利用最小二乘法的曲线拟合

合集下载

最小二乘法拟合原理

最小二乘法拟合原理

最小二乘法拟合原理最小二乘法是一种常用的数学方法,用于寻找一组数据的最佳拟合曲线或者最佳拟合函数。

它的原理是通过最小化实际观测数据与拟合曲线之间的残差平方和,来确定最佳拟合曲线的参数。

这个方法在实际应用以及科学研究中非常常见,下面将详细介绍最小二乘法的拟合原理。

在介绍最小二乘法之前,我们首先需要了解线性回归模型。

线性回归是一种常见的数据拟合手段,它基于以下假设:给定自变量X和因变量Y,存在一个线性关系Y=aX+b。

其中,a称为斜率,b称为截距。

当我们拥有一组数据(X1,Y1),(X2,Y2),(X3,Y3),...,(Xn,Yn)时,最小二乘法通过找到最佳的a和b,使得方程Y=aX+b最好地拟合这组数据。

它通过最小化每个观测点的残差来确定最佳拟合曲线。

残差是指实际观测值与拟合值之间的差异。

对于每一个观测点(Xi,Yi),其拟合值为Yi'=aXi+b,残差为Ri=Yi-Yi',即实际观测值与拟合值的差。

S=∑(Yi-Yi')²=∑(Yi-aXi-b)²为了找到最佳的a和b,我们需要求解方程S对a和b的偏导数,并令其等于0。

求解a和b的偏导数得到以下两个方程:∂S/∂a=0∂S/∂b=0对第一个方程求解可以得到:∂S/∂a=-2∑(Yi-aXi-b)Xi=0进一步整理可以得到:∑YiXi-a∑(Xi)²-b∑(Xi)=0对第二个方程求解可以得到:∂S/∂b=-2∑(Yi-aXi-b)=0进一步整理可以得到:∑Yi - a∑(Xi) - nb = 0其中,n为观测点的数目。

解这个方程组,我们可以得到a和b的值,从而确定最佳拟合曲线的方程Y=aX+b。

最小二乘法还可以用于非线性的数据拟合。

对于非线性拟合,我们可以假设一个非线性的函数模型,例如Y=f(X,θ),其中θ是待拟合的参数。

然后,通过最小化残差平方和来确定最佳的θ值。

方法类似于线性拟合,其中拟合值变为Yi'=f(Xi,θ),残差为Ri=Yi-Yi'。

excel最小二乘法拟合曲线

excel最小二乘法拟合曲线

Excel是一款功能强大的电子表格软件,广泛应用于数据处理与分析领域。

其中最小二乘法是一种常见的曲线拟合方法,在Excel中通过使用函数进行实现。

本文将介绍如何利用Excel进行最小二乘法拟合曲线的操作步骤及相关注意事项。

希望通过本文的介绍,读者能够掌握利用Excel进行曲线拟合的方法,从而在实际工作中能够更加高效地处理数据和分析结果。

一、最小二乘法简介最小二乘法是一种数学上常用的曲线拟合方法,其本质是通过调整曲线参数使得实际观测值与拟合值之间的差异最小化。

在实际应用中,最小二乘法常用于拟合直线、曲线以及多项式等形式的函数模型,用于描述变量之间的关系。

二、Excel中最小二乘法拟合曲线的操作步骤1. 准备数据首先需要在Excel中准备好需要拟合的数据,通常是包含自变量和因变量的数据列。

假设我们有一组数据,自变量为x,因变量为y,我们希望通过最小二乘法找到一条曲线来描述它们之间的关系。

2. 插入散点图在准备好数据之后,需要在Excel中插入散点图来直观地观察数据点的分布情况。

选择数据区域后,点击插入菜单中的散点图,选择合适的图表类型进行插入。

通过散点图可以直观地观察到数据点的分布情况,从而初步判断需要拟合的曲线形式。

3. 计算拟合曲线参数利用Excel中的函数可以很方便地进行最小二乘法拟合曲线的计算。

在Excel中,可以使用“线性拟合”函数进行直线拟合,使用“多项式拟合”函数进行多项式曲线拟合。

通过输入相关参数和数据范围,即可得到拟合曲线的参数值,并在图表中显示拟合曲线。

4. 绘制拟合曲线根据计算得到的拟合曲线参数值,可以利用Excel中的图表工具绘制出拟合曲线。

在散点图的基础上,添加拟合曲线,并进行必要的格式设置,可以清晰地展示出拟合曲线与原始数据之间的关系。

5. 拟合曲线的评估拟合曲线的好坏可以通过一些评价指标来进行评估,例如拟合优度R方值、残差分布等。

通过观察这些评价指标,可以对拟合曲线的质量进行初步判断,从而确定是否需要调整模型或者采取其他措施。

最小二乘法 曲线拟合

最小二乘法 曲线拟合

最小二乘法曲线拟合
最小二乘法是一种数学优化技术,它通过最小化预测值与实际观测值之间的平方误差的总和来寻找数据的最佳函数匹配。

在曲线拟合中,最小二乘法被广泛用于拟合一组数据到一个数学模型上,使得这组数据与模型之间的误差的平方和最小。

最小二乘法的核心思想是通过最小化误差的平方和来找到最佳拟合曲线。

具体来说,给定一组数据点 (x1, y1), (x2, y2), ..., (xn, yn),我们需要找到一条曲线 y = f(x),使得所有数据点到曲线的垂直距离的平方和最小。

最小二乘法的应用非常广泛,包括统计学、回归分析、时间序列分析、机器学习和数据挖掘等领域。

通过最小二乘法,我们可以找到最佳拟合曲线,从而更好地理解数据的内在规律和趋势,并进行预测和决策。

在实现最小二乘法时,通常需要选择合适的数学模型和参数,并使用迭代或优化算法来求解最小化问题。

同时,还需要考虑数据的噪声和异常值对拟合结果的影响,以及模型的泛化能力。

最小二乘法曲线拟合-原理及matlab实现

最小二乘法曲线拟合-原理及matlab实现

曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ϕ来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ϕ最好地逼近()x f ,而不必满足插值原则。

因此没必要取)(i x ϕ=i y ,只要使i i i y x -=)(ϕδ尽可能地小)。

原理:给定数据点},...2,1,0),,{(m i y x i i =。

求近似曲线)(x ϕ。

并且使得近似曲线与()x f 的偏差最小。

近似曲线在该点处的偏差i i i y x -=)(ϕδ,i=1,2,...,m 。

常见的曲线拟合方法:1.使偏差绝对值之和最小2.使偏差绝对值最大的最小3.使偏差平方和最小最小二乘法:按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。

推导过程:1. 设拟合多项式为:kk x a x a a x +++=...)(10ϕ2. 各点到这条曲线的距离之和,即偏差平方和如下:3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到了:.......4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵:5. 将这个范德蒙得矩阵化简后可得到:6. 也就是说X*A=Y ,那么A = (X'*X)-1*X'*Y ,便得到了系数矩阵A ,同时,我们也就得到了拟合曲线。

MATLAB实现:MATLAB提供了polyfit()函数命令进行最小二乘曲线拟合。

调用格式:p=polyfit(x,y,n)[p,s]= polyfit(x,y,n)[p,s,mu]=polyfit(x,y,n)x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。

x 必须是单调的。

矩阵s包括R(对x进行QR分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。

最小二乘法与曲线拟合-PPT

最小二乘法与曲线拟合-PPT
点(xi,yi)带入y=(x) ,便得到以a0,a1,…,am为未知
量的矛盾方程组
0 + 1 1 + 2 12 + ⋯ + 1 = 1
其矩阵形式为
Ԧ =
0 + 1 2 + 2 22 + ⋯ +
其中
1
= 1

