数学人教版八年级下册《矩形》导学案

合集下载

《矩形第1课时 矩形的性质》精品导学案 人教版八年级数学下册导学案(精品).docx

《矩形第1课时 矩形的性质》精品导学案 人教版八年级数学下册导学案(精品).docx

学习目标:1. 理解矩形的概念,知道矩形与平行四边形的区别与联系.2. 会证明矩形的性质,会用矩形的性质解决简单的问题. 学习重点:矩形的定义、性质及其应用.〉宙主研〈一、 课前检测二、 温故知新1. 平行四边形是怎样定义的?它有哪些性质?请分别用符号语言表示出来.2.如图,现有一个活动的平行四边形,使它的一个内角变化,当内角变化为90°N 这是我们学过的哪个图形?三、预习导航(预习教材第52页,标出你认为重要的关键词)1. 矩形的定义:有一个角是直角的平行四边形叫做 _______ ,也就是长方形.2. 矩形是特殊的平行四边形,你能根据平行四边形的性质,说出矩形的性质吗?四、自学自测1. 矩形是常见的图形,你能举出一些生活中的实例吗?2. _________________________________________ 矩形的定义中有两个条件:一是 ___________________________________________ ,二是 ________________ . 3. 已知矩形的一条对角线与一边的夹角为30° ,则矩形两条对角线相交所得的 锐角为 ________ ;若该矩形的对角线长为4cm,则矩形的两邻边长分别 为 ______ 、 _______ • 五、我的疑惑(反思)师生备注18. 2. 1矩形 第1课时矩形的性质1〉居究点一、要点探究探究点1:矩形的性质思考因为矩形是平行四边形,所以它具有平行四边形的所有性质,由于它有一 个角为直角,它是否具有一般平行四边形所不具有的一些特殊性质呢?活动准备素材:直尺、量角器、橡皮擦、课本、铅笔盒等.(1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四个角 度数和对角线的长度,并记录测量结果.ACBDZBADZADCZABCZBCD橡皮擦课本桌子(2)根据测量的结果,你有什么猜想?师生备注B:.ZC = ________ ° .A ZB=ZC=ZD=ZA = ____________ ° .②如图,四边形ABCD 是矩形,ZABC=90° ,对角线AC 与DB 相较于点0. 求证:AC=DB.证明:•.•四边形ABCD 是矩形,AAB _____ DC, ZABC=ZDCB= _________在AABC 和ADCB 中,VAB=DC, ZABC=ZDCB, BC= CB, AABC _____ ADCB. /. AC ___________ DB.猜想1矩形的四个角都是 __________ . 猜想2矩形的对角线— 证一证①如图,四边形ABCD 是矩形,ZB=90° . 求证:ZB=ZC=ZD=ZA=90° .证明:•••四边形ABCD 是矩形,A ZB _______ Z D, ZC ________ Z A, AB ________ DC. /. ZB+ZC= _________ ° .A又 V ZB = 90° ,思考请同学们拿出准备好的矩形纸片,折一折,观察并思考. 矩形是不是轴对称图形?如果是,那么对称轴有几条? 要点归纳:矩形除了具有平行四边形所有性质,还具有的性质有: 1. 矩形的四个角都是 _____ •矩形的对角线 _________ • 2. 矩形是 ________ 图形,它有 __ 条对称轴. A 几何语言描述: 在矩形ABCD 中,对角线AC 与DB 相交于点0.A ZABC=ZBCD=ZCDA=ZDAB =90° , AC=DB.B二、精讲点拨例1如图,在矩形ABCD 中,E 是BC 上一点,AE=AD, DF 丄AE ,垂足为F.求证:DF=DC.例2如图,将矩形ABCD 沿着直线BD 折叠,使点C 落在C ,处,BC'交AD 于点E, AD=8, AB=4,求ABED 的面积.方法总结:三、变式训练1.如图,在矩形ABCD 中,对角线AC, BD 交于点0,下列说法错误的是(A. AB 〃DCC. AC±BD2.如图,在矩形ABCD 中,AE 丄BD 于E, ZDAE : 度数.四、课堂小结内容 符号语言B. AC=BD D. 0A=0BZBAE=3: 1,求ZBAE 和 ZEAO 的变式2题图矩形的概念 有一个角是直角的平行 四边形叫做矩形矩形的性质 矩形的四个角都是直角. 矩形的对角线相等./ 星级达标★ 1.已知矩形的一条对角线长为10cm,两条对角线的一个交角为120° ,则矩形的短 边长为 ________ cm.★2.矩形的对角线把矩形分成的三角形中全等三角形一共有( )•C. 6对D. 8对 B.矩形的对角线相等 D.有一个角是直角的四边形是矩形★ ★4.如图,在矩形ABCD 中,连接对角线AC, BD.将AABC 沿BC 方向平移,使点B移到点C,得到ADCE. (1)求证:AACD 竺AEDC.(2)试确定△ BDE 的形状,并说明理由.★★5.已知:如图,0是矩形ABCD 对角线的交点,AE 平分ZBAD, ZA0D=120° ,求 ZAE0的度数.★★★6.如图,在矩形ABCD 中,AB=3, AD=4, P 是AD 上不与A, D 重合的一个动点, 过点P 分别作AC 和BD 的垂线,垂足分别为E, F.求PE+PF 的值.我的反思(收获,不足) 分层作业必做(教材智慧学习配套)选做 参考答案精讲点拨例1试题分析:根据矩形的性质AD 〃BC,AE=AD,可以得到ZDEC=ZADE=ZAED,由DF 丄AE 于F,A. 2对B. 4对★3.下列说法错误的是().A.矩形的对角线互相平分 C.矩形的四个角都相等【详解】证明:连接DE.VAD=AE, .*.ZAED = ZADE.在矩形ABCD 中,AD〃BC, ZC=90° .ZADE=ZDEC,ZDEC = ZAED.又TDF丄AE,.•.ZDFE=ZC=90° .VDE=DE,/. ADFE^ADCE (AAS)..・.DF=DC.例2试题分析:首先根据矩形的性质可得出AD〃BC,即Z2=Z3,然后根据折叠知Z1=Z2, C,D=CD、BC' =BC,可得到Z1=Z3,进而得出BE=DE,设BE=DE=x,则EC' =8-x,利用勾股定理求出x的值,代入面积公式即可求出ABED的面积.详解:•••四边形ABCD是矩形,.・.AD〃BC,即Z2=Z3,由折叠知,Z1=Z2, C‘ D=CD=4、BC, =BC=8,3,即DE=BE,BE=DE=x,则EC' =8n,DEC'中,DC' '+EC' 2=DE242+(8^C)2=X2解得:x=5,ADE的长为5.ABED 的面积=丄DEX AB =丄X5X4=10.2 2变式训练1•试题分析:根据矩形的定义和性质分析判断即可.详解:矩形的性质有①矩形的两组对边分别平行且相等;②矩形的四个角都是直角;③矩形的两条对角线互相平分且相等.所以选项A, B, D正确,C错误.故选C..-.Z1=Z 设在RtA2•试题分析:根据矩形性质得出心血,。

人教版八年级数学下册18.2.1矩形导学案

人教版八年级数学下册18.2.1矩形导学案

第课时,共课时班级姓名等级【学习目标】1.学会矩形的性质,能应用矩形的性质解决简单的计算题。

2.通过探索矩形判定的过程,形成集合分析思路和方法。

3.激情投入,展示自我。

【学习重、难点】矩形的性质和判定定理。

.预习案自学课本,完成下列各题:1、矩形的定义:_____________________________________2、矩形的性质:(1)边:_____________________________(2 )角:__________________________(3 )对角线:___________________________(4)对称性:______________________3.矩形的判定:(1)定义:有一个角是直角的平行四边形是矩形。

