的交点为 ,由,根据韦达定理有 ,, , z结合 及,得 , 点A 、B 位于x 轴的两侧,,故 .不妨令点A 在x 轴上方,则 ,又,.当且仅当,即时,取“ ”号, 与 面积之和的最小值是3.故选B .12.【解析】 区间中点为 ,根据正弦曲线的对称性知, 正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届高三入学调研考试卷理 科 数 学(三)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|230}A x x x =+-≤,{|2}B x =<,则A B =( )A .{|31}x x -≤≤B .{|01}x x ≤≤C .{|31}x x -≤<D .{|10}x x -≤≤【答案】B【解析】{|31}A x x =-≤≤,{|04}B x x =≤<, 所以{|01}AB x x =≤≤.故选B .2.已知复数12z =+,则||z z +=( ) A.122- B.122-- C.322- D.322+ 【答案】C【解析】因为复数122z =+, 所以复数z的共轭复数122z =-,||1z ==,所以13||12222z z +=-+=-,故选C . 3.已知1sin 4x =,x 为第二象限角,则sin2x =( ) A .316-B.8-C.8±D.8【答案】B【解析】因为1sin 4x =,x 为第二象限角,所以cos x ===,所以1sin 22sin cos 2(4x x x ==⨯⨯=,故选B . 4.在等比数列{}n a 中,若2a ,9a 是方程260x x --=的两根,则56a a ⋅的值为( ) A .6 B .6- C .1- D .1【答案】B【解析】因为2a 、9a 是方程260x x --=的两根,所以根据韦达定理可知296a a ⋅=-,因为数列{}n a 是等比数列,所以5629a a a a ⋅=⋅,566a a ⋅=-,故选B .5.设函数2sin cos ()(,0)x x xf x a R a ax +=∈≠,若(2019)2f -=,(2019)f =( ) A .2 B .2-C .2019D .2019-【答案】B【解析】因为2sin cos ()x x xf x ax +=,所以22sin()cos()sin cos ()()x x x x x xf x f x ax ax---+-==-=-, 因此函数()f x 为奇函数,又(2019)2f -=,所以(2019)(2019)2f f =--=-. 故选B .6.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中不正确的是( )注:90后指1990年及以后出生,80后指19801989-年之间出生,80前指1979年及以前出生.A .互联网行业从业人员中90后占一半以上B .互联网行业中从事技术岗位的人数超过总人数的20%C .互联网行业中从事运营岗位的人数90后比80前多D .互联网行业中从事技术岗位的人数90后比80后多 【答案】D【解析】A .由互联网行业从业者年龄分布饼状图可知,90后占了56%,故A 选项结论正确;B .由90后从事互联网行业岗位分布图可知,技术所占比例为39.65%,故B 选项结论正确;C .由互联网行业从业者年龄分布饼状图可知,在互联网行业从业者中90后明显比80前多,故C 选项结论正确;D .在互联网行业从业者中90后与80后的比例相差不大,故无法判断其技术岗位的人数是谁多,故D 选项结论不一定正确. 故选D .7.已知实数x ,y 满足不等式10320x y x y x y -+≥⎧⎪+≥⎨⎪-≤⎩,则2z x y =+的最小值为( )A .4-B .5C .4D .无最小值【答案】C【解析】绘制不等式组表示的平面区域如图所示,目标函数即1122y x z =-+,其中z 取得最小值时, 其几何意义表示直线系在y 轴上的截距最小,据此结合目标函数的几何意义可知目标函数在点A 处取得最小值,联立直线方程320x y x y +=⎧⎨-=⎩,可得点的坐标为(2,1)A ,据此可知目标函数的最小值为min 2224z x y =+=+=. 故选C .8.我国古代《九章算术》将上下两个平行平面为矩形的六面体称为刍童.如图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和6,高为2,则该刍童的体积为( )A .0031B .1043C .27D .18【答案】B【解析】由题意几何体原图为正四棱台,底面的边长分别为2和6,高为2,所以几何体体积1104(436233V =++⨯=.故选B .9.已知向量(1,2)a =-,(1,)b m =,则“12m <”是,a b <>为钝角的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】B【解析】因为(1,2)a =-,(1,)b m =,所以12a b m ⋅=-+, 则cos ,||||5a b a b a b ⋅<>==⋅,若12m <,则cos ,0||||5a b a b a b ⋅<>==<⋅, 但当2m =-时,a ,b 反向,夹角为180︒; 所以由12m <不能推出,a b <>为钝角; 反之,若,a b <>为钝角,则cos ,0a b <><且2m ≠-,即12m <且2m ≠-, 能推出12m <; 因此,“12m <”是,a b <>为钝角的必要不充分条件. 