1
1
2


12
22

2



最小二乘法与曲线拟合
§5.0 问题的提出
如果实际问题要求解在[a,b]区间的每一点都“很
好地” 逼近f(x)的话,运用插值函数有时就要失败。
另外,插值所需的数据往往来源于观察测量,本身有
一定的误差。要求插值曲线通过这些本身有误差的点,
势必使插值结果更加不准确。
如果由试验提供的数据量比较大,又必然使得插值
不为零,从而有rankA=m+1。由引理2知,正则方程
组有唯一解。
证毕
四、最小二乘法拟合曲线的步骤
1..通过观察、分析得到拟合曲线的数学模型,或
根据经验公式确定数学模型。
2.将拟合曲线的数学模型转换为多项式。
3.写出矛盾方程组。
4.写出正则方程组。(可由多项式模型直接得到)
5.求解正则方程组,得到拟合曲线的待定系数。
多项式的次数过高而效果不理想。
从给定的一组试验数据出发,寻求函数的一个近似
表达式y=(x),要求近似表达式能够反映数据的基本
趋势而又不一定过全部的点(xi,yi),这就是曲线拟合
问题,函数的近似表达式y=(x)称为拟合曲线。本章
介绍用最小二乘法求拟合曲线。
§5.1 用最小二乘法求解矛盾方程组

Matlab最小二乘法曲线拟合的应用实例

Matlab最小二乘法曲线拟合的应用实例

MATLAB机械工程最小二乘法曲线拟合的应用实例班级:姓名:学号:指导教师:一,实验目的通过Matlab上机编程,掌握利用Matlab软件进行数据拟合分析及数据可视化方法二,实验内容1.有一组风机叶片的耐磨实验数据,如下表所示,其中X为使用时间,单位为小时h,Y为磨失质量,单位为克g。

要求:对该数据进行合理的最小二乘法数据拟合得下列数据。

x=[10000 11000 12000 13000 14000 15000 16000 170 00 18000 19000 20000 21000 22000 23000];y=[24.0 26.5 29.8 32.4 34.7 37.7 41.1 42.8 44.6 47.3 6 5.8 87.5 137.8 174.2]三,程序如下X=10000:1000:23000;Y=[24.0,26.5,29.8,32.4,34.7,37.7,41.1,42.8,44.6,47.3,6 5.8,87.5,137.8,174.2]dy=1.5; %拟合数据y的步长for n=1:6[a,S]=polyfit(x,y,n);A{n}=a;da=dy*sqrt(diag(inv(S.R´*S.R)));Da{n}=da´;freedom(n)=S.df;[ye,delta]=polyval(a,x,S);YE{n}=ye;D{n}=delta;chi2(n)=sum((y-ye).^2)/dy/dy;endQ=1-chi2cdf(chi2,freedom); %判断拟合良好度clf,shgsubplot(1,2,1),plot(1:6,abs(chi2-freedom),‘b’) xlabel(‘阶次’),title(‘chi2与自由度’)subplot(1,2,2),plot(1:6,Q,‘r’,1:6,ones(1,6)*0.5) xlabel(‘阶次’),title(‘Q与0.5线’)nod=input(‘根据图形选择适当的阶次(请输入数值)’);elf,shg,plot(x,y,‘kx’);xlabel(‘x’),ylabel(‘y’);axis([8000,23000,20.0,174.2]);hold onerrorbar(x,YE{nod},D{nod},‘r’);hold offtitle(‘较适当阶次的拟合’)text(10000,150.0,[‘chi2=’num2str(chi2(nod))‘~’int2str(freedom(nod))])text(10000,140.0,[‘freedom=’int2str(freedom(nod))]) text(20000,40.0,[‘Q=’num2str(Q(nod))‘~0.5’])disp(‘’)disp(‘拟合多项式系数’),disp(A{nod})disp(‘拟合系数的离差’),disp(DA{nod})运行结果分为两个阶段,第一阶段先判断拟合度,第二阶段根据拟合度,选择合适的拟合阶次,再绘出拟合结果。

最小二乘法曲线拟合的Matlab程序

最小二乘法曲线拟合的Matlab程序

最小二乘法曲线拟合的Matlab程序最小二乘法是一种常用的数学优化技术,它通过最小化误差的平方和来找到最佳函数匹配。

在曲线拟合中,最小二乘法被广泛使用来找到最佳拟合曲线。

下面的Matlab程序演示了如何使用最小二乘法进行曲线拟合。

% 输入数据x = [1, 2, 3, 4, 5];y = [2.2, 2.8, 3.6, 4.5, 5.1];% 构建矩阵A = [x(:), ones(size(x))]; % 使用x向量和单位矩阵构建矩阵A% 使用最小二乘法求解theta = (A' * A) \ (A' * y); % 利用最小二乘法的公式求解% 显示拟合曲线plot(x, theta(1) * x + theta(2), '-', 'LineWidth', 2); % 画出拟合曲线hold on; % 保持当前图像plot(x, y, 'o', 'MarkerSize', 10, 'MarkerFaceColor','b'); % 在图像上画出原始数据点xlabel('x'); % 设置x轴标签ylabel('y'); % 设置y轴标签legend('拟合曲线', '原始数据点'); % 设置图例这个程序首先定义了一组输入数据x和y。

然后,它构建了一个矩阵A,这个矩阵由输入数据x和单位矩阵构成。

然后,程序使用最小二乘法的公式来求解最佳拟合曲线的参数。

最后,程序画出拟合曲线和原始数据点。

这个程序使用的是线性最小二乘法,适用于一次曲线拟合。

如果你的数据更适合非线性模型,例如二次曲线或指数曲线,那么你需要使用非线性最小二乘法。

Matlab提供了lsqcurvefit函数,可以用于非线性曲线拟合。

例如:% 非线性模型 y = a * x^2 + b * x + cfun = @(theta, x) theta(1) * x.^2 + theta(2) * x +theta(3);guess = [1, 1, 1]; % 初始猜测值% 使用lsqcurvefit函数求解theta = lsqcurvefit(fun, guess, x, y);% 显示拟合曲线plot(x, fun(theta, x), '-', 'LineWidth', 2); % 画出拟合曲线hold on; % 保持当前图像plot(x, y, 'o', 'MarkerSize', 10, 'MarkerFaceColor','b'); % 在图像上画出原始数据点xlabel('x'); % 设置x轴标签ylabel('y'); % 设置y轴标签legend('拟合曲线', '原始数据点'); % 设置图例这个程序定义了一个非线性函数fun,然后使用lsqcurvefit函数来求解最佳拟合曲线的参数。

标准曲线的最小二乘法拟合和相关系数

标准曲线的最小二乘法拟合和相关系数

标准曲线的最⼩⼆乘法拟合和相关系数标准曲线的最⼩⼆乘法拟合和相关系数(合肥⼯业⼤学控释药物研究室尹情胜)1 ⽬的⽤最⼩⼆乘法拟合⼀组变量(,,i=1-n)之间的线性⽅程(y=ax+b),表⽰两变量间的函数关系;(开创者:德国数学家⾼斯)⼀组数据(,,i=1-n)中,两变量之间的相关性⽤相关系数(R)来表⽰。

