高考数学概率与统计

合集下载

2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结

2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结

2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结2024高考数学压轴题——概率与统计的挑战与应对随着高考的临近,数学科目的复习也进入了关键阶段。

2024年的高考数学压轴题将会涉及到概率与统计的内容,这不仅考察学生的基本数学知识,更侧重于考察学生的逻辑思维能力、实际应用能力和问题解决能力。

本文将针对这一部分的常见题型、解题思路和知识点进行总结,希望能为广大考生提供一些帮助和指导。

一、常见题型的解题思路1、概率计算:在解决概率计算问题时,学生需要明确事件的独立性、互斥性和概率公式的应用。

尤其是古典概率和条件概率的计算,需要学生熟练掌握。

对于涉及多个事件的概率计算,学生需要理清事件的关联关系,采用加法、乘法或全概率公式进行计算。

2、随机变量及其分布:这部分要求学生掌握离散型和连续型随机变量的分布律及分布函数,理解并掌握几种常见的分布,如二项分布、泊松分布和正态分布等。

对于随机变量的数字特征,如期望、方差和协方差等,学生需要理解其含义并掌握计算方法。

3、统计推断:在统计推断问题中,学生需要掌握参数估计和假设检验的基本方法。

对于点估计,学生需要理解矩估计法和最大似然估计法的原理,并能够进行计算。

对于假设检验,学生需要理解显著性检验的原理,掌握单侧和双侧检验的方法。

4、相关与回归分析:相关与回归分析要求学生能够读懂散点图,理解线性相关性和线性回归的概念,掌握回归方程的拟合方法和拟合优度的评估方法。

二、概率与统计的相关知识点总结1、概率的基本概念:事件、样本空间、事件的概率、互斥事件、独立事件等。

2、随机变量及其分布:离散型随机变量和连续型随机变量,二项分布、泊松分布和正态分布等。

3、统计推断:参数估计、假设检验、点估计、置信区间、单侧和双侧检验等。

4、相关与回归分析:线性相关性和线性回归的概念,回归方程的拟合方法和拟合优度的评估方法。

三、示例分析下面我们通过一个具体的示例来演示如何分析和解决一道概率与统计的压轴题。

高考数学概率与统计题型解析与答题技巧

高考数学概率与统计题型解析与答题技巧

高考数学概率与统计题型解析与答题技巧在高考数学中,概率与统计是一个重要的板块,它不仅考查学生的数学知识和技能,还培养学生的数据分析和推理能力。

对于很多同学来说,这部分内容既有一定的挑战性,又充满了得分的机会。

下面我们就来详细解析高考数学中概率与统计的常见题型以及相应的答题技巧。

一、概率题型1、古典概型古典概型是概率中最基础的题型之一。

它的特点是试验结果有限且等可能。

例如,从装有若干个红球和白球的袋子中摸球,计算摸到某种颜色球的概率。

答题技巧:首先,确定总的基本事件数和所求事件包含的基本事件数。

然后,利用古典概型的概率公式 P(A)=所求事件包含的基本事件数÷总的基本事件数进行计算。

2、几何概型几何概型与古典概型不同,它的试验结果是无限的。

常见的有长度型、面积型、体积型几何概型。

比如,在一个区间内随机取一个数,求满足某个条件的概率。

答题技巧:对于几何概型,关键是要正确确定几何度量。

例如,长度型就计算长度,面积型就计算面积,体积型就计算体积。

然后,按照几何概型的概率公式 P(A)=构成事件 A 的区域长度(面积或体积)÷试验的全部结果所构成的区域长度(面积或体积)进行求解。

3、条件概率条件概率是指在事件 B 发生的条件下,事件 A 发生的概率。

题目中通常会给出一些条件,让我们计算在这些条件下的概率。

答题技巧:利用条件概率公式 P(A|B)= P(AB)÷P(B),先求出 P(AB)和 P(B),再计算条件概率。

4、相互独立事件与互斥事件相互独立事件是指一个事件的发生与否对另一个事件的发生概率没有影响;互斥事件则是指两个事件不能同时发生。

答题技巧:对于相互独立事件,它们同时发生的概率用乘法计算,即 P(AB)= P(A)×P(B);对于互斥事件,它们至少有一个发生的概率用加法计算,即 P(A∪B)= P(A)+ P(B)。

二、统计题型1、抽样方法包括简单随机抽样、分层抽样和系统抽样。

高考数学中的概率与统计

高考数学中的概率与统计

高考数学中的概率与统计在高考数学中,概率与统计是两个非常重要的概念。

概率是指某件事情发生的可能性,而统计则是通过数据分析找出事情的规律。

本文将介绍高考中的概率和统计内容,以及对于考生应该如何应对这些考点。

一、概率概率是高考数学中的重点之一,它涉及到很多基本概念和计算方法。

我们先来看看常见的概率问题:1. 定义概率:概率是指某事件发生的可能性,通常用一个介于0 到 1 之间的数字表示。

比如说,掷一枚骰子,出现 1 的概率是1/6,出现偶数的概率是 3/6=1/2。

2. 事件的互斥:如果两个事件不能同时发生,就称它们互斥。

比如说,掷一枚骰子,出现 1 和出现 2 是互斥的事件。

此时它们的概率可以简单地相加。

3. 事件的独立:如果两个事件的发生不会互相影响,就称它们独立。

比如说,掷两枚骰子,第一枚出现 1 的概率是 1/6,第二枚出现 2 的概率也是 1/6。

此时出现 1 和 2 的概率就是它们的乘积。

4. 条件概率:条件概率是指在已知一个事件发生的情况下,另一个事件发生的可能性。

比如说,从一副扑克牌中取出一张牌,它是红桃的概率是 1/4,如果告诉你它是一张面值为 A 的牌,那么这张牌是红桃的概率就变成了 1/2。

考生在备考概率时,需要将这些基本概念掌握清楚,并能够结合具体问题来进行计算。

此外,还需要注意一些细节问题,比如说事件是否独立、概率的范围等等。

二、统计统计是高考数学中的另一个重要考点,它用来描述数据的分布规律和相关性。

常见的统计问题有:1. 统计指标:统计学有很多指标,比如说平均数、中位数、众数、标准差等等。

这些指标用来描述数据的各种特征,可以通过计算得出。

2. 直方图:直方图是一种常用的数据可视化工具。

它将一段数据区间划分为若干个子区间,并计算每个子区间的数据量,然后将它们用矩形图形表示出来。

通过直方图可以看出数据的分布规律,比如说是否呈正态分布等等。

3. 散点图:散点图可以用来表示两个变量之间的关系。

概率与统计高考知识点

概率与统计高考知识点

概率与统计高考知识点在高考数学中,概率与统计是一个重要的考点。

概率与统计不仅涉及到数学方面的知识,也与现实生活密切相关。

本文将通过几个具体的例子,深入探讨概率与统计相关的知识点,帮助考生更好地理解这一部分内容。

一、概率与事件概率与事件是概率与统计中的基础概念。

概率是描述事件发生可能性大小的数值,通常用P(A)表示。

事件是指随机试验中的一种结果,可以是一个单一结果或若干个结果的组合。

例如,投掷一枚骰子,出现点数小于等于3的事件记为A,则P(A)为1/2。

二、基本事件与对立事件基本事件是指随机试验中的最简单、最基础的事件,它不可再分解成其他事件。

对立事件是指两个事件发生的可能性互相排斥,即当一个事件发生时,另一个事件不发生。

例如,投掷一枚硬币,出现正面和出现反面就是对立事件。

三、概率的性质概率具有以下几个性质:1.非负性:对于任何事件A,有P(A)≥0;2.必然性:对于必然事件S(整个样本空间),有P(S)=1;3.可加性:对于任意两个互不相容的事件A和B,有P(A∪B)=P(A)+P(B)。

四、条件概率条件概率是指在已经发生一个事件的条件下,另一个事件发生的概率。

条件概率表示为P(A|B),其中A是已知发生的事件,B是条件事件。

例如,某班级男生占总人数的1/4,女生占总人数的3/4,已知某学生是女生,求其也是该班级的概率。

我们可以使用条件概率计算得出P(女生|学生) = P(女生∩学生) / P(学生) = 3/4。

五、独立事件独立事件是指两个事件的发生与否互相不影响。

如果事件A和事件B是独立事件,则有P(A∩B) = P(A) × P(B)。

例如,抛掷一枚硬币和掷一枚骰子,两个事件是独立的。

六、随机变量与概率分布随机变量是表示随机试验结果的变量。

离散型随机变量只能取有限个或可列个数值,连续型随机变量可以取任意实数值。

概率分布是随机变量取各个值的概率。

例如,抛掷一枚骰子,骰子的点数就是一个随机变量,其概率分布为离散型。

高考文科数学概率与统计题型归纳与训练

高考文科数学概率与统计题型归纳与训练

高考文科数学概率与统计题型归纳与训练高考文科数学概率与统计题型归纳与训练近年来,随着高考评价重点的转变,我国高考数学概率与统计所占的比重越来越大,也极大地影响了学生的试题解答,特别是对文科类学生而言。

