初中思想方法初中数学教学

合集下载

在初中数学教学中培养数学思想方法

在初中数学教学中培养数学思想方法

在初中数学教学中培养数学思想方法初中三年的数学学习会涉及以下几种主要的数学思想方法:化归思想、方程思想、函数思想、类比思想、分类讨论思想、数学模型思想、猜想反驳思想. 在初中数学教学过程中对数学思想方法的培养,强调“两种价值”的体现,一是数学思想方法在学生学习数学过程中的价值体现,二是数学思想方法在学生的人格发展中的价值体现.一、数轴与绝对值体现数形结合的思想数轴是具有原点、正方向和长度单位的直线. 数轴的引入是初中数学中体现数形结合思想的基础. 利用数轴可以极大地减少学习的阻力. 例如,用数轴引出绝对值的概念. 把“绝对值”放在数轴上来理解即点到原点的距离,距离相同点的不唯一性,从而引出相反数的概念,抽象出有关数的概念,由形到数,逐步形成相反数. 也就是说,绝对值、相反数概念都是通过相应的数轴上的点与原点的位置关系来刻画的. 比较两个有理数大小时,可以通过这两个有理数在数轴上的对应位置关系进行描述.在教学“绝对值”概念时,可以让学生先在数轴上画出两个点,如5,-5,然后让学生说出5,-5到原点的距离,再要求学生思考:若5的绝对值等于5,则-5的绝对值等于多少?再进一步指出:“有理数的绝对值,若距离为零,则此有理数为零;若距离为正数,就包含数轴上到原点距离相等的左边和右边的两个点;若距离为负数,则该题无解. ”这段话,教材中虽未加以叙述,如果我们在教学中及时加以申述,则将加深学生对“绝对值”概念的理解.通过渗透数形结合的思想方法. 体现了两方面意义:一是对图形赋予代数意义,可以帮助学生正确理解有理数的性质及其运算法则. 二是给抽象的数学问题赋予直观图形的意义,以形助数. 学生能根据直观图形将实际问题抽象为数学问题. 我们把它在教材中出现的次数作出统计,下列知识体现了数形结合思想:有理数的意义、有理数大小的比较、绝对值、平面内点的位置与坐标、用图解法解二元一次方程组、二元一次方程的图形、不等式的解集、正比例函数的图像和性质、反比例函数的图像和性质、一次函数的图像和性质、列方程解应用题、二次函数的图像和性质、方差与标准差、勾股定理及其应用、圆与圆的位置关系. 因此在实际的教学过程中,数学老师要重视数形结合方法在解题中的指导作用,特别要注重数形结合思想方法的概括、渗透和总结.二、方程应用隐藏的转化思想和数学模型思想转化思想在实际生活中有很多例子,转化思想是初中数学中应用最多、涉及最广的数学思想. 在解决几何问题时,出现的转化如:把复杂图形分解为几个基本图形,把不规则图形的面积转化为规则图形的面积,把多边形问题转化为三角形和四边形问题,等等. 古代“曹冲称象”的故事就是一个典型的数学转化问题. 在解决代数问题时,出现的转化:如解一元二次方程时,采用配方法、因式分解法,将二次问题转化(降次)为一次问题. 转化的基本原则概括来说,也就是“化难为易、化未知为已知”的一种方法. 解分式方程时,通过去分母,把分式方程转化为整式方程. 求解二元一次方程组时,把多元问题转化为一元问题. 转化思想就是把待解决或未解决的一些数学问题,选择恰当的方法进行变换、转化,通过观察、分析、联想、类比等思维过程,每一个数学问题都是在转化中获得解决的,转化是数学中最重要的思想方法,即使是常见的数学思想方法:如分类讨论的思想、数形结合法等都是转化思想的表现形式.三、解直角三角形中蕴涵的方程思想方程思想是初中数学中的一个重要的数学思想,在解题中有着广泛的应用. 所谓方程思想,就是从分析问题的数量关系入手,通过设定未知数,把问题中的已知量与未知量的数量关系,转化为方程或方程组等数学模型,然后利用方程的理论或方法,使问题得到解决. 利用方程思想解题,要善于从题目中挖掘等量关系,能够根据题目的特点选择恰当的未知数,注意保证方程的个数与未知数的个数相同.在初中数学中,我们学习了许多类型的方程和方程组的解法. 例如,一元一次方程、一元二次方程,可化为一元一次方程、一元二次方程的分式方程的解法,二元一次方程组、三元一次方程组的解法,以及二元二次方程组的解法等,所以我们如果能把实际问题或数学问题转化成解上述方程或方程组,问题就容易解决了. 用方程思想分析、处理问题,思路清晰、灵活、简便.四、函数及其图像内容突显了数学思想函数所揭示的是两个变量之间的对应关系,通俗地讲就是一个量的变化引起了另一个量的变化. 在数学中总是设法将这种对应关系用解析式表示出来,这样就能充分运用函数的知识、方法来解决有关的问题.例如,平面直角坐标系将实数对与平面点统一起来,能用代数的方法研究几何性质,能用几何方法表述函数关系,将函数关系与图像结合起来,数形结合,就是要建立实数对与平面点的对应,函数参数与平面图像特性的对应,函数与平面图形的对应,建立一次函数y = kx + b中k,b与图像的相互对应关系,二次函数y = ax2 + bx + c(a ≠ 0)中a,b,c与图像的相互对应关系,数形结合具体化,可操作. 因此,教学上要有意识、有计划、有目的地培养函数的思想方法.总之,在初中数学教学中,要注重对学生进行数学思想方法的培养,强调数学思想方法在学生学习数学过程中的价值体现,以及数学思想方法在学生的人格发展中的价值体现.。

如何在初中数学教育中渗透数学思想方法

如何在初中数学教育中渗透数学思想方法

浅谈如何在初中数学教育中渗透数学思想方法数学思想方法对认知结构的发展起着重要作用,是重要的基础知识,是知识转化为能力的桥梁。

学习基本数学思想方法是形成和发展数学能力的基础,学生一旦掌握了应具备的数学思想方法,则在较高的层次上获得了终生受用的知识,使学生素质乃至科学素质得到提高,使他们继续学习有了坚实的基础。

一、挖掘蕴涵的数学思想初中数学教材中蕴涵的数学思想有:符号思想、数形结合思想、方程与函数思想、转化思想、统计思想、分类讨论思想、对应思想、集合思想、数学建模思想等。

