【典型例题】第五章线性微分方程组

合集下载

第五章线性微分方程组

第五章线性微分方程组

第五章:线性微分方程组本章教学目的和要求:使学生掌握线性微分方程组解的结构。

要求学生熟练掌握求解常系数线性问粉方程组。

熟练掌握常数变易法。

本章重点:解的性质与结构,常系数方程组的解法,常数变易法。

本章难点:向量函数组的线性相关性,一般理论中的定理证明。

本章课时安排:讲16学时,习题及总结测验2学时第五章:线性微分方程组说明:本章所讨论的线性微分方程组仅限与一阶微分方程,从讲义的开头所说的,方程组不仅能在实际中应用广泛,而且她对高阶方程的求解具有不可忽视的作用。

不仅如此,方程组的有关定理在近代微分方程理论中也占有重要地位。

本章内容:一.一阶微分线性方程组及其解的概念;初值问题解的存在和唯一性定理。

二.线性方程组及其解的一般理论/包括解的线线性相关性,基本解组和解的结构定理。

三.方程组的具体解法。

§5.1 存在唯一性定理5.1.1 记号和定义①引言:在第二章我们研究了含有一个未知函数的微分方程的解法以及它们的性质。

但是,在很多实际问题与理论问题中,还要求我们去求解含有多个未知数函数的微分方程组,或者研究它们的解的性质。

如空间运动质点P 的速度与t 以及坐标(,,)x y z 的关系式为:112232(,,,)(,,,)(,,,)x y z v f t x y z x f v f t x y z y f z f v f t x y z ⎧==⎧⎪⎪=⇒=⎨⎨⎪⎪==⎩⎩ 又如: 22sin d dt l θθθ=-令 sin d dtd dtl θωωθθ⎧=⎪⎪⎨⎪=-⎪⎩化成一阶微分方程组。

用类似的方法,如果在 n 阶微分方程 ()(1)(,,...,)n n y x y y y -'=中,令(1)121.,,...,n n y y y y y y --'''=== 它就可以化成方程组 1212(1)121()(1),........(,,...,)n n n n n n y y y y y y y y y yy x y y y -----⎧'=⎪'''==⎪⎪⎨⎪'==⎪⎪'=⎩共同点:出现的未知函数的导数都是一阶的 它 们都是一阶微分方程组。

常系数线性微分方程组

常系数线性微分方程组

基解矩阵
d x Ax (33) dt
定理8 矩阵 (t) exp At
是常系数线性方程组(33)的基解矩阵(即基本解组),
且Φ(0)=E。方程组(33)的任一解可表为(expAt)c。
证 显然, Φ(0)=exp0=E ,且
'(t) exp At ' A A2t A3t2 Ak1tk
• 而由绝对收敛的乘法定理又有
exp
A exp B

i0
Ai i!

j0
Aj j!

k
k0 l0
Al l!

Bkl (k l)!
• 比较上两式,即得 exp(A+B)=expA·expB
3 第五章线性方程组§5.2
矩阵指数性质(3)(4)
矩阵指数性质(2)
(2) 矩阵A、B可交换,即AB=BA时有
exp(A+B)=expA·expB; 证 利用绝对收敛级数的重排定理证明。
• 由二项定理及AB=BA有
exp(A B) (A B)k k0 k !

k 0


l
k 0
l
Al Bk !(k
l l)!



5
3
ቤተ መጻሕፍቲ ባይዱ
u

u1 u2

5
3

2
6
34

0
必得须解满足u 线性1i代数此方即程为组对应(1特E 征A)值u λ155=i 3+55i5i的uu12 特 征55ui向u115量5iuu。22 0

第五章_第2节 n维线性空间中的微分方程

第五章_第2节 n维线性空间中的微分方程

③ A( x ) [ai j ( x )]nn 在x x0处连续
⑥ A [ai j ]nn 的范数: A
y的范数: y yi
i 1
n
i , j 1
ai j
n
y的范数还有如下等价定义: 2 2 (1) | y | y12 y2 yn ; ( 2) | y | max | y1 | + | y2 | ++ | yn |;
a11 ( x ) y1 a12 ( x ) y2 a1n ( x ) yn f1 ( x ) y1 a21 ( x ) y1 a22 ( x ) y2 a2n ( x ) yn f2 ( x ) y2 an1 ( x ) y1 an2 ( x ) y2 ann ( x ) yn fn ( x ) yn
n 阶方程 (2.4)
等价

一阶n元方程组 (2.4)

n 阶方程 (2.4) 转化 一阶n元方程组 (2.4)
转化
2º n 阶方程 (2.4)
一阶n元方程组 (2.4)
例3 一阶二元微分方程组
d y 1 d x 0
0 y, 1
y1 y y2
y1 y1 即 y2 y2

( y1 , y2 , , yn ) ( , , , ( n1) ) (C1 , C 2 , , C n ) (C1 , C 2 , , C n )
( , , , ( n1) ) 若J 0, (C1 , C 2 , , C n ) 则 ( y1 , y2 , , yn ) 0 (C1 , C 2 , , C n )

《常微分方程》第五章练习题

《常微分方程》第五章练习题

x
y
C1
e3t 2e3t
C2
et 2et
3、满足初值条件的解为
~
(t )
et e t
4、方程组的通解为
x y
C1e2t
4 5
C2e7t
1 1

