排序算法
排序算法
排序算法所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
排序算法,就是如何使得记录按照要求排列的方法。
排序算法在很多领域得到相当地重视,尤其是在大量数据的处理方面。
一个优秀的算法可以节省大量的资源。
在各个领域中考虑到数据的各种限制和规范,要得到一个符合实际的优秀算法,得经过大量的推理和分析。
分类排序(Sorting) 是计算机程序设计中的一种重要操作,它的功能是将一个数据元素(或记录)的任意序列,重新排列成一个关键字有序的序列。
稳定度(稳定性)一个排序算法是稳定的,就是当有两个相等记录的关键字R和S,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前。
当相等的元素是无法分辨的,比如像是整数,稳定度并不是一个问题。
然而,假设以下的数对将要以他们的第一个数字来排序。
(4,1)(3,1)(3,7)(5,6)在这个状况下,有可能产生两种不同的结果,一个是依照相等的键值维持相对的次序,而另外一个则没有:(3,1)(3,7)(4,1)(5,6) (维持次序)(3,7)(3,1)(4,1)(5,6) (次序被改变)不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。
不稳定排序算法可以被特别地实现为稳定。
作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个对象间之比较,就会被决定使用在原先数据次序中的条目,当作一个同分决赛。
然而,要记住这种次序通常牵涉到额外的空间负担。
在计算机科学所使用的排序算法通常被分类为:(a)计算的复杂度(最差、平均、和最好性能),依据列表(list)的大小(n)。
一般而言,好的性能是O(nlogn),且坏的性能是O(n^2)。
对于一个排序理想的性能是O(n)。
而仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要O(nlogn)。
(b)存储器使用量(空间复杂度)(以及其他电脑资源的使用)(c)稳定度:稳定的排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。
计算机常用算法
计算机常用算法一、排序算法排序算法是计算机程序中最基本的算法之一,它用于将一组数据按照一定的顺序进行排列。
常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序等。
这些算法的目标都是将数据从小到大或从大到小进行排序,以便于后续的处理和查找。
冒泡排序是一种简单的排序算法,它通过不断比较相邻元素的大小来将较大(或较小)的元素逐步交换到右侧(或左侧)。
选择排序则是依次选取未排序部分的最小(或最大)元素并放置到已排序部分的末尾。
插入排序则是将未排序部分的元素依次插入到已排序部分的合适位置。
快速排序是一种高效的排序算法,它通过选择一个基准元素,将数组划分为两个子数组,并对子数组进行递归排序。
归并排序则是将数组分成两个子数组,分别排序后再合并。
二、查找算法查找算法是用于在一组数据中寻找特定元素或满足特定条件的元素的算法。
常见的查找算法包括线性查找、二分查找、哈希查找等。
这些算法的目标都是在最短的时间内找到目标元素。
线性查找是最简单的查找算法,它依次遍历数据中的每个元素,直到找到目标元素或遍历完所有元素。
二分查找则是在有序数组中使用的一种查找算法,它通过不断缩小查找范围,将查找时间从O(n)降低到O(logn)。
哈希查找则是通过构建一个哈希表来实现的,将元素的关键字映射到对应的位置,以实现快速查找。
三、图算法图算法是解决图相关问题的算法,它在计算机科学中有着广泛的应用。
常见的图算法包括深度优先搜索(DFS)、广度优先搜索(BFS)、最短路径算法(Dijkstra算法、Floyd-Warshall算法)、最小生成树算法(Prim算法、Kruskal算法)等。
深度优先搜索是一种遍历图的算法,它从一个起始节点开始,沿着一条路径一直遍历到最后一个节点,然后回溯到前一个节点,继续遍历其他路径。
广度优先搜索则是从起始节点开始,逐层遍历图中的节点,直到找到目标节点。
最短路径算法用于计算图中两个节点之间的最短路径,它可以解决最短路径问题,如求解地图上的最短路径。
排序算法及应用
a:array[0..n] of integer; {a[0]记录当前待插元a[i]} for i:=2 to n do begin a[0]:=a[i]; {取第i个元素作为待插入元素} j:=i-1; {从已排好的最后一个a[i-1]开始比较} while a[0]<a[j] do // 找j满足: a[j]<=a[0]<a[j+1] begin a[j+1]:=a[j]; {当待插入元素a[0]小于当前a[j]时, a[j]后移} j:=j-1; end; {当a[0]>=a[j]时循环结束} a[j+1]:=a[0]; {在第j+1个位置插入a[i]元素} end;
3、插入排序算法:
基本思想:
经过i-1遍处理后,a[1],a[2],……,a[i-1]已排好序。
第i遍处理是将元素a[i]插入到a[1],a[2],……,a[i-1]的适当的位置,从 而使得a[1],a[2],……,a[i-1],a[i]又是排好的序列。
排序的关键字:从小到 大 20 30 10 15 16 13 8
主程序的调用: qsort(1,n);
const maxn=10000;//快速排序源程序 var a:array[1..maxn] of integer; n,i:integer; procedure qsort(l,r:integer); var i,j:integer; x:integer; begin i:=l; j:=r; x:=a[l]; while i<j do begin while (a[j]>=x) and(j>i) do dec(j); if i<j then begin a[i]:=a[j]; inc(i); end; while (a[i]<=x)and(j>i) do inc(i); if i<j then begin a[j]:=a[i]; dec(j); end; end; a[i]:=x; //i=j if l<(i-1) then qsort(l,i-1); if (i+1)<r then qsort(i+1,r); end;
所有排序的原理
所有排序的原理排序是将一组数据按照某种特定顺序进行排列的过程。
在计算机科学中,排序是一种基本的算法问题,涉及到许多常见的排序算法。
排序算法根据其基本原理和实现方式的不同,可以分为多种类型,如比较排序、非比较排序、稳定排序和非稳定排序等。
下面将详细介绍排序的原理和各种排序算法。
一、比较排序的原理比较排序是指通过比较数据之间的大小关系来确定数据的相对顺序。
所有常见的比较排序算法都基于这种原理,包括冒泡排序、插入排序、选择排序、归并排序、快速排序、堆排序等。
比较排序算法的时间复杂度一般为O(n^2)或O(nlogn),其中n是待排序元素的数量。
1. 冒泡排序原理冒泡排序是一种简单的比较排序算法,其基本思想是从待排序的元素中两两比较相邻元素的大小,并依次将较大的元素往后移,最终将最大的元素冒泡到序列的尾部。
重复这个过程,直到所有元素都有序。
2. 插入排序原理插入排序是一种简单直观的比较排序算法,其基本思想是将待排序序列分成已排序和未排序两部分,初始状态下已排序部分只包含第一个元素。
然后,依次将未排序部分的元素插入到已排序部分的正确位置,直到所有元素都有序。
3. 选择排序原理选择排序是一种简单直观的比较排序算法,其基本思想是每次从待排序的元素中选择最小(或最大)的元素,将其放到已排序部分的末尾。
重复这个过程,直到所有元素都有序。