二、注意不失时机地渗透例如,通过“字母能表示什么”的教学,让学生初步感受字母表示数的思想,在学了有理数的运算后,通过以下问题,发展学生对数和运算的意义的认识,进一步领会字母表示数的思想。

:计算(1+1/2+1/3+1/4)(1/2+1/3+1/4+1/5)-(1+1/2+1/3+1/4+1/5)(1/2+1/3+1/4)对此式的运算可引导学生从其四个算式的内在联系与区别入手,设1+1/2+1/3+1/4=x,则原式=x(x-4/5)-(x+1/5)(x-1)=1/5 字母的出现,使数学问题变得较为抽象。

但字母的使用,又使数的运算法则有了一般性的表示。

三、循序渐进,并螺旋上升要研究数学思想教学的原则和方法。

数学思想的教学除应遵循数学教学的一般原则外,要特别强调几点:(一)把握载体,提炼数学思想。

要以数学概念、定理和数学方法等知识为载体。

只有通过载体的教学把隐藏在载体中的数学思想提炼出来,才能使数学思想的教学落到实处。

例如,学生学了有理数运算后,在数学培优中给出以下练习:计算:(1)1+3+3的平方+3的立方…+3的20次方;1/21/41/81/161/32(2)把一个面积为1的正方形等分成两个面积为1/2的矩形,接着把面积为1/2的矩形等分成两个面积为1/4的矩形,再把面积为1/4的矩形等分成两个面积为1/8的矩形,如此进行下去,试利用图形揭示的规律计算:1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256的值。

初中数学思想方法有哪些

初中数学思想方法有哪些

初中数学思想方法有哪些1、数形结合思想:就是依据数学问题的条件和结论之间的内在联系,既分析其代数含义,又显示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

2、分类讨论的思想:在数学中,我们经常必须要依据研究对象性质的差异,分各种不同状况予以考查;这种分类思索的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

3、联系与转化的思想:事物之间是互相联系、互相制约的,是可以互相转化的。

数学学科的各部分之间也是互相联系,可以互相转化的。

4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。

2方法一1.对应的思想和方法在初一代数入门教学中,有代数式求值的计算题,通过计算发现:代数式的值是由代数式里字母的取值所决定的,字母的不同取值可得不同的计算结果。

这里字母的取值与代数式的值之间就建立了一种对应关系,再如实数与数轴上的点,有序实数对与坐标平面内的点都存在对应关系在进行此类教学〔制定〕时,应注意渗透对应的思想,这样既有助于培养同学用变化的观点看问题,又助于培养同学的函数观念。

2.整体的思想和方法整体思想就是合计数学问题时,不是着眼于它的局部特征,而是把注意和和着眼点放在问题的整体结构上,通过对其全面深入的观察,从宏观整体上熟悉问题的实质,把一些彼此独立但实质上又互相紧密联系着的量作为整体来处理的思想方法。

整体思想在处理数学问题时,有广泛的应用。

3.数形结合的思想和方法数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。

著名数学家华罗庚先生说:"数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休。

'这充分说明了数形结合思想在数学研究和数学应用中的重要性。

4.分类的思想和方法教材中进行分类的实例比较多,如有理数、实数、三角形、四边形等分类的教学不仅可以使同学明确分类的重要性:一是使有关的概念系统化、完整化;二是使被分概念的外延更清楚、更深入、更具体,并且还能使同学掌握分数的要点方法:3方法二1、数形结合的思想和方法在同学刚接触初中数学不久,教材中设置利用"数轴'这一图形,巩固"具有相反意义的量'的概念,了解相反数,绝对值的概念,掌握有理数大小的道理,理解有理数加法、乘法的意义,掌握运算法则等。

初中数学八大思想方法

初中数学八大思想方法

初中数学八大思想方法一、联系实际数学学习的第一步就是要联系实际,引起学生学习数学的兴趣,让学生体会数学在实际生活中的用途。

要帮助学生认识到数学是科学知识系统的一部分,在实际学习之前,要开展各类活动,让学生体会到数学运用的方方面面,形成对数学的基本认识。

二、发现规律发现规律是学习数学的重要环节,它是数学学习的核心任务和难点。

要通过实际活动引发学生思考,培养学生发现规律的能力,注重发现数学规律和总结数学规律的培养。

三、原则论证原则论证是数学学习方法中最重要的部分,在学习数学的过程中,要培养学生构建数学模型,将客观实际情况表述成数学模型,然后通过精心的证明过程,根据一定的数学原则得出结论,要培养学生归纳推理、证明、分析、推断和思维逻辑的能力。

四、分析解题分析解题是数学学习的重要部分,通过解题要求学生首先对题干整理思想,利用数学工具将题意转化为数学问题,再选择合适的解法解决问题,将运算结果展开,说明分析问题思路,得出结论,最后判断问题解答的准确性。

五、图像化思维学习数学过程中要灵活运用图像表示形式,把复杂的数学概念及问题用简单的图像表示出来,便于理解和计算,促进有效的解决数学问题,激发学生对数学要素的分析、综合,运用空间想象力构造多维的概念,形成深入的理解和本质思维。

六、数据流图数据流图是源于计算机科学的一种有效工具,它是用控制结构图来展示问题求解过程,并优化这一过程,将复杂的求解过程表示在一张图片上,使原本复杂的计算过程变得简洁、清晰,便于学生的学习和理解。

七、算术分析算术分析是一种加强抽象能力的有效工具,要求学生用算术公式逐步梳理数学知识考查学生数学知识和思想方法,使学生学习数学知识更有系统性。

八、思维编程思维编程是软件语言教学的一种方式,其实就是通过让学生学习一定的编程语言知识,文化和运用编程式思维“把计算问题变为计算过程”,逐步拆解问题,利用计算机的自动计算能力完成计算,从而引导学生形成结构化的思维编程方法,使学生能够把定向问题变为求解问题,进行数学实践性的活动,从而提升学生的创新能力。