4
5、所求基解矩阵为 (2 e
3t
3)e
3t
e 3t (2 3)r
3t .
6、 (t )
e3t [E
t(A
3E)]
A1 (t)
A2 (t)
,t
(a,b) .
部分参考答案 一、填空题
1、 (t) (t)C
2、(t) exp[(t t0 )A]
t t0
exp[(t s)A] f (s)ds
3、必要
t t0
1 (s) f
(s)ds
三、计算题
1、
A
4 3
3
4
2、原方程组的通解为
x ' Ax ce mt 有一解形如(t) pemt ,其中 c , p 是常数向量.
3
4、证明:如果 φ(t) 是方程组 x Ax 满足初始条件 φ(t0 ) η 的解,那么
φ(t) [exp A(t t0 )]η 。
5、证明:如果 Φ(t),Ψ (t) 在区间 a t b 上是 n 阶线性方程组
1、向量
X1
(t)
2et 0

X
2
(t)
t 2et et
的伏朗斯基行列式
W (t) =(
).
A 、0 ; B 、 tet ; C 、2 e t ; D 、2 e2t .
2、有关矩阵指数 exp A 的性质,以下说法正确的是( )

第5章微分方程与差分方程

第5章微分方程与差分方程

两边积分,得 故
dy = − p( x) d x , ( y ≠ 0) , y y = 0 对应于 ln | y | = − ∫ p ( x) d x + C1 , C= 。 0
y = ±e ⋅ e ∫
C1 − p( x)d x

记 C = ± eC1,得一阶齐线性方程 的通解为 y = Ce ∫
− p( x)d x
2d y = d x, 2 y −1
对上式两边积分, 对上式两边积分,得原方程的通解 y −1 ln = x + C1 。 y +1 经初等运算可得到原方程的通解为 隐函数形式
1 + Ce x y= 。 (C = ± eC1 ) 1 − Ce x 你认为做完了没有? 你认为做完了没有?
代入原方程可知: 令 y 2 − 1 = 0 ,得出 y = ±1,代入原方程可知:
5、初值条件: 给定微分方程的解所满足的条件. 初值条件: 给定微分方程的解所满足的条件. 初值问题: 求微分方程满足初始条件的解的问题. 初值问题: 求微分方程满足初始条件的解的问题.
y′ = f ( x , y ) 一阶: 一阶 y x = x0 = y 0
过定点的积分曲线; 过定点的积分曲线
dx = t2 dt
d2 y dy +b + cy = sin x 2 dx dx d x − x2 = t3 dt
2
一阶 线性 二阶 线性 一阶 非线性
微分方程的一般表示形式
n 阶微分方程的一般形式 为
F ( x, y′, y′′, L , y ( n ) ) = 0 。
dN = rN (1 例1、 ) dt N ( 0) = N 0

常微分方程--第五章 线性微分方程组(5.1-5.2节)

常微分方程--第五章 线性微分方程组(5.1-5.2节)
5.3.1 常系数线性齐次微分方程组 5.3.2 常系数非齐次线性微分方程组
目录
上页
下页
返回
结束
5.1微分实例及有关概念 多回路的电路问题 考虑多个回路的电路,
E (t )
L
C
R1
R2

E (t ) 是电源电压, L 是电感,C 是电容器电容,
R1 , R2 是电阻, i1 是通过 L 的电流, i2 是通过
T
A (aij ) nn
满足初始条件 x(t0 ) x0 , y(t0 ) y0 , z (t0 ) z0 的解 x(t ), y (t ), z (t ).
目录
上页
下页
返回
结束
事实上, 在第4 章中的高阶微分方程
y
( n)
( n 1) f ( x, y, y , y ).
令 y y1 , y y2 , y ( n1) yn1 , 则上式可以化为方程组
目录
上页
下页
返回
结束
通解及通积分 含有n个任意常数 c1 , cn 的解
x1 1 (t , c1 , cn ) x (t , c , c ) n 1 n n 为方程组的通解 . 这里 c1 , c2 ,, cn 相互独立.
目录
上页
下页
返回
结束
如果通解满足方程组
目录
上页
下页
返回
结束
上面方程组第二式两边对t求导得
di1 L R1 (i1 i2 ) E (t ) dt R ( di2 di1 ) R di2 1 i 0 1 2 2 dt dt dt c
解得

【典型例题】 第五章 线性微分方程组

【典型例题】 第五章 线性微分方程组

第五章 线性微分方程组5-1 考虑方程组x A x )(t dtd = (1)其中)(t A 是区间b t a ≤≤上的连续n n ⨯矩阵,它的元素为n j i t a ij ,,2,1,),( =,1)如果)(,),(),(21t t t n x x x 是(1)的任意n 个解,那么它们的朗斯基行列式)()](,),(),([21t W t x t x t x W n ≡ 满足下面的一阶线性微分方程W t a t a t a W nn )]()()([2211+++=' (2); 2)解上面的一阶线性微分方程,证明下面的公式:],[,,)()(0)]()([0011b a t t et W t W tt nn dss a s a ∈=⎰++ 。