4. 归并排序原理归并排序是一种典型的分治策略下的比较排序算法,其基本思想是将待排序的元素不断地二分,直到每个子序列只包含一个元素,然后将相邻的子序列两两归并,直到所有元素都有序。
5. 快速排序原理快速排序是一种常用的比较排序算法,其基本思想是通过一趟排序将待排序的元素分割成两部分,其中一部分的元素均比另一部分的元素小。
然后,对这两部分元素分别进行快速排序,最终将整个序列排序完成。
6. 堆排序原理堆排序是一种常用的比较排序算法,其基本思想是利用堆这种数据结构对待排序的元素进行排序。
几种排序算法比较
⼏种排序算法⽐较排序对⽐图⼀、交换排序:1、冒泡算法:核⼼:相邻⽐⼤⼩,交换遍历length-1遍每遍的⼦遍历遍历length-i遍(第1遍时,i=2)Bubble_Sort(int &array[]){for(i = 1; i<length-1,i++){for(j = 0; j<length-i; j++){ //第1遍时,i为2if array[j] >array[j+1]{int help = array[j];array[j] = array[j+1];array[j+1] = help;}}}}..2、快速排序:核⼼:将序列排好,分解为⼦序列,⼦序列继续排列,排列完的⼦序列继续分⾃⾝的⼦序列特点:在同⼀个数组上排序,⽆需格外数组,不断排序(1)⾸先设定⼀个分界值,通过该分界值将数组分成左右两部分。
(2)将⼤于或等于分界值的数据集中到数组右边,⼩于分界值的数据集中到数组的左边。
此时,左边部分中各元素都⼩于或等于分界值,⽽右边部分中各元素都⼤于或等于分界值。
(3)然后,左边和右边的数据可以独⽴排序。
对于左侧的数组数据,⼜可以取⼀个分界值,将该部分数据分成左右两部分,同样在左边放置较⼩值,右边放置较⼤值。
右侧的数组数据也可以做类似处理。
(4)重复上述过程,可以看出,这是⼀个递归定义。
通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。
当左、右两个部分各数据排序完成后,整个数组的排序也就完成了。
void split(int &array,[] int start, int end){int key = quicksort(start, end);split(stat, key-1);split(key+1, end );}void quicksort(int &array[], int start, int end){key = array[start];while(start != end && start != end+1){while (array[end] >= key && start<end)end--;if(start < end)array[start++] = array[end]; //引⽤后再加1;while(array[start] > key && start <end)start++;if(start < end)array[end-- ] = array[start]; //引⽤后再减1;}array[start] = key; //退出时start == end, 讲基准数放⼊坑中return key;}..更加简洁的代码:void quick_sort(int s[], int l, int r){if (l < r){//Swap(s[l], s[(l + r) / 2]); //将中间的这个数和第⼀个数交换参见注1int i = l, j = r, x = s[l];while (i < j){while(i < j && s[j] >= x) // 从右向左找第⼀个⼩于x的数j--;if(i < j)s[i++] = s[j];while(i < j && s[i] < x) // 从左向右找第⼀个⼤于等于x的数i++;if(i < j)s[j--] = s[i];}s[i] = x;quick_sort(s, l, i - 1); // 递归调⽤quick_sort(s, i + 1, r);}}// 此代码,作者:MoreWindows原⽂:https:///morewindows/article/details/6684558..⼆、插⼊排序思想:遍历 length-1遍“⼦遍历”每遍“⼦遍历”遍历 i 遍insertion_sort(int &array[]){int i,j,help = 0;for(i = 0; i<length-1; i++){j = i; //第1遍时,j=1;while(j > 0){if(array[j] < array[j-1]){help = array[j];array[j] = array[j-1];array[j-1] = array[j];}}}}..三、选择排序:思想:从⼩到⼤排序,从左往右遍历,每次遍历,flag = “⼦遍历的⾸位数下标”,“⼦遍历”每次找到⽐flag⼩的数,就记录其下标flag = 下标;⼦遍历结束,⼦遍历的⾸位数与数组flag标记位置交换Selection_sort(int &array[]){for(int i = 0; i<array.length-2; i++ ){int flag = i-1;for(int j = i; j<length-2; j++){ //第1遍时,j = 1;if(array[flag] > array[j]) flag = j;}int help = array[i-1];array[i-1] = array[flag];array[flag] = help;}}..四、归并排序思想:归并算法与快速排序相反,是把顺序的⼦序列给合并起来,再排序需要借助格外数组稳定//排序获取的两个⼦数组void Sort(int &array[],int start,int middle,int end){if()int help[] = new int[];int i =start,j = middle+1,z = 0;while(i != middle+1 && j != end+1;){ //⽐较数据并且交换if(array[i] <= array[j]){help[z] = array[i];i++;}else{help[z] = array[j];j++;}z++;}if(i != middle+1){ //help数组追加数组后⾯较⼤的数据while(i != middle+1){help[z] = array[i];i++;}}else if(j != end+1){while(i != middle+1){help[z] = array[j];j++;}}z = 0; //help数组导⼊array数组while(start != end+1){array[start] = help[z];start++;}}//开始归并排序函数;递归合并⼦数组//若数组数为偶数,中间数偏左void Merge(int &array[],int start,int end){int middle = (end + start)/2;Merge(&array,start, middle); //数组数为偶数,左数组数⽐右数数组多1 Merge(&array,middle+1, end);Sort(&array,start, middle,end)}。
排序基本算法实验报告
一、实验目的1. 掌握排序算法的基本原理和实现方法。
2. 熟悉常用排序算法的时间复杂度和空间复杂度。
3. 能够根据实际问题选择合适的排序算法。
4. 提高编程能力和问题解决能力。
二、实验内容1. 实现并比较以下排序算法:冒泡排序、插入排序、选择排序、快速排序、归并排序、堆排序。
2. 对不同数据规模和不同数据分布的序列进行排序,分析排序算法的性能。
3. 使用C++编程语言实现排序算法。
三、实验步骤1. 冒泡排序:将相邻元素进行比较,如果顺序错误则交换,直到序列有序。