例谈初中数学思想方法的教学7篇

例谈初中数学思想方法的教学7篇

例谈初中数学思想方法的教学7篇第1篇示例:初中数学思想方法的教学是提高学生数学学习能力和解决问题能力的重要环节。

数学思想方法的培养是数学教学中的一项重要任务,它不仅能够帮助学生更好地理解和掌握数学知识,还能够激发学生的学习兴趣和动手能力,培养学生的解决问题的能力。

教师在初中数学教学中应注重培养学生的数学思想方法,提高他们的数学素养。

一、提倡启发式教学方法启发式教学方法是培养学生数学思想方法的有效手段之一。

教师可以通过引导学生思考和提出问题的方式,激发学生的求知欲和好奇心,促使学生主动探究和发现数学规律。

教师可以给学生一道有趣的问题,让学生通过分析和推理找出解决问题的方法,这样可以激发学生的兴趣,培养他们的独立思考能力和解决问题的能力。

二、注重实践教学方法实践教学方法是培养学生数学思想方法的重要途径之一。

通过数学实践,学生可以将抽象的数学知识与实际生活联系起来,理解数学的应用价值,从而加深对知识的记忆和理解。

教师可以设计一些与实际生活相关的数学问题,让学生在解决问题中体会数学的魅力,培养他们的动手能力和实践能力。

三、鼓励合作学习方法合作学习是培养学生数学思想方法的有效途径之一。

通过合作学习,学生可以相互交流、讨论,共同解决问题,从而提高解决问题的效率和质量。

教师可以组织学生分组讨论、合作完成任务,引导学生相互合作、互帮互助,培养学生的团队合作精神和沟通协作能力。

四、激发创新思维能力第2篇示例:初中数学作为学生数学学科的启蒙阶段,数学思想方法的教学显得尤为重要。

正确的数学思想方法不仅影响到学生对数学的学习态度和兴趣,还直接影响到数学学科的学习效果。

教师们在进行初中数学教学时,需要注重培养学生的数学思想方法,激发学生学习数学的兴趣和潜能。

初中数学教学要注重启发性教学。

数学是一门反映客观规律的抽象科学,因此教学应注重培养学生的逻辑思维和数学思维能力。

在教学过程中,教师应引导学生通过具体问题认识抽象概念,通过实际情境应用抽象理论。

【初中数学】中学数学思想方法及其教学

【初中数学】中学数学思想方法及其教学

【初中数学】中学数学思想方法及其教学1.数学思想方法教学的心理学意义美国心理学家布鲁纳认为,“不论我们选教什么学科,务必使学生理解该学科的基本结构。

”所谓基本结构就是指“基本的、统一的观点,或者是一般的、基本的原理。

”“学习结构就是学习事物是怎样相互关联的。

”数学思想与方法为数学学科的一般原理的重要组成部分。

下面从布鲁纳的基本结构学说中来看数学思想、方法教学所具有的重要意义。

第一,“懂基本原理使学科更容易认知”。

心理学指出“由于认知结构中原有的有关观念在包摄和归纳水平上低于崭新自学的科学知识,因而崭新科学知识与旧有科学知识所形成的这种类属于关系又可以称作下位关系,这种自学便称作下位自学。

”当学生掌控了一些数学思想、方法,再回去自学有关的数学知识,就属下位自学了。

下位自学所学科学知识“具备足够多的稳定性,有助于牢固地紧固崭新自学的意义,”即使崭新科学知识能较成功地列入至学生尚无的认知结构中回去。

学生自学了数学思想、方法就能更好地认知和掌控数学内容。

第二,有利于记忆。

布鲁纳认为,“除非把一件件事情放进构造得好的模型里面,否则很快就会忘记。

”“学习基本原理的目的,就在于保证记忆的丧失不是全部丧失,而遗留下来的东西将使我们在需要的时候得以把一件件事情重新构思起来。

高明的理论不仅是现在用以理解现象的工具,而且也是明天用以回忆那个现象的工具。

”由此可见,数学思想、方法作为数学学科的“一般原理”,在数学学习中是至关重要的。

无怪乎有人认为,对于中学生“不管他们将来从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神、数学的思维方法、研究方法,却随时随地发生作用,使他们受益终生。

”第三,自学基本原理有助于“原理和态度的搬迁”。

布鲁纳指出,“这种类型的搬迁必须就是教育过程的核心——用基本的和通常的观念去不断扩大和增进科学知识。

”曹才翰教授也指出,“如果学生认知结构中具备较低抽象化、归纳水平的观念,对于崭新自学就是不利的,”“只有归纳的、稳固的和准确的科学知识就可以同时实现搬迁。

在初中数学教学中如何渗透数学思想方法

在初中数学教学中如何渗透数学思想方法

在初中数学教学中如何渗透数学思想方法摘要:掌握一定的数学学习方法是学好数学的关键,培养一定的数学思维,构建数学思想。

老师在课堂教学中要传达自己的教学思想,这样不仅能让数学课堂更加让学生容易接受新的思想,还能够让学生从此爱上数学,让学生在处理数学问题上有更成熟的思维。

本文主要探讨有关在初中数学教学过程中注重数学思想方法的意义及如何能够将数学思想方法与初中数学课堂教学相结合的相应的措施。

关键词:思维方法;初中数学教学;数学思想网络;措施;影响当今我国的教育状况和教育模式让老师在教学中更加重视的是教学的效果和学生的成绩,却忽视了应该在数学教学过程中注重数学思想的灌输,不懂得进行变通。

这就要求初中教师在初中数学教学过程中要更多地渗入数学思维方法,能够让学生构建解决数学问题的思维网络,让学生能够更加全面地考虑问题。

这不仅能够很快地提高学生的学习成绩,还能够增强他们的数学思想。

1、初中数学教学过程中渗入一定的数学思想方法的有怎样的意义1.1正确的数学方法能提高学生的数学成绩大多数的初中生在学习数学时都会有产生一种共同的感觉,那也就是感到无聊枯燥,抽象,难以理解,学习数学对他们来说是十分痛苦的事。

这样时间一长,学生对学习数学就会丢失兴趣并且课堂上的学习积极性也会有也一定程度的下降,并导致数学成绩下滑。

甚至,还会会出现老师已经反复讲解过的题目当学生在下次考试中遇到还是出错的情况。

初中数学老师想要去提高课堂的教学效率,就要在课堂教学中格外注重将数学思维渗透给学生,重视培养学生的各种数学思维能力,让他们有属于自己的独特的数学思维方式和能力,这样他们在平时学习时就能够有效地掌握所学知识,同时能够增强他们的理解能力和水平。