(2)有三个角都是直角的四边形是矩形。

(3)对角线相等的平行四边形是矩形。

巩固案1.矩形的对边是,对角线且,四个角都是。

2.矩形是面积的60,一边长为5,则它的一条对角线长等于。

3.平行四边形没有而矩形具有的性质是()A、对角线相等B、对角线互相垂直C、对角线互相平分D、对角相等4、下列叙述错误的是()A.平行四边形的对角线互相平分。

B.平行四边形的四个内角相等。

C.矩形的对角线相等。

D.有一个角时90º的平行四边形是矩形8、下列图形中既是轴对称图形,又是中心对称图形的是()A、平行四边形B、等边三角形C、矩形D、直角三角形9、四边形ABCD的对角线相交于点O,在下列条件中不能判定它是矩形的是()A、AB=CD,AB∥CD, ∠BAD=90°B、AO=CO,BO=DO,AC=BDC、∠BAD=∠ABC=90°, ∠BCD+∠ADC=180°D、∠BAD=∠BCD, ∠ABC=∠ADC=90探究案1.如图,已知矩形ABCD的两条对角线相交于O,,AB=4cm,求此矩形的面积。

2、折叠矩形纸片ABCD,先折出折痕BD,再折叠使AD边与对角线BD重合,得折痕DG,如图,若AB=8 BC=6,求AG,。

人教版数学八年级下册18.2《矩形(1)》导学案

人教版数学八年级下册18.2《矩形(1)》导学案

18 矩形〔1〕导学案学习目标:1、理解矩形的意义,知道矩形与平行四边形的区别与联系.2、掌握矩形的性质定理,会用定理进展有关的计算与证明.3、掌握直角三角形斜边上中线的性质与应用.重点:矩形的性质.难点:矩形的性质的灵活应用.一.学前准备:平行四边形有哪些性质:二.探索新知:1、叫做矩形.矩形是的平行四边形.如图记作,读作.2、从矩形的意义可以探究矩形具有的性质:〔1〕矩形具有平行四边形具有的一切性质.边:角:对角线:〔2〕矩形是图形,它有对称轴,分别是的连线所在的直线.〔3〕矩形与平行四边形比拟又有其特殊的性质〔探究、归纳、模式表示〕:矩形性质1.因为,所以.矩形性质2.因为,所以3、从矩形的性质可以说明:直角三角形斜边上的中线等于斜边的〔模式表示〕:因为,所以4、分析例题1,运用知识解决问题例1 〔教材P53例1〕:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,下载后可自行编辑修改,页脚下载后可删除。

下载后可自行编辑修改,页脚下载后可删除。

AB=4cm ,求矩形对角线的长.解:∵ 四边形ABCD 是 形, ∴ AC 与BD 且 .∴ OA= .又 ∠AOB= °,∴ △OAB 是 三角形.∴ 矩形的对角线长AC=BD = 2OA=2×4=8〔cm 〕.三.自我检查:1.〔1〕矩形的定义中有两个条件:一是 ,二是 . 〔2〕矩形的一条对角线与一边的夹角为30°,那么矩形两条对角线相交所得的四个角的度数分别为 、 、 、 .〔3〕矩形的一条对角线长为10cm ,两条对角线的一个交角为120°,那么矩形的边长分别为 cm , cm , cm , cm .〔4〕矩形的两条对角线的夹角为60°,较短的边长为厘米,那么对角线长为 .〔5〕在直角三角形ABC 中,∠C=90°,AB=2AC ,那么∠A= °,∠B= °2.〔1〕以下说法错误的选项是〔 〕A 、矩形的对角线互相平分B 、有一个角是直角的四边形是矩形C 、矩形的对角线相等D 、有一个角是直角的平行四边形叫做矩形 〔2〕矩形的对角线把矩形分成的三角形中全等三角形一共有〔 〕A 、2对B 、4对C 、6对D 、8对〔3〕由矩形的一个顶点向其所对的对角线引垂线,该垂线分直角为1:3两局部,那么该垂线与另一条对角线的夹角为〔 〕A 、22.5°B 、45°C 、30°D 、60°〔4〕矩形的两条对角线的夹角为60°,对角线长为15cm ,较短边的长为〔 〕A 、12cmB 、10cmC 、D 、5cm3、折叠矩形ABCD 纸片,先折出折痕BD ,再折叠使A 落在对角线BD 上A′位置上,折痕为DG .AB=2,BC=1.求AG 的长.G A`D CBA下载后可自行编辑修改,页脚下载后可删除。

人教版八年级下册数学 矩形的判定(导学案)

人教版八年级下册数学 矩形的判定(导学案)

18.2.1 矩形第2课时矩形的判定一、新课导入1.导入课题工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你知道为什么吗?(板书课题)2.学习目标(1)能推导归纳判定一个四边形是矩形的几种方法.(2)能选取适当的判定方法判定一个四边形是矩形.3.学习重、难点重点:矩形的判定方法的探究.难点:矩形的性质与判定的综合运用.二、分层学习1.自学指导(1)自学内容:P53最后二行至P54例2前的内容.(2)自学时间:10分钟.(3)自学要求:用已学的矩形意义和性质推导出矩形的判定方法.(4)自学参考提纲:①按定义:有一个角是直角的平行四边形是矩形.②“矩形的对角线相等”的逆命题是对角线相等的平行四边形是矩形,这个命题成立吗?请给予证明.③有三个角是直角的四边形是矩形.④判断:a.对角线相等的四边形是矩形.(×)b.对角线相等且互相平分的四边形是矩形.(√)2.自学:结合自学指导自主学习.3.助学(1)师助生:①明了学情:关注学生是否能完成对两个判定定理的推导,命题证明存在的障碍在哪里?②差异指导:指导学生依据矩形定义完成两个定理的论证及证明一个四边形是矩形的方法步骤.(2)生助生:同桌之间相互研讨.4.强化归纳矩形的三种判定方法及几何推理格式:方法1:有一个角是直角的平行四边形是矩形;方法2:有三个角是直角的四边形是矩形;方法3:对角线相等的平行四边形是矩形.1.自学指导(1)自学内容:P54至P55例2.(2)自学时间:5分钟.(3)自学方法:边看例题,边思考解题思路及解答过程中的每步依据.(4)自学参考提纲:①课本中求∠OAB 的度数的思路是:50()OAD OAB DAB OAD ∠=︒∠=−−−−−→∠∠-求∠DAB 的度数→证明∠DAB=90°→证明四边形ABCD 是矩形.②(证明)解答第一步推理运用了平行四边形的性质:对角线互相平分.第二步由OA=OD 得到AC=BD 的依据是等量代换.第三步由AC=BD 得到四边形ABCD 是矩形的依据是对角线相等的平行四边形是矩形.③完成课本P55练习第2题,参照例2的思路写出解答过程.2.自学:结合自参考提纲进行自学.3.助学(1)师助生:①明了学情:关注学生是否理解例2的解题思路和步骤,存在的困难在哪里.②差异指导:对练习第2题的条件进行分析,猜测有什么结论.(2)生助生:学生之间相互交流帮助.4.强化(1)矩形的判定方法.(2)由条件到问题之间的联系如何分析.三、评价1.学生自我评价(围绕三维目标):各组学生代表介绍自己的学习方法、收获及困惑.2.教师对学生的评价:(1)表现性评价:点评学生课堂学习中的态度、学习方式、成果及不足之处.(2)纸笔评价:评价作业.3.教师的自我评价(教学反思).本节课通过观察、探究,让学生掌握矩形的三个判定方法:(1)有一个角是直角的平行四边形是矩形;(2)对角线相等的平行四边形是矩形;(3)有三个角是直角的四边形是矩形.教学过程中应将矩形的判定与平行四边形的判定作比较,让同学之间相互交流,说出矩形与平行四边形的区别与联系,进而更好地掌握知识.在本节课的教学中,教师应最大限度地将课堂交给学生,提高学生学习的积极性主动性.(时间:12分钟满分:100分)一、基础巩固(50分)1.(20分)下列判定矩形的说法是否正确?什么?(1)有一个角是直角的四边形是矩形.(×)(2)四个角都相等的四边形是矩形.(√)(3)对角线相等的四边形是矩形.(×)(4)对角线互相平分,且有一个角是直角的四边形是矩形. (√)2.(10分)下列四边形中不一定是矩形的是 (C)A.有三个角直角的四边形B.四角都相等的四边形C.一组对边平行且对角相等的四边形D.对角线相等且互相平分的四边形3.(20分)如图:(1)当AC=BD 时, ABCD是矩形;(2)当∠ABC=∠BCD=∠CDA=90°时,四边形ABCD是矩形.二、综合应用(20分)4.已知平行四边形ABCD的对角线AC,BD交于点O,△AOB是等边三角形,AB=4cm.(1)这平行四边形是矩形吗?说明你的理由;(2)求这个平行四边形的面积.解:(1)是.∵△AOB是等边三角形,∴AO=BO,又∵AO=12AC,BO=12BD.(平行四边形的性质)∴AC=BD. ∴ ABCD 是矩形.(2)()212344163.2ABCD S cm =⨯⨯⨯= 三、拓展延伸(30分)5.如图,在△ABC 中,D 在AB 边上,AD=BD=CD ,DE ∥AC ,DF ∥BC.求证:四边形DECF 是矩形. 证明:∵AD=BD=CD ,∴△ABC 为直角三角形,∠FCE=90°,∵DE ∥AC,DF ∥BC,∴四边形DECF 为平行四边形,又∵∠FCE=90°,∴平行四边形DECF 是矩形.【素材积累】1、只要心中有希望存摘,旧有幸福存摘。