证 1)根据行列式的微分公式)()()()()()()()()()()()()()()()()()()(122111112211111221111t x t x t x t x t x t x t x t x t x t x t x t x t x t x t x t x t x t x t W nnnn n nn n n n nn n n n ''++''+''='(3)由于)(,),(),(21t t t n x x x 是(1)的解,所以⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛='∑∑∑===nj jk nj nj jk j n j jk j nk k k nn n n n k t x t a t x t a t x t a t x t x t x t a t a t a t a t a t a t 11211211221111)()()()()()()()()()()()()()()()(x , 所以∑==='nj jk ijikn k i t x t at x 1),,2,1,(),()( )(,把这些等式代入(3)的右端,化简计算每个行列式,如(3)式右端第一项等于)()()()()()()()()()()()()()()()()(11122111111122111111t W t a t x t x t x t x t x t x t a t x t x t x t x t x t at x t ann n n n nn n n nj jn jn j j j==∑∑==类似地可以算出(3)式右端其它各项分别为)()(,),()(22t W t a t W t a nn ,代入(3)得W t a t a t a W nn )]()()([2211+++=' (2)2)方程(2)是关于)(t W 的一阶线性微分方程,分离变量可求得通解为 ⎰++=tt nn dss a s a Cet W 011)]()([)( ,C 为任意常数。

常微分方程第5章答案

常微分方程第5章答案

习题1.给定方程组x = x x= (*)a)试验证u(t)= ,v(t)= 分别是方程组(*)的满足初始条件u(0)= , v(0)= 的解.b)试验证w(t)=c u(t)+c v(t)是方程组(*)的满足初始条件w(0)= 的解,其中是任意常数.解:a) u(0)= =u (t)= = u(t)又 v(0)= =v (t)= = = v(t)因此 u(t),v(t)分别是给定初值问题的解.&b) w(0)= u(0)+ u(0)= + =w (t)= u (t)+ v (t)= +=== w(t)因此 w(t)是给定方程初值问题的解.2. 将下面的初值问题化为与之等价的一阶方程组的初值问题:a) x +2x +7tx=e ,x(1)=7, x (1)=-2b) x +x=te ,x(0)=1, x (0)=-1,x (0)=2,x (0)=0;c)x(0)=1, x (0)=0,y(0)=0,y (0)=1解:a)令 x =x, x = x , 得即又 x =x(1)=7 x (1)= x (1)=-2于是把原初值问题化成了与之等价的一阶方程的初值问题:x = x(1)=其中 x= .b) 令=x ===则得:/且 (0)=x(0)=1, = (0)=-1, (0)= (0)=2,(0)= (0)=0于是把原初值问题化成了与之等价的一阶方程的初值问题:= x(0)= , 其中 x= .c) 令w =x, w =,w =y,w =y ,则原初值问题可化为:且即 ww(0)= 其中 w=3. 试用逐步逼近法求方程组】= x x=满足初始条件x(0)=的第三次近似解.解:\0241201 杨素玲习题02412—02 02412—031.试验证 =是方程组x = x,x= ,在任何不包含原点的区间a 上的基解矩阵。

解:令的第一列为 (t)= ,这时 (t)= = (t)故 (t)是一个解。

第五章 线性微分方程组I(修正)

第五章  线性微分方程组I(修正)
t0
t
命题5
• 设 t 是积分方程(5.8)的定义于 a t b 上的一个连续解,则: t t , a t b 证明:由 t A s t f s ds
t0 t
类似命题3,得到:
MLk k 1 k t t b t0 , k 1!
得证!
推论:
• 第四章的定理1 • 如果 a1 t , a2 t ,, an t , f t 在区间 • a t b 是连续函数,则对区间 a t b 上的任意t0,及任意的 1 ,2 ,,n ,方程
• 类似的可以定义可积的,如果每个元素可 积
定义1:方程的解
• 设 A t 是区间 a t b 上的连续 n n, 矩 阵,f t 是同一区间上的连续的n维向量。 方程组:
x ' t At x t f t
5.4
• 在区间 t 的解就是向量 u t ,他的 导数满足:
进一步
d I1 R 1 1 I1 E 1 I L 1 2 I L 0 dt 2 I t f
例2 验证
et u t t e
j 1
k
• 因为 A t 和 f t 在闭区间 上 连续,所以 A t 和 f t 均在 a t b 有 界,设L,和K是大于零的常数,使得:
A t L, f t K ,
at b
由(5.9)有
• 并取:M L K
1 t 0 t A s 0 s f s ds
t t0

常微分方程考研讲义第五章 线性微分方程组共32页

常微分方程考研讲义第五章  线性微分方程组共32页

第五章线性微分方程组[教学目标]1.理解线性微分方程组解的存在唯一性定理,掌握一阶齐(非齐)线性微分方程组解的性质与结构,2.理解n 阶线性微分方程与一阶线性微分方程组的关系。

3.掌握非齐次线性微分方程组的常数变易法,4.理解常系数齐线性微分方程组基解矩阵的概念,掌握求基解矩阵的方法。

5.掌握常系数线性微分方程组的Laplce变换法。

[教学中难点]求解常系数非齐次线性微分方程组[教学方法] 讲授,实践。

[教学时间] 16学时[教学内容] n 阶线性微分方程与一阶线性微分方程组的关系,一阶线性微分方程组解的存在唯一性定理;齐(非齐)线性微分方程组解的性质与结构,求解非齐次线性微分方程组的常数变易法;常系数齐线性微分方程组的基解矩阵及求基解矩阵的方法;求常系数线性微分方程组的Laplce变换法。