1.2培养学生的发散性思维和扩张性思维很多初中生在思考某些问题,他们应对问题的措施会有不同。

他们考虑问题的方法可能是灵活多变的,也可能是的单一的。

但这都证明了每个人都有自己的思维方式。

并且这也会影响他们数学学习成绩能否得到提高。

初中数学常用的十一种思想方法介绍

初中数学常用的十一种思想方法介绍

初中数学常用的十一种思想方法介绍初中数学常用的十一种思想方法介绍数学的思想和方法是初中数学的基础知识。

数学学习中要提高我们分析问题的能力,形成用数学的意识决问题,这些都离不开数学思想和数学方法。

我们在初中的数学学习中,学到了很多处理数学问题的思想和方法,下面,本人就教学过程中常用的数学思想方法介绍如下:一、数形结合思想根据数学问题的条件和结论之间内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起一,并充分得用这种结合,寻求解题思路,使问题得到解决。

二、联系与转化的思想事物之间是相互联系,相互制约的。

是可以相互转化的。

数学学科的各部分之间也是相互联系,可以相互转化的。

在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

如:代换转化、已知与未知的转化特殊与一般的转化、具体抽象的转化、部分与整体的转化、动与静的转化等等。

三、分类讨论的思想在数学中,我们常常需要根据研究对象性质的差异,分各种不同的情况予以考查,这种分类思考的方法是一一种重要的.数学思想方法。

同时也是一种重要的解题策略。

四、待定系数法当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母的值就可以,为此,把已知道条件代入特定形式的式子中,往往会得到含待定字母的方和或方程组就使问题得到解决。

待定系数法是一种重要的数学解题方法,在代数式恒等变形及研究函数中有着广泛的应用。

五、配方法把一个代数式设法构造成平方式,然后再进行所需要的变形,配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。

六、换元法在解题过程中,把某个(或某些)字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。

换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题从而过到化繁为简、化难为易的目的。

七、分析法在研究或证明一个命题时,由结论向己知条件追溯,即从结论升始,推求它成立的充分条件,这个条件的成立如果还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件(或己知的事实)为止,从而使命题得到证明,这种方法叫佬分析法。

数学思想方法在初中教学中的运用

数学思想方法在初中教学中的运用

数学思想方法在初中教学中的运用一、引导学生培养数学思维在初中阶段,学生的数学基础知识相对较为简单,但是数学思维的培养却显得尤为重要。

数学思维是指学生应用数学知识解决实际问题的能力,它包括逻辑思维、推理能力、抽象思维等方面。

在教学中,教师需要引导学生培养数学思维,帮助他们建立正确的数学思维方式和解决问题的方法。

教师可以通过举一些贴近生活的例子引导学生思考如何运用数学方法解决实际问题,例如物品比较、数学推理等。

通过这种方式,学生可以逐渐提高自己的数学思维能力,激发对数学的兴趣。

教师可以设计一些开放性的问题,让学生自由发挥,通过讨论、合作解决问题的方式培养学生的数学思维,提高他们的解决问题的能力。

通过这些方式,学生可以逐渐形成自己的数学思维方式,并且在实际应用中得到锻炼,提高对数学的理解和运用能力。

二、引导学生运用数学思想方法解决实际问题数学是一门非常实用的学科,它可以帮助人们解决各种实际生活中的问题。

在初中数学教学中,教师需要引导学生运用数学思想方法解决实际问题,培养学生的实际应用能力。

三、引导学生进行数学思维的反思和总结数学思维方法是学生进行数学学习和解决问题的关键,因此在初中数学教学中,教师需要引导学生进行反思和总结,帮助他们逐渐形成合理的数学思维方式。

四、总结数学思想方法在初中教学中的运用非常重要,它可以帮助学生更好地理解和应用数学知识,提高对数学的兴趣,培养学生解决实际问题的能力。

在教学中,教师需要引导学生培养数学思维,运用数学思想方法解决实际问题,并进行数学思维的反思和总结。

通过这些方式,帮助学生逐渐形成自己的数学思维方式,提高对数学的理解和运用能力。

教师也需要不断地总结和反思自己的教学方法,创新教学手段和方式,为学生提供更好的数学学习环境。

希望本文的探讨能够为初中数学教师提供一些启发和帮助,帮助他们更好地进行数学教学工作。

初中数学课堂教学中渗透数学思想方法的策略与途径

初中数学课堂教学中渗透数学思想方法的策略与途径

初中数学课堂教学中渗透数学思想方法的策略与途径1. 引导学生提出问题:通过提问的方式,激发学生的思考和求解问题的能力。

教师可以在课堂上提出一些有趣的问题,引导学生猜想、推理和证明,让学生主动思考并积极参与到解决问题的过程中。

2. 提供具体的问题背景:将数学与生活实际联系起来,引起学生的兴趣。

教师可以通过讲解一些生活中的例子,让学生理解数学的应用,激发他们对数学思想的认识和兴趣。

3. 培养学生的数学思维:鼓励学生提出不同的解题思路,并进行探究。

教师可以通过提出一些开放性问题,引导学生探索不同的解题路径,培养他们的创新思维和解决问题的能力。

4. 引导学生进行数学推理和证明:数学是一门严谨的学科,教师可以通过引导学生进行数学推理和证明,培养他们的逻辑思维和严谨性。

教师可以提出一些需要证明的问题,引导学生使用数学方法进行证明,让学生体验到数学思想的严密性和美感。

5. 创设情境和游戏化教学:通过创设情境和游戏化的方式,激发学生对数学思想的兴趣和热爱。

教师可以设计一些有趣的数学题目,让学生在解题中体验到数学思想的乐趣,从而激发他们对数学的兴趣。

在实施这些策略和途径时,教师要注意以下几点:1. 关注学生的思维过程:关注学生的思维过程和解题思路,及时给予鼓励和指导。

不仅注重结果,还要注重过程,培养学生的解题能力和思维能力。

2. 尊重学生的个性和差异:学生的数学理解能力和学习方式各不相同,教师要尊重学生的个性和差异,灵活调整教学方法和策略,帮助每个学生发展自己的数学思维。

3. 创设良好的学习氛围:营造积极向上的学习氛围,激发学生对数学的兴趣和热情。

教师要给予学生积极的反馈和肯定,鼓励学生的探索和创新。

渗透数学思想方法是一种有效的数学教学策略,通过引导学生思考和解决问题,创设情境和游戏化教学等途径,可以培养学生的数学思维和解题能力,提高他们对数学学科的理解和认识。