八年级数学下册 18.2.1《矩形》矩形的判定导学案新版新人教版

八年级数学下册 18.2.1《矩形》矩形的判定导学案新版新人教版

八年级数学下册 18.2.1《矩形》矩形的判定导学案新版新人教版18、2、1《矩形》矩形的判定学习目标1、熟悉矩形的判定方法,会判定一个四边形是菱形。

2、会用矩形的判定和性质进行有关的计算和证明。

3、经历探索矩形的判定的过程,发展合情推理的意识,培养严密的逻辑推理能力。

重点:综合运用矩形的判定和性质进行有关的计算和证明、难点:根据题目的条件合理运用判定方法证明矩形、时间分配旧知回顾2分钟、自主探知10分钟问题解决15分练习巩固10分课堂小结3分、学案(学习过程)导案(学法指导)学习过程一、回顾旧知:1、什么是矩形?(有一个角是直角的平行四边形是矩形)2、矩形有什么性质?边:对边平行且相等角:四个角都是直角对角线:对角线相等、3、如何判定一个平行四边形或四边形是矩形?(与研究平行四边形的判断方法类似,研究一下矩形的性质定理的逆命题,看看他们是否成立、)二、自主探知1、定义(判定1):有一个角是直角的平行四边形是矩形、2、思考:矩形的对角线相等,反过来,对角线相等的平行四边形是矩形吗?怎么证明?判定2:对角线相等的平行四边形是矩形、3、思考:矩形的四个角都是直角,它的逆命题成立吗?即四个角都是直角的四边形是矩形吗?进一步,至少有几个角是直角的四边形是矩形?判定3:有三个角是直角的四边形是矩形、三、问题解决:1、在 ABCD中,对角线AC,BD相交于点O,OA=OD, ∠OAD=500 求∠ OAB的度数解:∵四边形ABCD是平行四边形∴OA=OC= AC OB=OD= BD 又∵OA=OD, ∴ AC=BD、∴四边形ABCD是矩形∴ ∠DAB=900 又∵ ∠OAD=500 ∴ ∠OAB=4002、已知平行四边形ABCD的对角线AC,BD交于点O,△AOB是等边三角形,AB=4、(1)平行四边形ABCD是矩形吗?说明你的理由、(2)求这个平行四边形的面积四、课堂练习P551、4一、导课:1、复习矩形的性质、2、从研究问题的方法及逆命题的角度入手,去研究矩形的判定、二、自主探知1、教师引导解释强调矩形的定义:先判定是平行四边形在加一个直角。

八年级数学下册《19.2.1 矩形》导学案 人教新课标版

八年级数学下册《19.2.1 矩形》导学案 人教新课标版

八年级数学下册《19.2.1 矩形》导学案人教新课标版19、2、1矩形的判定导学案学习目标:1、理解并掌握矩形的判定方法、2、能熟练应用矩形的性质、判定等知识进行有关证明和计算、学习过程:一、温故知新:想一想:矩形有哪些性质?在这些性质中那些是平行四边形所没有的?列表进行比较、平行四边形矩形边角对角线对称性二、学习新知:探究一:下面给大家介绍一下工人制作窗框的过程、1、先截出两对符合规格的铝合金窗料如图,使AB=CD,EF=GH2、摆成四边形(如第2个图),这时窗框的形状是平行四边形,依据的数学道理是____________________________________是平行四边形、3、将直角尺紧靠窗框的一个角(如第3个图),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时,说明窗框合格,这时窗框是矩形,依据的数学道理是________________________________ 是矩形、探究二:1、除了上面制作矩形的方法外,还有其他的方法吗?请你画一个矩形;2、交流画矩形的方法,得到矩形的判定方法;3、证明矩形的判定方法:已知:如图,求证:证明:4、归纳:矩形判定方法:_____________________________________________________________ 数学符号语言:议一议:下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形;()(2)有四个角是直角的四边形是矩形;()(3)四个角都相等的四边形是矩形;()(4)对角线相等的四边形是矩形;() (5)对角线相等且互相垂直的四边形是矩形;()(6)对角线互相平分且相等的四边形是矩形;()(7)对角线相等,且有一个角是直角的四边形是矩形;()(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;()(9)两组对边分别平行,且对角线相等的四边形是矩形、 ( )例题:例1、:已知□ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4 cm,求这个平行四边形的面积、例2已知:如图,□ABCD的四个内角的平分线分别相交于点E、F、G、H、求证:四边形EFGH是矩形、练习:1、(xx江苏淮安)在四边形ABCD中,AB=DC,AD=BC、请再添加一个条件,使四边形ABCD是矩形、你添加的条件是、(写出一种即可)2、(xx四川绵阳)下列关于矩形的说法中正确的是()A、对角线相等的四边形是矩形B、对角线互相平分的四边形是矩形C、矩形的对角线互相垂直且平分D、矩形的对角线相等且互相平分3、已知:如图,在△ABC中,∠C=90,CD为中线,延长CD 到点E,使得 DE=CD、连结AE,BE,则四边形ACBE为矩形、4、、已知,如图、矩形ABCD的对角线AC、BD相交于点O,且E、F、G、H分别是AO、BO、CO、DO的中点,求证:四边形EFGH是矩形、5、在平行四边形ABCD中,对角线AC BD相交于O,EF过O,且AF⊥BC, 求证:四边形AFCE是矩形6、已知MN∥PQ,同旁内角的平分线AB、BC和AD、CD分别相交于点B、D、求证:四边形ABCD是矩形7、(xx山东滨州)如图,在△ABC中,点O是AC边上(端点除外)的一个动点,过点O作直线MN∥BC、设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,连接AE、AF。