2. 插入排序:将未排序的元素插入到已排序的序列中,直到序列有序。
3. 选择排序:每次从剩余未排序的元素中选取最小(或最大)的元素,放到已排序序列的末尾。
4. 快速排序:选择一个枢纽元素,将序列分为两部分,一部分比枢纽小,另一部分比枢纽大,递归地对两部分进行排序。
5. 归并排序:将序列分为两半,分别对两半进行排序,然后将两半合并为一个有序序列。
6. 堆排序:将序列构建成一个最大堆,然后依次取出堆顶元素,最后序列有序。
四、实验结果与分析1. 冒泡排序、插入排序和选择排序的时间复杂度均为O(n^2),空间复杂度为O(1)。
这些算法适用于小规模数据或基本有序的数据。
2. 快速排序的时间复杂度平均为O(nlogn),最坏情况下为O(n^2),空间复杂度为O(logn)。
快速排序适用于大规模数据。
3. 归并排序的时间复杂度和空间复杂度均为O(nlogn),适用于大规模数据。
4. 堆排序的时间复杂度和空间复杂度均为O(nlogn),适用于大规模数据。
五、实验结论1. 根据不同数据规模和不同数据分布,选择合适的排序算法。
2. 冒泡排序、插入排序和选择排序适用于小规模数据或基本有序的数据。
3. 快速排序、归并排序和堆排序适用于大规模数据。
4. 通过实验,加深了对排序算法的理解,提高了编程能力和问题解决能力。
六、实验总结本次实验通过对排序算法的学习和实现,掌握了常用排序算法的基本原理和实现方法,分析了各种排序算法的性能,提高了编程能力和问题解决能力。
排序算法十大经典方法
排序算法十大经典方法
排序算法是计算机科学中的经典问题之一,它们用于将一组元素按照一定规则排序。
以下是十大经典排序算法:
1. 冒泡排序:比较相邻元素并交换,每一轮将最大的元素移动到最后。
2. 选择排序:每一轮选出未排序部分中最小的元素,并将其放在已排序部分的末尾。
3. 插入排序:将未排序部分的第一个元素插入到已排序部分的合适位置。
4. 希尔排序:改进的插入排序,将数据分组排序,最终合并排序。
5. 归并排序:将序列拆分成子序列,分别排序后合并,递归完成。
6. 快速排序:选定一个基准值,将小于基准值的元素放在左边,大于基准值的元素放在右边,递归排序。
7. 堆排序:将序列构建成一个堆,然后一次将堆顶元素取出并调整堆。
8. 计数排序:统计每个元素出现的次数,再按照元素大小输出。
9. 桶排序:将数据分到一个或多个桶中,对每个桶进行排序,最后输出。
10. 基数排序:按照元素的位数从低到高进行排序,每次排序只考虑一位。
以上是十大经典排序算法,每个算法都有其优缺点和适用场景,选择合适的算法可以提高排序效率。
【十大经典排序算法(动图演示)】 必学十大经典排序算法
【十大经典排序算法(动图演示)】必学十大经典排序算法0.1 算法分类十种常见排序算法可以分为两大类:比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。
非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。
0.2 算法复杂度0.3 相关概念稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面。
不稳定:如果a原本在b的前面,而a=b,排序之后a 可能会出现在b 的后面。
时间复杂度:对排序数据的总的操作次数。
反映当n变化时,操作次数呈现什么规律。
空间复杂度:是指算法在计算机内执行时所需存储空间的度量,它也是数据规模n的函数。
1、冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。
它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。
走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
1.1 算法描述比较相邻的元素。
如果第一个比第二个大,就交换它们两个;对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;针对所有的元素重复以上的步骤,除了最后一个;重复步骤1~3,直到排序完成。
1.2 动图演示1.3 代码实现1.unction bubbleSort(arr) {2. varlen = arr.length;3. for(vari = 0; i arr[j+1]) {// 相邻元素两两对比6. vartemp = arr[j+1];// 元素交换7. arr[j+1] = arr[j];8. arr[j] = temp;9. }10. }11. }12. returnarr;13.}2、选择排序(Selection Sort)选择排序(Selection-sort)是一种简单直观的排序算法。
8种排序算法
J=2(38) [38 49] 65 97 76 13 27 49
J=3(65) [38 49 65] 97 76 13 27 49
J=4(97) [38 49 65 97] 76 13 27 49
J=5(76) [38 49 65 76 97] 13 27 49
2. 堆的定义: N个元素的序列K1,K2,K3,...,Kn.称为堆,当且仅当该序列满足特性:
Ki≤K2i Ki ≤K2i+1(1≤ I≤ [N/2])
堆实质上是满足如下性质的完全二叉树:树中任一非叶子结点的关键字均大于等于其孩子结点的关键字。例如序列10,15,56,25,30,70就是一个堆,它对应的完全二叉树如上图所示。这种堆中根结点(称为堆顶)的关键字最小,我们把它称为小根堆。反之,若完全二叉树中任一非叶子结点的关键字均大于等于其孩子的关键字,则称之为大根堆。
(6)基数排序
基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序,最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。基数排序基于分别排序,分别收集,所以其是稳定的排序算法。
2. 排序过程:
【示例】:
初始关键字 [49 38 65 97 76 13 27 49]
第一趟排序后 13 [38 65 97 76 49 27 49]
第二趟排序后 13 27 [65 97 76 49 38 49]
第三趟排序后 13 27 38 [97 76 49 65 49]
其次,说一下稳定性的好处。排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。基数排序就是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的。另外,如果排序算法稳定,对基于比较的排序算法而言,元素交换的次数可能会少一些(个人感觉,没有证实)。
五种常见的排序方法
五种常见的排序方法在计算机科学中,排序是一种非常重要的操作,它可以将一组数据按照一定的顺序排列。
排序算法是计算机科学中最基本的算法之一,它的应用范围非常广泛,例如数据库查询、数据压缩、图像处理等。
本文将介绍五种常见的排序算法,包括冒泡排序、选择排序、插入排序、快速排序和归并排序。
一、冒泡排序冒泡排序是一种简单的排序算法,它的基本思想是将相邻的元素两两比较,如果前面的元素大于后面的元素,则交换它们的位置,一遍下来可以将最大的元素放在最后面。
重复这个过程,每次都可以确定一个最大的元素,直到所有的元素都排好序为止。
冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。
二、选择排序选择排序是一种简单的排序算法,它的基本思想是每次从未排序的元素中选择最小的元素,将它放到已排序的元素的末尾。
重复这个过程,直到所有的元素都排好序为止。
选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。