[考核目标]1.线性微分方程组解的性质与结构。

2.能够求解常系数线性微分方程组。

§5.1 存在唯一性定理5.1.1记号和定义考察形如1111122112211222221122()()()()()()()()()()()()n n n n nn n nn n n x a t x a t x a t x f t x a t x a t x a t x f t x a t x a t x a t x f t '=++++⎧⎪'=++++⎪⎨⎪⎪'=++++⎩ (5.1)的一阶线性微分方程组,其中已知函数()(,1,2,,)ij a t i j n =和()(1,2,,)i f t i n =在区间a t b ≤≤上上是连续的。

方程组(5.1)关于12,,,n x x x 及12,,,nx x x '''是线性的. 引进下面的记号:111212122212()()()()()()()()()()n n n n nn a t a t a t a t a t a t A t a t a t a t ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦(5.2)这里()A t 是n n ⨯矩阵,它的元素是2n 个函数()(,1,2,,)ij a t i j n =.12()()()()n f t f t f t f t ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦12n x x x x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 12n x x x x '⎡⎤⎢⎥'⎢⎥'=⎢⎥⎢⎥'⎣⎦ (5.3) 这里()f t ,x ,x '是1n ⨯矩阵或n 维列向量。

常微分方程第五章微分方程建模案例

常微分方程第五章微分方程建模案例

第五章微分方程建‎模案例微分方程作‎为数学科学‎的中心学科‎,已经有三百‎多年的发展‎历史,其解法和理‎论已日臻完‎善,可以为分析‎和求得方程‎的解(或数值解)提供足够的‎方法,使得微分方‎程模型具有‎极大的普遍‎性、有效性和非‎常丰富的数‎学内涵。

微分方程建‎模包括常微‎分方程建模‎、偏微分方程‎建模、差分方程建‎模及其各种‎类型的方程‎组建模。

微分方程建‎模对于许多‎实际问题的‎解决是一种‎极有效的数‎学手段,对于现实世‎界的变化,人们关注的‎往往是其变‎化速度、加速度以及‎所处位置随‎时间的发展‎规律,其规律一般‎可以用微分‎方程或方程‎组表示,微分方程建‎模适用的领‎域比较广,涉及到生活‎中的诸多行‎业,其中的连续‎模型适用于‎常微分方程‎和偏微分方‎程及其方程‎组建模,离散模型适‎用于差分方‎程及其方程‎组建模。

本章主要介‎绍几个简单‎的用微分方‎程建立的模‎型,让读者一窥‎方程的应用‎。

下面简要介‎绍利用方程‎知识建立数‎学模型的几‎种方法:1.利用题目本‎身给出的或‎隐含的等量‎关系建立微‎分方程模型‎这就需要我‎们仔细分析‎题目,明确题意,找出其中的‎等量关系,建立数学模‎型。

例如在光学‎里面,旋转抛物面‎能将放在焦‎点处的光源‎经镜面反射‎后成为平行‎光线,为了证明具‎有这一性质‎的曲线只有‎抛物线,我们就是利‎用了题目中‎隐含的条件‎——入射角等于‎反射角来建‎立微分方程‎模型的。

2.从一些已知‎的基本定律‎或基本公式‎出发建立微‎分方程模型‎我们要熟悉‎一些常用的‎基本定律、基本公式。

例如从几何‎观点看,曲线上某点‎)yy=点的导数;力学中的牛‎顿第二运动‎(x(xyy=的切线斜率‎即函数在该‎)F=,其中加速度‎a就是位移对‎时间的二阶‎导数,也是速度对‎时间的一定律:ma阶‎导数等等。

从这些知识‎出发我们可‎以建立相应‎的微分方程‎模型。

例如在动力‎学中,如何保证高‎空跳伞者的‎安全问题。

《信号与系统》第五章知识要点+典型例题

《信号与系统》第五章知识要点+典型例题

是双边拉氏变换收敛域的一种特殊情况。 3、 常用函数单边拉氏变换对 表 5.1 列出了最常使用函数的单边拉氏变换对。 4、单边拉氏变换的主要性质 掌握拉氏变换的性质如图掌握傅里叶变换性质一样重要,应用性质并结合常用函数的 拉氏变换对就可以简便地求复杂信号的拉氏变换,或由复杂象函数求原函数。表 5.2 列出了 最常用的单边拉氏变换的性质。
n
(5.3)
式中, s = pi 为 F ( s ) 的第 i 个单阶实极点,系数 K i 由下式确定
K i = (s - pi ) F (s )
b.
s =p i
(5.4)
F ( s ) 有单阶共轭极点
设 s = -a ± jb 为 F ( s ) 的一对共轭极点。 求逆变换时把 F ( s ) 首先凑成类似余弦函数
2
掌握拉氏变换的重要性质,也应从性质的基本形式、应用该性质的基本思路及应用中 应注意的问题这样三个方面来掌握。许多性质的应用思路及注意的问题都类同傅里叶变换, 这里不再赘述。 表 5.1 编号 1 2 3 4 5 时域函数 f (t ) 常用信号的单边拉氏变换对 (t ³0 ) 象函数 F ( s ) 1
s
¥ s
f ( )d
F ( s ) 为真分式
f ( ) lim sF ( s ),
s0
s 0 在sF ( s )的收敛域内
5、常用的拉氏逆变换的求解方法 逆变换积分公式并不常用于求解拉氏逆变换,而经常使用的有以下几种。 (1) 查表法 若提供拉氏变换对表,可“对号入座” ,一一查找。但应试时,一不提供表, 二不准翻书查看。我们需要记住一些常用信号的拉氏变换对,结合拉氏变换的重要性质,加 以套用,求得拉氏逆变换。 (2) 部分分式展开法 该方法要求 F ( s ) 为有理真分式。若 F ( s ) 为假分式,应先利用多项式相除, 把 F ( s ) 表示成一个多项式加真分式的形式。对于多项式部分,对应的逆变换是非常容易求 得的,它们是冲激函数 (t ) 及其各阶导数项之和。例如