(开创者:英国统计学家卡尔·⽪尔逊)2 最⼩⼆乘法原理⽤最⼩⼆乘法拟合线性⽅程时,其⽬标是使拟合值()与实测值()差值的平⽅和(Q)最⼩。

式(1)3 拟合⽅程的计算公式与推导当Q最⼩时,;得到式(2)、式(3):式(2)式(3)由式(3)和式(4),得出式(4)和式(5):式(4)式(5)式(4)乘以n,式(5)乘以,两式相减并整理得斜率a:斜率(k=xy/xx,n*积和-和积)式(6)截距b的计算公式为公式(5),也即:截距b=(y-x)/n,差平均差)式(7)4 相关系数的意义与计算公式相关系数(相关系数的平⽅称为判定系数)是⽤以反映变量之间相关关系密切程度的统计指标。

相关系数(也称积差相关系数)是按积差⽅法计算,同样以两变量与各⾃平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。

相关系数r xy取值在-1到1之间。

r xy = 0时,称x,y不相关;| r xy | = 1时,称x,y完全相关,此时,x,y之间具有线性函数关系;| r xy | < 1时,X的变动引起Y的部分变动,r xy的绝对值越⼤,x的变动引起y的变动就越⼤,|r xy | > 0.8时称为⾼度相关,当0.5< | r xy|<0.8时称为显著相关,当0.3<| r xy |<0.5时,成为低度相关,当| r xy | < 0.3时,称为⽆相关。

(式(7)5 临界相关系数的意义5.1 临界相关系数中显著性⽔平(α)与置信度(P)的关系显著性⽔平取0.05,表⽰置信度为95%;取0.01,置信度就是99%。

excel拟合曲线用的最小二乘法

excel拟合曲线用的最小二乘法

Excel拟合曲线用的最小二乘法1. 介绍Excel作为一款常用的办公软件,被广泛应用于数据分析和处理,而拟合曲线是数据分析中常用的方法之一。

拟合曲线用的最小二乘法是一种常见的拟合方法,通过最小化数据点与拟合曲线之间的距离来找到最佳拟合曲线,从而对数据进行预测和分析。

在本文中,我将从深度和广度的角度来探讨Excel拟合曲线用的最小二乘法,带你深入探索这一主题。

2. 最小二乘法的原理在Excel中进行曲线拟合时,最小二乘法是一种常用的拟合方法。

其原理是通过最小化残差平方和来找到最佳拟合曲线。

残差是指每个数据点到拟合曲线的垂直距离,最小二乘法通过调整拟合曲线的参数,使得残差平方和最小化,从而得到最佳拟合曲线。

在Excel中,可以利用内置函数或插件来实现最小二乘法的曲线拟合,对于不同类型的曲线拟合,可以选择不同的拟合函数进行拟合。

3. Excel中的拟合曲线在Excel中进行拟合曲线时,首先需要将数据导入Excel,然后利用内置的数据分析工具或者插件来进行曲线拟合。

通过选择拟合函数、调整参数等操作,可以得到拟合曲线的相关信息,如拟合优度、参数估计值等。

可以根据拟合曲线的结果来对数据进行预测和分析,从而得到对应的结论和见解。

4. 个人观点与理解对于Excel拟合曲线用的最小二乘法,我认为这是一种简单而有效的数据分析方法。

它能够快速对数据进行拟合,并得到拟合曲线的相关信息,对于数据的预测和分析具有一定的帮助。

然而,也需要注意到拟合曲线并不一定能够准确描述数据的真实情况,需要结合实际背景和专业知识进行分析和判断。

在使用最小二乘法进行曲线拟合时,需要注意数据的可靠性和拟合结果的可信度,以避免出现不准确的结论和偏差的情况。

5. 总结通过本文的探讨,我们对Excel拟合曲线用的最小二乘法有了更深入的了解。

最小二乘法的原理、Excel中的实际操作以及个人观点与理解都得到了充分的展示和探讨。

在实际应用中,需要结合具体情况和专业知识来灵活运用最小二乘法进行曲线拟合,从而得到准确的分析和预测结果。

拟合曲线的方法

拟合曲线的方法

拟合曲线的方法
拟合曲线是一种数据分析方法,用于找到最适合描述数据的数学函数或曲线。

这种方法主要用于通过已知数据点来估计未知数据点的数值。

在拟合曲线的过程中,有几种常见的方法可以使用。

下面是其中一些常见的方法:
1. 最小二乘法:最小二乘法是一种常见的拟合曲线方法,其目标是通过最小化观测数据点与拟合曲线之间的误差来找到最佳拟合曲线。

这种方法可以应用于线性和非线性函数。

2. 多项式拟合:多项式拟合是一种通过多项式函数来拟合数据的方法。

它通常用于拟合曲线比较平滑的数据集。

多项式拟合方法可以根据数据的复杂度选择合适的多项式阶数,例如线性、二次、三次等。

3. 样条插值:样条插值是一种通过多个分段多项式函数来拟合数据的方法。

这种方法通过将数据集划分为多个小段,并在每个小段上拟合一个多项式函数,从而得到整体的曲线拟合。

4. 非参数拟合:非参数拟合是一种不依赖于特定函数形式的拟合曲线方法。

这种方法主要通过使用核函数或直方图等技术来估计数据的概率密度函数,并从中得到拟合曲线。

总体而言,选择合适的拟合曲线方法取决于数据的特征和对拟合结果的要求。

需要根据数据的分布、噪声水平和所需精度等因素来选择合适的方法。

此外,还可以使用交叉验证等技术来评估拟合曲线的质量,并选择最佳的拟合曲线模型。

普通最小二乘法的拟合曲线准则

普通最小二乘法的拟合曲线准则

普通最小二乘法的拟合曲线准则1. 什么是普通最小二乘法?普通最小二乘法(Ordinary Least Squares, OLS)是一种经典的统计学和数学工具,用于拟合数据点与数学模型的关系。

通过最小化观测数据点与拟合曲线之间的残差平方和来确定最佳拟合曲线,从而推断出数据点之间的潜在关系。

2. 拟合曲线的准则在进行数据拟合时,选择合适的拟合曲线准则对最终结果具有至关重要的影响。

常见的拟合曲线准则包括最小化残差平方和、最小化残差绝对值和最小化残差的百分比等。

其中,最小二乘法的核心就是最小化残差平方和,使得拟合曲线与观测数据点之间的误差达到最小。

3. 评估拟合曲线的深度和广度为了全面评估拟合曲线的深度和广度,我们可以从以下几个方面进行考虑:- 数据拟合的准确性:通过分析拟合曲线与实际观测数据点之间的误差大小和分布情况,可以评估拟合曲线对数据的拟合程度。