三、插入排序插入排序是一种简单的排序算法,它的基本思想是将一个元素插入到已排序的元素中,使得插入后的序列仍然有序。
重复这个过程,直到所有的元素都排好序为止。
插入排序的时间复杂度为O(n^2),空间复杂度为O(1)。
四、快速排序快速排序是一种高效的排序算法,它的基本思想是选择一个基准元素,将序列分成两个子序列,其中一个子序列的所有元素都小于基准元素,另一个子序列的所有元素都大于基准元素。
然后递归地对这两个子序列进行排序。
快速排序的时间复杂度为O(nlogn),空间复杂度为O(logn)。
五、归并排序归并排序是一种高效的排序算法,它的基本思想是将序列分成两个子序列,然后递归地对这两个子序列进行排序,最后将这两个有序的子序列合并成一个有序的序列。
归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。
总结在实际的应用中,选择合适的排序算法非常重要,不同的排序算法有不同的优劣势。
冒泡排序、选择排序和插入排序是三种简单的排序算法,它们的时间复杂度都为O(n^2),在处理小规模的数据时比较适用。
三种基本排序算法
三种基本排序算法在计算机科学所使⽤的排序算法通常被分类为:计算的时间复杂度(最差、平均、和最好性能),依据列表(list)的⼤⼩(n)。
⼀般⽽⾔,好的性能是O(n log n),且坏的性能是O(n^2)。
对于⼀个排序理想的性能是O(n)。
仅使⽤⼀个抽象关键⽐较运算的排序算法总平均上总是⾄少需要O(n log n)。
存储器使⽤量(以及其他电脑资源的使⽤)稳定性:稳定排序算法会让原本有相等键值的纪录维持相对次序。
也就是如果⼀个排序算法是稳定的,当有两个相等键值的纪录R和S,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前。
依据排序的⽅法:插⼊、交换、选择、合并等等。
依据排序的⽅法分类的三种排序算法:冒泡排序冒泡排序对⼀个需要进⾏排序的数组进⾏以下操作:1. ⽐较第⼀项和第⼆项;2. 如果第⼀项应该排在第⼆项之后, 那么两者交换顺序;3. ⽐较第⼆项和第三项;4. 如果第⼆项应该排在第三项之后, 那么两者交换顺序;5. 以此类推直到完成排序;实例说明:将数组[3, 2, 4, 5, 1]以从⼩到⼤的顺序进⾏排序:1. 3应该在2之后, 因此交换, 得到[2, 3, 4, 5, 1];2. 3, 4顺序不变, 4, 5也不变, 交换5, 1得到[2, 3, 4, 1, 5];3. 第⼀次遍历结束, 数组中最后⼀项处于正确位置不会再有变化, 因此下⼀次遍历可以排除最后⼀项;4. 开始第⼆次遍历, 最后结果为[2, 3, 1, 4, 5], 排除后两项进⾏下⼀次遍历;5. 第三次遍历结果为[2, 1, 3, 4, 5];6. 最后得到[1, 2, 3, 4, 5], 排序结束;代码实现:function swap(items, firstIndex, secondIndex){var temp = items[firstIndex];items[firstIndex] = items[secondIndex];items[secondIndex] = temp;};function bubbleSort(items){var len = items.length, i, j, stop;for (i = 0; i < len; i++){for (j = 0, stop = len-i; j < stop; j++){if (items[j] > items[j+1]){swap(items, j, j+1);}}}return items;}外层的循环决定需要进⾏多少次遍历, 内层的循环负责数组内各项的⽐较, 还通过外层循环的次数和数组长度决定何时停⽌⽐较.冒泡排序极其低效, 因为处理数据的步骤太多, 对于数组中的每n项, 都需要n^2次操作来实现该算法(实际⽐n^2略⼩, 但可以忽略, 具体原因见 ),即时间复杂度为O(n^2).对于含有n个元素的数组, 需要进⾏(n-1)+(n-2)+...+1次操作, ⽽(n-1)+(n-2)+...+1 = n(n-1)/2 = n^2/2 - n/2, 如果n趋于⽆限⼤, 那么n/2的⼤⼩对于整个算式的结果影响可以忽略, 因此最终的时间复杂度⽤O(n^2)表⽰选择排序选择排序对⼀个需要进⾏排序的数组进⾏以下操作:1. 假定数组中的第⼀项为最⼩值(min);2. ⽐较第⼀项和第⼆项的值;3. 若第⼆项⽐第⼀项⼩, 则假定第⼆项为最⼩值;4. 以此类推直到排序完成.实例说明:将数组["b", "a", "d", "c", "e"]以字母a-z的顺序进⾏排序:1. 假定数组中第⼀项"b"(index0)为min;2. ⽐较第⼆项"a"与第⼀项"b", 因"a"应在"b"之前的顺序, 故"a"(index1)为min;3. 然后将min与后⾯⼏项⽐较, 由于"a"就是最⼩值, 因此min确定在index1的位置;4. 第⼀次遍历结束后, 将假定的min(index0), 与真实的min(index1)进⾏⽐较, 真实的min应该在index0的位置, 因此将两者交换, 第⼀次遍历交换之后的结果为["a", "b", "d", "c", "e"];5. 然后开始第⼆次遍历, 遍历从第⼆项(index1的位置)开始, 这次假定第⼆项为最⼩值, 将第⼆项与之后⼏项逐个⽐较, 因为"b"就在应该存在的位置, 所以不需要进⾏交换, 这次遍历之后的结果为"a", "b", "d", "c", "e"];6. 之后开始第三次遍历, "c"应为这次遍历的最⼩值, 交换index2("d"), index3("c")位置, 最后结果为["a", "b", "c", "d", "e"];7. 最后⼀次遍历, 所有元素在应有位置, 不需要进⾏交换.代码实现:function swap(items, firstIndex, secondIndex){var temp = items[firstIndex];items[firstIndex] = items[secondIndex];items[secondIndex] = temp;};function selectionSort(){let items = [...document.querySelectorAll('.num-queue span')].map(num => +num.textContent);let len = items.length, min;for (i = 0; i < len; i++){min = i;for(j = i + 1; j < len; j++){if(items[j] < items[min]){min = j;}}if(i != min){swap(items, i, min);}}return items;};外层循环决定每次遍历的初始位置, 从数组的第⼀项开始直到最后⼀项. 内层循环决定哪⼀项元素被⽐较.选择排序的时间复杂度为O(n^2).插⼊排序与上述两种排序算法不同, 插⼊排序是稳定排序算法(stable sort algorithm), 稳定排序算法指不改变列表中相同元素的位置, 冒泡排序和选择排序不是稳定排序算法, 因为排序过程中有可能会改变相同元素位置. 对简单的值(数字或字符串)排序时, 相同元素位置改变与否影响不是很⼤.⽽当列表中的元素是对象, 根据对象的某个属性对列表进⾏排序时, 使⽤稳定排序算法就很有必要了.⼀旦算法包含交换(swap)这个步骤, 就不可能是稳定的排序算法. 列表内元素不断交换, ⽆法保证先前的元素排列为⽌⼀直保持原样. ⽽插⼊排序的实现过程不包含交换, ⽽是提取某个元素将其插⼊数组中正确位置.插⼊排序的实现是将⼀个数组分为两个部分, ⼀部分排序完成, ⼀部分未进⾏排序. 初始状态下整个数组属于未排序部分, 排序完成部分为空.然后进⾏排序, 数组内的第⼀项被加⼊排序完成部分, 由于只有⼀项, ⾃然属于排序完成状态. 