线性微分方程组

线性微分方程组

bij (t (t ) ui (t ) 在区间 a t b 可微。 (t ))nn B(t ) (bij
(t ),u2 (t ),, un (t ))T u(t ) (u1
bij (t ) ui (t ) 在区间 a t b 可积。
a1n (t ) a2 n (t ) ann (t )
……….(5.2)
x1 x x 2 xn
x1 x dx x 2 ……(5.3) dt xn
………….(5.5)
定理1 如果 A(t )是n n 矩阵, f (t)是 n 维列向量, 它们都在区间
a t b 上连续,则对于区间
a t b 上的任何数 t 0 及任一常数向量
1 x (t 0 ) 2 η n
方程组(5.5)存在唯一解 (t )
第五章 线性微分方程组
本章主要内容
§ 5.1
线性微分方程组解的存在唯一性定理
§ 5.2 § 5.3
线性微分方程组的一般理论 常系数线性方程组的解法
本章要求
理解线性微分方程组解的存在唯一性定理。
掌握高阶线性微分方程与线性微分方程组的关系。 掌握线性微分方程组的解的代数结构。
dp dx 0 p x
x c2e
c1t
y c1c2ec1t
另外,由
p c1 x
dx c1 x dt
p0
xc y0
方程组的解为
x c2ec1t
y c1c2e
c1t
四 存在唯一性定理 初值问题(Cauchy Problem)
dx x A(t ) x f (t ) dt x (t0 ) η

第五章 微分方程模型 5.1 传染病模型5.2 经济增长模型5.3 正规战与游击战5.4 药物在体内的分布与排除5

第五章  微分方程模型 5.1  传染病模型5.2  经济增长模型5.3  正规战与游击战5.4  药物在体内的分布与排除5

每个劳动 力的产值
z
Q L
每个劳动 力的投资
y
K L
模型假设 z 随着 y 的增加而增长,但增长速度递减
z Q / L f0g( y) g(y) y , 0 1
Q f0L(K / L)
g(y)
Q(K , L) f0K L1 Douglas生产函数
Q , Q 0 K L
2Q 2Q K 2 , L2 0
dt
L(t) L0et
Q f Lg( y) g(y) y 0
dK f Ly
dt
0
y K , K Ly L
dK L dy Ly
dt dt
dK f Ly
dt
0
dK L dy Ly
dt dt
dy y f y
dt
0
Bernoulli方程
1
y(t)
f 0
( y1
0
f 0
)e (1 ) t
y
dxy
x(0) x0 , y(0) y0
y(t)
m0
dy d dx c
cy dx m
m cy dx
0
0
m 0 x 0时y 0
乙方胜
m0
mc
0
m d
m0
y0 d rx srx sx 线性律 x0 c ry sry s y 模型
m 0 甲方胜
x(t)
m 0 平局
混合战争模型 甲方为游击部队,乙方为正规部队
增加假设 3)病人每天治愈的比例为 ~日治愈率
建模 N[i(t t) i(t)] Ns(t)i(t)t Ni(t)t
di dt
i(1
i)
i
i(0) i0

常微分方程教案(王高雄)第五章

常微分方程教案(王高雄)第五章
的记号.
⎡ a1 1 ( t ) ⎢ a (t ) A( t ) = ⎢ 2 1 ⎢ L ⎢ ⎢ ⎣ a n1 ( t )
a1 2 ( t ) a 22 (t ) L a n 2 (t )
L L L L
a1 n ( t ) ⎤ a 2 n (t ) ⎥ ⎥ L ⎥ ⎥ a nn (t ) ⎥ ⎦
(5.2)
不难证明,如果 n × n 矩阵 A(t ), B(t ) 及向量 u(t ), v (t ) 是可微的,那么下列等式成立:
( I ) ( A(t ) + B(t ))′ = A′(t ) + B′(t ) (u(t ) + v (t ))′ = u′(t ) + v′(t ) ( II ) ( A(t ) ⋅ B(t ))′ = A′(t )B(t ) + A(t )B′(t ) ( III ) ( A(t )u(t ))′ = A′(t )u(t ) + A (t )u′(t )
类似的,矩阵 B (t ) 或者 u (t ) 在区间 a ≤ t ≤ b 上称为可积的,如果它的每一个元素都在区间
a ≤ t ≤ b 上可积.并且它们的积分分别由下式给出:
⎡ b b ( t ) dt ⎢ ∫a 11 ⎢ b b ( t ) dt b = B ( t ) dt ⎢ ∫a 21 ∫a L ⎢ ⎢ b b ( t ) dt ⎢ ⎣ ∫a n1
b 22 ( t ) dt L b ∫ b n 2 (t ) dt
a a
∫ ∫
b
a b
b12 ( t ) dt
L L L L
∫ ∫
b1 n ( t ) dt ⎤ ⎥ b 2 n ( t ) dt ⎥ a ⎥ L ⎥ b ⎥ ∫a b nn (t ) dt ⎥ ⎦