最新人教版八年级数学下册 第十八章《矩形》导学案

最新人教版八年级数学下册 第十八章《矩形》导学案

19.2.1矩形学前温故1.平行四边形的性质:(1)平行四边形的两组对边分别________,分别________;(2)平行四边形的对角线______.2.平行四边形的判定:(1)两组对边分别____的四边形是平行四边形;(2)两组对边分别____的四边形是平行四边形;(3)一组对边______的四边形是平行四边形;(4)对角线________的四边形是平行四边形.新课早知1.矩形的概念有一个角是直角的平行四边形叫做__________.2.矩形的性质矩形的四个角都是__________;矩形的对角线__________.3.矩形的一组邻边长分别为3 cm和4 cm,则它的对角线长是__________.4.直角三角形的性质直角三角形斜边上的中线等于斜边的________.5.如图,在Rt△ABC中,∠ABC=90°,AC=10 cm,那么AC边上的中线BD的长为______cm.6.矩形的判定(1)对角线__________的平行四边形是矩形.(2)有三个角是__________的四边形是矩形.7.如图,已知在△ABC中,∠ACB=90°,CD为斜边AB的中线,延长CD到点E,使得DE=CD.连接AE,BE,试证明四边形ACBE为矩形.答案:学前温故1.(1)相等平行(2)互相平分2.(1)平行(2)相等平行且相等互相平分新课早知1.矩形 2.直角相等 3.5 cm 4.一半 5.56.(1)相等(2)直角7.证明:∵在△ABC中,∠ACB=90°,CD为斜边AB的中线,∴AD=DB.∵DE=CD,∴四边形ACBE为平行四边形.∵∠ACB=90°,∴四边形ACBE为矩形.1.直角三角形的性质【例1】 如图,已知AD 为△ABC 的高,∠B =2∠C ,M 为BC 的中点,求证:DM =12AB .证明:取AC 的中点N ,连接MN ,DN ,又∵M 为BC 的中点,∴MN ∥AB 且MN =12AB ,∴∠B =∠NMC .∵AD ⊥BC ,N 为AC 的中点,∴DN =12AC =CN ,∴∠C =∠NDM ,又∠NMC =∠MDN +∠MND ,∠B =2∠C ,∴∠MDN =∠MND ,∴DM =MN ,∴DM =12AB .点拨:本题由中点构建三角形中位线模型,再由直角三角形斜边上的中线等于斜边的一半,构建等腰三角形模型,体现了转化思想及构建模型理念.2.矩形的判定【例2】 如图,在 ABCD 中,E ,F 为BC 上两点,且BE =CF ,AF =DE.求证:(1)△ABF ≌△DCE ; (2)四边形ABCD 是矩形.证明:(1)∵BE =CF ,BF =BE +EF ,CE =CF +EF ,∴BF =CE. ∵四边形ABCD 是平行四边形,∴AB =DC .在△ABF 和△DCE 中,AB =DC ,BF =CE ,AF =DE ,∴△ABF ≌△DCE. (2)∵△ABF ≌△DCE ,∴∠B =∠C .∵四边形ABCD 是平行四边形,∴AB ∥CD . ∴∠B +∠C =180°.∴∠B =∠C =90°. ∴平行四边形ABCD 是矩形. 点拨:在解决具体问题时,要从矩形的众多方法中灵活选用,选择适合本题条件的方法. 3.矩形中的折叠问题【例3】 将矩形纸片ABCD 如下图那样折叠,使顶点B 与顶点D 重合,折痕为EF.若AB =3,AD =3,则△DEF 的周长为__________.解析:∵沿EF 折叠后,点B 与点D 重合,点A 在点A ′的位置,∴A ′E =AE ,A ′D =AB =3,BF =DF. ∵四边形ABCD 为矩形,∴CD =AB =3,BC =AD =3,∠C =∠A =90°. 在Rt △DCF 中,设CF =x ,则DF =BF =3-x ,由勾股定理得 x 2+(3)2=(3-x )2,解得x =1, ∴DF =3-x =3-1=2. 在Rt △A ′DE 中,设A ′E =y ,则DE =AD -AE =3-y ,由勾股定理得y 2+(3)2=(3-y )2,解得y =1, ∴DE =3-y =3-1=2. 连接BD 交EF 于点O , ∵点B 与D 关于EF 对称,∴BO =DO =12BD =12·BC 2+CD 2= 3.在Rt △EDO 中,EO =ED 2-OD 2=22-3=1,易证△DOE ≌△BOF ,∴EO =OF =1,EF =2. ∴△DEF 的周长为DE +DF +EF =2+2+2=6. 答案:6点拨:折叠问题的解题步骤:(1)利用重合的图形传递数据(一般不用重合的图形进行计算);(2)选择直角三角形,这个直角三角形一般一边已知,另两边可通过重合图形找到数量关系,便可利用勾股定理列方程求解.1.下列关于矩形的说法中正确的是( ). A .对角线相等的四边形是矩形 B .对角线互相平分的四边形是矩形 C .矩形的对角线互相垂直且平分 D .矩形的对角线相等且互相平分2.如图,四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是( ).A .AB =CD B .AD =BC C .AB =BCD .AC =BD3.如图,在矩形ABCD 中,对角线AC ,BD 交于点O.已知∠AOB =60°,AC =16,则图中长度为8的线段有( ).A .2条B .4条C .5条D .6条4.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别是AO ,AD 的中点,若AC =8,则EF =__________.5.求证:矩形的对角线相等.6.如图,在矩形ABCD 中,AE 平分∠BAD ,∠1=15°.(1)求∠2的度数; (2)求证:BO =BE.答案:1.D 2.D3.D 由矩形ABCD 得OA =OB =OC =OD .由∠AOB =60°,得OA =OB =AB =OC =OD =DC =8.共有6条线段长度等于8.4.2 根据矩形的对角线相等且互相平分得OD =4,再根据三角形的中位线的性质得EF =12OD =2.5. 解:已知:四边形ABCD 是矩形,AC 与BD 是对角线.求证:AC =BD .证明:∵四边形ABCD 是矩形, ∴AB =DC ,∠ABC =∠DCB =90°. 又∵BC =CB ,∴△ABC ≌△DCB . ∴AC =BD ,∴矩形的对角线相等. 6.(1)解:∵四边形ABCD 是矩形, ∴∠BAD =∠ABC =90°.∵AE 平分∠BAD ,∴∠BAE =∠DAE =45°. ∴∠AEB =90°-45°=45°,∠2=45°-∠1=30°. (2)证明:∵四边形ABCD 是矩形,∴AC =BD ,OA =12AC ,OB =12BD ,∴OA =OB . ∵∠2=30°,∠ABC =90°,∴∠BAO =60°. ∴△ABO 是等边三角形.∴OB =AB .又∵∠BAE =∠AEB =45°, ∴BE =AB .∴BO =BE .。

人教版数学八年级下册 矩形的性质(导学案)