一般来说,残差应该在一定范围内呈现随机分布,同时残差的平方和应该足够小,这样才能认为拟合曲线较好地拟合了数据点。

- 拟合曲线的泛化能力:除了拟合实际观测数据点外,我们还需要考虑拟合曲线在未知数据的泛化能力。

拟合曲线是否能够很好地适应新的数据点,是否具有较好的预测能力,这些都是评价拟合曲线广度的重要指标。

- 模型的复杂度:复杂的拟合曲线可能会过度拟合观测数据点,导致在未知数据上的预测能力降低;而过于简单的拟合曲线可能无法很好地拟合实际观测数据点。

我们需要对拟合曲线的复杂度进行合理的权衡,以达到最佳的拟合效果。

4. 个人观点和理解在我看来,普通最小二乘法是一种较为可靠和普遍适用的拟合方法,其核心准则即最小化残差平方和可以帮助我们得到相对较好的拟合效果。

然而,需要注意的是,在进行数据拟合时,我们应该不断地评估拟合曲线的准确性和泛化能力,并合理地考虑拟合曲线的复杂度,以得到更加可靠和实用的结果。

通过对普通最小二乘法的拟合曲线准则进行充分的评估,我们可以更深入地理解数据拟合的原理和方法,从而在实际应用中取得更加准确和可靠的结果。

利用最小二乘法求解拟合曲线

利用最小二乘法求解拟合曲线

实验三函数逼近1. 掌握数据多项式拟合的最小二乘法。

2. 会求函数的插值三角多项式。

二、实验问题(1)由实验得到下列数据(2)求函数f x =X2COSX在区间[-甌二]上的插值三角多项式。

三、实验要求1. 利用最小二乘法求问题(1)所给数据的3次、4次拟合多项式,画出拟合曲线。

22. 求函数f X =X COSX在区间[-二,二]上的16次插值三角多项式,并画出插值多项式的图形,与f X的图形比较。

23. 对函数f X i = X COSX,在区间[-M,二]上的取若干点,将函数值作为数据进行适当次数的最小二乘多项式拟合,并计算误差,与上题中的16次插值三角多项式的结果进行比较。

《数值分析》实验报告【实验课题】利用最小二乘法求上述问题所给数据的 2次,3次、4次拟合多项式,画出拟合曲线【实验目标】(1) 加深对用最小二乘法求拟合多项式的理解 (2) 学会编写最小二乘法的数值计算的程序;在函数的最佳平方逼近中f (X )•二C[a,b],如果f (X )只在一组离散点集{xj =0,1, ,m}上给出,这就是科学实验中经常见到的实验数据{(X j ,yj,i = 0,1,…,m}的曲线拟合,这里y j=f(xji = 0,1; m,,要求一个函数y=S(x)与所给数据 T{(X y ),= 0厂 1,m 拟合,若记误差 5i =S (xj — %(i =0,1,…,m) ,3 =®,d ,,酩),设 0(x), 1(x),…,:n(x)是 C[a,b]上的线性无关函数族,在=span[ - 0(x), :1(x),…,::n (x)}中找一个函数S*(x),使误差平方和这里|S(x)二 a 。

0(x) a [(x 「 a . :n (x)(n :: m)这就是一般的最小二乘逼近,用几何语言说,就称为曲线拟合的最小二乘法。

通常在最小二乘法中考虑加权平方和有m(J)八、(x):j(x)匚(X ),i=0 m(f, :k )八’(X i )f (X i ) l(x)二 d k ,k =0,1,…,ni =e上式可改写为' (\, \)a^d k ,k =0,1,…,n 。

vtk 最小二乘拟合样条曲线-概述说明以及解释

vtk 最小二乘拟合样条曲线-概述说明以及解释

vtk 最小二乘拟合样条曲线-概述说明以及解释1.引言1.1 概述概述VTK(Visualization Toolkit)是一个强大的开源工具集,用于可视化和图形处理。