教师在教学中要灵活运用这些策略和途径,根据学生的实际情况进行指导和激励,帮助他们更好地理解和掌握数学思想。

谈谈在初中数学教学中如何渗透数学思想方法

谈谈在初中数学教学中如何渗透数学思想方法

谈谈在初中数学教学中如何渗透数学思想方法数学思想指人们对数学理论与内容的本质认识,它直接支配着数学的实践活动。

数学方法指某一数学活动过程的途径、程序、手段,它具有过程性、层次性和可操作性等特点。

数学思想是数学方法的灵魂,数学方法是数学思想的表现形式和得以实现的手段,因此,我们把它们合称为数学思想方法。

数学教学的目的不仅要求学生掌握好数学的基础知识和基本技能,还要求发展学生的能力,培养他们良好的个性品质和学习习惯。

在数学教学中,教师除了基础知识和基本技能的教学外,还应重视数学思想方法的渗透,注重对学生进行数学思想方法的培养,这对学生今后的数学学习和数学知识的应用将产生深远的影响。

从初中阶段就重视数学思想方法的渗透,将为学生后续学习打下坚实的基础,会使学生终生受益。

一、初中数学教学应渗透的思想方法1.分类讨论思想分类讨论是根据教学对象的本质属性将其划分为不同种类,即根据教学对象的共同性与差异性,把具有相同属性的归入一类,把具有不同属性的归入另一类。

分类是数学发现的重要手段。

在教学中,如果对学过的知识恰当地进行分类,就可以使大量纷繁的知识具有条理性。

2.数形结合思想一般地,人们把代数称为“数”而把几何称为“形”,数与形表面看是相互独立,其实在一定条件下它们可以相互转化,数量问题可以转化为图形问题,图形问题也可以转化为数量问题。

在数学教学中,由数想形,以形助数的数形结合思想,具有可以使问题直观呈现的优点,有利于加深学生对知识的识记和理解;在解答数学题时,数形结合,有利于学生分析题中数量之间的关系,丰富表象,引发联想,启迪思维,拓宽思路,迅速找到解决问题的方法,从而提高分析问题和解决问题的能力。

抓住数形结合思想教学,不仅能够提高学生数形转化能力,还可以提高学生迁移思维能力。

3.整体思想整体思想在初中教材中体现突出,如用字母表示数就充分体现了整体思想,即一个字母不仅代表一个数,而且能代表一系列的数或由许多字母构成的式子等,这对培养学生良好的思维品质,提高解题效率是一个极好的机会。

初中数学思想方法

初中数学思想方法

初中数学思想方法数学思想方法是解决数学问题的灵魂,也是把数学知识转化为数学能力的桥梁。

初中数学中常用的思想方法有:整体思想、分类讨论思想、函数思想、方程思想、转化思想、类比思想、分类讨论思想等。

1、整体思想整体思想是从问题的整体性质出发,通过研究问题的整体形式、整体结构、整体与局部的内在等,找出解决问题的途径。

2、分类讨论思想当一个问题因为某种量或条件的改变,而引起演变结果的改变时,我们就需要对问题从各种不同的角度或分类讨论加以解决。

3、函数思想用运动变化的观点去分析和研究具体问题中的数量关系,用函数的形式,把这种数量关系用函数表示出来。

4、方程思想方程思想就是从分析问题的数量关系入手,通过设定未知数,把问题中的已知量与未知量的数量关系,转化为方程或方程组,然后利用方程的理论和方法,使问题得到解决。