然后对未完成排序的余下部分的元素进⾏如下操作:1. 如果这⼀项的值应该在排序完成部分最后⼀项元素之后, 保留这⼀项在原有位置开始下⼀步;2. 如果这⼀项的值应该排在排序完成部分最后⼀项元素之前, 将这⼀项从未完成部分暂时移开, 将已完成部分的最后⼀项元素移后⼀个位置;3. 被暂时移开的元素与已完成部分倒数第⼆项元素进⾏⽐较;4. 如果被移除元素的值在最后⼀项与倒数第⼆项的值之间, 那么将其插⼊两者之间的位置, 否则继续与前⾯的元素⽐较, 将暂移出的元素放置已完成部分合适位置. 以此类推直到所有元素都被移⾄排序完成部分.实例说明:现在需要将数组var items = [5, 2, 6, 1, 3, 9];进⾏插⼊排序:1. 5属于已完成部分, 余下元素为未完成部分. 接下来提取出2, 因为5⽐2⼤, 于是5被移⾄靠右⼀个位置, 覆盖2, 占⽤2原本存在的位置. 这样本来存放5的位置(已完成部分的⾸个位置)就被空出, ⽽2在⽐5⼩, 因此将2置于这个位置, 此时结果为[2, 5, 6, 1, 3, 9];2. 接下来提取出6, 因为6⽐5⼤, 所以不操作提取出1, 1与已完成部分各个元素(2, 5, 6)进⾏⽐较, 应该在2之前, 因此2, 5, 6各向右移⼀位, 1置于已完成部分⾸位, 此时结果为[1, 2, 5, 6, 3, 9];3. 对余下未完成元素进⾏类似操作, 最后得出结果[1, 2, 3, 5, 6, 9];代码实现:function insertionSort(items) {let len = items.length, value, i, j;for (i = 0; i < len; i++) {value = items[i];for (j = i-1; j > -1 && items[j] > value; j--) {items[j+1] = items[j];}items[j+1] = value;}return items;};外层循环的遍历顺序是从数组的第⼀位到最后⼀位, 内层循环的遍历则是从后往前, 内层循环同时负责元素的移位.插⼊排序的时间复杂度为O(n^2)以上三种排序算法都⼗分低效, 因此实际应⽤中不要使⽤这三种算法, 遇到需要排序的问题, 应该⾸先使⽤JavaScript内置的⽅法Array.prototype.sort();参考:1.2.。
经典十大排序算法
经典⼗⼤排序算法前⾔排序种类繁多,⼤致可以分为两⼤类:⽐较类排序:属于⾮线性时间排序,时间复杂度不能突破下界O(nlogn);⾮⽐较类排序:能达到线性时间O(n),不是通过⽐较来排序,有基数排序、计数排序、桶排序。
了解⼀个概念:排序的稳定性稳定是指相同⼤⼩的元素多次排序能保证其先后顺序保持不变。
假设有⼀些学⽣的信息,我们先根据他们的姓名进⾏排序,然后我们还想根据班级再进⾏排序,如果这时使⽤的时不稳定的排序算法,那么第⼀次的排序结果可能会被打乱,这样的场景需要使⽤稳定的算法。
堆排序、快速排序、希尔排序、选择排序是不稳定的排序算法,⽽冒泡排序、插⼊排序、归并排序、基数排序是稳定的排序算法。
1、冒泡排序⼤多数⼈学编程接触的第⼀种排序,名称很形象。
每次遍历排出⼀个最⼤的元素,将⼀个最⼤的⽓泡冒出⽔⾯。
时间复杂度:平均:O(n2);最好:O(n);最坏:O(n2)空间复杂度:O(1)public static void bubbleSort(int[] arr) {/*** 总共⾛len-1趟即可,每趟排出⼀个最⼤值放在最后*/for (int i = 0; i < arr.length - 1; i++) {for (int j = 0; j < arr.length - i - 1; j++) {if (arr[j] > arr[j + 1]) {int tp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = tp;}}}}2、选择排序最直观易理解的排序算法,每次排出⼀个最⼩的元素。
也是最稳定的算法,时间复杂度稳定为O(n^2)。
需要⼀个变量记录每次遍历最⼩元素的位置。
时间复杂度:O(n2)空间复杂度:O(1)public static void selectSort(int[] arr){int n = arr.length;for (int i = 0; i < n; i++) {int maxIdx = 0;for(int j = 1; j < n - i; j++){if(arr[maxIdx] < arr[j]){maxIdx = j;}}int tp = arr[maxIdx];arr[maxIdx] = arr[n - 1 - i];arr[n - 1 - i] = tp;}}3、插⼊排序⼀种直观的排序算法,从第⼆个元素开始,每次往前⾯遍历找到⾃⼰该在的位置。
基本排序算法(11种)
排序算法有很多,所以在特定情景中使用哪一种算法很重要。
为了选择合适的算法,可以按照建议的顺序考虑以下标准:(1)执行时间(2)存储空间(3)编程工作对于数据量较小的情形,(1)(2)差别不大,主要考虑(3);而对于数据量大的,(1)为首要。
主要排序法有:一、冒泡(Bubble)排序——相邻交换二、选择排序——每次最小/大排在相应的位置三、插入排序——将下一个插入已排好的序列中四、壳(Shell)排序——缩小增量五、归并排序六、快速排序七、堆排序八、拓扑排序九、锦标赛排序十、基数排序十一、英雄排序一、冒泡(Bubble)排序----------------------------------Code 从小到大排序n个数------------------------------------void BubbleSortArray(){for(int i=1;i<n;i++){for(int j=0;i<n-i;j++){if(a[j]>a[j+1])//比较交换相邻元素{int temp;temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;}}}}-------------------------------------------------Code------------------------------------------------效率 O(n²),适用于排序小列表。
二、选择排序----------------------------------Code 从小到大排序n个数--------------------------------void SelectSortArray(){int min_index;for(int i=0;i<n-1;i++){min_index=i;for(int j=i+1;j<n;j++)//每次扫描选择最小项if(arr[j]<arr[min_index]) min_index=j;if(min_index!=i)//找到最小项交换,即将这一项移到列表中的正确位置{int temp;temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;}}}-------------------------------------------------Code-----------------------------------------效率O(n²),适用于排序小的列表。
常见的排序算法有哪些
常见的排序算法有哪些
排序算法是《数据结构与算法》中最基本的算法之一。
排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。
常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。
用一张图概括:
关于时间复杂度
平方阶(O(n2)) 排序各类简单排序:直接插入、直接选择和冒泡排序。