因此,归纳与训练概率与统计的题型对提升高考成绩非常有效。

一、高考概率与统计试题类型1、概率题:(1)概率概念题:要求判断某事件的可能性大小、求概率大小、比较概率大小,以及用中文描述概率大小等概念性问题。

(2)条件概率及贝叶斯公式:求两事件同时发生的条件概率,用贝叶斯公式求解概率问题。

(3)随机变量和概率分布:讨论正态分布、泊松分布等随机变量的概率分布。

2、统计学题:(1)数据的勘误析:把调查所得原始数据准确地归类编单,以便找出这些数据中蕴含的结论。

(2)图表分析:分析调查对象之间的关系,从折线图、饼形图、柱形图等图表中获取相应的数据。

二、概率与统计的训练方法1、理论思考训练:多看有关概率、统计的权威论文和教材,把基本概念牢牢掌握,把常见的概率公式及统计公式及推导式脱口而出。

2、示范练习:对常考的知识点补充示范练习,可以通过复现例题和大量习题来熟悉该知识点,从而深入理解,提高解题能力。

3、联系模拟考试:利用模拟考试把学过的知识点和技巧联系起来,在试题中能够驾轻就熟地掌握各试题技巧,大大提升实力。

4、强化记忆:记忆知识点、公式要选择相应的方法,通过反复记忆和熟习,把重点内容融会贯通,熟练记忆几个重点的式子和结论有助于考试的取得好成绩。

总之,学习概率与统计,除了要用心去理解之外,还需要不断的训练,把一些重点的知识点、公式强化记忆,加深理解,才能在考试中取得较好的成绩。

高考数学中概率与统计的解题技巧有哪些

高考数学中概率与统计的解题技巧有哪些

高考数学中概率与统计的解题技巧有哪些在高考数学中,概率与统计是一个重要的考点,也是很多同学感到头疼的部分。

但其实,只要掌握了一些解题技巧,就能在这部分题目中取得较好的成绩。

首先,我们要对基本概念有清晰的理解。

概率的定义是事件发生的可能性大小,而统计则是对数据的收集、整理、分析和解释。

比如,随机事件、必然事件、不可能事件,以及概率的加法公式、乘法公式等,这些都是解题的基础。

如果对基本概念模糊不清,就很容易在解题时出现错误。

在理解概念的基础上,要善于运用公式。

比如,古典概型的概率公式 P(A) = m / n ,其中 m 是事件 A 包含的基本事件个数,n 是基本事件总数。

还有条件概率公式 P(B|A) = P(AB) / P(A) 等。

在使用公式时,要注意其适用条件,不能盲目套用。

对于排列组合问题,这是概率计算中的一个常见难点。

要掌握好排列数和组合数的计算公式,以及解决排列组合问题的常用方法,如捆绑法、插空法、特殊元素优先法等。

例如,在计算从 n 个不同元素中取出 m 个元素的排列数时,如果存在相邻元素需要捆绑在一起看作一个整体,再与其他元素进行排列;如果存在不相邻元素,则先排其他元素,然后将不相邻元素插入到这些元素形成的空隙中。

概率与统计中的图表问题也不容忽视。

比如,频率分布直方图、茎叶图等。

要能够从图表中获取关键信息,比如频率、平均数、中位数、众数等。

通过对图表的观察和分析,找到解题的线索。

在处理概率问题时,要学会分类讨论。

有时候一个问题可能需要分成多种情况来考虑,分别计算每种情况的概率,然后再根据题目要求进行综合。

例如,在掷骰子的问题中,可能需要分别考虑点数为奇数和偶数的情况。

另外,反证法也是一种常用的解题技巧。

当直接证明某个结论比较困难时,可以先假设其反面成立,然后推出矛盾,从而证明原结论的正确性。

在统计部分,样本均值、样本方差的计算方法要熟练掌握。

同时,要理解样本对总体的估计作用,能够根据样本数据对总体的参数进行估计和推断。

高考数学概率与统计:随机变量与二项分布

高考数学概率与统计:随机变量与二项分布

高考数学概率与统计:随机变量与二项分布在高考数学中,概率与统计一直是重要的考点之一,而随机变量与二项分布更是其中的关键内容。

对于许多同学来说,这部分知识可能会感到有些抽象和难以理解,但只要我们掌握了其基本概念和原理,就能轻松应对相关的题目。

首先,让我们来了解一下什么是随机变量。

简单来说,随机变量就是用来表示随机试验结果的变量。

比如说,抛一枚硬币,结果可能是正面或反面,如果我们用 X 表示抛硬币的结果,当正面时 X=1,反面时 X=0,那么 X 就是一个随机变量。

随机变量可以分为离散型随机变量和连续型随机变量。

离散型随机变量的取值是可以一一列举出来的,就像刚才抛硬币的例子;而连续型随机变量的取值则是充满某个区间的,比如测量一个物体的长度,其长度值可以在一个范围内连续变化。

在了解了随机变量的基本概念后,我们来重点探讨一下二项分布。

二项分布是一种常见的离散型概率分布。

想象一下,进行 n 次独立重复的试验,每次试验只有两种可能的结果,比如成功或失败,且每次试验成功的概率都为 p,失败的概率为 1 p。

那么在这 n 次试验中,成功的次数 X 就服从二项分布,记作 X ~ B(n, p)。

为了更好地理解二项分布,我们来看一个具体的例子。

假设有一道选择题,有四个选项,其中只有一个是正确答案。

某同学完全靠猜测来答题,每次猜对的概率为 025。

现在他要做 10 道这样的选择题,那么他猜对的题目数量 X 就服从二项分布 B(10, 025)。

那么,如何计算二项分布的概率呢?我们有一个公式:P(X = k) =C(n, k) p^k (1 p)^(n k) ,其中 C(n, k) 表示从 n 个元素中选取 k 个元素的组合数。

比如说,在刚才的例子中,要计算他猜对 3 道题的概率,就是 P(X= 3) = C(10, 3) 025^3 075^7 。

二项分布有一些重要的性质和特点。

比如,它的均值(也就是期望)为 E(X) = np ,方差为 D(X) = np(1 p) 。

高考数学2024概率与统计历年题目全集

高考数学2024概率与统计历年题目全集

高考数学2024概率与统计历年题目全集概率与统计是高中数学中一门重要的学科,也是高考数学考试的一部分。

在概率与统计中,我们需要通过概率的计算和统计的方法来分析和解决实际问题。

为了帮助同学们复习和准备高考数学考试,本文整理了高考数学2024概率与统计历年题目全集,希望能对同学们有所帮助。

1. 单项选择题1) 已知概率为P(A) = 0.2,P(B) = 0.4,事件A、B相互独立,求P(A并B)的值。

2) 一次抛掷一硬币,设正面向上的概率为p,反面向上的概率为q。

连续抛掷3次硬币,求正面朝上的次数不超过2次的概率。

3) 某音乐社有男生40人,女生60人。

从中随机抽取一人,求抽到女生的概率。

2. 典型案例题1) 某超市中购买了100个某品牌产品,其中有5个是次品。

现从中不放回地连续抽取3个产品,求至少有一个次品的概率。

2) 某餐厅的饭菜有4个主食和6个副食。

现从中选择2个饭菜,求至少有一个主食的概率。

3. 解答题1) 设事件A与事件B相互独立,且P(A) = 0.3,P(B) = 0.5。

求下列事件的概率:a) P(A并B)b) P(A或B)c) P(A的对立事件)2) 设P(A) = 0.4,P(B) = 0.3,P(A并B) = 0.1,求下列事件的概率:a) P(A的对立事件)b) P(B的对立事件)c) P(A或B)3) 有一批产品,其中20%是次品。

现从中不放回地连续抽取3个产品,求以下事件的概率:a) 已抽出的3个产品都是次品;b) 至少有一个次品。

(提示:利用组合数学中的排列、组合知识进行计算)本文仅列举了一部分高考数学2024概率与统计历年题目,希望能给同学们提供一些复习和备考的参考。

在备考过程中,同学们还需结合教材和课堂上的知识,多进行习题训练和模拟考试,提高解题能力和应试技巧。

祝同学们取得优异的高考成绩!。

高考数学专题《概率与统计》解读含答案解析

高考数学专题《概率与统计》解读含答案解析

重难点04 概率与统计新高考概率与统计主要考查统计分析、变量的相关关系,独立性检验、用样本估计总体及其特征的思想,以排列组合为工具,考查对五个概率事件的判断识别及其概率的计算。

试题考查特点是以实际应用问题为载体,小题部分主要是考查排列组合与古典概型,解答题部分主要考查独立性检验、超几何分布、离散型分布以及正态分布对应的数学期望以及方差。

概率的应用立意高,情境新,赋予时代气息,贴近学生的实际生活。

取代了传统意义上的应用题,成为高考中的亮点。

解答题中概率与统计的交汇是近几年考查的热点趋势,应该引起关注。

求解概率问题首先确定是何值概型再用相应公式进行计算,特别对于解互斥事件(独立事件)的概率时,要注意两点:(1)仔细审题,明确题中的几个事件是否为互斥事件(独立事件),要结合题意分析清楚这些事件互斥(独立)的原因;(2)要注意所求的事件是包含这些互斥事件(独立事件)中的哪几个事件的和(积),如果不符合以上两点,就不能用互斥事件的和的概率.离散型随机变量的均值和方差是概率知识的进一步延伸,是当前高考的热点内容.解决均值和方差问题,都离不开随机变量的分布列,另外在求解分布列时还要注意分布列性质的应用.捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列。