人教版数学八年级下册 矩形的性质(导学案)

18.2 特殊的平行四边形物以类聚,人以群分。

《易经》原创不容易,【关注】店铺,不迷路!18.2.1矩形第1课时矩形的性质一、新课导入1.导入课题演示平行四边形方框,使方框相邻两边成直角时,让学生尝试说出此时四边形的名称,并板书课题.2.学习目标(1)理解矩形的意义,知道矩形与平行四边形的区别与联系.(2)掌握矩形的性质及其推论,会进行有关的计算与证明.3.学习重、难点重点:矩形的性质及其推论.难点:矩形性质的运用.二、分层学习1.自学指导(1)自学内容:P52内容.(2)自学时间:8分钟.(3)自学方法:观看平行四边形方框改变成有一个角是直角时,边的关系是否发生改变.(4)自学参考提纲:①矩形是平行四边形吗?它具有平行四边形的性质吗?②如图,四边形ABCD是矩形,那么:AD∥BC且AD=BC,AB∥CD且AB=CD,∠D=∠B=90°,∵∠A+∠B=180°,∴∠A=∠C=∠D,OA=OC,OB=OD.③矩形还具有哪些一般平行四边形不一定具有的性质呢?结合上图进行论证归纳出来.对于四个角来说有四个角都是直角.对于对角线来说有对角线相等.2.自学:结合自学参考提纲进行自主学习.3.助学(1)师助生:①明了学情:了解学生完成参考提纲时存在的困难问题.②差异指导:引导学生通过平行四边形性质及三角形全等知识探究矩形的特殊性质.(2)生助生:学生之间相互交流和帮助.4.强化(1)矩形具有一般平行四边形的性质.(2)矩形具有的特殊性质.1.自学指导(1)自学内容:P53练习以上的内容.(2)自学时间:6分钟.(3)自学方法:认真阅读“思考”文字内容,对照图形思考BO与AC之间存在什么关系.(4)自学参考提纲:①如教材中图18.2-3,因为矩形ABCD是平行四边形,所以AO=OC,即O是AC的中点,BO是△ABC的边AC上的中线.②因为∠ABC=90°,BO是AC的中线,BO=12BD,AC=BD,所以BO=12AC;也就是说直角三角形中,斜边上的中线等于斜边的一半.③归纳:直角三角形斜边上的中线等于斜边的一半.④例中OA=OB运用了对角线相等和对角线互相平分性质.2.自学:学生结合自学参考提纲进行自主学习.3.助学(1)师助生:①明了学情:关注学生找BO与AC关系的思考过程.②差异指导:指导学生将结论用文字表达出来.(2)生助生:学生相互交流帮助.4.强化:直角三角形的性质:(1)两锐角互余.(2)两直角边的平方和等于斜边的平方.(3)在直角三角形中,30°角所对的直角边等于斜边的一半.(4)直角三角形斜边上的中线等于斜边的一半.三、评价1.学生的自我评价(围绕三维目标):各小学生代表介绍自己的学习方法、收获和困惑之处.2.教师对学生的评价:(1)表现性评价:点评学生在课堂学习中的态度、方法、收获及不足.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).在学习本节课之前,学生对矩形的基本知识有一定的了解,而且有前一节探究平行四边形有关知识作为基础,学生已具有一定的独立思考和探究的能力,所以本节课主要在学生已有的认知水平上,在实际问题情景中,学生自主探索发现矩形的性质定理,使学生经历实践、推理、交流等数学活动过程,亲身体验数学思想方法,促进学生能力的提高(时间:12分钟满分:100分)一、基础巩固(共60分)1.(15分)矩形具有而一般平行四边形不一定具有的性质是(C)A.对边相等B.对角相等C.对角互补D.对角线互相平分2.(15分)直角三角形中,两直角边长分别为12和5,则斜边的中长是(D)A.26B.13C.8.5D.6.53.(15分)矩形ABCD对角线AC,BD相交于点O,AB=5cm,BC=12cm,则△ABO的周长等于18cm.4.(15分)如图,在Rt△ABC中,∠A=30°,∠ACB=90°.点D是AB边的中点.试判断△BCD的形状,并说明理由.解:△BCD为等边三角形.∵∠ACB=90°,点D是AB的中,∴CD=12AB=BD.在Rt△ABC中,∠A=30°,∴∠B=90°-∠A=60°.在△CBD中,CD=BD,∠B=60°, ∴△BCD为等边三角形.二、综合应用(20分)5.矩形的两条对角线的夹角为60°,较短的边长为4.5cm,求对角线长.解:对角线长=2×4.5=9(cm).三、拓展延伸(20分)6.如图,在矩形ABCD中,AC与BD交于O点,BE⊥AC于E,CF⊥BD于F,求证:BE=CF.证明:∵AC、BD为矩形ABCD的对角线,∴OB=OC.又∵∠BEO=∠CFO=90°,∠EOB=∠FOC.∴Rt△EBO≌Rt△FCO,∴BE=CF.【素材积累】阿达尔切夫说过:“生活如同一根燃烧的火柴,当你四处巡视以确定自己的位置时,它已经燃完了。

八年级数学下册 18.2.1《矩形》矩形的性质导学案(新版)新人教版

八年级数学下册 18.2.1《矩形》矩形的性质导学案(新版)新人教版

八年级数学下册 18.2.1《矩形》矩形的性质导学案(新版)新人教版一、学习目标1、掌握矩形的性质定理及推论。

2、能熟练应用矩形的性质进行有关证明和计算。

重点:掌握矩形的性质定理难点:利用矩形的性质进行证明和计算二、自主预(复)习1、自学教材52—53页相关内容,思考、完成下列问题。

拿一个活动的平行四边形,轻轻拉动一个顶点,观察不管怎么拉,它还是一个平行四边形吗?为什么?当平行四边形移到到一个角是直角时,这时的图形是______形。

2、归纳:矩形定义:_____________________叫做矩形(通常也叫_________)矩形具有平行四边形的一切性质,它还有以下性质:矩形性质定理1:_______________________________;矩形性质定理2:_______________________________、3、如图,在矩形ABCD中,AC、BD相交于点O,由性质2有AO=BO=CO=DO=AC=BD、因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于_______的一半。

4、填空:(1)矩形的定义中有两个条件:一是____________,二是___________。

(2)已知矩形的一条对角线与一边的夹角为30,则矩形两条对角线相交所得的四个角的度数分别为_____ 、_____ 、_____ 、_____、5、下列说法错误的是()A、矩形的对角线互相平分B、矩形的对角线相等C、有一个角是直角的四边形是矩形D、有一个角是直角的平行四边形叫做矩形6、矩形的对角线把矩形分成的三角形中,全等三角形一共有()A、2对B、4对C、6对D、8对7、Rt△ABC中,两条直角边分别为6和8,则斜边上的中线长为______、8、已知矩形的一条对角线长为10cm,两条对角线的一个交角为120,则矩形的边长分别为_____cm,_____cm,_____cm,_____cm。