5、转化思想转化思想是将要解决的问题转化成一个或几个已经解决的简单问题。

6、类比思想类比是根据两个具有相同或相似性质的事物之间进行比较,从而找到另外一些具有相同或相似性质的事物。

7、分类讨论思想分类讨论是根据所研究对象的差异,将其划分成不同的种类,分别加以研究,从而分解矛盾,化整为零,化一般为特殊,变抽象为具体,然后再一一加以解决。

分类依赖于标准的确定,不同的标准会有不同的分类方式。

总之数学思想方法是分析解决数学问题的灵魂,也是数学知识的精髓,是把数学知识转化为数学能力的桥梁。

一、引言在现今的初中数学教学中,培养学生的数学思想方法已经成为了一个重要的目标。

《初中数学思想方法导引》这本书,以其独特的视角和深入的剖析,成为了初中数学教师的重要参考书籍。

本书主要介绍了初中数学中的各类思想方法,如方程思想、函数思想、化归思想等,对于提高学生的数学素养,增强他们的解题能力,具有极大的指导意义。

二、数学思想方法的重要性数学思想方法是一种对数学规律和数学本质的深刻认识和理解,是对数学知识进行高度概括和抽象的结果。

在初中数学教学中,培养学生的数学思想方法不仅可以提高学生的数学成绩,更重要的是可以培养他们的逻辑思维能力、创新能力和解决问题的能力。

初中数学思想和方法总结

初中数学思想和方法总结

初中数学思想和方法总结初中数学思想和方法总结初中数学是学习数学的基础阶段,培养学生数学思想和方法的关键时期。

下面我将从数学思想和数学方法两个方面对初中数学进行总结。

一、数学思想1.抽象思维:初中数学要求学生具备抽象思维的能力。

在学习数学的过程中,学生需要通过观察、归纳和总结来发现问题的共性和规律,并将其抽象成数学概念或定理,以解决更广泛的数学问题。

2.逻辑思维:初中数学强调逻辑思维的重要性。

学生需要通过分析问题的关系、推理链条和证明过程,运用正确的逻辑推理来解决问题。

培养学生的逻辑思维能力,不仅能提高解题的准确性,还能培养学生的思考能力和创造力。

3.实际应用:初中数学注重将数学知识和方法应用于实际问题。

学生通过数学建模,将抽象的数学理论和现实问题相结合,从而培养实际应用数学的能力。

实际应用不仅能提高学生对数学的兴趣,还能加深对数学理论的理解和应用。

4.认知能力:初中数学要求学生具备较强的认知能力。

学生需要主动思考、积极探究问题的思维方式和方法,养成自主学习和解决问题的习惯。

通过主动思考和自主学习,学生能更好地掌握数学知识和方法。

5.创新思维:初中数学要求学生具备创新思维的能力。

学生需要在解决数学问题中寻找新的方法和策略,创造性地提出新的问题并寻找解决方案。

培养创新思维能力,能够帮助学生在面对繁琐的数学问题时灵活应对,提高解题的效率和准确性。

二、数学方法1.综合运用:初中数学要求学生将所学的数学知识和方法综合运用于实际问题中。

学生需要根据问题的特点,并结合已学的知识和方法,选择合适的方法和策略解决问题。

通过综合运用,学生能够更全面地理解和掌握所学的数学知识和方法。

2.分类整理:初中数学要求学生进行分类整理。

学生需要根据数学知识的性质和问题的特点,将问题进行分类整理,以便更好地掌握和应用相应的数学方法。

分类整理不仅能提高学生对数学知识的理解,还能培养学生的归纳和总结能力。

3.模型建立:初中数学要求学生通过建立数学模型,将实际问题转化成数学问题,并运用数学方法解决。

关于初中数学思想方法及教学

关于初中数学思想方法及教学

关于初中数学思想方法及教学初中数学是学生学习数学的重要阶段,也是培养学生数学思想和方法的关键阶段。

在初中数学教学中,如何引导学生形成正确的数学思想和方法,是一项重要的教学任务。

本文将对初中数学思想方法及教学进行探讨。

一、培养学生的数学思想1. 提倡逻辑思维初中数学的基本内容包括代数、几何、函数等多个方面,而这些内容都离不开逻辑思维。

在教学中,应该通过举例、引导学生发现规律等方式,培养学生的逻辑思维能力。

在解决代数问题时,可以引导学生进行逻辑推理,帮助他们形成正确的数学思维方式。

2. 激发学生的求知欲数学是一门需要动手实践的学科,学生在解决数学问题时,应该从实际问题出发,加强实际的应用能力。

教师要注重培养学生的求知欲,激发他们对数学问题的兴趣,让学生能够主动参与数学学习,积极探索数学内在的奥秘。

3. 培养学生的创新思维数学是一门创造性的学科,培养学生的创新思维是数学教学的一个重要目标。

在教学中,应该注重培养学生的解决问题的能力,引导学生进行数学探索,鼓励学生提出自己的想法和猜想,培养其创新意识和创新能力。

二、引导学生正确的数学方法1. 强调基础知识的掌握初中数学的学习是一个逐步深化的过程,基础知识的掌握对学生后续的学习至关重要。

在教学中,应该引导学生扎实基础,掌握数学的基本概念和基本方法,建立牢固的数学基础,为后续学习奠定基础。

2. 注重方法的灵活运用数学是一门灵活性较强的学科,同一个问题可以用不同的方法来解决。

在教学中,应该注重培养学生的解决问题的灵活性,让学生能够熟练掌握数学方法,并能够熟练运用不同的方法解决问题。

三、初中数学的教学策略1. 提倡因材施教每个学生的数学学习能力和兴趣都有所不同,因此在教学中应该因材施教,为每个学生量身定制教学方案,满足不同学生的学习需求。

教师应该根据学生的实际情况,采用不同的教学方法和策略,引导学生形成正确的数学思想和方法。

2. 体验式教学数学是一门需要动手实践的学科,体验式教学是一种有效的教学方法。

初中数学教学中数学思想方法的渗透策略

初中数学教学中数学思想方法的渗透策略

初中数学教学中数学思想方法的渗透策略一、培养学生发现问题的能力首先,要培养学生发现问题的能力。

解决问题是数学学习的重要目的之一。

在教学中,我们可以通过引导学生提出一些看似简单却涉及到深层次的问题,带领学生深入思考、探究解题方法,训练学生的探究能力和科学思维方式,使其能够发现问题,解决问题,推动数学知识的应用。

例如:学生在学习平面图形的时候,可以提出一个简单而有趣的问题:如何用最少的线段将一个正方形分成两个面积相等的部分?通过这个问题,学生可以发现对角线的妙用,锻炼深入思考和解决问题的能力。

二、培养学生逻辑推理能力其次,要培养学生逻辑推理能力。

数学是一门严谨的科学,它的推理和证明都要遵循一定的逻辑规律。

在教学中,我们可以通过启发式教学法、逻辑游戏等方式,帮助学生培养逻辑思维能力。

例如:在学习代数时,通过让学生进行量方程的转化和化简,帮助他们理解方程的含义和解题方法,同时培养他们逻辑推理能力。

三、培养学生抽象思维能力此外,要培养学生抽象思维能力。

抽象思维是数学思想的核心之一,是从具体问题中抽象出来的一般性概念和定理。

在教学中,我们可以通过举例和比喻,帮助学生理解抽象概念,提高他们的抽象思维能力。

例如:在学习因数分解时,可以用图形化的方法,让学生通过分解图形来理解因数分解的概念,同时让学生对抽象性的数学概念有更深刻的理解。

四、培养学生合作探究意识最后,要培养学生的合作探究意识。

数学的学习需要进行大量的练习和讨论,而合作探究可以使学生观点更全面、透彻,同时培养合作的能力。

例如:在学习统计时,可以让学生分组完成一个调查问卷,然后分析、比较每组收集到的数据,从而引导学生发现不同数据的差异和联系,并学会整合信息,推论可能的规律和结论。

总之,在初中数学教学中,数学思想方法的渗透策略是必不可少的。

只有在培养学生的数学思想方法上下足功夫,才能够让学生在数学学习中发挥自己的潜力。

初中数学课堂教学中渗透数学思想方法的策略与途径

初中数学课堂教学中渗透数学思想方法的策略与途径

初中数学课堂教学中渗透数学思想方法的策略与途径数学思想是数学学习的核心,而初中数学作为学生数学学习的起点,如何在课堂教学中渗透数学思想,将有助于引导学生建立正确的数学学习态度和方法。

本文将从激发学生思维,提高学生的动手能力和启发学生思考三个方面,探讨初中数学课堂教学中渗透数学思想的策略与途径。

一、激发学生思维培养学生的数学思想,首先要激发学生的思维。

在初中数学课堂教学中,老师可以通过以下策略和途径激发学生的思维。

1.提问引导教师在课堂上可以通过提问引导学生思考,从而激发学生的思维。

提问应该具有启发性和引导性,引导学生通过解决问题、讨论问题的方式来积极思考,培养他们的数学思维能力。

以“一元一次方程”为例,老师可以提问:“小明买了一些铅笔和橡皮,共花费了30元,如果每支铅笔花费5元,每个橡皮花费2元,求铅笔和橡皮各买了几个?”这样的问题可以引导学生通过列方程的方式来解决问题,从而培养学生的数学思维。