10.已知A 为椭圆2229x y +=的左顶点,该椭圆与双曲线22221x y a b-=的渐近线在第一象限内的交点为B ,若直线AB 垂直于双曲线的另一条渐近线,则该双曲线的离心率为( ) A.2B .5C .2D 【答案】D【解析】因为直线AB 垂直于双曲线的另一条渐近线,所以直线AB 的方程为(3)ay x b=+,联立(3)ay x b b y x a⎧=+⎪⎪⎨⎪=⎪⎩,可得交点2222233(,)a abB a b a b ----, 代入椭圆方程整理得224b a =,即有225c a =11.如图,正方形的四个顶点(1,1)A --,(1,1)B -,(1,1)C ,(1,1)D-,及抛物线2(1)y x =-+和2(1)y x =-,若将一个质点随机投入正方形ABCD 中,则质点落在图中阴影部分区域的概率是( )A .23B .13C .16D .12【答案】B【解析】∵(1,1)A --,(1,1)B -,(1,1)C ,(1,1)D -, ∴正方形的ABCD 的面积224S =⨯=,根据积分的几何意义以及抛物线的对称性可知阴影部分的面积:122310012[1(1)]2()|3S x dx x x =--=-⎰1242[(1)0]2333=--=⨯=,则由几何槪型的概率公式可得质点落在图中阴影区域的概率是41343=.故选B .12.不等式3ln 1x x e a x x --≥+对任意(1,)x ∈+∞恒成立,则实数a 的取值范围( ) A .(,1]e -∞- B .2(,2]e -∞-C .(,2]-∞-D .(,3]-∞-【答案】D【解析】题意即为3ln 1x a x x e x -≤--对(1,)x ∀∈+∞恒成立,即31ln x x e x a x ---≤对(1,)x ∀∈+∞恒成立,从而求31ln x x e x y x---=,(1,)x ∈+∞的最小值,而33ln 3ln 3ln 1x x x x x x e e e e x x ---==≥-+, 故313ln 113ln x x e x x x x x ---≥-+--=-,即313ln 3ln ln x x e x x x x----≥=-.当3ln 0x x -=时,等号成立,方程3ln 0x x -=在(1,)+∞内有根,故3min 1()3ln x x e x x---=-,所以3a ≤-,故选D .二、填空题:本大题共4小题,每小题5分.13.设某总体是由编号为01,02,,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为__________.1818079245441716580979838619第1行 6206765003105523640505266238第2行【答案】19【解析】由题意,从随机数表第1行的第3列数字1开始,从左到右依次选取两个数字的结果为18,07,17,16,09,19,,故选出来的第6个个体编号为19.14.51(2)2x y -的展开式中23x y 的系数为__________.【答案】20-【解析】由二项式定理可知,展开式的通项为5151()(2)2rrr r T C x y -+=-,要求解51(2)2x y -的展开式中含23x y 的项,则3r =,所求系数为32351()(2)202C -=-.15.设()sin 22f x x x =+,将()f x 的图像向右平移(0)ϕϕ>个单位长度,得到()g x 的图像,若()g x 是偶函数,则ϕ的最小值为__________. 【答案】512π【解析】()sin 22sin(2)3f x x x x π=+=+,将()f x 的图像向右平移(0)ϕϕ>个单位长度得到()2sin(22)3g x x πϕ=-+,因为函数()g x 是偶函数,所以232k ππϕπ-+=+,122k ππϕ=-+,k ∈Z ,(0)ϕ>, 所以min512πϕ=,故答案为512π. 16.某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有种 . 【答案】60【解析】每个城市投资1个项目有3343C A 种, 有一个城市投资2个有212423C C C 种,投资方案共3321243423243660C A C C C +=+=种.三、解答题:本大题共6大题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(12分)在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c,sin (2)b A a B =-.(1)求角B 的大小;(2)D 为边AB 上的一点,且满足2CD =,4AC =,锐角三角形ACD面积为BC 的长.【答案】(1)6B π=;(2)BC =【解析】(1)因为sin (2)b A a B =-,所以sin sin sin (2)B A A B =,解得sin 2B B =,所以sin()13B π+=,因为(0,)B π∈,所以4(,)333B πππ+∈,32B ππ+=,解得6B π=. (2)因为锐角三角形ACD所以1sin 2AC CD ACD ⋅⋅∠=sin 4ACD ∠=, 因为三角形ACD为锐角三角形,所以1cos 4ACD ∠==, 在三角形ACD 中,由余弦定理可得:2222cos AD AC CD AC CD ACD =+-⋅⋅∠,所以4AD =,在三角形ACD 中,sin sin CD AD A ACD=∠,所以sin A =, 在三角形ABC 中,sin sin BC ACA B=,解得BC = 18.