三、合作探究ABCDO例1、如图,矩形ABCD的对角线AC,BD相交于点O ,∠AOB=60,AB=4,求矩形对角线的长。

人教版数学八年级下册 18.2.1.1 矩形 导学案

人教版数学八年级下册 18.2.1.1 矩形 导学案

18.2.1.1 矩形学习目标:1.理解矩形的概念,明确矩形与平行四边形的区别与联系.2.探索并证明矩形的性质,会用矩形的性质解决简单的问题.3.探索并掌握“直角三角形斜边上的中线等于斜边的一半”这个定理.一、学前准备1.如图,在平行四边形ABCD中,找出相等的线段,相等的角,互相平行的线段.相等的线段:______________________________________________相等的角:________________________________________________互相平行的线段:__________________________________________二、预习导航(一)预习指导活动1矩形的定义与性质(阅读教材P52)2.矩形的定义:3.作为特殊的平行四边形,矩形具有平行四边形的所有性质.此外,矩形还有一般平行四边形不具有的特殊性质吗?活动2直角三角形的性质(阅读教材第53页思考)4.在前面的学习中,我们利用平行四边形知识研究了三角形的中位线.类似地,你能结合下图,发现直角三角形的一些特殊性质吗?预习疑惑:(二)预习检测5.矩形具有而一般平行四边形不具有的性质是()A.对角线相等 B.对边相等 C.对角相等 D.对角线互相平分6.在Rt△ABC中,∠ABC=90°,AC=10,BO是斜边上的中线,则BO的长为.7.如图,在矩形ABCD中,对角线AC,BD相交于点O,且AB=6,BC=8,则△ABO的周长为.8.如图,矩形ABCD的对角线AC,BD相交于点O,∠AOB=60°,AB=4.求矩形对角线的长.三、课堂互动问题1矩形的性质9.如图,在矩形ABCD中,AE平分∠BAD,交BC于点E,ED=5,EC=3,求矩形的周长及对角线的长.方法总结:四、总结归纳1.你有什么收获?(从知识、方法、规律方面总结)2.你还有哪些疑惑?3.你认为老师上课过程中还有哪些需要注意或改进的地方?4.在展示中,哪位同学是你学习的榜样?哪个学习小组的表现最优秀?教(学)后记:五、达标检测1.如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.《18.2.1.1 矩形》参考答案一、学前准备1.相等的线段:AB=CD,AD=BC,AO=CO,BO=DO相等的角:∠ABC=∠ADC,∠BAD=∠BCD,∠DAC=∠ACB,∠BAC=∠ACD,∠AOB=∠COD,∠AOD=∠BOC,互相平行的线段AB∥CD,AD∥BC二、预习导航2.有一个角是直角的平行四边形是矩形.3.有,矩形的四个角都是直角,矩形的对角线相等.4.直角三角形斜边上的中线等于斜边的一半.5.A6.57.168.解:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=4,∴AC=2OA=8.即矩形的对角线长为8三、课堂互动9.解:如图,连接BD;∵四边形ABCD是矩形,∴∠C=90°,AB=CD;AD∥BC;∵ED=5,EC=3,∴DC2=DE2﹣CE2=25﹣9,∴DC=4,AB=4;∵AD∥BC,∴∠AEB=∠DAE;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB=4,矩形的周长=2×(4+3+4)=22.由勾股定理得:BD2=42+72,∴BD=.答:矩形的周长为22,对角线的长为.四、总结归纳:略五、达标检测:1.解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴AO=OB,∵AB=AO,∴AB=AO=BO,∴△ABO是等边三角形,∴∠ABD=60°.。

人教版八年级数学下册《矩形的定义和性质》导学案

人教版八年级数学下册《矩形的定义和性质》导学案

18.2.1矩形八年级数学下册 编写人: 审定 班 组 姓名学习目标:1.理解矩形的概念,明确矩形与平行四边形的区别与联系;2.探索并证明矩形的性质,会用矩形的性质解决简单的问题;3.探索并掌握“直角三角形斜边上的中线等于斜边的一半”这个定理。

学习重难点:矩形区别于一般平行四边形的性质的探索、证明和应用。

学习过程:一、情境引入:矩形定义:有一个角为 的 叫矩形。

二、新知探究,合作交流(一)矩形的性质 1、矩形是特殊的平行四边形,因此矩形具有 的所有性质。

矩形除具备平行四边形的性质外还特有的性质?【学生观察、测量、展示】猜想:① ②2、证明矩形①②性质。

【学生分小组讨论完成】性质①已知: 性质② 已知 证明: 证明C D A O O B CD 90°平行四边形 矩形(二)知识延展(1)由矩形性质有OA=OC=21AC OB=OD=21BD 且AC=BD 得OA= = = ∴矩形对角线的交点O 到各顶点的距离 。

(2)由图可知,在矩形中有 个直角三角形,它们分别是 有 个等腰三角形,它们分别是 。

∴我们通常在直角三角形、等腰三角形中求有关边与角。

(3)由矩形性质有∠ABC=900,OA=OB=OC这说明:Rt △ABC 中,若OB 是斜边AC 的 ,则OB= AC∴直角三角形斜边上的中线等于斜边长的(4)∵矩形是平行四边形,∴矩形是 对称图形。

思考:矩形是轴对称图形吗?将矩形作业纸对折,我们发现:矩形是 图形,有 条对称轴。

对称轴是对边 点所确定两条直线。

∴矩形既是 对称图形,又是 对称图形,对称轴为三、反思小结1、 的平行四边形是矩形。

2、矩形性质矩形 边 角 对角线性质对称性3、矩形性质延伸(1)矩形对角线交点到各顶点的距离(2)直角三角形斜边上的 等于斜边的四、例题解析,巩固新知例1:已知如图,矩形ABCD 的两条对角线交于点O, AB= 4cm ,∠AOB=60°。

求矩形对角线的长。

18.2 矩形 第1课时 导学案2022-2023学年人教版八年级数学下册

18.2 矩形 第1课时 导学案2022-2023学年人教版八年级数学下册

18.2 矩形第1课时导学案一、学习目标1.理解矩形是一种特殊的平行四边形;2.掌握矩形的性质,如四个角都是直角,对角线相等等;3.熟练运用矩形的性质求解相关的数学问题。

二、学习重点和难点1.矩形的定义和性质;2.利用矩形的性质进行解题。

三、学习内容1. 矩形的定义和性质矩形是一种特殊的平行四边形,它有以下性质:1.四个角都是直角;2.对角线相等,且互相垂直;3.相邻两边相等。

如下图所示:D ------------ C| || || |A ------------ B其中,AB=CD,AD=BC,AC=BD。

2. 利用矩形的性质进行解题根据矩形的性质,可以解决许多相关的数学问题。

例如:例1:求矩形面积已知矩形ABCD的长为12cm,宽为8cm,求其面积。

解:由于矩形的相邻两边相等,所以可以用长和宽相乘得到矩形的面积:面积 = 长× 宽= 12cm × 8cm = 96cm²例2:求矩形对角线长度已知矩形ABCD的长为6cm,宽为8cm,求其对角线长度。

解:由于矩形的对角线相等,且互相垂直,所以可以用勾股定理求解:对角线长度= √(长² + 宽²) = √(6² + 8²) = √100 = 10cm四、学习方法和建议1.多画图,理解矩形的性质;2.多做练习,熟练应用矩形的性质求解相关问题。

五、学习总结通过本课学习,我们了解了矩形的定义和性质,以及如何利用矩形的性质求解相关数学问题。

在实际生活和学习中,我们要善于观察身边的事物,发现其中的规律和特点,运用数学知识解决实际问题。

人教版数学八年级下册《矩形》导学案

人教版数学八年级下册《矩形》导学案

18.2.1《矩形》导学案班级:姓名:评价:【学习目标】:1.理解矩形的定义.2. 经历探究矩形性质和直角三角形性质的过程,培养探究和推理论证能力.3. 掌握矩形性质和直角三角形性质,并能利用它解决数学问题.【学习重难点】:探索并能够掌握矩形性质和直角三角形性质。