线性微分方程组的一般理论

线性微分方程组的一般理论

线性无关组不一 定能构成解!
例1 验证
e t (t ) 0
te t t e
是方程组
1 1 x' x 0 1
的基解矩阵。
解(步骤):
其中
x1 x x2
1、首先验证是解矩阵:即把矩阵的每一列作为一个向量验证是否是解? 2、计算解矩阵的行列式值,并进行判断。
内江师范学院数学与信息科学学院 吴开腾 制作
定理8
设 (t ) 是(5.15)的基解矩阵, 则向量函数
(t ) (t ) 1 (s) f (s)ds (5.26 )
t0
t
是(5.14)的解,且满足初始条件: (t0 ) 0 .
分析定理7和定理8,非齐线性微分方程组(5.14)的满足初 始条件
是(5.15)的解 .
基本思想:代入式验证。
内江师范学院数学与信息科学学院 吴开腾 制作
2、非齐线性微分方程组解的结构
定理7
设 (t ) 是(5.15)的基解矩阵, (t ) 是(5.14)的
某一解,则(5.14)的任一解 (t ) 都可表示为
(t ) (t )C (t ),
内江师范学院数学与信息科学学院 吴开腾 制作
3、向量函数的伏朗斯基(Wronsky)行列式
由定义在区间 t [a, b] 上的n个向量函数 x1 (t ), x2 (t ),, xn (t ) 所 作成的如下行列式称为伏朗斯基行列式,即
W [ x1 (t ), x2 (t ), , xn (t )] W (t ) x11 (t ) x21 (t ) xn1 (t ) x12 (t ) x1n (t ) x22 (t ) x2 n (t ) xn 2 (t )

【自动控制原理经典考试题目整理】第五章-第六章

【自动控制原理经典考试题目整理】第五章-第六章

【自动控制原理经典考试题目整理】第五章-第六章自动控制原理经典考试题目整理第五章-第六章第五章频率分析法1.线性定常系统在正弦信号输入时,稳态输出与输入的相位移随频率而变化的函数关系称为__________。

2.积分环节的幅相频率特性图为;而微分环节的幅相频率特性图为。

3.一阶惯性环节G(s)=1/(1+T s) 的相频特性为ψ(ω)=__ _____________,比例微分环节G(s)=1+T s的相频特性为ψ(ω)=_____ __________。

4.常用的频率特性图示方法有极坐标图示法和__________图示法。

5.频率特性的极坐标图又称_____________图。

6.利用代数方法判别闭环控制系统稳定性的方法有____________和赫尔维茨判据两种。

7.设系统的频率特性为,则称为。

8.ω从0变化到+∞时,惯性环节的频率特性极坐标图在___________象限,形状为___________圆。

9.频率特性可以由微分方程或传递函数求得,还可以用___________方法测定。

10.0型系统对数幅频特性低频段渐近线的斜率为______dB/dec,高度为20lgKp。

11.型系统极坐标图的奈氏曲线的起点是在相角为______的无限远处。

12.积分环节的对数幅频特性曲线是一条直线,直线的斜率为_______dB/dec。

13.惯性环节G(s)=1/(Ts+1)的对数幅频渐近特性在高频段范围内是一条斜率为-20dB /dec,且与ω轴相交于ω=_______________的渐近线。