线性对数阶(O(nlog2n)) 排序快速排序、堆排序和归并排序;
O(n1+§)) 排序,§是介于0 和1 之间的常数。
希尔排序
线性阶(O(n)) 排序基数排序,此外还有桶、箱排序。
关于稳定性
稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序。
不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序。
名词解释:
•n:数据规模
•k:"桶"的个数
•In-place:占用常数内存,不占用额外内存
•Out-place:占用额外内存
•稳定性:排序后2 个相等键值的顺序和排序之前它们的顺序相同包含以下内容:
•1、冒泡排序
•2、选择排序
•3、插入排序
•4、希尔排序
•5、归并排序
•6、快速排序
•7、堆排序
•8、计数排序
•9、桶排序
•10、基数排序。
c语言常见排序算法
常见的C语言排序算法有以下几种:
1. 冒泡排序(Bubble Sort):比较相邻的元素,如果前一个元素大于后一个元素,则交换它们的位置,重复这个过程直到整个序列有序。
2. 插入排序(Insertion Sort):将未排序的元素逐个插入到已排序序列中的正确位置,直到整个序列有序。
3. 选择排序(Selection Sort):每次从未排序的元素中选择最小的元素,将其放到已排序序列的末尾,重复这个过程直到整个序列有序。
4. 快速排序(Quick Sort):选择一个基准元素,将序列分成两部分,一部分小于等于基准元素,一部分大于基准元素,然后对两部分递归地进行快速排序。
5. 归并排序(Merge Sort):将序列分成两部分,分别对两部分进行归并排序,然后将两个有序的子序列合并成一个有序的序列。
6. 堆排序(Heap Sort):将序列构建成一个最大堆,然后将堆顶元素与堆末尾元素交换,重复这个过程直到整个序列有序。
7. 希尔排序(Shell Sort):将序列按照一定的间隔分成若干个子序列,对每个子序列进行插入排序,然后逐渐减小间隔直到间隔为1,最后对整个序列进行插入排序。
8. 计数排序(Counting Sort):统计序列中每个元素出现的次数,然后按照元素的大小顺序将它们放入一个新的序列中。
9. 基数排序(Radix Sort):按照元素的个位、十位、百位等依次进行排序,直到所有位数都排完为止。
以上是常见的C语言排序算法,每种算法都有其特点和适用场景,选择合适的排序算法可以提高排序效率。
基于比较的排序算法有哪些
基于比较的排序算法有哪些七种排序算法[1]分别是:•四种基本排序算法:冒泡排序,选择排序,插入排序,希尔排序。
•三种高级排序算法:归并排序,快速排序,堆排序。
这七种排序算法都是比较排序算法,这种算法的特点顾名思义就是排序是依赖于元素间两两比较的结果[2]。
任何比较算法在最坏的情况下都要经过Ω(nlgn)次比较。
1. 冒泡排序顾名思义,冒泡排序的整个过程就像碳酸饮料中的小气泡,慢慢浮到最上面。
只不过在冒泡排序中浮上去的是最大的数而已。
简要思路:遍历数组,每次比较相邻的两个元素 arr[i],arr[i + 1],如果 arr[i + 1] < arr[i] ,就把 arr[i + 1] 和 arr[i] 调换位置。
冒泡排序有这样的排序特性:•每次都只排好一个元素。
•最坏情况时间复杂度为O(n^2)。
•平均情况时间复杂度为O(n^2)。
•需要额外空间O(1)。
•所需时间与输入数组的初始状态无关。
算法示例public static void bubbleSort(int[] arr) {int n = arr.length;// 每一次循环,都把最大的元素冒泡到对应的位置for (int i = 0; i < n - 1; ++i) {for (int j = 0; j < n - i - 1; ++j) {// 如果后一个比前一个小,那么就把大的放后面if (less(arr, j + 1, j)) exch(arr, j, j + 1);}}}2. 选择排序其实选择排序,直观上来说和冒泡排序差不多,只不过么有了相邻元素频繁交换的操作,但是却保留了冒泡排序频繁访问数组的特点。
简要思路:对于每一个循环,我们在剩余的未排序数中找到最小数对应的下标,遍历一次后再把对应的数放到合适的位置。
选择排序有这样的排序特性:•每次循环都只排好一个元素。
•最坏情况时间复杂度为\Theta (n^2)。
排序算法有多少种
排序算法有多少种排序(Sorting) 是计算机程序设计中的一种重要操作,它的功能是将一个数据元素(或记录)的任意序列,重新排列成一个关键字有序的序列。
排序就是把集合中的元素按照一定的次序排序在一起。
一般来说有升序排列和降序排列2种排序,在算法中有8中基本排序:(1)冒泡排序;(2)选择排序;(3)插入排序;(4)希尔排序;(5)归并排序;(6)快速排序;(7)基数排序;(8)堆排序;(9)计数排序;(10)桶排序。
插入排序插入排序算法是基于某序列已经有序排列的情况下,通过一次插入一个元素的方式按照原有排序方式增加元素。
这种比较是从该有序序列的最末端开始执行,即要插入序列中的元素最先和有序序列中最大的元素比较,若其大于该最大元素,则可直接插入最大元素的后面即可,否则再向前一位比较查找直至找到应该插入的位置为止。
插入排序的基本思想是,每次将1个待排序的记录按其关键字大小插入到前面已经排好序的子序列中,寻找最适当的位置,直至全部记录插入完毕。
执行过程中,若遇到和插入元素相等的位置,则将要插人的元素放在该相等元素的后面,因此插入该元素后并未改变原序列的前后顺序。
我们认为插入排序也是一种稳定的排序方法。
插入排序分直接插入排序、折半插入排序和希尔排序3类。
冒泡排序冒泡排序算法是把较小的元素往前调或者把较大的元素往后调。
这种方法主要是通过对相邻两个元素进行大小的比较,根据比较结果和算法规则对该二元素的位置进行交换,这样逐个依次进行比较和交换,就能达到排序目的。
冒泡排序的基本思想是,首先将第1个和第2个记录的关键字比较大小,如果是逆序的,就将这两个记录进行交换,再对第2个和第3个记录的关键字进行比较,依次类推,重复进行上述计算,直至完成第(n一1)个和第n个记录的关键字之间的比较,此后,再按照上述过程进行第2次、第3次排序,直至整个序列有序为止。
排序过程中要特别注意的是,当相邻两个元素大小一致时,这一步操作就不需要交换位置,因此也说明冒泡排序是一种严格的稳定排序算法,它不改变序列中相同元素之间的相对位置关系。
排序算法
希尔排序--实例
序号 1 2 3 4 5 6 7 8 9 10
数据
S1= 5 S2= 2 S3= 1
12
① 12 ① -5 ①
89 57 32 96 37 54
② 54 ② ③ -5 ① ④ ⑤ ① ②
-5
③
79 57
④ ⑤
32 57 37 89 57 79 96 ② ① ② ① ② ① ②
① 首先,把10个元素分为5组(即增量为5),每组两个元素,对 每组进行插入排序;
d1 =5 :
结果如右图
吴再陵 17
② 在上一步基础上,重新将 10个元素分成 2组(增量为 2),每组5个元素,其中将奇数分为一组,偶数分为一组, 对每组再进行插入排序; d2=2 : 25 12 32 25 43 36 48 58 76 65
下标 1 2 3 [45 36 18 ↑i ① 36 36 18 ↑i ② 36 36 18
4 5 6 7 8 9 10 53 72 30 48 93 15 36 ] ↑j 53 72 30 48 93 15 45 ↑j 53 72 30 48 93 15 45 ↑i ↑j ③ 36 36 18 45 72 30 48 93 15 53 ↑i ↑j ④ 36 36 18 15 72 30 48 93 45 53 ↑i ↑j ⑤ 36 36 18 15 45 30 48 93 72 53 ↑i ↑j 吴再陵
end.