它提供了广泛的功能和算法,可用于创建、操作和呈现各种类型的数据。

其中一个重要的功能是最小二乘拟合样条曲线,它通过拟合一条曲线来逼近一组数据点的分布情况。

在实际应用中,我们经常需要对数据进行分析和预测。

然而,数据通常是离散的,不能直接用于建立模型。

这时,我们可以借助于最小二乘法来找到最佳拟合曲线,从而更好地理解和描述数据。

最小二乘法是一种常用的数据拟合方法,它通过最小化数据点到拟合曲线的垂直距离的平方和,来确定曲线的形状和位置。

在VTK中,最小二乘拟合样条曲线的实现可以基于不同的插值方法,如Bezier曲线、B样条曲线等。

最小二乘拟合样条曲线在实际应用中具有广泛的应用场景。

例如,在地理信息系统中,我们可以利用这种方法来对地形地貌进行建模和分析。

此外,在图像处理和计算机辅助设计领域,最小二乘拟合样条曲线也是常用的技术手段。

本文将介绍VTK的基本概念和最小二乘法的原理,并详细阐述最小二乘拟合样条曲线的实现步骤。

通过具体的案例分析和实验结果,我们将验证该方法在数据拟合方面的有效性和可靠性。

接下来的章节将逐步展开对VTK和最小二乘法的介绍,以及最小二乘拟合样条曲线的具体实现过程。

在结论部分,我们将对实验结果进行总结,并展望未来在该领域的研究方向和发展趋势。

通过本文的阐述,读者将能够全面了解VTK最小二乘拟合样条曲线的基本原理和实际应用,为进一步探索和研究相关领域提供指导和借鉴。

1.2文章结构文章结构:本文主要按照以下结构进行阐述和论证。

首先,在引言部分,对本文的背景和研究意义进行了描述。

然后,在正文部分,首先介绍了VTK (Visualization Toolkit)的基本概念和特点,包括其在计算机图形学和可视化领域的应用。

接着,详细介绍了最小二乘法的原理和在数据拟合中的应用,解释了其在样条曲线拟合中的重要性和优势。

最小二乘法在数据拟合中的应用

最小二乘法在数据拟合中的应用

最小二乘法在数据拟合中的应用最小二乘法是一种常用的数学方法,它在数据拟合中有着广泛的应用。

通过最小二乘法,可以对数据进行拟合,从而得到数据之间的关系,进而可以进行预测和分析。

本文将介绍最小二乘法在数据拟合中的应用,包括其基本原理、具体步骤和实际案例分析。

1. 基本原理最小二乘法是一种通过最小化误差的方法来拟合数据的数学技术。

它的基本原理是通过找到一条曲线或者直线,使得这条曲线或者直线与给定的数据点之间的误差平方和最小。

这里的误差是指数据点到拟合曲线或者直线的距离。

2. 具体步骤最小二乘法的具体步骤如下:(1)建立数学模型:首先要确定要拟合的数据的数学模型,可以是线性模型、多项式模型或者其他非线性模型。

(2)确定误差函数:然后要确定用来衡量拟合效果的误差函数,通常是残差平方和。

(3)最小化误差:接着要通过数学计算的方法,找到使误差函数最小化的参数,这些参数就是最佳拟合的结果。

(4)评估拟合效果:最后要对拟合结果进行评估,看拟合效果是否满足要求。

3. 实际案例分析下面通过一个实际案例来说明最小二乘法在数据拟合中的应用。

假设有一组数据点{(1, 2), (2, 3), (3, 4), (4, 5)},我们希望通过最小二乘法找到一条直线来拟合这些数据点。

首先我们建立线性模型y = ax + b,然后确定误差函数为残差平方和Σ(yi - (axi + b))^2,接着通过数学计算找到使误差函数最小化的参数a和b。

经过计算我们得到最佳拟合直线为y = 1x + 1,拟合效果如图所示。

可以看到,通过最小二乘法得到的拟合直线与原始数据点之间的误差较小,拟合效果较好。

综上所述,最小二乘法是一种在数据拟合中广泛应用的数学方法,通过最小化误差实现数据的拟合。

通过合理建模和数学计算,可以得到最佳拟合的结果,从而实现数据的预测和分析。

希望本文对读者了解最小二乘法在数据拟合中的应用有所帮助。

最小二乘法曲线拟合算法

最小二乘法曲线拟合算法

最小二乘法曲线拟合算法
最小二乘法是一种常见的曲线拟合算法,其原理是通过计算样本点与拟合曲线的误差平方和最小化,得到最佳的曲线拟合结果。

以下是最小二乘法曲线拟合算法的步骤:
步骤一:选择合适的拟合函数。

通常情况下,拟合函数的选择取决于数据集的特性和需要得到的拟合效果。

例如,对于线性拟合,拟合函数可采用一次多项式函数y=kx+b;对于非线性拟合,拟合函数可能需要采用高次多项式函数或指数函数等。

步骤二:确定误差函数。

误差函数的目的是衡量样本点与拟合曲线的偏差程度。

最常用的误差函数是均方误差,即将每个样本点的实际值与相应拟合函数的输出值之间的平方误差求和,得到样本点的一般均方误差。

公式为:E = Σ(yi-f(xi))^2。

步骤三:最小化误差函数。

最小二乘法的核心就是通过求解误差函数的最小值来得到最佳的拟合曲线。

最小化误差函数可以采用梯度下降法或牛顿法等优化算法进行求解。

步骤四:得到最佳的拟合曲线。

在得到最小化误差函数的解后,即可获得最佳的拟合曲线,该曲线可用于对数据集进行预测、分类或回归等任务。

步骤五:评估拟合效果。

为了验证最佳拟合曲线的精度和泛化能力,需要将新的数据样本输入到该曲线中进行预测,并通过各种评估指标(例如均方根误差、相关系数等)来评估拟合效果。

最小二乘法曲线拟合算法是数据分析领域中的重要算法之一,可用于各种领域中的数据拟合和模型预测任务,例如气象科学、金融投资、信号处理等。

在应用过程中,需要根据实际情况灵活选择拟合函数和误差函数,同时对拟合结果进行合理的评估和优化,以获得更好的预测效果。

用MatLab画图(最小二乘法做曲线拟合)

用MatLab画图(最小二乘法做曲线拟合)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 用MatLab画图(最小二乘法做曲线拟合) 用 MatLab 画图(最小二乘法做曲线拟合) 帮朋友利用实验数据画图时,发现 MatLab 的确是画图的好工具,用它画的图比Excel光滑、精确。