【学习过程】:一,旧知回顾平行四边形有哪些性质?1,边:2,角:3,对角线:二,讲授新课(1)矩形的定义矩形:__________________________________________能举出在日常生活中有矩形形象的例子吗?(2)矩形的性质探究:通过观察,测量,写出矩形的性质。

1,边:2,角:3,对角线:猜想1:矩形的四个角都是直角.(数学语言)已知:如图,四边形ABCD是矩形,且∠A=90°求证:∠A= ∠B= ∠C= ∠D=90°猜想2:矩形的对角线相等。

(数学语言)已知:四边形ABCD是矩形求证:__________________证明:矩形的性质:1,_____________________________________2,_____________________________________(3)直角三角形的性质思考:在Rt△ABC中,BO是斜边AC上的中线,则BO与AC有怎样的数量关系?结论:_____________________________________三,课堂练习1、矩形是轴对称图形吗?请画出它的对称轴。

2,若四边形ABCD是矩形,AB=3㎝,AD=4㎝,则 BD = ㎝,AC= ㎝,OB= ㎝3、在Rt△ABC中,∠ABC=90°,∠A =30°,BC=8,O是斜边AC的中点,则BO的长为 .四,例题讲解已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4,求矩形对角线的长.五,课堂小结六,课后作业:1、(必做题)矩形具有而一般平行四边形不具有的性质是()(A)对角线相等(B)对边相等(C)对角相等(D)对角线互相平分2、(必做题)已知△ABC,∠ABC=900,BD是斜边AC上的中线。

《矩形的性质》精品导学案 人教版八年级数学下册导学案

《矩形的性质》精品导学案 人教版八年级数学下册导学案

授课人年级八学科数学授课时间课题18.2.1矩形的性质课型新授学习目标1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.2.会初步运用矩形的概念和性质来解决有关问题.学习关键重点矩形的性质难点矩形的性质的灵活应用学教过程一、创设情境独立思考1、阅读课本P52 ~53 页,思考下列问题:(1)什么是矩形?矩形是平行四边形吗?(2)矩形有哪些性质?边:角:对角线:对称性:(3)直角三角形斜边的中线和斜边有什么关系?为什么?二、自学检测1.矩形具有而平行四边行不具有的的性质是()A、对角相等B、对角线相等C、对角线互相平分D、对边平行且相等2.已知:四边形ABCD是矩形,(1)若已知AB=8㎝,AD=6㎝,则AC=_____ ㎝,OB=_____ ㎝(2)若已知∠DOC=120°,AC=8㎝,则AD=____cm,AB=____cm3.已知△ABC是Rt△,∠ABC=90°,BD是斜边AC上的中线,(1)若BD=3㎝,则AC=㎝(2)若∠C=30°,AB=5㎝,则AC=㎝,BD=㎝三、例题精讲例1 已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.变式1:已知:如图,矩形ABCD的两条对角线相交于点O,∠AO D=120°,AC=8,求AB,BC变式2:已知:如图,矩形 ABCD,AB长8 cm ,对角线比AD边长4 cm.求AD的长及点A到BD的距离AE的长.分析:(1)因为矩形四个角都是直角,因此矩形中计算经常要用到直角三角形的性质、勾股定理及方程思想.(2)“直角三角形斜边上的高”是一个基本图形,利用等面积法。

变式3:已知:矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.分析:CE、EF分别是BC,AE等线段上的一部分,若AF=BE,则问题解决,而证明AF=BE,只要证明△ABE≌△DFA即可,在矩形中容易构造全等的直角三角形.四、达标检测1.(4分)矩形的两条对角线的夹角为60°,对角线长为15cm,较短边的长为().(A)12cm (B)10cm (C)7.5cm (D)5cm2.(4分)下列说法错误的是().(A)矩形的对角线互相平分(B)矩形的对角线相等(C)有一个角是直角的四边形是矩形(D)有一个角是直角的平行四边形叫做矩形3.(4分)矩形的对角线把矩形分成的三角形中全等三角形一共有().(A)2对(B)4对(C)6对(D)8对4.(4分)(1)已知矩形的一条对角线与一边的夹角为30°,则矩形两条对角线相交所得的四个角的度数分别为、、、.(2)已知矩形的一条对角线长为10cm,两条对角线的一个交角为120°,则矩形的边长分别为 cm, cm, cm, cm.5.(8分)如图,矩形ABCD中,AB=2BC,且AB=AE,求∠CBE的度数.选做题:(8分)已知:矩形ABCD中,BC=2AB,E是BC的中点,求证:EA⊥ED.。

新人教版八年级数学下册第1课时 矩形的性质(导学案)

新人教版八年级数学下册第1课时 矩形的性质(导学案)

18.2 特殊的平行四边形18.2.1矩形第1课时矩形的性质一、新课导入1.导入课题演示平行四边形方框,使方框相邻两边成直角时,让学生尝试说出此时四边形的名称,并板书课题.2.学习目标(1)理解矩形的意义,知道矩形与平行四边形的区别与联系.(2)掌握矩形的性质及其推论,会进行有关的计算与证明.3.学习重、难点重点:矩形的性质及其推论.难点:矩形性质的运用.二、分层学习1.自学指导(1)自学内容:P52内容.(2)自学时间:8分钟.(3)自学方法:观看平行四边形方框改变成有一个角是直角时,边的关系是否发生改变.(4)自学参考提纲:①矩形是平行四边形吗?它具有平行四边形的性质吗?②如图,四边形ABCD是矩形,那么:AD∥BC且AD=BC,AB∥CD且AB=CD,∠D=∠B=90°,∵∠A+∠B=180°,∴∠A=∠C=∠D,OA=OC,OB=OD.③矩形还具有哪些一般平行四边形不一定具有的性质呢?结合上图进行论证归纳出来.对于四个角来说有四个角都是直角.对于对角线来说有对角线相等.2.自学:结合自学参考提纲进行自主学习.3.助学(1)师助生:①明了学情:了解学生完成参考提纲时存在的困难问题.②差异指导:引导学生通过平行四边形性质及三角形全等知识探究矩形的特殊性质.(2)生助生:学生之间相互交流和帮助.4.强化(1)矩形具有一般平行四边形的性质.(2)矩形具有的特殊性质.1.自学指导(1)自学内容:P53练习以上的内容.(2)自学时间:6分钟.(3)自学方法:认真阅读“思考”文字内容,对照图形思考BO与AC之间存在什么关系.(4)自学参考提纲:①如教材中图18.2-3,因为矩形ABCD是平行四边形,所以AO=OC,即O是AC的中点,BO是△ABC的边AC上的中线.②因为∠ABC=90°,BO是AC的中线,BO=12BD,AC=BD,所以BO=12AC;也就是说直角三角形中,斜边上的中线等于斜边的一半.③归纳:直角三角形斜边上的中线等于斜边的一半.④例1中OA=OB运用了对角线相等和对角线互相平分性质.2.自学:学生结合自学参考提纲进行自主学习.3.助学(1)师助生:①明了学情:关注学生找BO与AC关系的思考过程.②差异指导:指导学生将结论用文字表达出来.(2)生助生:学生相互交流帮助.4.强化:直角三角形的性质:(1)两锐角互余.(2)两直角边的平方和等于斜边的平方.(3)在直角三角形中,30°角所对的直角边等于斜边的一半.(4)直角三角形斜边上的中线等于斜边的一半.三、评价1.学生的自我评价(围绕三维目标):各小组学生代表介绍自己的学习方法、收获和困惑之处.2.教师对学生的评价:(1)表现性评价:点评学生在课堂学习中的态度、方法、收获及不足.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).在学习本节课之前,学生对矩形的基本知识有一定的了解,而且有前一节探究平行四边形有关知识作为基础,学生已具有一定的独立思考和探究的能力,所以本节课主要在学生已有的认知水平上,在实际问题情景中,由学生自主探索发现矩形的性质定理,使学生经历实践、推理、交流等数学活动过程,亲身体验数学思想方法,促进学生能力的提高.(时间:12分钟满分:100分)一、基础巩固(共60分)1.(15分)矩形具有而一般平行四边形不一定具有的性质是(C)A.对边相等B.对角相等C.对角互补D.对角线互相平分2.(15分)直角三角形中,两直角边长分别为12和5,则斜边的中线长是(D)A.26B.13C.8.5D.6.53.(15分)矩形ABCD对角线AC,BD相交于点O,AB=5cm,BC=12cm,则△ABO的周长等于18cm .4.(15分)如图,在Rt△ABC中,∠A=30°,∠ACB=90°.点D是AB边的中点.试判断△BCD的形状,并说明理由.解:△BCD为等边三角形.∵∠ACB=90°,点D是AB的中点,∴CD=12AB=BD.在Rt△ABC中,∠A=30°,∴∠B=90°-∠A=60°.在△CBD中,CD=BD,∠B=60°,∴△BCD为等边三角形.二、综合应用(20分)5.矩形的两条对角线的夹角为60°,较短的边长为4.5cm,求对角线长.解:对角线长=2×4.5=9(cm).三、拓展延伸(20分)6.如图,在矩形ABCD中,AC与BD交于O点,BE⊥AC于E,CF⊥BD于F,求证:BE=CF.证明:∵AC、BD为矩形ABCD的对角线,∴OB=OC.又∵∠BEO=∠CFO=90°,∠EOB=∠FOC.∴Rt△EBO≌Rt△FCO, ∴BE=CF.。