相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端。

定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法。

标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成。

有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法。

对于二项式定理的应用,只要会求对应的常数项以及对应的n项即可,但是应注意是二项式系数还是系数。

新高考统计主要考查统计分析、变量的相关关系,独立性检验、用样本估计总体及其特征的思想,以排列组合为工具,考查对五个概率事件的判断识别及其概率的计算。

高考数学试卷中概率与统计内容的分析与思考

高考数学试卷中概率与统计内容的分析与思考

高考数学试卷中概率与统计内容的分析与思考一、概率与统计在高考数学试卷中的重要性高考数学试卷中概率与统计内容的出现频率较高,占据一定的比例。

这是因为概率与统计是数学的重要分支,与现实生活密切相关,具有重要的应用价值。

在解决实际问题时,概率与统计给予我们科学的、客观的方法。

在高考数学试卷中,通过对概率与统计的考查,可以检验考生运用概率与统计工具解决实际问题的能力,培养学生的科学思维,提高学生对信息的处理能力。

二、概率与统计在高考数学试卷中所涉及的内容1. 概率高考数学试卷中的概率部分主要包括概率基本概念、随机事件、概率计算、概率分布等内容。

考生需要掌握概率的基本知识,如概率的定义、性质,通过计算确定事件发生的概率。

同时,还需要了解随机事件的定义及其性质,并能够结合具体问题进行分析计算。

另外,了解概率的分布情况,如伯努利试验、二项分布、正态分布等,对于分析和解决实际问题非常重要。

2. 统计统计包括统计基本概念、统计图表的应用、抽样调查与统计推断等。

考生需要熟悉统计中的基本概念,如样本、总体、频数等,能够分析和解读统计图表,如直方图、折线图、饼状图等,能够进行抽样调查和统计推断,熟悉抽样方法及其合理性。

同时,还需要了解一些统计学原理,如假设检验、置信区间等,以及统计数据的处理和分析方法。

三、高考数学试卷中概率与统计内容的考查方式1. 章节串联概率与统计内容分布在高考数学试卷中的不同章节,常常通过不同章节的知识点进行串联,体现出知识的整体性。

考生需要在解答问题时,能够将不同章节的知识应用起来,进行综合分析和解决问题。

2. 真实情境在高考数学试卷中,概率与统计的内容常常通过真实的生活场景进行设置,考察考生对真实情境的分析和处理能力。

考生需要在解答问题时,能够根据问题所涉及的真实环境,运用概率与统计的相关知识进行推理和计算,解决实际问题。

3. 综合运用概率与统计的内容经常与其他数学知识进行综合运用,考察考生的数学综合能力。

高考数学-概率与统计(含22年真题讲解)

高考数学-概率与统计(含22年真题讲解)