利用一组数据要计算出这组数据对应的函数表达式从而得到相应图像,MatLab 的程序如下:x=[1 5 10 20 30 40 60 80] y=[15. 4 33. 9 42. 2 50. 556 62. 7 72 81. 1] plot(x, y, ‘ r*’ ) ; legend(‘ 实验数据(xi, yi) ‘ ) xlabel(‘ x’ ) , ylabel(‘ y’ ) , title(‘ 数据点(xi, yi) 的散点图’ ) syms a1 a2 a3 x=[15 10 20 30 40 60 80]; fi=a1. *x. +a2. *x+a3 y=[15. 4 33.9 42. 2 50. 5 56 62. 7 72 81. 1] fi =[a1+a2+a3,25*a1+5*a2+a2+(400*a1+20*a2+a3-101/2) +(900*a1+30*a2+a3-56) +(1600*a1+40*a2+a3-627/10) +(3600*a1+60*a2+a3-72)+(6400*a1+80*a2+a3-811/10) ; Ja1=diff(J, a1) ;Ja2=diff(J, a2) ; Ja3=diff(J, a3) ; Ja11=simple(Ja1) ,Ja21=simple(Ja2) , Ja31=simple(Ja3) A=[114921252, 1656252, 26052; 1656252, 26052, 492; 26052, 492, 16]; B=[9542429/5, 166129/5, 4138/5]; C=B/A, f=poly2sym(C) xi=[1 5 10 20 3040 60 80] ; y=[15. 4 33. 9 42. 2 50. 5 56 62. 7 72 81. 1]; n=length(xi) ; f=-0. 0086. *xi. +1. 3876. *xi+23. 1078;1 / 6x=1: 1/10: 80; F=-0. 0086. *x. +1. 3876. *x+23. 1078; fy=abs(f-y) ; fy2=fy. ; Ew=max(fy) , E1=sum(fy) /n,E2=sqrt((sum(fy2) ) /n) plot(xi, y, ‘ r*’ ) , hold on, plot(x, F, ‘ b-’ ) , hold off legend(‘ 数据点(xi, yi) ‘ , ‘ 拟合曲线f(x) = -0. 0086x +1. 3876x+23. 1078’ ) , xlabel(‘ x’ ) , ylabel(‘ y’ ) , title(‘ 实验数据点(xi, yi) 及拟合曲线f(x) ‘ ) 下图是程序运行后得到的:Su7Tw8VxaW ybXAcZB d#Cf!Eg%FhGj*Ik(Jl-Kn+M o0Np2Or3Ps4R t6Sv7Tw8VxaWzbXAcZBe#Cf! Eg%Fi Gj*Ik)Jl-Kn+Mo1Np2Or3Qs4Rt6Sv7 Uw8Vx aWzbYAc ZBe#Df!Eg%FiHj*Ik) Jm-Kn +Mo1Nq2Or3Qs 5Rt6Sv7Uw9VxaWzbYAdZBe#D f$Eg%F iHj(I k) Jm-Ln+Mo1Nq2Pr3Qs5Ru6S v7Uw9V yaWzbY AdZCe#Df$Eh%FiHj(Il) Jm-Ln0Mo1Nq2Pr4 Qs5Ru6Tv8Uw9VyaXzbYAdZCe !Df$Eh %GiHj (Il) Km-Ln0Mp1Nq2Pr4Qt5Ru 6Tv8U x9VyaXz cYAdZCe! Dg$Eh%Gi*Hj(Il) Km+Ln0M p1Oq2P r4Qt5Su6Tv8Ux9WyaXzcYBdZ Ce!Dg$Fh%Gi* Hk(Il) Km+Lo0Mp1Oq3Pr4Qt5 Su7Tv8Ux9Wyb XzcYBd#Ce!Dg$FhGi*Hk(Jl ) Km+L o0Np1Oq 3Ps4Rt 5Su7Tw8Ux9WybXAcY Bd#Cf!Dg$FhGj*Hk(Jl-Km+Lo0Np2Oq3Ps4 Rt6Su7Tw8Vx9 WybXAcZBd#Cf!Eg$FhGj*Ik (Jl-Kn +Lo0Np2Or3Ps4Rt6Sv7Tw8VxaWybXA cZBe#Cf!Eg%F hGj*Ik) Jl-K n+Mo0Np2Or3Q s4Rt6Sv 7Uw8V xaWzbXAcZBe# D f! Eg%FiGj* Ik) Jm- Kn+Mo1 Nq2Or3Qs5Rt6Sv7Uw9VxaWzb YAcZBe#Df$Eg %FiHj*Ik)---------------------------------------------------------------最新资料推荐------------------------------------------------------ Jm-Ln+Mo1Nq2Pr 3Qs5Ru 6Sv7Uw 9VyaWzbYAdZBe#Df$Eh%FiH j(Ik) J m-Ln0M o1Nq2Pr4Qs5Ru6Tv7Uw9VyaX zbYAdZC e#Df$ Eh%GiHj(Il) Jm-Ln0Mp1Nq2 Pr4Qt5Ru6Tv8 Uw9VyaXzcYAdZCe!Df$Eh%Gi *Hj(Il) Km+Ln 0Mp1Oq2Pr4Qt5Su6Tv8Ux9Vy aXzcYB dZCe!D g$Eh%Gi*Hk(Il) Km+Lo0Mp1O q3Pr4Qt5Su7Tv8Ux9WyaXzc Y Bd#Ce!Dg$Fh %Gi*Hk( Jl) Km +Lo0Np1Oq3Ps 4 Qt5Su7Tw8Ux 9WybXzcYBd#C f!Dg$FhGi*H k (Jl-Km+Lo0N p2Oq3Ps4Rt5S u7Tw8Vx9WybX AcYBd#Cf! Eg$ FhGj*Ik (Jl- Kn+Lo0Np2Or3 P s4Rt6Su7Tw8 VxaWybXA cZBd #Cf!Eg%FhGj * Ik) Jl-Kn+Mo 0Np2Or3Qs4Rt 6Sv7Tw8VxaWz bXAcZBe#Cf!E g%FiGj*Ik) J m-Kn+Mo1Np2O r 3Qs5Rt6Sv7U w8VxaWzbYAcZ Be#Df! Eg%Fi H j*Ik) Jm-Ln+ Mo1Nq2O r3Qs5 Ru6Sv7Uw9Vxa W zbYAdZBe#Df $Eh%Fi Hj(Ik ) Jm-Ln0Mo1Nq 2Pr3Qs5Ru6Tv 7Uw9Vya WzbYA dZCe#Df$Eh%G iHj(Il) Jm-L n0Mp1Nq2Pr4Q s5Ru6Tv8Uw9V ya XzbYAdZCe! Df$Eh%Gi*Hj( Il) Km-Ln0Mp1 Oq 2Pr4 Qt5Ru6Tv8Ux9Vy aXz cYAdZCe!Dg$E h%G i*Hk(Il) K m+Ln0Mp1O q3P r4Qt5Su6Tv8U x9WyaXzcYBd# Ce!Dg$Fh% Gi* Hk(Jl) Km+Lo0 Mp1Oq3Ps4Qt5 Su7Tv8Ux9Wyb XzcYBd#Cf! Dg $F hGi*Hk(Jl -Km+Lo0N p1Oq 3Ps4Rt5Su7Tw 8U x9WybXAcYB d#Cf!Eg$F hG j*Hk(Jl-Kn+Lo0Np2O q3Ps4Rt 6Su7Tw8Vx9WybXAcZBd#Cf!E g%FhGj*Ik(J l-Kn+Mo0Np2O r3Ps4Rt6Sv7T w8Vxa WzbXAcZ Be#Cf! Eg%Fi Gj*Ik) Jl-Kn+ Mo1Np2Or3Qs4 Rt6Sv7Uw8VxaWzbYAcZBe#Df !Eg%FiHj*Ik )3 / 6Jm-Kn+Mo1Nq2Or3Qs5Rt6Sv 7Uw9Vx aWzbYA dZBe#Df$Eg%FiHj(Ik) Jm-L n+Mo1Nq2Pr3Q s5Ru6Sv7Uw9VyaWzbYAdZCe# Df$Eh %FiHj( Il) Jm-Ln0Mo1Nq2Pr4Qs5Ru6 Tv8Uw9VyaXzb YAdZCe!Df$Eh%GiHj(Il) Km -Ln0Mp 1Nq2Pr 4Qt5Ru6Tv8Ux9VyaXzcYAdZC e!Dg$E h%Gi*H j(Il) Km+Ln0Mp1Oq2Pr4Qt5S u6Tv8U x9WyaX zcYBdZCe! Dg$Fh%Gi*Hk(Il) Km+Lo0Mp1Oq3 Pr4Qt5Su7Tv8Ux9WybXzcYBd #Ce!D g$FhGi *Hk(Jl ) Km+Lo0Np1Oq3Ps4R t5Su7Tw8Ux9T v7Uw9VyaXzbYAdZCe#Df$Eh% GiHj( Il) Jm- Ln0Mp1Nq2Pr4Qs5Ru6Tv8Uw9 VyaXzcY AdZCe !Df$Eh%Gi*Hj(Il) Km-Ln0Mp 1Oq2Pr 4Qt5Ru 6Tv8Ux9VyaXzcYBdZCe! Dg$E h%Gi*Hk(Il) K m+Ln0Mp1Oq3Pr4Qt5Su6Tv8U x9WyaX zcYBd# Ce!Dg$Fh%Gi*Hk(Jl) Km+Lo0 Mp1Oq3P s4Qt5 Su7Tw8Ux9Wyb X zcYBd#Cf!Dg $FhGi*Hk(Jl -Km+Lo0Np1Oq3Ps4Rt5Su7Tw 8Vx9Wy bXAcYB d#Cf! Eg$FhGj*Hk(Jl-Kn+L o0Np2O q3Ps4R t6Su7Tw8VxaWybXAcZBd#Cf! Eg%Fh Gj*Ik( Jl-Kn+Mo0Np2Or3Ps4Rt6Sv7 Tw8Vxa WzbXAc ZBe#Cf!Eg%FiGj*Ik) Jl-Kn +Mo1Np2Or3Qs 5Rt6Sv7Uw8Vx a WzbYAcZBe#D f! Eg%FiHj*Ik) Jm-Kn+Mo1 Nq 2Or3Qs5Ru6 Sv7Uw9Vx aWzb YAdZBe#Df$Eg %F iHj(Ik) Jm -Ln+Mo1N q2Pr 3Qs5Ru6Tv7Uw 9VyaWzbYAdZC e#Df$Eh%FiH j(Il) Jm-Ln0M o1Nq2Pr4Qs5R u6Tv8Uw9VyaX zbYAdZCe! Df$ E h%GiHj(Il) Km-Ln0Mp 1Oq2 Pr4Qt5Ru6Tv8 U x9VyaXzcYAd ZCe!Dg$E h%Gi *Hj(Il) Km+Ln 0Mp1Oq3Pr4Qt 5Su6Tv8Ux9Wy aXzcYBdZCe!D g $Fh%Gi*Hk(I l)---------------------------------------------------------------最新资料推荐------------------------------------------------------ Km+Lo0Mp1O q3Ps4Qt5Su7T v 8Ux9WybXzcY Bd#Ce! D g$Fh Gi*Hk(Jl) Km+ L o0Np1Oq3Ps4 Rt5Su7T w8Ux9 WybXAcYBd#Cf !Dg$FhGj*Hk (Jl-Km+ Lo0Np 2Oq3Ps4Rt6Su 7Tw8Vx9WybXA cZBd#Cf ! Eg$F hGj*Ik(Jl-K n+Mo0Np2Or3P s4Rt6Sv 7Tw8V xaWybXAcZBe# C f!Eg% FhGj*Ik) Jl-K n+Mo 1Np2Or3Qs4Rt 6Sv 7Uw8VxaWz bXAcZBe#D f!E g%FiGj*Ik) J m- Kn+Mo1Nq2O r3Qs5Rt6Sv7U w9VxaWzbYAcZ Be#Df$Eg%Fi Hj*Ik) Jm-Ln+ Mo1Nq2Pr3Qs5 Ru6Sv7Uw9Vya WzbYAdZBe#Df $Eh%FiHj(Il ) Jm -Ln0Mo1Nq 2Pr4Qs5Ru 6Tv 7Uw9VyaXzbYA dZCe#Df$Bd#C f! Eg%FhGj*I k(Jl-Kn+Mo0Np2O r3Qs4Rt 6Sv7Tw8VxaWzbXAcZBe#Cf!E g%FiGj*Ik) J l-Kn+Mo1Np2O r3Qs5Rt6Sv7U w8Vxa WzbYAcZ Be#Df! Eg%Fi Hj*Ik) Jm-Kn+ Mo1Nq2Or3Qs5 Ru6Sv7Uw9VxaWzbYAdZBe#Df $Eg%FiHj(Ik ) Jm-Ln0Mo1Nq2Pr3Qs5Ru6Tv 7Uw9Vy aWzbYA dZCe#Df$Eh%FiHj(Il) Jm-L n0Mp1Nq2Pr4Q s5Ru6Tv8Uw9VyaXzbYAdZCe! Df$Eh %GiHj( Il) Km-Ln0Mp1Oq2Pr4Qt5Ru6 Tv8Ux9VyaXzc YAdZCe!Dg$Eh%Gi*Hj(Il) Km +Ln0Mp 1Oq3Pr 4Qt5Su6Tv8Ux9WyaXzcYBdZC e!Dg$F h%Gi*H k(Jl) Km+Lo0Mp1Oq3Ps4Qt5S u7Ts5R u6Sv7U w9VyaWzbYAdZBe#Df$Eh%Fi Hj(Ik)Jm-Ln0 Mo1Nq2Pr4Qs5Ru6Tv7Uw9Vya XzbYA dZCe#Df $Eh%Gi Hj(Il) Jm-Ln0Mp1N q2Pr4Qt5Ru6T v8Uw9VyaXzcYAdZCe!Df$Eh% Gi*Hj( Il) Km- Ln0Mp1Oq2Pr4Qt5Su6Tv8Ux9 VyaXzcY BdZCe !Dg$Eh%Gi*Hk(Il) Km+Ln0Mp 1Oq3Pr4Qt5Su5 / 67Tv8Ux9WyaXzcYBd#Ce! Dg$F h%Gi*Hk (Jl) K m+Lo0Np1Oq3Ps4Qt5Su7Tw8U x9WybX zcYBd# Cf!Dg$FhGi*Hk(Jl-Km+Lo0 Np2Oq3Ps4Rt5 Su7Tw8Vx9WybXAcYBd#Cf!Eg $FhGj*Hk(Jl -Kn+Lo0Np2Or3Ps4Rt6Su7Tw 8VxaWy bXAcZB d#Cf! Eg%FhG j*Ik(Jl-Kn+M o0Np2O r3Qs4R t6Sr4Qt5Su6Tv8Ux9WyaXzcY BdZCe!Dg$Fh% Gi*Hk(Il) Km+Lo0Mp1Oq3Pr4 Qt5Su7Tv8Ux9 WybXzcYBd#Ce! Dg$FhGi*Hk (Jl) Km +Lo0Np 1Oq3Ps4Rt5Su7Tw8Ux9WybXA cYBd#Cf!Dg$FhGj*Hk(Jl- K m+Lo0Np2Oq3 Ps4Rt6Su7Tw8 Vx9WybXAcZBd # Cf!Eg$FhGj *Ik(Jl- Kn+Lo 0Np2Or3Ps4Rt 6Sv7Tw8VxaWy bXAcZBe#Cf!E g%FhGj*Ik) J l-Kn+Mo0Np2O r3Qs4Rt6Sv7U w8VxaWzbXAcZ B e#Df!Eg%Fi Gj*Ik) J m-Kn+ Mo1Nq2Or3Qs5 R t6Sv7Uw9Vxa WzbYAcZB e#Df $Eg%Ff! Dg$Fh Gi*Hk(Jl-Km +Lo0Np1Oq3Ps 4Rt5Su7Tw8Vx 9W ybXAcYBd#C f!Eg$Fh Gj*H k(Jl-Kn+Lo0N p2Oq3Ps4Rt6S u7Tw8Vxa WybX AcZBd#Cf!Eg% F hGj*Ik(Jl- Kn+Mo0N p2Or3 Ps4Rt6Sv7Tw8 V xaWzbXAcZBe #Cf!Eg% FiGj *Ik) Jl-Kn+Mo 1Np2Or3Qs5Rt 6Sv7Uw8V xaWz bYAcZBe#Df!E g%FiHj*Ik) J m-Kn+Mo1Nq2O r3Qs5Ru6Sv7U w9VxaW zbYAdZBe#Df$Eg %Fi Hj(Ik) Jm-Ln +M o1Nq2Pr3Qs 5Ru6Tv7U w9Vy aWzbYAdZCe#D f$Eh%FiHj(I l) Jm-Ln0Mo1N q2Pr4Qs5Or3P s4Rt6Su7Tw8V xaWybXAcZ Be# Cf! Eg%FhGj* I。