(12分)如图,在三棱锥P ABC -中,AC =,2AB BC =,D 为线段AB 上一点,且3AD DB =,PD ⊥平面ABC ,PA 与平面ABC 所成的角为45︒.(1)求证:平面PAB ⊥平面PCD ;(2)求二面角P AC D --的平面角的余弦值. 【答案】(1)见解析;(2)5. 【解析】(1)因为AC =,2AB BC =,所以2222)4AB BC BC =+=,所以ABC ∆是直角三角形,AC BC ⊥;在Rt ABC ∆中,由AC =,30CAB ∠=︒,不妨设1BD =,由3AD BD =得,3AD =,2BC =,AC = 在ACD ∆中,由余弦定理得222222cos30323cos30CD AD AC AD AC =+-⋅︒=+-⨯⨯︒3=,故CD =,所以222CD AD AC +=,所以CD AD ⊥;因为PD ⊥平面ABC ,CD ⊂平面ABC ,所以PD CD ⊥, 又PDAD D =,所以CD ⊥平面PAB ,又CD ⊂平面PCD ,所以平面PAB ⊥平面PCD .(2)因为PD ⊥平面ABC ,所以PA 与平面ABC 所成的角为PAD ∠,即45PAD ∠=︒,可得PAD ∆为等腰直角三角形,PD AD =,由(1)得3PD AD ==,以D 为坐标原点,分别以DC ,DB ,DP 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系,则(0,0,0)D,C ,(0,3,0)A -,(0,0,3)P .则(0,0,3)DP =为平面ACD 的一个法向量. 设(,,)x y z =n 为平面PAC 的一个法向量, 因为(0,3,3)PA =--,(3,0,3)PC =-,则由00PC PA ⎧⋅=⎪⎨⋅=⎪⎩nn ,得30330z y z -=--=⎪⎩,令1z=,则x =1y =-,则1,1)=-n 为平面PAC 的一个法向量,故cos ,5DP <>==n , 故二面角P AC D -- 19.(12分)某公司生产某种产品,一条流水线年产量为10000件,该生产线分为两段,流水线第一段生产的半成品的质量指标会影响第二段生产成品的等级,具体见下表:从第一道生产工序抽样调查了100件,得到频率分布直方图如图:若生产一件一等品、二等品、三等品的利润分别是100元、60元、100-元.(1)以各组的中间值估计为该组半成品的质量指标,估算流水线第一段生产的半成品质量指标的平均值;(2)将频率估计为概率,试估算一条流水线一年能为该公司创造的利润; (3)现在市面上有一种设备可以安装到流水线第一段,价格是20万元,使用寿命是1年,安装这种设备后,流水线第一段半成品的质量指标服从正态分布2(80,2)N ,且不影响产量.请你帮该公司作出决策,是否要购买该设备?说明理由.(参考数据:()0.6826P X μσμσ-<≤+=,(22)0.9548P X μσμσ-<≤+=, (33)0.9974P X μσμσ-<≤+=),【答案】(1)80.2;(2)30万元;(3)见解析. 【解析】(1)平均值为:720.1760.25800.3840.2880.1580.2⨯+⨯+⨯+⨯+⨯=.(2)由频率直方图,第一段生产半成品质量指标(74P x ≤或86)0.25x >=,(7478P x <≤或8286)0.45x <≤=, (7882)0.3P x <≤=,设生产一件产品的利润为X 元,则(100)0.20.250.40.450.60.30.41P X ==⨯+⨯+⨯=,(60)0.30.250.30.450.30.30.3P X ==⨯+⨯+⨯=, (100)0.50.250.30.450.10.30.29P X =-=⨯+⨯+⨯=,所以生产一件成品的平均利润是1000.41600.31000.2930⨯+⨯-⨯=元, 所以一条流水线一年能为该公司带来利润的估计值是30万元. (3)374μσ-=,78μσ-=,82μσ+=,386μσ+=, 设引入该设备后生产一件成品利润为Y 元,则(100)0.00260.20.31480.40.68260.60.536P Y ==⨯+⨯+⨯=, (60)0.00260.30.31480.30.68260.30.3P Y ==⨯+⨯+⨯=, (100)0.00260.50.31480.30.68260.10.164P Y =-=⨯+⨯+⨯=,所以引入该设备后生产一件成品平均利润为1000.536600.31000.16455.2EY =⨯+⨯-⨯=元,所以引入该设备后一条流水线一年能为该公司带来利润的估计值是55.2万元, 增加收入55.23020 5.2--=万元,综上,应该引入该设备.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,以原点为圆心,椭圆的短半轴为长为半径的圆与直线0x y -+=相切,过点(4,0)P 的直线l 与椭圆C 相交于A ,B 两点. (1)求椭圆C 的方程;(2)若原点O 在以线段AB 为直径的圆内,求直线l 的斜率k 的取值范围.【答案】(1)22143x y +=;(2)(k ∈.【解析】(1)由12c e a ==可得2243a b =,又b ==24a =,23b =.