高考数学-概率与统计(含22年真题讲解)1.【2022年全国甲卷】某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】>70%,所以A错;讲座前中位数为70%+75%2讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;讲座后问卷答题的正确率的极差为100%−80%=20%,讲座前问卷答题的正确率的极差为95%−60%=35%>20%,所以D错.故选:B.2.【2022年全国甲卷】从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.23【答案】C【解析】【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3 ,4),(3,5),(3,6),(4,5),(4,6),(5,6)15种情况,其中数字之积为4的倍数的有(1,4),(2,4),(2,6),(3,4),(4,5),(4,6)6种情况,故概率为615=25.故选:C.3.【2022年全国乙卷】分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6【答案】C【解析】【分析】结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.【详解】=7.4,A选项结论正确.对于A选项,甲同学周课外体育运动时长的样本中位数为7.3+7.52对于B选项,乙同学课外体育运动时长的样本平均数为:6.3+7.4+7.6+8.1+8.2+8.2+8.5+8.6+8.6+8.6+8.6+9.0+9.2+9.3+9.8+10.1=8.50625>8,16B选项结论正确.=0.375<0.4,对于C选项,甲同学周课外体育运动时长大于8的概率的估计值616C选项结论错误.=0.8125>0.6,对于D选项,乙同学周课外体育运动时长大于8的概率的估计值1316D选项结论正确.故选:C4.【2022年全国乙卷】某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p1,p2,p3,且p3>p2>p1>0.记该棋手连胜两盘的概率为p,则()A.p与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大【答案】D【解析】【分析】该棋手连胜两盘,则第二盘为必胜盘.分别求得该棋手在第二盘与甲比赛且连胜两盘的概率p;该棋手在第二盘与乙比赛且连胜两盘的概率p乙;该棋手在第二盘与丙比赛且连胜两盘甲的概率p丙.并对三者进行比较即可解决【详解】该棋手连胜两盘,则第二盘为必胜盘,记该棋手在第二盘与甲比赛,且连胜两盘的概率为p甲则p甲=2(1−p2)p1p3+2p2p1(1−p3)=2p1(p2+p3)−4p1p2p3记该棋手在第二盘与乙比赛,且连胜两盘的概率为p乙则p乙=2(1−p1)p2p3+2p1p2(1−p3)=2p2(p1+p3)−4p1p2p3记该棋手在第二盘与丙比赛,且连胜两盘的概率为p丙则p丙=2(1−p1)p3p2+2p1p3(1−p2)=2p3(p1+p2)−4p1p2p3则p甲−p乙=2p1(p2+p3)−4p1p2p3−[2p2(p1+p3)−4p1p2p3]=2(p1−p2)p3<0p 乙−p丙=2p2(p1+p3)−4p1p2p3−[2p3(p1+p2)−4p1p2p3]=2(p2−p3)p1<0即p甲<p乙,p乙<p丙,则该棋手在第二盘与丙比赛,p最大.选项D判断正确;选项BC判断错误;p与该棋手与甲、乙、丙的比赛次序有关.选项A判断错误.故选:D5.【2022年新高考1卷】从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.23【答案】D【解析】【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8的7个整数中随机取2个不同的数,共有C72=21种不同的取法,若两数不互质,不同的取法有:(2,4),(2,6),(2,8),(3,6),(4,6),(4,8),(6,8),共7种,故所求概率P=21−721=23.故选:D.6.【2022年全国甲卷】从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.【答案】635.【解析】【分析】根据古典概型的概率公式即可求出.【详解】从正方体的8个顶点中任取4个,有n=C84=70个结果,这4个点在同一个平面的有m=6+6=12个,故所求概率P=mn =1270=635.故答案为:635.7.【2022年全国乙卷】从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】310##0.3【解析】【分析】根据古典概型计算即可【详解】从5名同学中随机选3名的方法数为C53=10甲、乙都入选的方法数为C31=3,所以甲、乙都入选的概率P=310故答案为:3108.【2022年新高考2卷】已知随机变量X服从正态分布N(2,σ2),且P(2<X≤2.5)=0.36,则P(X>2.5)=____________.【答案】0.14##750.【解析】【分析】根据正态分布曲线的性质即可解出.【详解】因为X∼N(2,σ2),所以P(X<2)=P(X>2)=0.5,因此P(X>2.5)=P(X>2)−P(2<X ≤2.5)=0.5−0.36=0.14.故答案为:0.14.9.【2022年浙江】现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则P(ξ=2)=__________,E(ξ)=_________.【答案】 1635, 127##157 【解析】 【分析】利用古典概型概率公式求P(ξ=2),由条件求ξ分布列,再由期望公式求其期望. 【详解】从写有数字1,2,2,3,4,5,6的7张卡片中任取3张共有C 73种取法,其中所抽取的卡片上的数字的最小值为2的取法有C 41+C 21C 42种,所以P(ξ=2)=C 41+C 21C 42C 73=1635,由已知可得ξ的取值有1,2,3,4, P(ξ=1)=C 62C 73=1535,P(ξ=2)=1635,,P(ξ=3)=C 32C 73=335,P(ξ=4)=1C 73=135所以E(ξ)=1×1535+2×1635+3×335+4×135=127,故答案为:1635,127.10.【2022年全国甲卷】甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率; (2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d), P (K 2⩾k )0.100 0.050 0.010 k2.7063.8416.635【答案】(1)A ,B 两家公司长途客车准点的概率分别为1213,78(2)有 【解析】 【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;(2)根据表格中数据及公式计算K 2,再利用临界值表比较即可得结论. (1)根据表中数据,A 共有班次260次,准点班次有240次, 设A 家公司长途客车准点事件为M , 则P(M)=240260=1213;B 共有班次240次,准点班次有210次, 设B 家公司长途客车准点事件为N , 则P(N)=210240=78.A 家公司长途客车准点的概率为1213; B 家公司长途客车准点的概率为78. (2)列联表K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=500×(240×30−210×20)2260×240×450×50≈3.205>2.706,根据临界值表可知,有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.11.【2022年全国甲卷】甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立. (1)求甲学校获得冠军的概率;(2)用X 表示乙学校的总得分,求X 的分布列与期望.【答案】(1)0.6;(2)分布列见解析,E(X)=13.【解析】【分析】(1)设甲在三个项目中获胜的事件依次记为A,B,C,再根据甲获得冠军则至少获胜两个项目,利用互斥事件的概率加法公式以及相互独立事件的乘法公式即可求出;(2)依题可知,X的可能取值为0,10,20,30,再分别计算出对应的概率,列出分布列,即可求出期望.(1)设甲在三个项目中获胜的事件依次记为A,B,C,所以甲学校获得冠军的概率为P=P(ABC)+P(A BC)+P(AB̅C)+P(ABC)=0.5×0.4×0.8+0.5×0.4×0.8+0.5×0.6×0.8+0.5×0.4×0.2=0.16+0.16+0.24+0.04=0.6.(2)依题可知,X的可能取值为0,10,20,30,所以,P(X=0)=0.5×0.4×0.8=0.16,P(X=10)=0.5×0.4×0.8+0.5×0.6×0.8+0.5×0.4×0.2=0.44,P(X=20)=0.5×0.6×0.8+0.5×0.4×0.2+0.5×0.6×0.2=0.34,P(X=30)=0.5×0.6×0.2=0.06.即X的分布列为期望E(X)=0×0.16+10×0.44+20×0.34+30×0.06=13.12.【2022年全国乙卷】某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2)和材积量(单位:3),得到如下数据:并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i y i10i=1=0.2474. (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =∑(x i−x̅)n i=1(y i −y̅)√∑(x i −x̅)2ni=1∑(y i−y ̅)2ni=1√1.896≈1.377.【答案】(1)0.06m 2;0.39m 3 (2)0.97 (3)1209m 3 【解析】 【分析】(1)计算出样本的一棵根部横截面积的平均值及一棵材积量平均值,即可估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)代入题给相关系数公式去计算即可求得样本的相关系数值;(3)依据树木的材积量与其根部横截面积近似成正比,列方程即可求得该林区这种树木的总材积量的估计值. (1)样本中10棵这种树木的根部横截面积的平均值x̅=0.610=0.06样本中10棵这种树木的材积量的平均值y̅=3.910=0.39据此可估计该林区这种树木平均一棵的根部横截面积为0.06m 2, 平均一棵的材积量为0.39m 3 (2)r =∑(x i −x)10i=1(y i −y)√∑10i=1(x i −x)2∑10i=1(y i −y)2=∑10i=1i i 10xy√(∑10i=1x i 2−10x2)(∑10i=1y i 2−10y 2)=0.2474−10×0.06×0.39√(0.038−10×0.062)(1.6158−10×0.392)=0.0134√0.0001896≈0.01340.01377≈0.97则r ≈0.97 (3)设该林区这种树木的总材积量的估计值为Y m 3, 又已知树木的材积量与其根部横截面积近似成正比, 可得0.060.39=186Y,解之得Y =1209m 3. 则该林区这种树木的总材积量估计为1209m 313.【2022年新高考1卷】一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”.P(B|A)P(B ̅|A)与P(B|A )P(B ̅|A )的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R .(ⅰ)证明:R =P(A|B)P(A |B)⋅P(A |B ̅)P(A|B ̅);(ⅱ)利用该调查数据,给出P(A|B),P(A|B ̅)的估计值,并利用(ⅰ)的结果给出R 的估计值.附K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),【答案】(1)答案见解析 (2)(i )证明见解析;(ii)R =6; 【解析】【分析】(1)由所给数据结合公式求出K2的值,将其与临界值比较大小,由此确定是否有99%的把握认为患该疾病群体与未黄该疾病群体的卫生习惯有差异;(2)(i) 根据定义结合条件概率公式即可完成证明;(ii)根据(i)结合已知数据求R.(1)由已知K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=200(40×90−60×10)250×150×100×100=24,又P(K2≥6.635)=0.01,24>6.635,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.(2)(i)因为R=P(B|A)P(B̅|A)⋅P(B̅|A)P(B|A)=P(AB)P(A)⋅P(A)P(AB̅)⋅P(A B̅)P(A)⋅P(A)P(A B),所以R=P(AB)P(B)⋅P(B)P(A B)⋅P(A B̅)P(B̅)⋅P(B̅)P(AB̅)所以R=P(A|B)P(A|B)⋅P(A|B̅) P(A|B̅),(ii)由已知P(A|B)=40100,P(A|B̅)=10100,又P(A|B)=60100,P(A|B̅)=90100,所以R=P(A|B)P(A|B)⋅P(A|B̅)P(A|B̅)=614.【2022年新高考2卷】在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).【答案】(1)44.65岁;(2)0.89;(3)0.0014.【解析】【分析】(1)根据平均值等于各矩形的面积乘以对应区间的中点值的和即可求出;(2)设A={一人患这种疾病的年龄在区间[20,70)},根据对立事件的概率公式P(A)=1−P (A)即可解出;(3)根据条件概率公式即可求出.(1)平均年龄x̅=(5×0.001+15×0.002+25×0.012+35×0.017+45×0.023 +55×0.020+65×0.012+75×0.006+85×0.002)×10=44.65(岁).(2)设A={一人患这种疾病的年龄在区间[20,70)},所以P(A)=1−P(A)=1−(0.001+0.002+0.006+0.002)×10=1−0.11=0.89.(3)设B={任选一人年龄位于区间[40,50)},C={任选一人患这种疾病},则由条件概率公式可得P(C|B)=P(BC)P(B)=0.1%×0.023×1016%=0.001×0.230.16=0.0014375≈0.0014.15.【2022年北京】在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50m以上(含9.50m)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望E(X);(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)【答案】(1)0.4(2)75(3)丙【解析】【分析】(1)由频率估计概率即可(2)求解得X的分布列,即可计算出X的数学期望.(3)计算出各自获得最高成绩的概率,再根据其各自的最高成绩可判断丙夺冠的概率估计值最大.