最小二乘法曲线拟合_原理及matlab实现

最小二乘法曲线拟合_原理及matlab实现

曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ϕ来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ϕ最好地逼近()x f ,而不必满足插值原则。

因此没必要取)(i x ϕ=i y ,只要使i i i y x -=)(ϕδ尽可能地小)。

原理:给定数据点},...2,1,0),,{(m i y x i i =。

求近似曲线)(x ϕ。

并且使得近似曲线与()x f 的偏差最小。

近似曲线在该点处的偏差i i i y x -=)(ϕδ,i=1,2,...,m 。

常见的曲线拟合方法:1.使偏差绝对值之和最小2.使偏差绝对值最大的最小3.使偏差平方和最小最小二乘法:按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。

推导过程:1. 设拟合多项式为:2. 各点到这条曲线的距离之和,即偏差平方和如下:3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到了: .......4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵:5. 将这个范德蒙得矩阵化简后可得到:6. 也就是说X*A=Y ,那么A = (X'*X)-1*X'*Y ,便得到了系数矩阵A ,同时,我们也就得到了拟合曲线。

MATLAB 实现:MATLAB 提供了polyfit ()函数命令进行最小二乘曲线拟合。

调用格式:p=polyfit(x,y,n)[p,s]= polyfit(x,y,n)[p,s,mu]=polyfit(x,y,n)x,y 为数据点,n 为多项式阶数,返回p 为幂次从高到低的多项式系数向量p 。

x 必须是单调的。

矩阵s 包括R (对x 进行QR 分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。

最小二乘法曲线拟合_原理及matlab实现

最小二乘法曲线拟合_原理及matlab实现

曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ϕ来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ϕ最好地逼近()x f ,而不必满足插值原则。

因此没必要取)(i x ϕ=i y ,只要使i i i y x -=)(ϕδ尽可能地小)。

原理:给定数据点},...2,1,0),,{(m i y x i i =。

求近似曲线)(x ϕ。

并且使得近似曲线与()x f 的偏差最小。

近似曲线在该点处的偏差i i i y x -=)(ϕδ,i=1,2,...,m 。

常见的曲线拟合方法:1.使偏差绝对值之和最小2.使偏差绝对值最大的最小3.使偏差平方和最小最小二乘法:按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。

推导过程:1. 设拟合多项式为:2. 各点到这条曲线的距离之和,即偏差平方和如下:3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到了: .......4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵:5. 将这个范德蒙得矩阵化简后可得到:6. 也就是说X*A=Y ,那么A = (X'*X)-1*X'*Y ,便得到了系数矩阵A ,同时,我们也就得到了拟合曲线。