故椭圆的方程为22143x y +=.(2)由题意知直线l 方程为(4)y k x =-.联立22(4)143y k x x y =-⎧⎪⎨+=⎪⎩,得2222(43)3264120k x k x k +-+-=.由2222(32)4(43)(6412)0Δk k k =--+->,得214k <.① 设11(,)A x y ,22(,)B x y ,则21223243k x x k +=+,2122641243k x x k -=+. ∴22212121212(4)(4)4()16y y k x k x k x x k x x k =-⋅-=-++.当原点O 在以线段AB 为直径的圆内时,∴22212121212(1)4()16OA OB x x y y k x x k x x k ⋅=+=+-++2222222264123287(1)416250434343k k k k k k k k -=+-⋅+=-<+++,②.由①②,解得55k -<<. ∴当原点O 在以线段AB 为直径的圆内时,直线l的斜率(55k ∈-. 21.(12分)设函数2()(,)xx ax bf x a R b R e ++=∈∈.(1)若1x =-是函数()f x 的一个极值点,试用a 表示b ,并求函数()f x 的减区间;(2)若1a =,1b =-,证明:当0x >时,1()(21)f x x e≤-.【答案】(1)23b a =-,当4a <时,函数()f x 的减区间为(,1)-∞-,(3,)a -+∞, 当4a >时,函数()f x 的减区间为(,3)a -∞-,(1,)-+∞;(2)见解析.【解析】(1)由222(2)()(2)()x x x xx a e x ax b e x a x a bf x e e+-++-+-+-'==, 有(1)(12)0f a a b e '-=-+-+-=,得23b a =-.此时有22(2)(23)(2)3()x xx a x a a x a x a f x e e-+-+---+--+'== (1)[(3)][(1)][(3)]x xx x a x x a e e ++-----=-=-.由1x =-是函数()f x 的一个极值点,可知31a -≠-,得4a ≠. ①当31a ->-,即4a <时,令()0f x '<,得3x a >-或1x <-, 函数()f x 的减区间为(,1)-∞-,(3,)a -+∞.②当4a >时,函数()f x 的减区间为(,3)a -∞-,(1,)-+∞.(2)由题意有21()xx x f x e+-=,要证1()(21)(0)f x x x e ≤->, 只要证:2(21)(1)0(0)xx e e x x x --+-≥> 令2()(21)(1)(0)xg x x e e x x x =--+->有()(21)(21)(21)()xxg x x e e x x e e '=+-+=+-. 则函数()g x 的增区间为(1,)+∞,减区间为(0,1), 则min ()(1)0g x g ==. 故不等式1()(21)f x x e≤-成立.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4−4:坐标系与参数方程】在平面直角坐标系xOy 中,直线l的参数方程为322x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C的极坐标方程为ρθ=. (1)求直线l 的普通方程和圆C 的直角坐标方程;(2)设圆C 与直线l 交于A ,B 两点,若点P的坐标为,求||||PA PB +. 【答案】(1)直线l的普通方程为3y x =-++; 圆C的直角坐标方程为22(5x y +-=;(2)【解析】(1)由直线l的参数方程322x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数)得直线l 的普通方程为3y x =-++由ρθ=,得220x y +-=, 即圆C的直角坐标方程为22(5x y +=.(2)将直线l 的参数方程代入圆C 的直角坐标方程,得22(3)()522-+=,即240t -+=,由于2440Δ=-⨯>,故可设1t ,2t是上述方程的两个实根,所以12124t t t t ⎧+=⎪⎨=⎪⎩又直线l过点P ,故1212||||||||PA PB t t t t +=+=+= 23.(10分)【选修4-5:不等式选讲】 已知函数()|||31|f x x m x m =----. (1)若1m =,求不等式()1f x <的解集;(2)对任意的x R ∈,有()(2)f x f ≤,求实数m 的取值范围. 【答案】(1)(,3)-∞;(2)1123m -≤≤. 【解析】(1)()|1||4|1f x x x =---<,所以11(4)1x x x <⎧⎨---<⎩或141(4)1x x x ≤≤⎧⎨---<⎩或4141x x x >⎧⎨--+<⎩.解之得不等式()1f x <的解集为(,3)-∞.(2)当31m m +>,12m >-时,由题得2必须在31m +的右边或者31m +重合,所以231m ≥+;∴13m ≤,所以1123m -<≤;当31m m +=,12m =-时,不等式恒成立;当31m m +<,12m <-时,由题得2必须在31m +的左边或者与31m +重合,由题得231m ≤+,13m ≥,所以m 没有解.综上,1123m -≤≤.。

相关文档
最新文档