(1)由频率估计概率可得甲获得优秀的概率为0.4,乙获得优秀的概率为0.5,丙获得优秀的概率为0.5,故答案为0.4(2)设甲获得优秀为事件A1,乙获得优秀为事件A2,丙获得优秀为事件A3P(X=0)=P(A1̅̅̅A2̅̅̅A3̅̅̅)=0.6×0.5×0.5=3,20P(X=1)=P(A1A2̅̅̅A3̅̅̅)+P(A1̅̅̅A2A3̅̅̅)+P(A1̅̅̅A2̅̅̅A3)=0.4×0.5×0.5+0.6×0.5×0.5+0.6×0.5×0.5=8,20P(X=2)=P(A1A2A3̅̅̅)+P(A1A2̅̅̅A3)+P(A1̅̅̅A2A3)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=7,20P(X=3)=P(A1A2A3)=0.4×0.5×0.5=2.20∴X的分布列为∴E(X)=0×320+1×820+2×720+3×220=75 (3)丙夺冠概率估计值最大.因为铅球比赛无论比赛几次就取最高成绩.比赛一次,丙获得9.85的概率为14,甲获得9.80的概率为110,乙获得9.78的概率为16.并且丙的最高成绩是所有成绩中最高的,比赛次数越多,对丙越有利.1.(2022·河南省杞县高中模拟预测(理))某市有11名选手参加了田径男子100米赛的选拔比赛,前5名可以参加省举办的田径赛,如果各个选手的选拔赛成绩均不相同,选手小强已经知道了自己的成绩,为了判断自己能否参加省举办的田径赛,他还需要知道这11名选手成绩的( ) A .平均数 B .中位数 C .众数 D .方差【答案】B 【解析】 【分析】中位数恰好是第6名,比中位数成绩高即可确认自己能否进入省田径赛. 【详解】因为11名选手成绩的中位数恰好是第6名,知道了第6名的成绩,小强就可以判断自己是否能参加省举办的田径赛了,其余数字特征不能反映名次. 故选:B .2.(2022·黑龙江·大庆实验中学模拟预测(理))2021年5月30日清晨5时01分,天舟二号货运飞船在成功发射约8小时后,与中国空间站天和核心舱完成自主快速交接.如果下次执行空间站的任务由3名航天员承担,需要在3名女性航天员和3名男性航天员中选择,则选出的3名航天员中既有男性航天员又有女性航天员的概率为( ) A .67B .910 C .25D .415【答案】B 【解析】 【分析】利用对立事件和古典概型的概率公式求解即可. 【详解】设“选出的3名航天员中既有男性航天员又有女性航天员”为事件M ,则()333336C C 91C 10P M ==+-.故选:B.3.(2022·全国·模拟预测(文))如图是一组实验数据的散点图,拟合方程()0by c x x=+>,令1t x=,则y 关于t 的回归直线过点()2,5,()12,25,则当()1.01,1.02y ∈时,x 的取值范围是( )A .()0.01,0.02B .()50,100C .()0.02,0.04D .()100,200【答案】D 【解析】 【分析】 先令1t x =可得()0y bt c t =+>,由y 关于t 的回归直线过点()2,5,()12,25可得522512b c b c=+⎧⎨=+⎩从而求得21y t =+,再由y 的范围求得t 的范围,进而求得x 的范围. 【详解】根据题意可得()0y bt c t =+>,由y 关于t 的回归直线过点()2,5,()12,25可得:522512b cb c =+⎧⎨=+⎩,所以2,1b c ==, 所以21y t =+,由()1.01,1.02y ∈可得1.0121 1.02t <+<, 所以0.0050.01t <<, 所以10.0050.01x<<,所以100200x <<, 故选:D4.(2022·辽宁实验中学模拟预测)某国计划采购疫苗,现在成熟的疫苗中,三种来自中国,一种来自美国,一种来自英国,一种由美国和德国共同研发,从这6种疫苗中随机采购三种,若采购每种疫苗都是等可能的,则买到中国疫苗的概率为( ) A .16B .12C .910D .1920【答案】D 【解析】 【分析】由对立事件的概率公式计算. 【详解】没有买到中国疫苗的概率为13611C 20P ==, 所以买到中国疫苗的概率为119120P P =-=. 故选:D .5.(2022·四川省泸县第二中学模拟预测(理))食物链亦称“营养链”,是指生态系统中各种生物为维持其本身的生命活动,必须以其他生物为食物的这种由食物联结起来的链锁关系.如图为某个生态环境中的食物链,若从鹰、麻雀、兔、田鼠以及蝗虫中任意选取两种,则这两种生物不能构成摄食关系的概率( )A .35B .25C .23D .13【解析】 【分析】用列举法写出构成的摄食关系,计数后可求得概率. 【详解】从鹰、麻雀、兔、田鼠以及蝗虫中任意选取两种,共有10种选法:鹰麻雀,鹰兔,鹰田鼠,鹰蝗虫,麻雀兔,麻雀田鼠,麻雀蝗虫,兔田鼠,兔蝗虫,田鼠蝗虫.其中田鼠鹰,兔鹰,麻雀鹰,蝗虫麻雀共四种可构成摄食关系,不能构成摄食关系的有6种,所以概率为63105P ==. 故选:A .6.(2022·山东潍坊·模拟预测)Poisson 分布是统计学里常见的离散型概率分布,由法国数学家西莫恩·德尼·泊松首次提出,Poisson 分布的概率分布列为()()e 0,1,2,!kP X K k k λλ-===⋅⋅⋅,其中e 为自然对数的底数,λ是Poisson 分布的均值.当二项分布的n 很大()20n ≥而p 很小()0.05p ≤时,Poisson 分布可作为二项分布的近似.假设每个大肠杆菌基因组含有10000个核苷酸对,采用20.05/J m 紫外线照射大肠杆菌时,每个核苷酸对产生嘧啶二体的概率均为0.0003,已知该菌株基因组有一个嘧啶二体就致死,则致死率是( ) A .31e -- B .3e - C .313e -- D .314e --【答案】A 【解析】 【分析】结合题意1000020n =≥,0.00030.05p =≤,此时Poisson 分布满足二项分布的近似条件,再计算二项分布的均值为Poisson 分布的均值λ,再代入公式先求不致死的概率,再用对立事件的概率和为1计算即可 【详解】由题, 1000020n =≥,0.00030.05p =≤,此时Poisson 分布满足二项分布的近似的条件,此时100000.00033λ=⨯=,故不致死的概率为()03330e e 0!P X --===,故致死的概率为()3101e P X --==-7.(2022·河南安阳·模拟预测(理))某房产销售公司有800名销售人员,为了了解销售人员上一个季度的房屋销量,公司随机选取了部分销售人员对其房屋销量进行了统计,得到上一季度销售人员的房屋销量(20,4)X N ,则全公司上一季度至少完成22套房屋销售的人员大概有( )附:若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<≤+≈,(22)0.9545P X μσμσ-<≤+≈,(33)0.9973P X μσμσ-<≤+≈.A .254人B .127人C .18人D .36人【答案】B 【解析】 【分析】根据正态分布的性质求出()22P X ≥,从而估计出人数; 【详解】 解:因为(20,4)X N ,所以20μ=,2σ=,所以()1()10.6827220.1586522P X P X μσμσ--<≤+-≥===所以全公司上一季度至少完成22套房屋销售的人员大概有8000.15865127⨯≈(人); 故选:B8.(2022·河南·模拟预测)某公司生产的一种产品按照质量由高到低分为A ,B ,C ,D 四级,为了增加产量、提高质量,该公司改进了一次生产工艺,使得生产总量增加了一倍.为了解新生产工艺的效果,对改进生产工艺前、后的四级产品的占比情况进行了统计,绘制了如下扇形图:根据以上信息:下列推断合理的是( ) A .改进生产工艺后,A 级产品的数量没有变化B.改进生产工艺后,D级产品的数量减少C.改进生产工艺后,C级产品的数量减少D.改进生产工艺后,B级产品的数量增加了不到一倍【答案】C【解析】【分析】由题可得改进生产工艺前后四个等级的生产量,逐项分析即得.【详解】设原生产总量为1,则改进生产工艺后生产总量为2,所以原A,B,C,D等级的生产量为0.3,0.37,0.28,0.05,改进生产工艺后四个等级的生产量为0.6,1.2,0.12,0.08,故改进生产工艺后,A级产品的数量增加,故A错误;改进生产工艺后,D级产品的数量增加,故B错误;改进生产工艺后,C级产品的数量减少,故C正确;改进生产工艺后,B级产品的数量增加超过2倍,故D错误.故选:C.9.(2022·河南安阳·模拟预测(文))为推动就业与培养有机联动、人才供需有效对接,促进高校毕业生更加充分更高质量就业,教育部今年首次实施供需对接就业育人项目.现安排甲、乙两所高校与3家用人单位开展项目对接,若每所高校至少对接两家用人单位,则两所高校的选择涉及到全部3家用人单位的概率为()A.12B.23C.34D.1316【答案】D【解析】【分析】由古典概型与对立事件的概率公式求解即可【详解】因为每所高校至少对接两家用人单位,所以每所高校共有2333314C C+=+=种选择,所以甲、乙两所高校共有4416⨯=种选择,其中甲、乙两所高校的选择涉及两家用人单位的情况有233C =种,所以甲、乙两所高校的选择涉及到全部3家用人单位的概率为31311616P =-=, 故选:D10.(2022·江苏·南京师大附中模拟预测)某同学在课外阅读时了解到概率统计中的马尔可夫不等式,该不等式描述的是对非负的随机变量X 和任意的正数a ,都有()()(),P X a f E X a ≥≤,其中()(),f E X a 是关于数学期望()E X 和a 的表达式.由于记忆模糊,该同学只能确定()(),f E X a 的具体形式是下列四个选项中的某一种.请你根据自己的理解,确定该形式为( ) A .()aE X B .()1aE XC .()a E XD .()E X a【答案】D 【解析】 【分析】根据期望的计算公式,以及m x a ≥即可求解. 【详解】设非负随机变量X 的所有可能取值按从小到大依次为0,i x i N *>∈,对应的概率分别为,0i i p p >设满足i x a ≥的有,,,m a a x k m n m N k N **≤≤∈∈,()ani i k P X a p =≥=∑,()111a ai nk i iii n i ii k i ax pE ax p x pX a -===+==∑∑∑,因为m x a ≥,所以1mx a≥()()()1111a a aaannniiiiiik k i k i k i k ii i i i x px px px p p P X a P X a E aa aaaX --=====⎛⎫+≥+=+≥≥≥ ⎪⎝⎭=∑∑∑∑∑故选:D11.(2022·吉林·三模(理))为了切实维护居民合法权益,提高居民识骗防骗能力,守好居民的“钱袋子”,某社区开展“全民反诈在行动——反诈骗知识竞赛”活动,现从参加该活动的居民中随机抽取了100名,统计出他们竞赛成绩分布如下:(1)求抽取的100名居民竞赛成绩的平均分x 和方差2s (同一组中数据用该组区间的中点值为代表);(2)以频率估计概率,发现该社区参赛居民竞赛成绩X 近似地服从正态分布()2,N μσ,其中μ近似为样本成绩平均分x ,2σ近似为样本成缋方差2s ,若2μσμσ-<≤+X ,参赛居民可获得“参赛纪念证书”;若2μσ>+X ,参赛居民可获得“反诈先锋证书”,①若该社区有3000名居民参加本次竞赛活动,试估计获得“参赛纪念证书”的居民人数(结果保留整数);②试判断竞赛成绩为96分的居民能否获得“反诈先锋证书”. 附:若()2,XN μσ,则()0.6827P X μσμσ-<≤+≈,(22)0.9545P X μσμσ-<≤+≈,(33)0.9973P X μσμσ-<≤+≈.【答案】(1)75x =,2100s = (2)①2456 ;②能 【解析】 【分析】(1)利用公式直接求出均值、方差即可;(2)①结合给的概率和正态分布的性质,确定获得“参赛纪念证书”,进而计算可得人数; ②利用正态分布的知识求出2μσ>+X ,即95>X ,进而可得结果. (1)100名居民本次竞赛成绩平均分24224028445556575859575100100100100100100=⨯+⨯+⨯+⨯+⨯+⨯=x , 100名居民本次竞赛成绩方差22222422(4575)(5575)(6575)100100100=-⨯+-⨯+-⨯s 22240284(7575)(8575)(9575)100100100100+-⨯+-⨯+-⨯=, (2)①由于μ近似为样本成绩平均分x ,2σ近似为样本成绩方差2s , 所以,275,100μσ==,可知,10σ=,由于竞赛成绩X 近似地服从正态分布()2,N μσ,因此竞赛居民可获得“参赛纪念证书”的概率 (2)P X μσμσ-<≤+11()(22)22μσμσμσμσ=-<≤++-<≤+P X P X 110.68270.95450.818622≈⨯+⨯= 30000.81862455.82456⨯=≈估计获得“参赛纪念证书”的居民人数为2456;②当2μσ>+X 时,即95>X 时,参赛居民可获得“反诈先锋证书”, 所以竞赛成绩为96分的居民能获得“反诈先峰证书”.12.(2022·贵州·贵阳一中模拟预测(文))“十四五”规划纲要提出,全面推动长江经济带发展,协同推动生态环境保护和经济发展长江水资源约占全国总量的36%,长江流域河湖、水库、湿地面积约占全国的20%,珍稀濒危植物占全国的39.7%,淡水鱼类占全国的33%.长江经济带在我国生态文明建设中占据重要位置.长江流域某地区经过治理,生态系统得到很大改善,水生动物数量有所增加.为调查该地区某种水生动物的数量,将其分成面积相近的100个水域,从这些水域中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据()(),1,2,,20,i i x y i =其中i x 和i y 分别表示第i 个样区的水草覆盖面积(单位:公顷)和这种水生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021-)120,i i x x ==∑(2021-)9000,i i y ==∑(y 201-)-)1000.i iix x y ==∑((y (1)求该地区这种水生动物数量的估计值(这种水生动物数量的估计值等于样区这种水生动物数量的平均数乘以地块数); (2)求样本()(),1,2,,20i i x y i =的相关系数(精确到0.01);(3)根据现有统计资料,各地块间水草覆盖面积差异很大.为提高样本的代表性以获得该地区这种水生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数-)-) 1.732.niix y x r =≈∑((y【答案】(1)6000 (2)0.96(3)采用分层抽样的方法,理由见解析 【解析】 【分析】(1)根据该地区这种水生动物数量的估计值的计算方法求解即可; (2)根据相关系数的公式求解即可;(3)根据(2)中的结论各样区的这种水生动物的数量与水草覆盖面积有很强的正相关性考虑即可 (1)样区水生动物平均数为201111200602020i i y ==⨯=∑, 地块数为100,该地区这种水生动物的估计值为100606000⨯=. (2)样本()(),1,2,,20i i x y i =⋯的相关系数为()()20,0.96.iix x y y r -===≈∑ (3)由(2)知各样区的这种水生动物的数量与水草覆盖面积有很强的正相关性,由于各地块间水草覆盖面积差异很大,从而各地块间这种野生动物的数量差异很大,所以采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性,从而可以获得该地区这种水生动物数量更准确的估计.13.(2022·河南开封·模拟预测(理))大豆是我国重要的农作物,种植历史悠久.某种子实验基地培育出某大豆新品种,为检验其最佳播种日期,在A ,B 两块试验田上进行实验(两地块的土质等情况一致).6月25日在A 试验田播种该品种大豆,7月10日在B 试验田播种该品种大豆.收获大豆时,从中各随机抽取20份(每份1千粒),并测量出每份的质量(单位:克),按照[)100,150,[)150,200,[]200,250进行分组,得到如下表格:。