14.设积分环节的传递函数为G(s)=K/s,则其频率特性幅值M(ω)=()A. K/ω B. K/ω2 C.1/ω D. 1/ω215.ω从0变化到+∞时,迟延环节频率特性极坐标图为()A.圆B.半圆 C.椭圆 D.双曲线16.二阶振荡环节的相频特性ψ(ω),当时ω→ ∞ ,其相位移ψ(ω)为( )A .-270°B .-180°C .-90°D .0°17.某校正环节传递函数Gc(s)= ,则其频率特性的奈氏图终点坐标为()A.(0,j0)B.(1,j0)C.(1,j1)D.(10,j0)18.利用奈奎斯特图可以分析闭环控制系统的()A.稳态性能B.动态性能 C.稳态和动态性能 D.抗扰性能19.若某系统的传递函数为G(s)= K/(Ts+1) ,则其频率特性的实部R(ω)是() A . B .- C . D .-20.设某系统开环传递函数为G(s)= ,则其频率特性奈氏图起点坐标为( )A .(-10,j0)B .(-1,j0)C .(1,j0)D .(10,j0)21.设微分环节的频率特性为G(j ω) ,当频率ω从0变化至∞时,其极坐标平面上的奈氏曲线是()A .正虚轴B .负虚轴C .正实轴D .负实轴22.设某系统的传递函数G(s)=10/(s+1),则其频率特性的实部()A .B .C . D.23.设惯性环节的频率特性为G(j ω)=10/(j ω+1) ,当频率ω从0变化至∞时,则其幅相频率特性曲线是一个半圆,位于极坐标平面的()A .第一象限B .第二象限C .第三象限D .第四象限1101100++s s 221T Kω+221T K ω+T K ω+1TK ω+1)1)(10(102+++s s s 2110ω+2110ω+-T ω+110T ω+-1101020.设某系统开环传递函数为G(s)= ,则其频率特性奈氏图起点坐标为( )A .(-10,j0)B .(-1,j0)C .(1,j0)D .(10,j0)21.设微分环节的频率特性为G(j ω) ,当频率ω从0变化至∞时,其极坐标平面上的奈氏曲线是()A .正虚轴B .负虚轴C .正实轴D .负实轴22.设某系统的传递函数G(s)=10/(s+1),则其频率特性的实部()A .B .C .D .23.设惯性环节的频率特性为G(j ω)=10/(j ω+1) ,当频率ω从0变化至∞时,则其幅相频率特性曲线是一个半圆,位于极坐标平面的()A .第一象限B .第二象限C .第三象限D .第四象限24.2型系统对数幅频特性的低频段渐近线斜率为()A .-60dB /dec B .-40dB /decC .-20dB /decD .0dB /dec25.1型系统开环对数幅频渐近特性的低频段斜率为()A.-40(dB/dec)B.-20(dB/dec)C.0(dB/dec)D.+20(dB/dec)26.已知某单位负反馈系统的开环传递函数为G(s)=,则相位裕量γ的值为()A .30°B .45°C .60°D .90°27.设二阶振荡环节的传递函数G (s )= ,则其对数幅频特性渐近线的转角频率为()A .2rad/sB .4rad/sC .8rad/sD .16rad/s2110ω+2110ω+-T ω+110T ω+-110)1(24+s s 164162++s s 10)(=s Y28.设某闭环传递函数为,则其频带宽度为()A.0~10rad/s B.0~5rad/s C.0~1rad/s D.0~0.1rad /s第六章线性系统的校正1.滞后校正装置最大滞后角的频率= 。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 线性微分方程组5-1 考虑方程组x A x)(t dtd = (1) 其中)(t A 是区间b t a ≤≤上的连续n n ⨯矩阵,它的元素为n j i t a ij ,,2,1,),( =,1)如果)(,),(),(21t t t n x x x 是(1)的任意n 个解,那么它们的朗斯基行列式)()](,),(),([21t W t x t x t x W n ≡ 满足下面的一阶线性微分方程W t a t a t a W nn )]()()([2211+++=' (2);2)解上面的一阶线性微分方程,证明下面的公式:],[,,)()(0)]()([0011b a t t et W t W tt nn dss a s a ∈=⎰++ 。

证 1)根据行列式的微分公式)()()()()()()()()()()()()()()()()()()(122111112211111221111t x t x t x t x t x t x t x t x t x t x t x t x t x t x t x t x t x t x t W nnnn n nn n n n nn n n n ''++''+''='(3)由于)(,),(),(21t t t n x x x 是(1)的解,所以⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛='∑∑∑===nj jk nj nj jk j n j jk j nk k k nn n n n k t x t a t x t a t x t a t x t x t x t a t a t a t a t a t a t 11211211221111)()()()()()()()()()()()()()()()(x , 所以∑==='nj jk ijikn k i t x t at x 1),,2,1,(),()( )(,把这些等式代入(3)的右端,化简计算每个行列式,如(3)式右端第一项等于)()()()()()()()()()()()()()()()()(11122111111122111111t W t a t x t x t x t x t x t x t a t x t x t x t x t x t at x t ann n n n nn n n nj jn jnj j j==∑∑==类似地可以算出(3)式右端其它各项分别为)()(,),()(22t W t a t W t a nn ,代入(3)得W t a t a t a W nn )]()()([2211+++=' (2)2)方程(2)是关于)(t W 的一阶线性微分方程,分离变量可求得通解为 ⎰++=tt nn dss a s a Cet W 011)]()([)( ,C 为任意常数。

若)(,00t W W t t ==,则 )(0t W C =, 于是 ⎰++=tt nn dss a s a et W t W 011)]()([0)()( 。

评注:公式 ⎰++=tt nn dss a s a e t W t W 011)]()([0)()( 称为刘维尔公式,反映了线性齐次方程组的解与系数矩阵)(t A 的关系。

)()()()(22111t a t a t a t ann ni ii+++=∑= 称为矩阵)(t A 的迹,记为)(t tr A ,所以刘维尔公式又可表示为⎰=tt dss tr et W t W 0)(0)()(A 。

从公式中可以看出,线性齐次方程组(1)的n 个解构成的朗斯基行列式)(t W 或者恒为零,或者恒不为零。

5-2 设)(t A 为区间b t a ≤≤上连续的n n ⨯实矩阵,)(t Φ为方程x A x )(t ='的基本解矩阵,而)(t φx =为其一解。

试证:1) 对于方程y A y )(t T-='的任一解)(t ψy =必有=)()(t t T φψ常数;2) )(t Ψ为方程y A y )(t T -='的基本解矩阵的充要条件是存在非奇异的常数矩阵C ,使C ΦΨ=)()(t t T。

证 1) 由于)(t ψy =为方程y A y )(t T-='的解,则)()()(t t t T ψA ψ-=',两边转置,得())()()(t t t T TA ψψ-=',即())()()(t t t TT A ψψ-='。

因为 []())()()()()()(t t t t dtt t d T T T φψφψφψ'+'=()())()()()()()(t t t t t t T T φA ψφA ψ+-=0= ,所以必有=)()(t t T φψ常数。