在教学中,老师可以引导学生主动提出问题。

这样不仅可以激发学生的思维,还可以培养他们主动探究问题的能力。

以“图形的相似”为例,老师可以让学生在观察相似图形时主动提出问题,比如:“如何判断两个图形是否相似?”“相似图形有哪些性质?”通过这些问题的引导,可以让学生积极思考,提高他们的数学思维能力。

二、提高学生的动手能力1.操纵物体在几何学习中,让学生操纵物体,进行实际操作,有助于让他们深入理解数学概念,培养他们的数学思维。

以“平面图形的展开”为例,老师可以让学生用软纸板做出各种平面图形的模型,然后展开观察,通过实际操作来理解平面图形的性质,从而培养他们的几何思维。

2.解决实际问题数学思想是要服务于解决实际问题的,因此在数学教学中,老师可以引导学生通过解决实际问题来提高他们的动手能力。

以“比例与比例的应用”为例,老师可以让学生通过实际测量和计算来解决实际问题,比如用比例尺绘制地图、计算比例的应用等。

通过这样的实际操作,可以让学生更加深入地理解数学概念,提高他们的数学思维能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《初中思想方法与初中数学教学》的作业:1试述思想方法在初中数学中的作用,在教学中你是如何渗透转化、分类讨论思想和数形结合思想的,请各举一教学片段说明。

在初中数学教学中,渗透转化思想,可以提高学生分析解决问题的能力;所谓“转化思想”是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最终使问题得到解决的一种思想方法。

转化思想是初中数学中常见的一种数学思想,它的应用十分广泛,我们在数学学习过程中,常常把复杂的问题转化为简单的问题,把生疏的问题转化为熟悉的问题。

数学问题的解决过程就是一系列转化的过程,转化是化繁为简,化难为易,化未知为已知的有力手段,是解决问题的一种最基本的思想,对提高学生分析解决问题的能力有积极的促进作用。

我们对转化思想并不陌生,中学数学中常用的化高次为低次、化多元为一元,都是转化思想的体现。

在具体内容上,有加减法的转化、乘除法的转化、乘方与开方的转化、数形转化等等。

例如:初中数学“有理数的减法”和“有理数的除法”这两节教学内容中,教材是通过“议一议”的形式,使学生在自主探究和合作交流的过程中,经历把有理数的减法转化为加法、把有理数的除法转化为乘法的过程,“减去一个数等于加上这个数的相反数”,“除以一个数等于乘以这个数的倒数”,这个地方虽然很简单,但却充分体现了把“没有学过的知识”转化为“已经学过的知识”来加以解决,学生一旦掌握了这种解决问题的策略,今后无论遇到多么难、多么复杂的问题,都会自然而然地想到把“不会的”转化为“会的”、“已经掌握的”知识来加以解决,这符合学生原有认知规律,作为教师,我们不能因为简单而忽视它的教学,实践告诉我们,往往是越简单、越浅显的例子,越能引起学生的认同,所以我们不能错过这一绝佳的提高学生的思维品质的机会。

渗透数形结合的思想方法,可以提高学生的数形转化能力和迁移思维的能力;恩格斯曾说过:“纯数学的对象是现实世界的空间形式和数量关系”。

而“数”和“形”是数学中两个最基本的概念。

“数”是数量关系的体现,而“形”则是空间形式的体现。

它们两者既有对立的一面,又有统一的一面。

我们在研究数量关系时,有时要借助于图形直观地去研究,而在研究图形时,又常常借助于线段或角的数量关系去探求。

数形结合思想是指将数与图形结合起来解决问题的一种思维方式。

数和式是问题的抽象和概括、图形和图像是问题的具体和直观的反映。

因此,数和形是研究数学的两个侧面,利用数形结合,常常可以使所要研究的问题化难为易,使复杂问题简单化、抽象问题具体化。

正如著名数学家华罗庚所说的那样:“数无形,少直观,形无数,难入微”,这句话阐明了数形结合思想的重要意义。

在初中代数列方程解应用题教学中,很多例题都采用了图示法进行分析,在教学过程中要充分利用图形的直观性和具体性,引导学生从图形上发现数量关系,找出解决问题的突破口,学生掌握了数形结合这一思想要比掌握一个公式或一种具体方法更有价值,对解决问题更具有指导意义。

又如,计算:1+3=?1+3+5=?1+3+5+7=?1+3+5+7+9=?并根据计算结果,探索规律。

在这道题的教学中,首先应让学生思考:从上面这些算式中你能发现什么?让学生经历观察(每个算式和结果的特点)、比较(不同算式之间的异同),归纳(可能具有的规律)、提出猜想的过程。

在探索过程中鼓励学生进行相互合作交流,提供如下的帮助:列出一个点阵,用图形的直观来帮助学生进行猜想。

这就是典型的把数量关系问题转化到图形中来完成的题型,充分体现了数形结合思想。

渗透分类讨论的思想方法,可以培养学生全面观察事物、灵活处理问题的能力;分类讨论思想是自然科学乃至社会科学研究中的基本逻辑方法,当被研究的问题包含多种可能的情况不能一概而论时,就要按照可能出现的各种情况进行分类讨论,从而得出各种情况下的结论,这种处理问题的思维方法就是分类讨论思想。

分类思想已渗透到中学数学的各个方面,如概念的定义、定理的证明、法则的推导等,也渗透到问题的具体解决之中,在渗透分类讨论思想的过程中,首要的是分类。

教师要培养学生分类的意识,然后才能引导学生在分类的基础上进行讨论。

我们仔细分析教材的话应该不难发现,教材对于分类讨论思想的渗透是一直坚持而又明显的。

在函数教学中将函数图象分为开口方向向上、向下,单调递增、递减来进行研究;在圆的教学中按圆心距与两圆半径之间的大小关系将两圆的位置关系进行了分类。

从功能上看,这种分类讨论思想可以避免漏解、错解情况的出现,从学生的思维品质上看,分类讨论思想有利于培养学生的思维严谨性与逻辑性。

渗透分类讨论的思想方法,对培养学生全面观察事物、灵活处理问题的能力有积极促进作用。

课程2:《初中数学学习的诊断与教学调控》的作业:在学习中存在的问题,分析产生的原因并提出改善措施。

学习过程的问题:1.听课的问题:(1)不会听课就是不善于抓住本章节的重点。

不明白需要了解、理解、掌握的知识和要求到底是什么。

(2)不会集中注意力,做到和老师讲课的思维同步。

对本节重难点问题就会因没听到或没有听好而不能理解。

(3)不会主动思考。

听课习惯于被动地接受,不能快速地理清题意,迅速思考,尽快形成自己的思路,使大脑的协调性得到发展,提高自己的思维能力。

2.笔记的问题:笔记的问题有这样几种情况(1)不记笔记;(2)不知道记录的内容;(3)笔记只是将知识进行简单的重复,与书中内容无差别,不知道应该记录重点、形成过程和思想方法及规律性的结论及典型例题。