高考数学掌握概率与统计的基本方法

高考数学掌握概率与统计的基本方法

高考数学掌握概率与统计的基本方法高考数学中,概率与统计是一个重要的知识点,也是考察学生分析问题和解决问题能力的重要方面之一。

本文将介绍概率与统计的基本方法,帮助考生更好地掌握这一知识点。

一、概率的基本概念与计算方法概率是描述随机事件发生可能性的数值。

在数学中,我们用P(A)表示事件A发生的概率,其中0≤P(A)≤1。

具体计算概率的方法有以下几种:1. 频率法:根据大量实验结果的观察和统计,得出概率的估计值。

例如,投掷骰子,通过多次实验统计得出某种结果出现的频率。

2. 古典概率法:适用于事件的样本空间总数有限且每个结果发生的可能性相同的情况。

概率P(A) = 事件A的基本结果数 / 样本空间的总数。

例如,从一副扑克牌中抽出一张牌,计算得到红心牌的概率。

3. 几何概率法:适用于事件对应的样本空间可以用几何图形表示的情况。

概率P(A) = 事件A所对应的几何图形的面积/ 样本空间的面积。

例如,抛硬币,计算得到正面朝上的概率。

二、概率的基本性质与定理概率有以下基本性质与定理:1. 互斥事件的概率计算:当事件A与事件B互斥(即A与B不可能同时发生)时,P(A∪B) = P(A) + P(B)。

2. 对立事件的概率计算:当事件A的对立事件为A'时,P(A) + P(A') = 1。

3. 加法法则:对于任意两个事件A和B,P(A∪B) = P(A) + P(B) -P(A∩B)。

4. 乘法法则:对于两个相互独立的事件A和B,P(A∩B) = P(A) *P(B)。

三、统计的基本概念与应用统计是描述和分析大量数据的科学方法。

在数学中,我们主要研究统计中的样本调查与总体参数估计、样本调查与总体推断以及相关性分析等内容。

1. 样本调查与总体参数估计:通过对样本的调查和统计分析,推断出总体的某种参数。

例如,通过对某地区随机抽取的100个学生进行身高调查,从中推断出该地区所有学生的平均身高。

2. 样本调查与总体推断:通过对样本数据的分析,对总体的某些特征进行推断。

如何解决高考数学中的概率与统计难题

如何解决高考数学中的概率与统计难题

如何解决高考数学中的概率与统计难题概率与统计是高考数学中的一个重要内容,也是许多考生感到困惑和头疼的地方。

概率与统计难题往往需要考生运用数学知识和思维方法,进行抽象思维和逻辑推理,因此解决这类难题需要一定的技巧和方法。

本文将介绍一些解决高考数学中概率与统计难题的方法,帮助考生提高解题能力。

一、理解概率与统计的基本概念要解决概率与统计难题,首先需要对概率与统计的基本概念有清晰的理解。

概率是可以用来描述可能性的一种数值,可以根据事件发生的次数与总次数之比计算得到。

统计是通过对具体事物的观察和数据的收集,对现象进行总结和分析的方法。

了解概率与统计的定义和基本原理,可以更好地应用到解题过程中。

二、掌握概率与统计的计算方法掌握概率与统计的计算方法是解决难题的关键。

在解题过程中,要根据具体情况选择合适的计算方法,例如组合、排列、条件概率等。

熟练掌握这些计算方法,并能够根据问题中给出的条件,进行适当的转化和求解。

三、分析题目并理清思路解决概率与统计难题需要仔细分析题目,并理清解题思路。

在阅读题目时,要注意关键词和条件,正确理解问题的要求。

有时候,将问题转化为具体的数学模型或图表可以帮助我们更好地理解和解决问题。

在解题过程中,可以逐步推导和建立数学关系,确保解题思路的正确性。

四、多做练习题提高技巧提高解决概率与统计难题的能力需要进行大量的练习。

通过多做各种类型的练习题,可以熟悉不同类型的解题方法,并且可以发现和掌握一些常用的解题技巧。

同时,通过不断练习,可以提高解题的速度和准确性,培养良好的数学思维能力。

五、参考优秀的解题方法和技巧在解决概率与统计难题时,可以参考一些优秀的解题方法和技巧。

可以通过查阅教材、参考书和网络资源,了解一些常见的解题思路和方法。

同时,可以参考一些数学竞赛中的优秀解题思路和方法,借鉴其解题的思路和技巧,提高解题的效率和准确性。

总结起来,解决高考数学中的概率与统计难题需要掌握基本概念,熟练掌握计算方法,理清思路,多做练习题并参考优秀的解题方法和技巧。

数学高考复习概率与统计重点梳理

数学高考复习概率与统计重点梳理

数学高考复习概率与统计重点梳理高考复习概率与统计重点梳理概率与统计是数学高考中的重要内容,也是考生们备考过程中需要重点关注的部分。

在高考中,概率与统计经常出现在选择题、计算题和应用题中,因此,熟练掌握概率与统计的基本概念、定理和解题方法,对于取得高分至关重要。

本文将针对高考中概率与统计的重点内容进行梳理,帮助考生们更好地复习和应对考试。

一、基本概念与术语1.1 概率的基本定义概率是表示事件发生可能性大小的数值,通常用0到1之间的实数表示。

在概率中,事件发生的可能性越大,其概率值越接近于1;反之,事件发生的可能性越小,其概率值越接近于0。

1.2 随机事件与样本空间随机事件是在一定条件下,有可能发生的事件。

样本空间是一个包含了所有可能结果的集合,每个结果称为样本点。

随机事件可以由样本空间中的样本点组成。

1.3 事件的概率计算公式事件的概率计算公式根据事件的性质和样本空间的大小来确定。

对于等可能的随机试验,事件A发生的概率可以表示为:P(A) = 事件A的样本点数 / 样本空间的样本点数。

二、概率的计算方法2.1 乘法原理与加法原理乘法原理是指若事件A是由两个或多个独立事件的发生所组成,则事件A的概率可以用每个独立事件概率的乘积表示。

加法原理是指若事件A可以由事件B或事件C等多个互不相容的事件所组成,则事件A的概率可以用各个事件概率之和表示。

2.2 条件概率与独立性条件概率是指在已知事件A发生的情况下,事件B发生的概率。

如果事件A与事件B的发生是独立的,那么事件A发生的概率与事件B 发生的概率的乘积等于事件A与B同时发生的概率。

2.3 贝叶斯定理贝叶斯定理是利用已知的条件概率,求解与之相反的条件概率的方法。

它的基本思想是通过已知条件概率和全概率公式,得到所需的条件概率。

三、离散型与连续型随机变量3.1 随机变量的定义与性质随机变量是数学中的一种函数关系,用来描述随机试验的结果与实数之间的对应关系。

随机变量可以是离散型的,也可以是连续型的。

高考数学复习:概率与统计的综合问题

高考数学复习:概率与统计的综合问题

思维升华
高考常将回归模型与分布列等交汇在一起进行考查,求经验回归方程 时要充分利用已知数据,合理利用公式减少运算.求解概率问题时要 注意概率模型的应用,明确所求问题所属的事件类型是关键.
跟踪训练2 (2023·武汉模拟)某企业计划新购买100台设备,并将购买的 设备分配给100名年龄不同(视为技术水平不同)的技工加工一批模具,因 技术水平不同而加工出的产品数量不同,故产生的经济效益也不同.若用 变量x表示不同技工的年龄,变量y为相应的效益值(元),根据以往统计经验,
6
6
参考数据:y2i =3 463, (yi- y )2=289.
i=1
i=1
参考公式: r=
n
xi- x yi- y
n
xi- x yi- y
i=1
i=1
,b^ =

n
xi- x 2
n
yi- y 2
n
xi- x 2
i=1
i=1
i=1
a^ = y -b^ x .
6
6
因为xi=54,所以 x =9,所以 (xi- x )2=64,
X的分布列为
X
0
1
2
P
1 30
1 3
19 30
E(X)=0×310+1×13+2×3109=85.
思维升华
高考常将频率分布直方图与分布列等交汇在一起进行考查,解题时要正 确理解频率分布直方图,能利用频率分布直方图正确计算出各组数据. 概率问题以计算为主,往往和实际问题相结合,要注意理解实际问题的 意义,使之和相应的概率计算对应起来.
X0 1 2 3 4
P
1 256
3 64
27 128