义务教育教科书(人教版)数学八年级下册《矩形的性质》导学案

义务教育教科书(人教版)数学八年级下册《矩形的性质》导学案

义务教育教科书(人教版)数学八年级下册18.2.1矩形的性质导学案学习目标掌握矩形的概念和性质;理解矩形与平行四边形的区别与联系;会运用矩形的概念和性质来解决有关问题。

理解“直角三角形斜边上的中线等于斜边的一半”的性质并会运用。

学习重点:矩形的性质及直角三角形斜边上的中线的性质的探索和应用。

学习难点:矩形的性质的灵活应用教学过程:一、情景引入1.同学们的桌面是什么图形?_________2.假设四只蚂蚁分别站在你们桌面的四个顶点处,则时沿着对角线以相同的速度同时去吃放在对角线的交点处的饼干,哪只蚂蚁先到达?为什么?二、自主探究活动一观察图形变化,得矩形定义1. 观察发现平行四边形变化中什么变?什么不变?2. 你能给这种特殊的图形下定义吗?_________活动二 (小组活动) 观察得矩形的角和对角线的特殊关系,度量数学教科书验证矩形的角和对角线的特殊关系.猜想:矩形的特殊的性质?________________________活动三证明猜想的矩形的特殊性质结论: _____________________.________________________.活动四 (小组活动) 动手操作,得矩形的对称性矩形是轴对称图形吗?如果是,矩形是有几条对称轴?矩形对称轴是什么?结论: _____________________.三、学以致用,解决问题1、矩形具有而平行四边形不具有的的性质是()(A)对角相等(B)对角线相等(C)对角线互相平分(D)对边平行且相等2.假设四只蚂蚁分别站在你们桌面的四个顶点处,同时沿着对角线以相同的速度去吃放在对角线的交点处的饼干,哪只蚂蚁先到达?为什么?四、例题精讲例1、已知: 如图,矩形ABCD 的两条对角线交于点O , AB= 4cm ,∠AOB=60°。

求矩形对角线的长。

完成例题变形:一个矩形的一条对角线长为8,两条对角线的一个交角为1200,求这个矩形的边长五、自主探究探究得直角三角形的斜边中线的性质如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,我们观察Rt △BCD 中,CO 是斜边上的中线,请探讨OC 与BD 的关系结论: _________________六、随堂检测1、已知△ABC 是Rt △,∠ABC=900,BD 是斜边AC 上的中线(1)若BD=3,则AC = ㎝ (2 )若∠C=30°,AB =5,则AC = 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5)已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.
(6)已知:如图,矩形ABCD的两条
2、达标作业:
(1)教材页题;
(2)资源评价页题。
任务5:探究完成《资源评价》页题。
同桌交流
1、交流独立预习和独立学习成果,互相检查、批阅;
2、把两人都不会的问题向教师汇报。
小组合作
1、独立学习和同桌流不会的、不懂的问题。
2、学习重点难点问题和任务。
3、把学习任务分配给小组,小组合作学习形成共识的结论或方案。
展示汇报
1、向全班展示汇报共识的结论、方案或成果(没有小组合作学习,可以展示独立学习成果)。
2、同组或其他组,或老师要认真倾听,认真质疑,认真补充,认真纠正。

反馈
反馈提升
1、整理导学案:对导学案进行修修补补的梳理。
2、进行反思评价:收获、不足、问题进行梳理、整理评价,记录在学记中并进行汇报,从而提升自己的学习能力。

练习
练习巩固
1、达标练习:
(1)矩形ABCD中,AB=3,BC=4,则AC=_____.矩形的面积为______.
(2)如图所示,矩形ABCD的两条对角线相交于O,∠AOD=120°,AB=4cm,则矩形对角线AC长为______cm.
(3)下列性质中,矩形具有但平行四边形不一定具有的是()
A.对边相等B.对角相等
C.对角线相等D.对边平行
(4)在矩形ABCD中,对角线AC,BD相交于点O,若∠AOB=100°,则∠OAB=_____.
二、独立学习
任务1:阅读教材P52“思考”上面的内容,完成以下任务:(1)在日常生活中,门窗框、书桌面、教科书封面等都是平行四边形,这些图形除了具有平行四边形的性质外,还具有什么共同的特征?(2)写出至少3个符合上述特征的生活中的例子。(3)在课堂笔记本上整理矩形的定义及其符号表示。
任务2:阅读教材P52“思考”,自己画一个矩形,想一想:从矩形的意义可以探究矩形具有的性质:
课题:§18.2.1矩形的定义及性质课型:新知学习
流程
环节
学习过程
学记

目标
目标激励
学习目标:
1、解释矩形的意义,知道矩形与平行四边形的区别与联系。
2、描述矩形的性质定理,会用定理进行有关的计算与证明。
3、证明直角三角形斜边上中线的性质与应用。

学习
独立思考
一、独立预习
阅读教材52-53页内容,在书中用横线画出本节知识点,用波浪线标注疑难点。
(1)矩形具有具有的一切性质。
(2)矩形与平行四边形比较又有其特殊的性质:(在课堂笔记本上归纳性质、并用符号表示)。
任务3:阅读教材P53“思考”,并完成思考中的问题。在课堂笔记本上整理归纳直角三角形斜边上中线的性质,并用符号表示。
任务4:自学教材P53“例1”,注意解题过程的书写方式。结合图18.2-4根据题意自己先分析,再看书中的解题步骤。
相关文档
最新文档