3.作业的问题初中学生课后往往急于完成书面作业,忽视必要的巩固、记忆、复习,以致出现照例模仿、死套公式解题的现象,造成为了交作业而做作业,起不到练习巩固深化理解知识的作用。

我们平时提到的“眼高手低”就是指学生不会把数学问题用数学语言表达出来,作业中条理不清,逻辑思维混乱。

其主要原因是在教学中忽视了对学生写法的指导,学生没有养成正确的书写习惯。

综上所述,学生数学学习中问题的大致分类是我们明确教学需要调控的方面,进一步选择好教学的策略,辅助我们的学生在自己的学习能力上得到发展。

关注了教学调控的可行性后,我们所要关注的就是如何在智力因素方面通过课堂教学调控学生的数学学习,从而提升学生的学习效果。

从以下几方面阐述:一、有效地调整学生数学学习中的课堂常规。

1.“听”是直接用“耳朵”接受知识,应指导学生在听课的过程中注意:(1)听清每节课的要求;(2)听明白知识引入及其形成过程;(3)听懂每节课的重点、难点以及老师对重、难点的剖析,尤其是预习中的难点要在听课中弄明白;(4)听懂例题解法的思路和数学思想方法的体现;(5)听课后要做好小结。

当然,教师在上课时,要注意方法防止“注入式”、“满堂灌”,掌握讲授新知识的最佳时间,使学生听后有效,达到听课的根本目的。

2.“思”是指学生的思维活动。

学生没有思维就发挥不了学生的主体作用,学生的主动性、积极性就没有发动起来,在思维方法指导时,应使学生注意:(1)多思、勤思、随听随思,学习过程中多问几个“为什么”;(2)深思,即追根溯源,大胆提出问题,“打破沙锅问到底”;(3)善思,由听和观察去联想、猜想、归纳;(4)树立批判意识、学会反思。

可以说“听”是“思”的关键,“思”是“听”的深化,是学习方法的核心和本质内容,会“思”才会“学”。

3.“记”是指学生做的课堂笔记。

初中生一般不会合理地做课堂笔记,通常是老师写什么,学生就抄什么,把“抄”代替了“记”,用“记”代替“听”和“思”,有的同学笔记虽全,但收效甚微。

因此,老师应抓住学生的这个特点,不失时机地向学生指出:(1)记笔记要服从听课,要掌握记录时机,(2)记要点、疑点、记解题方法和思路。

(3)记小结课后思考题。

使学生明白“记”是为了“听”和“思”服务的。

掌握好这三者的关系,就能使学生在课堂学习这一主要环节达到较好的境界。

4.“写”指学生作常规性作业。

教师指导学生:(1)能每天课后先阅读理解教材,结合笔记记录的重点、难点,回顾课堂讲授的知识、方法,同时记忆公式、定理。

(2)其次,再独立地完成作业,并按要求书写规X、表述清楚。

(3)最后,对本节课堂内容做知识小结,写出自己的体会或后记。

二、要教会学生正确的书面表达。

数学不同于其他学科,它有本学科的语言符号、书写格式,因而在教学中要注重指导学生做到:1.善于把生活中的语言文字转化成数学符号语言;2.在做题格式上严格要求,把学生的逻辑思维能力通过解题步骤反映出来,规X书写格式;3.在几何上要注重训练学生根据已知条件来分析作图,正确地将语言文字转化成直观图形,以便用数形结合的思想解决问题。

把好书写关,使学生在具有严谨性、逻辑性的解决问题过程中,形成正确的书写方法。

三、让学生学会读数学书、读数学题。

教师可以开始为学生编好阅读题纲,并指导学生掌握“读读、划划、算算、写写”的预习方法,逐步学会归纳整理、分类,抓住重点以及围绕重点思考问题的方法,如学习圆周角一节时,可布置以下三个问题让学生读书:1.圆周角是怎样定义的?对比圆心角的定义两者有何不同?2.圆周角的证明为什么要分三种情况进行。

3.圆周角定理有哪些推论,这些推论如何证明?又如学习立方根时可和平方根知识作比较,学生可以通过类比,比较容易地掌握平方根知识。

课程3:《初中数学课堂教学提问技巧的研究》的作业:3举例说明课堂提问中常见的问题并请你结合自己的教学实践,设计一激发学习兴趣或引导学生突破难点的课堂教学提问的情境案例。

经过教师精心设计、恰到好处的课堂提问,能有效地激发学生的好奇心和想象力,燃起学生对知识的探究热情,从而极大地提升课堂教学质量。

但在目前的日常教学中,教师的课堂提问仍然存在着一些问题,主要有以下几方面:1、提问过多过虚,只重数量忽视质量随着教育改革的不断深入,传统教学中的以教师为中心的“满堂灌”的方式越来越失去市场,代之而起的是重视开发学生智能的启发式教学。

但在实际应用中,有些教师片面理解启发式教学就是教师问,学生答,因而在课堂教学中过多过虚的运用提问,将传统的“满堂灌”发展成了“满堂问”。

课堂提问的成功与否,并非看提问了多少问题,而是看提问是否引起了学生探索的欲望,学到了分析问题的观点和方法。

即使是好的提问,也不宜过多,太多则容易造成学生疲劳,挫伤他们的兴致,影响学习效果,特别是一些教师满堂脱口而出的“是不是”、“对不对”、“能不能”之类的问题,学生也只是简单回答“是”、“不是”、“对”、“不对”、“能”、“不能”等,课堂貌似热闹,却华而不实。

案例:在探索等腰三角形性质的证明过程中,当有学生提出可以作底边的高,利用三角形全等证明等腰三角形的两个底角相等,并且完成证明后,教师提问:“作等腰三角形顶角的平分线或底边的中线,能否也得到两个全等的三角形呢?”学生异口同声:“能!”反思:探索等腰三角形性质的证明方法,目的是使学生发现一些常规辅助线的添加方法,初步提高学生构造全等三角形的能力。

相关文档
最新文档