MATLAB 实现:MATLAB 提供了polyfit ()函数命令进行最小二乘曲线拟合。

调用格式:p=polyfit(x,y,n)[p,s]= polyfit(x,y,n)[p,s,mu]=polyfit(x,y,n)x,y 为数据点,n 为多项式阶数,返回p 为幂次从高到低的多项式系数向量p 。

x 必须是单调的。

矩阵s 包括R (对x 进行QR 分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22
例题
解出
a0 5.289 , a1 0.394 , a2 3.581
因此所求的拟合函数为
( x) 5.289 0.394 sin

5
x 3.581cos

10
x
23 23
例题
例3.3 已知观测数据(1,-5),(2,0),(4,5),(5,6),
试用最小二乘法求形如
T T

4 a 45 46 4 1.3525 b 2.55
解得
a 1.537650114 b 6.432976311
于是所求拟合曲线为
y 1.537650 x 6.43297拟合
已知观测数据(1,5),(2,21),(3, 46),试用最小二乘法求形如
i 0 i 0
n
n
( x ) a j j ( x )
j 0
m
7
例题
例3.1 某合金成分x与膨胀系数y之间的关系有 如下实验数据,求膨胀系数y与成分x的拟合曲 线y=P(x)。 i x y 0 37 1 38 2 39 3 40 4 41 5 42 6 43
3.40 3.00 2.10 1.53 1.80 1.90 2.90
d (e e) T 2 A (b Ax) 0 dx
T
A (b Ax) 0
T
17
线性矛盾方程组(续)
A Ax A b 0
T T
A Ax A b
T T
(3.13)
该式称为方程组Ax=b 的法方程。因此,求解n阶矛盾 方程组的问题转化求解m阶线性方程组的问题。
18
例题
写成矩阵形式,为
Aw y
其中
x0 x 1 A x2 x3
1 / x0 1 / x1 1 / x2 1 / x3
y0 y 1 y y2 y3
a w b
26
例题
其法方程为
A Aw A y
y ax
b
上的经验公式。
28
非线性最小二乘拟合
5 a 1
b b b
21 a 2
46 a 3
得到的是非线性方程组,求解通常
比较困难。
29
非线性最小二乘拟合
y ax ( 1)
b
两边取对数,得
lg y lg a b lg x
令 w lg y , A lg a , z lg x , 则得
解得
a0 268.010, a1 13.171, a2 0.163
于是所求拟合曲线为
p2 ( x) 268.010 13.171x 0.163 x
2
14
线性矛盾方程组
方程个数大于未知量个数的方程组称为矛盾方程 组,一般形式为
a11 x1 a12 x2 a1m xm b1 a x a x a x b nm m n n1 1 n 2 2
3.40 3.00 2.10 b 1.53 1.80 1.90 2.90 12
例题

Aw b
上述方程组称为矛盾方程组。两边同乘以 A
T
AT Aw AT b

13
例题
280 11228 a0 16.63 7 280 11228 451360 a 661 . 2 1 a 26368.2 11228 451360 18188996 2
w A bz
30
非线性最小二乘拟合
bx y ae ( 2)
两边取自然对数,得
ln y ln a bx
令 w ln y , A ln a , z x , 则得 w A bz
31
非线性最小二乘拟合(续)
x y ab ( 3)
两边取对数,得
lg y lg a x lg b

15
线性矛盾方程组(续)
Ax=b
(3.11)
A是 n ×m阶的列满秩矩阵, x是 m维 的列向量, b是 n维的列向量,
剩余向量 e b Ax
e e e 2 b Ax 2 min
T
2
2
(3.12)
16
线性矛盾方程组(续)
e e (b Ax) (b Ax)
T T

w ln y , A ln a , z x ,
则上式 成为关于A,b 的线性函数
w A bz
36
例题
根据数据(x , y) 算出对应的(z , w) , 得下表 z w 1.00 1.25 1.50 1.75 2.00 1.6292 1.7561 1.8764 2.0082 2.1353
例题
其法方程为
A Aw A y
T T

0.0 5.6957 a0 16.6300 7 0.0 4 . 3090 0 . 0 a 1 . 6980 1 a 12.9064 5 . 6957 0 . 0 4 . 8090 2
20
例题
写成矩阵形式,为
Aw y
其中
1 x0 1 x1 A 1 x6
2 x0 2 x1 2 x6
y0 y 1 y y3
a0 w a1 a 2
21
sin( 37) cos( 37) 5 10 sin( 38) cos( 38) 3.40 5 10 3.00 sin( 39) cos( 39) a 2.10 5 10 0 a 1.53 sin( 40) cos( 40) 1 5 10 a 1.80 2 sin( 41) cos( 41) 5 10 1.90 2.90 sin( 42) cos( 42) 5 10 sin( 43) cos( 43) 5 10
2
a0 41a1 41 a2 1.80
2
a0 42a1 42 a2 1.90
2
a0 43a1 43 a2 2.90
2
10
例题
1 1 1 1 1 1 1
37 37 3.40 3.00 2 38 38 2 39 39 a0 2.10 2 40 40 a1 1.53 2 a 1.80 41 41 2 2 42 42 1.90 2 2.90 43 43
3
数据图
9 8 7 6 5 4 3 2 1 0 0 2 4 6 8 10 12
4
曲线拟合
已知的离散数据yi=f(xi) (i=0,1,2, …,n)往往是 通过观测而得到的,经常带有观测误差。
曲线拟合:希望找到—条曲线,它既能反映 结定数据的总体分布形式,又不致于出现局部较 大的波动。这种逼近方式.只要所构造的逼近函 数(x)与被逼近函数 f(x)在区间[a,b]上的偏差满 足其种要求即可。
2
11
例题
得到的方程组称为矛盾方程组。令
1 1 1 A 1 1 1 1
37 37 2 38 38 39 392 2 40 40 , 41 412 2 42 42 2 43 43
2
a0 w a1 , a 2

w 1 / y , z 1 / x,
则得
w a bz
34
例题
例3.4 给定实验数据 x 1.00 1.25 1.50 1.75 2.00
y
5.10 5.79 6.53 7.45 8.46
bx y ae 试求形如 的拟合函数。
35
例题
解 对拟合函数的两边取自然对数,即
ln y ln a bx
建立法方程
7.5 A 9.4052 5 7.5 11.875 b 14.4239
37
例题
解得
A 1.1225 , b 0.5057 , a e A 3.0725
因此,所求的拟合函数为
y 3.0725e 0.5057 x
5
偏差
设给定数据点 (xi,yi), (i=0,1,2, …,n),记
ei ( xi ) yi
并称ei为偏差。
(i 0,1,2,, n),
6
最小二乘法
曲线拟合的最小二乘法:以使得偏差的平方和
最小为标准
E ei2 w( xi )[( xi ) yi ]2 min
8
例题
解 将数据标在坐标纸上,由散点图可以 推断他们大致分布在一条抛物线上。为 此取
p2 ( x) a0 a1 x a2 x
2
9
例题
a0 37a1 37 a2 3.40
2
a0 38a1 38 a2 3.00
2
a0 39a1 39 a2 2.10
2
a0 40a1 40 a2 1.53
上的经验公式。
b ( x) ax x
24
例题
解:记
x0 1, y0 5; x1 2, y1 0; x2 4, y2 5; x3 5, y3 6;
按题意,得矛盾方程组,
axi b xi yi
写成矩阵形式,为
(i 0,1,2,3)
25 25
例题
38
相关文档
最新文档