吴再陵
22
6、堆排序: (1) 堆的定义: 堆是由n 个关键字组成的序列{K1, K2,„„,Kn}, 当且仅当满足下列关系时,称之为堆: Ki≤K2i、Ki≤K2i+1(称为最小堆) 或 Ki≥K2i、Ki≥K2i+1(称为最大堆) 其中I=1,2,„„,n/2
数据结构之——八大排序算法
数据结构之——⼋⼤排序算法排序算法⼩汇总 冒泡排序⼀般将前⾯作为有序区(初始⽆元素),后⾯作为⽆序区(初始元素都在⽆序区⾥),在遍历过程中把当前⽆序区最⼩的数像泡泡⼀样,让其往上飘,然后在⽆序区继续执⾏此操作,直到⽆序区不再有元素。
这块是对⽼式冒泡排序的⼀种优化,因为当某次冒泡结束后,可能数组已经变得有序,继续进⾏冒泡排序会增加很多⽆⽤的⽐较次数,提⾼时间复杂度。
所以我们增加了⼀个标识变量flag,将其初始化为1,外层循环还是和⽼式的⼀样从0到末尾,内存循环我们改为从最后⾯向前⾯i(外层循环所处的位置)处遍历找最⼩的,如果在内存没有出现交换,说明⽆序区的元素已经变得有序,所以不需要交换,即整个数组已经变得有序。
(感谢@站在远处看童年在评论区的指正)#include<iostream>using namespace std;void sort(int k[] ,int n){int flag = 1;int temp;for(int i = 0; i < n-1 && flag; i++){flag = 0;for(int j = n-1; j > i; j--){/*下⾯这⾥和i没关系,注意看这块,从下往上travel,两两⽐较,如果不合适就调换,如果上来后⼀次都没调换,说明下⾯已经按顺序拍好了,上⾯也是按顺序排好的,所以完美!*/if(k[j-1] > k[j]){temp = k[j-1];k[j-1] = k[j];k[j] = temp;flag = 1;}}}}int main(){int k[3] = {0,9,6};sort(k,3);for(int i =0; i < 3; i++)printf("%d ",k[i]);}快速排序(Quicksort),基于分治算法思想,是对冒泡排序的⼀种改进。
快速排序由C. A. R. Hoare在1960年提出。
数字的排序根据给定规则对数字进行排序
数字的排序根据给定规则对数字进行排序数字的排序是一项非常常见的任务,在日常生活和工作中经常用到。
而数字的排序可以通过不同的规则来进行,常见的包括升序和降序排序。
本文将根据给定的规则对数字进行排序,并介绍一些常见的排序算法。
一、升序排序升序排序是按照数字从小到大的顺序进行排序。
以下是一种简单的升序排序算法示例:1. 输入一组数字列表。
2. 从左到右遍历列表,选取当前位置的数字作为最小值。
3. 继续遍历列表,如果遇到比当前最小值更小的数字,则更新最小值。
4. 完成一次遍历后,将最小值与当前位置的数字交换位置。
5. 继续从下一个位置开始重复上述步骤,直到遍历完成。
这是一种简单但效率较低的排序算法,称为选择排序。
它的时间复杂度为O(n^2),其中n是数字的个数。
二、降序排序降序排序是按照数字从大到小的顺序进行排序。
以下是一种简单的降序排序算法示例:1. 输入一组数字列表。
2. 从左到右遍历列表,选取当前位置的数字作为最大值。
3. 继续遍历列表,如果遇到比当前最大值更大的数字,则更新最大值。
4. 完成一次遍历后,将最大值与当前位置的数字交换位置。
5. 继续从下一个位置开始重复上述步骤,直到遍历完成。
这也是一种简单但效率较低的排序算法,同样的时间复杂度为O(n^2)。
三、快速排序快速排序是一种常用的排序算法,它采用分治的策略来提高排序效率。
以下是快速排序的过程示例:1. 选择一个基准数,可以是列表中任意一个数字。
2. 将列表中比基准数小的数字放在左边,比基准数大的数字放在右边。
3. 对左右两边的子列表分别重复上述步骤,直到每个子列表只剩下一个数字。
4. 完成排序。
快速排序的时间复杂度为O(nlogn),具有较高的效率。
四、归并排序归并排序也是一种常用的排序算法,它通过将列表分成若干个子列表并分别排序,最后合并成一个有序的列表。
以下是归并排序的过程示例:1. 将列表分成两个子列表,分别进行排序。
2. 将排序好的子列表合并为一个有序的列表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排序的定义:输入:n个数:a1,a2,a3,...,an输出:n个数的排列:a1',a2',a3',...,an',使得a1'<=a2'<=a3'<=...<=an'。
In-place sort(不占用额外内存或占用常数的内存):插入排序、选择排序、冒泡排序、堆排序、快速排序。
Out-place sort:归并排序、计数排序、基数排序、桶排序。
当需要对大量数据进行排序时,In-place sort就显示出优点,因为只需要占用常数的内存。
设想一下,如果要对10000个数据排序,如果使用了Out-place sort,则假设需要用200G的额外空间,则一台老式电脑会吃不消,但是如果使用In-place sort,则不需要花费额外内存。
stable sort:插入排序、冒泡排序、归并排序、计数排序、基数排序、桶排序。
unstable sort:选择排序(5 8 5 2 9)、快速排序、堆排序。
为何排序的稳定性很重要?在初学排序时会觉得稳定性有这么重要吗?两个一样的元素的顺序有这么重要吗?其实很重要。
在基数排序中显得尤为突出,如下:算法导论习题8.3-2说:如果对于不稳定的算法进行改进,使得那些不稳定的算法也稳定?其实很简单,只需要在每个输入元素加一个index,表示初始时的数组索引,当不稳定的算法排好序后,对于相同的元素对index排序即可。
基于比较的排序都是遵循“决策树模型”,而在决策树模型中,我们能证明给予比较的排序算法最坏情况下的运行时间为Ω(nlgn),证明的思路是因为将n个序列构成的决策树的叶子节点个数至少有n!,因此高度至少为nlgn。
线性时间排序虽然能够理想情况下能在线性时间排序,但是每个排序都需要对输入数组做一些假设,比如计数排序需要输入数组数字范围为[0,k]等。
在排序算法的正确性证明中介绍了”循环不变式“,他类似于数学归纳法,"初始"对应"n=1","保持"对应"假设n=k成立,当n=k+1时"。
一、插入排序特点:stable sort、In-place sort最优复杂度:当输入数组就是排好序的时候,复杂度为O(n),而快速排序在这种情况下会产生O(n^2)的复杂度。
最差复杂度:当输入数组为倒序时,复杂度为O(n^2)插入排序比较适合用于“少量元素的数组”。
其实插入排序的复杂度和逆序对的个数一样,当数组倒序时,逆序对的个数为n(n-1)/2,因此插入排序复杂度为O(n^2)。
在算法导论2-4中有关于逆序对的介绍。
伪代码:证明算法正确性:循环不变式:在每次循环开始前,A[1...i-1]包含了原来的A[1...i-1]的元素,并且已排序。
初始:i=2,A[1...1]已排序,成立。
保持:在迭代开始前,A[1...i-1]已排序,而循环体的目的是将A[i]插入A[1...i-1]中,使得A[1...i]排序,因此在下一轮迭代开始前,i++,因此现在A[1...i-1]排好序了,因此保持循环不变式。