高考数学2024概率与统计历年题目全解

高考数学2024概率与统计历年题目全解

高考数学2024概率与统计历年题目全解概率与统计作为高考数学中的重要部分,一直是考生们难以逾越的“坎”。

为了帮助广大考生更好地应对高考概率与统计部分的考题,本文将对高考数学2024年概率与统计题目进行全面解析,希望能够为考生们提供帮助和指导。

1. 选择题部分选择题是高考中概率与统计部分的常见题型,也是考生们容易出错的地方。

以下是2024年高考概率与统计选择题的解答:题目一:已知事件A发生的概率为P(A)=0.6,事件B发生的概率为P(B)=0.3,且事件A与事件B相互独立。

求事件A发生且事件B不发生的概率。

解答一:事件A发生且事件B不发生,表示为A发生的概率P(A)乘以B不发生的概率P(B'),即P(A且B')=P(A)×P(B')=0.6×(1-0.3)=0.6×0.7=0.42。

因此,事件A发生且事件B不发生的概率为0.42。

题目二:已知事件C发生的概率为P(C)=0.4,事件D发生的概率为P(D)=0.5,且事件C与事件D相互独立。

求事件C或事件D发生的概率。

解答二:事件C或事件D发生,表示为C发生的概率P(C)加上D发生的概率P(D),即P(C或D)=P(C)+P(D)=0.4+0.5=0.9。

因此,事件C或事件D发生的概率为0.9。

2. 计算题部分计算题是概率与统计部分的重要考察内容,需要考生们掌握一定的计算方法和技巧。

以下是2024年高考概率与统计计算题的解答:题目一:某班有40名学生,其中20名男生、20名女生。

现从该班级随机选取3名学生,求选出的3名学生全为男生的概率。

解答一:选出的3名学生全为男生的概率等于从20名男生中选取3名学生的概率除以从40名学生中选取3名学生的概率。

即P(全为男生)=C(20,3)/C(40,3)=[20×19×18]/[40×39×38]=0.0283。

因此,选出的3名学生全为男生的概率为0.0283。

数学高考数学中的概率与统计题解题方法与思路总结

数学高考数学中的概率与统计题解题方法与思路总结

数学高考数学中的概率与统计题解题方法与思路总结概率与统计是数学中的一个重要分支,也是高考数学中的一项重要内容。

考查概率与统计的题目在高考中占据一定比例,掌握好解题方法与思路对于考生来说是至关重要的。

本文将对高考数学中的概率与统计题解题方法与思路进行总结,并提供一些实用的技巧和示例,帮助考生更好地应对这类题目。

一、概率题解题方法与思路在高考数学中,概率题目主要包括事件与概率、排列组合与概率、概率的计算与运用等内容。

以下是一些解题方法与思路的总结:1. 理清题意:在解概率题前,首先要仔细阅读题目,理解题目所描述的背景和条件。

确定给定事件和所求事件,并结合题目中的条件将问题转化为一个概率问题。

2. 构建样本空间:根据题目所给条件,建立一个恰当的样本空间。

样本空间是所有可能的结果组成的集合,对于复杂的问题,可以利用树状图、表格等方式来构建样本空间,帮助理清逻辑关系。

3. 确定事件:根据题目要求,确定所关注的事件,并通过分析题目中的条件,对事件进行限定条件,以便进行计算。

4. 计算概率:利用概率的定义,计算所求事件发生的概率。

常用的计算方法有等可能原理、排列组合等概率的性质。

5. 运用概率:在解概率题时,还需要掌握条件概率、独立事件等相关概念和计算方法。

根据题目给出的条件,利用已知的概率计算所求的概率,注意要根据条件的不同进行不同的计算。

二、统计题解题方法与思路统计是高考数学中的另一个重要内容,主要包括频率分布、参数估计、假设检验等。

以下是一些解题方法与思路的总结:1. 构建频数表:对于给定的数据,首先要进行整理和分类,然后利用频数表将数据进行统计。

频数表是将数据按照一定的规则分组,统计各组的频数。

2. 绘制统计图表:根据频数表,可以绘制统计图表,如直方图、频率多边形等。

统计图表可以直观地展示数据的分布情况,对于理解问题和进行进一步分析具有重要意义。

3. 计算统计指标:在统计题中,常常需要计算一些统计指标,如平均数、标准差等。

高考数学一轮总复习概率与统计解题技巧与方法总结

高考数学一轮总复习概率与统计解题技巧与方法总结

高考数学一轮总复习概率与统计解题技巧与方法总结在高考数学中,概率与统计是一个重要的知识点,也是考试中常常涉及的内容。

掌握概率与统计解题的技巧和方法,对于提高数学成绩至关重要。

本文将总结一些高考数学概率与统计解题的技巧与方法,希望能对广大考生有所帮助。

一、概率解题技巧与方法1. 理解基本概念:在解概率题时,首先要理解基本概念,如概率、样本空间、随机变量等。

只有对这些基本概念有深刻的理解,才能更好地解题。

2. 利用树状图:树状图是概率解题常用的工具,特别适用于多次实验的情况。

通过画出树状图,可以清晰地展示出每次实验的结果和对应的概率,进而计算出整个事件发生的概率。

3. 排列组合与概率的结合:当求解一些带有限定条件的概率问题时,可以结合排列组合的知识来解决。

通过排列组合的思想,可以确定事件发生的总数,从而计算出概率。

4. 利用条件概率:在解题过程中,经常会涉及到条件概率。

利用条件概率的性质,可以将问题分解为多个子问题,通过计算各个子问题的概率,最终得到所求事件的概率。

二、统计解题技巧与方法1. 数据整理与分析:在统计解题中,首先要将给定的数据进行整理和分析。

通过整理数据,可以清晰地了解到底有哪些数据,从而为后续的解题提供有效的信息。

2. 构建统计图表:构建统计图表是统计解题中常用的方法之一。

通过绘制条形图、折线图、散点图等,可以直观地展示数据之间的关系,进而进行数据的比较和分析。

3. 正确选择统计指标:在解题过程中,需要根据具体的问题选择合适的统计指标。

常见的统计指标有平均数、中位数、众数等,根据问题的要求选择合适的指标进行计算。

4. 运用概率与统计的基本原理:在统计解题中,概率与统计的基本原理经常会被运用到。

通过理解与运用这些基本原理,可以更好地解决统计问题,提高解题效率。

总之,高考数学概率与统计解题在考试中占据较大的比重,掌握解题技巧和方法是提高数学成绩的关键。

通过理解基本概念、使用树状图、结合排列组合与概率、利用条件概率等技巧,以及进行数据整理与分析、构建统计图表、选择合适的统计指标以及运用概率与统计的基本原理等方法,可以辅助考生更好地应对概率与统计解题的挑战。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学概率与统计 SANY GROUP system office room 【SANYUA16H-第16讲概率与统计概率内容的新概念较多,相近概念容易混淆,本课时就学生易犯错误作如下归纳总结:类型一“非等可能”与“等可能”混同例1 掷两枚骰子,求所得的点数之和为6的概率.错解掷两枚骰子出现的点数之和2,3,4,…,12共11种基本事件,所以概率为P=1 11剖析以上11种基本事件不是等可能的,如点数和2只有(1,1),而点数之和为6有(1,5)、(2,4)、(3,3)、(4,2)、(5,1)共5种.事实上,掷两枚骰子共有36种基本事件,且是等可能的,所以“所得点数之和为6”的概率为P=536.类型二“互斥”与“对立”混同例2 把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”是()A.对立事件 B.不可能事件 C.互斥但不对立事件 D.以上均不对错解A剖析本题错误的原因在于把“互斥”与“对立”混同,二者的联系与区别主要体现在: (1)两事件对立,必定互斥,但互斥未必对立;(2)互斥概念适用于多个事件,但对立概念只适用于两个事件;(3)两个事件互斥只表明这两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生;而两事件对立则表示它们有且仅有一个发生.事件“甲分得红牌”与“乙分得红牌”是不能同时发生的两个事件,这两个事件可能恰有一个发生,一个不发生,可能两个都不发生,所以应选C.类型三 “互斥”与“独立”混同例3 甲投篮命中率为O .8,乙投篮命中率为,每人投3次,两人恰好都命中2次的概率是多少?错解 设“甲恰好投中两次”为事件A ,“乙恰好投中两次”为事件B ,则两人都恰好投中两次为事件A+B ,P(A+B)=P(A)+P(B): 2222330.80.20.70.30.825c c ⨯+⨯= 剖析 本题错误的原因是把相互独立同时发生的事件当成互斥事件来考虑,将两人都恰好投中2次理解为“甲恰好投中两次”与“乙恰好投中两次”的和.互斥事件是指两个事件不可能同时发生;两事件相互独立是指一个事件的发生与否对另一个事件发生与否没有影响,它们虽然都描绘了两个事件间的关系,但所描绘的关系是根本不同.解: 设“甲恰好投中两次”为事件A ,“乙恰好投中两次”为事件B ,且A ,B 相互独立,则两人都恰好投中两次为事件A·B ,于是P(A·B)=P(A)×P(B)=类型四 “条件概率P(B / A)”与“积事件的概率P(A·B)”混同例4 袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次,求第二次才取到黄色球的概率.错解 记“第一次取到白球”为事件A ,“第二次取到黄球”为事件B,”第二次才取到黄球”为事件C,所以P(C)=P(B/A)=6293=. 剖析 本题错误在于P(A ⋅B)与P(B/A)的含义没有弄清, P(A ⋅B)表示在样本空间S 中,A与B 同时发生的概率;而P (B/A )表示在缩减的样本空间S A 中,作为条件的A 已经发生的条件下事件B 发生的概率。