2) 必要性。

由于)(t Ψ为方程y A y )(t T-='的基本解矩阵,则 )()()(t t t TΨA Ψ-=', 转置后,得 ())()()(t t t TTA ΨΨ-='。

因为[]())()()()()()(t t t t dtt t d T T T ΦΨΦΨΦΨ'+'= ()())()()()()()(t t t t t t T T ΦA ΨΦA Ψ+-=0= (零矩阵)。

所以 C ΦΨ=)()(t t T(常数矩阵),而)(t Ψ和)(t Φ都是基本解矩阵,因而C 还为非奇异矩阵。

充分性。

由于存在非奇异的常数矩阵C ,使C ΦΨ=)()(t t T ,两边关于t 求导数,有[]())()()()()()(t t t t dtt t d T T T ΦΨΦΨΦΨ'+'=()0=+'=)()()()()(t t t t t T T ΦA ΨΦΨ即 ())()()()()(t t t t t TTΦA ΨΦΨ-=', 而)(t Φ是基本解矩阵,则)(t Φ为非奇异矩阵,故有())()()(t t t T TA ΨΨ-=',即())()()(t t t T TA ΨΨ-=',两边再转置,得)()()(t t t T ΨA Ψ-=',即证明了)(t Ψ为方程y A y )(t T-='的基本解矩阵。

评注:由证明过程可以看出,方程y A y )(t T-='和x A x )(t ='的解曲线之间满足=)()(t t T φψ常数。

5-3 设)(t Φ是n 阶线性方程组Ax x=dtd (A 是n n ⨯的常数矩阵) 的标准基本解矩阵,(即E Φ=)0()证明)()()(001t t t t -=-ΦΦΦ其中0t 为某一值。

证 因)(t Φ为基本解矩阵,则有)()(t dtt d A ΦΦ=,0)(det ≠t Φ )()()(000t t t t d t t d -=--A ΦΦ,即)()(00t t dtt t d -=-A ΦΦ,所以)(0t t -Φ也是基本解矩阵。

由于线性齐次方程组任意两个基本解矩阵可以互相线性表示,故C ΦΦ)()(0t t t =-,由条件E Φ=)0(得,E ΦC Φ==)0()(0t ,即得 )(01t -=ΦC ,所以有)()()(001t t t t -=-ΦΦΦ。

评注:这是标准基本解矩阵的一个性质,即)ex p()ex p(])ex p[(00A A A t t t t -=-。

5-4 试求下列方程的通解 1)22,sec πt πt x x <<-=+'', 2)te x x 28=-'''。

解 1)i λλ±==+2,12,01,齐次方程的基本解组为t t x t t x sin )(,cos )(21== 所以1cos sin sin cos )](),([21=-=tt tt t x t x W ,取00=t ,利用常数变易公式ds s f s x s x W s x t x s x t x t φt t )()](),([)]()()()()(~0212112⎰-=可得原方程的特解为t t t t ds ss t s t t t cos ln cos sin cos 1)sin cos cos (sin )(~0⋅+=-=⎰ϕ , 原方程的通解为t C t C t t t t x sin cos cos ln cos sin 21++⋅+=。

2)083=-λ,i 31,23,21±-==λλ,齐次方程基本解组为t e t x t e t x e t x t t t 3sin )(,3cos )(,)(3221--===。

利用常数变易公式,原方程满足初始条件的特解为:ds s f s x s x s x W s x s x s x W t x t φk tk k )()](),(),([)](),(),([)()(~310321321∑⎰==,其中)](),(),([321s x s x s x W k 是在朗斯基行列式)](),(),([321s x s x s x W 中的第k 列代以()T 1,,0,0 后得到的行列式。

经计算可得),3cos 33sin 3()(),3cos 33sin 3()(,3)(,312)(3221t t e t W t t e t W e t W t W t tt +-=-===-可得原方程的特解为t e t e e te t tt t t 3sin 57633cos 1925241121)(~22---+-=ϕ, 原方程的通解为 tt tte e C et C t C x 22321121)3sin 3cos (+++=-。

评注:此题主要是常数变易公式的应用。

常数变易公式表明线性非齐次方程的特解可以由对应齐次方程的基本解组的朗斯基行列式表示。

当然,此题中的2)用待定系数方法求特解会更简单。

5-5 给定方程)(78t f x x x =+'+''其中)(t f 在∞<≤t 0上连续,试利用常数变易公式,证明:1)如果)(t f 在∞<≤t 0上有界,则上面方程的每一个解在∞<≤t 0上有界;2) 如果当∞→t 时0)(→t f ,则上面方程的每一解)(t φ,满足)(0)(∞→→t t φ当。

证 1)1,7,078212-=-==++λλλλ,齐次方程有基本解组t t e e 7,--ttt t te ee e e t W 87767)(------=--=。

利用常数变易公式:ds s f s x s x W s x t x s x t x t φtt )()](),([)]()()()()(~0212112⎰-=可得原方程的一个特解ds s f e e e e e t φs t s t s t )()(61)(~7780------=⎰ ⎰⎰---=t st t s t ds s f e e ds s f e e 0770)(61)(61 ,所以原方程的任一解为⎰⎰-----++=ts t ts t t t ds s f e e ds s f e e e C e C t 0770721)(61)(61)(ϕ。

相关文档
最新文档