终止:最后i=n+1,并且A[1...n]已排序,而A[1...n]就是整个数组,因此证毕。
而在算法导论2.3-6中还问是否能将伪代码第6-8行用二分法实现?实际上是不能的。
因为第6-8行并不是单纯的线性查找,而是还要移出一个空位让A[i]插入,因此就算二分查找用O(lgn)查到了插入的位置,但是还是要用O(n)的时间移出一个空位。
问:快速排序(不使用随机化)是否一定比插入排序快?答:不一定,当输入数组已经排好序时,插入排序需要O(n)时间,而快速排序需要O(n^2)时间。
递归版插入排序二、冒泡排序特点:stable sort、In-place sort思想:通过两两交换,像水中的泡泡一样,小的先冒出来,大的后冒出来。
最坏运行时间:O(n^2)最佳运行时间:O(n^2)(当然,也可以进行改进使得最佳运行时间为O(n))算法导论思考题2-2中介绍了冒泡排序。
伪代码:证明算法正确性:运用两次循环不变式,先证明第4-6行的内循环,再证明外循环。
内循环不变式:在每次循环开始前,A[j]是A[j...n]中最小的元素。
初始:j=n,因此A[n]是A[n...n]的最小元素。
保持:当循环开始时,已知A[j]是A[j...n]的最小元素,将A[j]与A[j-1]比较,并将较小者放在j-1位置,因此能够说明A[j-1]是A[j-1...n]的最小元素,因此循环不变式保持。
终止:j=i,已知A[i]是A[i...n]中最小的元素,证毕。
接下来证明外循环不变式:在每次循环之前,A[1...i-1]包含了A中最小的i-1个元素,且已排序:A[1]<=A[2]<=...<=A[i-1]。
初始:i=1,因此A[1..0]=空,因此成立。
保持:当循环开始时,已知 A[1...i-1]是A中最小的i-1个元素,且A[1]<=A[2]<=...<=A[i-1],根据内循环不变式,终止时 A[i]是A[i...n]中最小的元素,因此A[1...i]包含了A中最小的i个元素,且A[1]<=A[2]<=...& lt;=A[i-1]<=A[i]终止:i=n+1,已知A[1...n]是A中最小的n个元素,且A[1]<=A[2]<=...<=A[n],得证。
在算法导论思考题2-2中又问了”冒泡排序和插入排序哪个更快“呢?一般的人回答:“差不多吧,因为渐近时间都是O(n^2)”。
但是事实上不是这样的,插入排序的速度直接是逆序对的个数,而冒泡排序中执行“交换“的次数是逆序对的个数,因此冒泡排序执行的时间至少是逆序对的个数,因此插入排序的执行时间至少比冒泡排序快。
递归版冒泡排序改进版冒泡排序最佳运行时间:O(n)最坏运行时间:O(n^2)三、选择排序特性:In-place sort,unstable sort。
思想:每次找一个最小值。
最好情况时间:O(n^2)。
最坏情况时间:O(n^2)。
伪代码:证明算法正确性:循环不变式:A[1...i-1]包含了A中最小的i-1个元素,且已排序。
初始:i=1,A[1...0]=空,因此成立。
保持:在某次迭代开始之前,保持循环不变式,即A[1...i-1]包含了A中最小的i-1个元素,且已排序,则进入循环体后,程序从 A[i...n]中找出最小值放在A[i]处,因此A[1...i]包含了A中最小的i个元素,且已排序,而i++,因此下一次循环之前,保持循环不变式:A[1..i-1]包含了A中最小的i-1个元素,且已排序。
终止:i=n,已知A[1...n-1]包含了A中最小的i-1个元素,且已排序,因此A[n]中的元素是最大的,因此A[1...n]已排序,证毕。
算法导论2.2-2中问了"为什么伪代码中第3行只有循环n-1次而不是n次"?在循环不变式证明中也提到了,如果A[1...n-1]已排序,且包含了A中最小的n-1个元素,则A[n]肯定是最大的,因此肯定是已排序的。
递归版选择排序递归式:T(n)=T(n-1)+O(n)=> T(n)=O(n^2)四、归并排序特点:stable sort、Out-place sort思想:运用分治法思想解决排序问题。
最坏情况运行时间:O(nlgn)最佳运行时间:O(nlgn)分治法介绍:分治法就是将原问题分解为多个独立的子问题,且这些子问题的形式和原问题相似,只是规模上减少了,求解完子问题后合并结果构成原问题的解。
分治法通常有3步:Divide(分解子问题的步骤)、Conquer(递归解决子问题的步骤)、Combine(子问题解求出来后合并成原问题解的步骤)。
假设Divide需要f(n)时间,Conquer分解为b个子问题,且子问题大小为a,Combine需要g(n)时间,则递归式为:T(n)=bT(n/a)+f(n)+g(n)算法导论思考题4-3(参数传递)能够很好的考察对于分治法的理解。
就如归并排序,Divide的步骤为m=(p+q)/2,因此为O(1),Combine步骤为merge()函数,Conquer步骤为分解为2个子问题,子问题大小为n/2,因此:归并排序的递归式:T(n)=2T(n/2)+O(n)而求解递归式的三种方法有:(1)替换法:主要用于验证递归式的复杂度。
(2)递归树:能够大致估算递归式的复杂度,估算完后可以用替换法验证。
(3)主定理:用于解一些常见的递归式。
伪代码:证明算法正确性:其实我们只要证明merge()函数的正确性即可。
merge函数的主要步骤在第25~31行,可以看出是由一个循环构成。
循环不变式:每次循环之前,A[p...k-1]已排序,且L[i]和R[j]是L和R中剩下的元素中最小的两个元素。
初始:k=p,A[p...p-1]为空,因此已排序,成立。
保持:在第k次迭代之前,A[p...k-1]已经排序,而因为L[i]和R[j]是L和R中剩下的元素中最小的两个元素,因此只需要将L[i]和R[j]中最小的元素放到 A[k]即可,在第k+1次迭代之前A[p...k]已排序,且L[i]和R[j]为剩下的最小的两个元素。
终止:k=q+1,且A[p...q]已排序,这就是我们想要的,因此证毕。
归并排序的例子:问:归并排序的缺点是什么?答:他是Out-place sort,因此相比快排,需要很多额外的空间。
问:为什么归并排序比快速排序慢?答:虽然渐近复杂度一样,但是归并排序的系数比快排大。
问:对于归并排序有什么改进?答:就是在数组长度为k时,用插入排序,因为插入排序适合对小数组排序。
在算法导论思考题2-1中介绍了。
复杂度为O(nk+nlg(n/k)) ,当k=O(lgn)时,复杂度为O(nlgn)五、快速排序Tony Hoare爵士在1962年发明,被誉为“20世纪十大经典算法之一”。
算法导论中讲解的快速排序的PARTITION是Lomuto提出的,是对Hoare的算法进行一些改变的,而算法导论7-1介绍了Hoare的快排。
特性:unstable sort、In-place sort。
最坏运行时间:当输入数组已排序时,时间为O(n^2),当然可以通过随机化来改进(shuffle array 或者 randomized select pivot),使得期望运行时间为O(nlgn)。
最佳运行时间:O(nlgn)快速排序的思想也是分治法。
当输入数组的所有元素都一样时,不管是快速排序还是随机化快速排序的复杂度都为O(n^2),而在算法导论第三版的思考题7-2中通过改变Partition函数,从而改进复杂度为O(n)。