解: P (C )= P(A ⋅B)=P (A )P (B/A )=46410915⨯=. 备用1. 某班数学兴趣小组有男生和女生各3名,现从中任选2名学生去参加校数学竞赛,求(I ) 恰有一名参赛学生是男生的概率;(II )至少有一名参赛学生是男生的概率;(Ⅲ)至多有一名参赛学生是男生的概率。

解:基本事件的种数为26c =15种(Ⅰ)恰有一名参赛学生是男生的基本事件有1313c c ⋅=9种 ∴所求事件概率P 1=159= (Ⅱ)至少有一名参赛学生是男生这一事件是由两类事件构成的,即恰有一名参赛学生是男生和两名参赛学生都是男生,∴所求事件概率P 2=8.0151215923==+c (Ⅲ)至多有一名参赛学生是男生这一事件也是由两类事件构成的,即参赛学生没有男生和恰有一名参赛学生是男生,∴所求事件概率P 3=8.0151215923==+c 2. 已知两名射击运动员的射击水平,让他们各向目标靶射击10次,其中甲击中目标7次,乙击中目标6次,若在让甲、乙两人各自向目标靶射击3次中,求:(1)甲运动员恰好击中目标2次的概率是多少?(2)两名运动员都恰好击中目标2次的概率是多少?(结果保留两位有效数字)解. 甲运动员向目标靶射击1次,击中目标的概率为7/10=乙运动员向目标靶射击1次,击中目标的概率为6/10=(1)甲运动员向目标靶射击3次,恰好都击中目标2次的概率是(2)乙运动员各向目标靶射击3次,恰好都击中目标2次的概率是作业1. 甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是 ( )(A )21p p (B ))1()1(1221p p p p -+- (C )211p p - (D ))1)(1(121p p ---2. 连续掷两次骰子,以先后得到的点数m 、n 为点P (m ,n )的坐标,那么点P 在圆x 2+y 2=17外部的概率应为( )(A )31 (B )32 (C )1811 (D )1813 3. 从含有500个个体的总体中一次性地抽取25个个体,假定其中每个个体被抽到的概率相等,那么总体中的每个个体被抽取的概率等于_______。

4. 若在二项式(x +1)10的展开式中任取一项,则该项的系数为奇数的概率是 .(结果用分数表示)5. 袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率.(Ⅰ)摸出2个或3个白球 ; (Ⅱ)至少摸出一个黑球.6. 已知甲、乙两人投篮的命中率分别为和.现让每人各投两次,试分别求下列事件的概率:(Ⅰ)两人都投进两球;(Ⅱ)两人至少投进三个球.作业答案1. B2. D3.4. 114 5.(Ⅰ)P (A+B )= P (A )+P (B )=481325482325C C C C C C ⋅+⋅=76; (Ⅱ) P=1-4845C C =14131411=- 6.(Ⅰ)P(两人都投进两球)=0222)6.0()4.0(C 2022)6.0()4.0(C=.0576.036.016.0=⨯ (Ⅱ)P (两人至少投进三个球)=3072.01728.00768.00576.0=++第二课时例题例1 甲、乙二人参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题.(Ⅰ)甲抽到选择题、乙抽到判断题的概率是多少?(Ⅱ)甲、乙二人中至少有一人抽到选择题的概率是多少?(2000年新课程卷) 例2 如图,用A 、B 、C 三类不同的元件连接成两个系统N 1、N 2.当元件A 、B 、C 都正常工作时,系统N 1正常工作;当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作.已知元件A 、B 、C 正常工作的概率依次为,,.分别求系统N 1、N 2正常工作的概率P 1、P 2.(2001年新课程卷)例3 某单位6个员工借助互联网开展工作,每个员工上网的概率都是(相互独立).(Ⅰ)求至少3人同时上网的概率;(Ⅱ)至少几人同时上网的概率小于?(2002年新课程卷)例4 有三种产品,合格率分别是,和,各抽取一件进行检验.(Ⅰ)求恰有一件不合格的概率;(Ⅱ)求至少有两件不合格的概率.(精确到) (2003年新课程卷)备用 从分别写有0,1,2,3,4,5,6的七张卡片中,任取4张,组成没有重复数字的四位数,计算:(1)这个四位数是偶数的概率;(2)这个四位数能被9整除的概率;(3)这个四位数比4510大的概率。

解: (1)组成的所有四位数共有7203616=⋅A C 个。

四位偶数有:个位是0时有12036=A ,个位不是0时有300251513=⋅⋅C C C ,共有120+300=420个.∴ 组成的四位数为偶数的概率为127720420= (2)能被9整除的数,应该各位上的数字和能被9整除.数字组合为:1,2,6,0 1,3,5,0 2,4,5,0 3,4,5,6 2,3,4,0 此时共有9624724443313=+=+⋅⨯A A C .∴ 能被9整除的四位数的概率为15272096= (3)比4510大的数分别有:千位是4,百位是5时,有15525=-A ;千位是4,百位是6时,有2025=A ;千位大于4时,有2403612=⋅A C ;故共有240+20+18=278. ∴四位数且比4510大的概率为360139720278= 作业1. 一台X 型号自动机床在一小时内不需要工人照看的概率为,有四台这中型号的自 动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是 ( )(A ) (B ) (C ) (D ) 2. 种植两株不同的花卉,它们的存活率分别为p 和q ,则恰有一株存活的概率为 ( )(A) p+q -2p q (B) p+q -pq (C) p+q (D) pq3. 有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上号码1、2和3,现任取出3面,它们的颜色与号码不相同的概率是 .4. 某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是 (用分数作答)5. 某产品检验员检查每一件产品时,将正品错误地鉴定为次品的概率为,将次口错误地鉴定为正品的概率为,如果这位检验员要鉴定4件产品,这4件产品中3件是正品,1件是次品,试求检验员鉴定成正品,次品各2件的概率.6. 如图,用D C B A ,,,表示四类不同的元件连接成系统M .当元件B A ,至少有一个正常工作且元件D C ,正常工作.已知元件D C B A ,,,依次为,,,,求元件连接成的系统M 正常工作的概率)(M P .例题答案1. (Ⅰ) 154; (Ⅱ)1513.2. ; .3. (Ⅰ) 3221; (Ⅱ) 5人. 4. (Ⅰ) ; (Ⅱ) . 作业答案1. D2. A3.1414. 75 5.解:有两种可能:将原1件次品仍鉴定为次品,原3件正品中1件错误地鉴定为次品;将原1件次品错误地鉴定为正品,原3件正品中的2件错误地鉴定为次品. 概率为P =9.01.02.09.01.08.0223213⨯⨯⨯+⨯⨯⨯C C =6.解: =)(M P )](1[B A P ⋅-)](1[D C P ⋅-=第三课时例题例1 从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概率均为54,每位男同学能通过测验的概率均为53.试求: (Ⅰ)选出的3位同学中,至少有一位男同学的概率;(Ⅱ)10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.(2004年全国卷Ⅰ)例2 已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求:(Ⅰ)A 、B 两组中有一组恰有两支弱队的概率;(Ⅱ)A 组中至少有两支弱队的概率. (2004年全国卷Ⅱ)例3 某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为、、,且各题答对与否相互之间没有影响.(Ⅰ)求这名同学得300分的概率;(Ⅱ)求这名同学至少得300分的概率. (2004年全国卷Ⅲ)例4 从4名男生和2名女生中任选3人参加演讲比赛.(Ⅰ)求所选3人都是男生的概率;(Ⅱ)求所选3人中恰有1名女生的概率;(Ⅲ)求所选3人中至少有1名女生的概率. (2004年天津卷)备用 A 、B 、C 、D 、E 五人分四本不同的书,每人至多分一本,求:(1)A 不分甲书,B 不分乙书的概率;(2)甲书不分给A 、B ,乙书不分给C 的概率。

相关文档
最新文档