金属的塑性变形与再结晶金属的塑性变形冷塑

合集下载

塑性变形与再结晶课程实验

塑性变形与再结晶课程实验

金属的塑性变形与再结晶一、实验目的1.观察冷变形后金属的显微组织2.了解金属冷塑变形后与再结晶退火后显微组织3.了解冷加工变形度对再结晶晶粒大小影响4.讨论再结晶退火温度对退火晶粒大小影响二、概述1 显微镜下的滑移线与变形挛晶金属受力超过弹性极限后,在金属中特产生塑性变形。

金属单晶体变形机理指出,塑性变形的基本方式为滑移和孪晶两种。

所谓滑移时晶体在切应力作用下借助于金属薄层沿滑移面相对移动(实质为位错沿滑移面运动)的结果。

滑移后在滑移面两侧的晶体位相保持不变。

把抛光的纯铝试样拉伸,试样表面会有变形台阶出现,一组细小的台阶在显微镜下只能观察到一条黑线,即称为滑移带。

变形后的显微姐织是由许多滑移带(平行的黑线)所组成。

在显微镜下能清楚地看到多晶体变形的特点:各晶粒内滑移带的方向不同(因晶粒方位各不相同),各晶粒之间形变程度不均匀,有的晶粒内滑移带多(即变形量大),有的晶粒内滑移带少(即变形量小);在同一晶粒内,晶粒中心与晶粒边界变形量也不相同,晶粒中心滑移带密,而边界滑移带稀,并可发现在一些变形量大的晶粒内,滑移沿几个系统进行,经常看见双滑移现象(在面心立方晶格情况下很易发现),即两组平行的黑线在晶粒内部交错起来,将晶粒分成许多小块。

另一种变形的方式为孪晶。

不易产生滑移的金属,如六方晶系镉、镁、铍、锌等,或某些金属当其滑移发生困难的时候,在切应力的作用下将发生的另一形式的变形,即晶体的—部分以一定的晶面(孪晶面或双晶面)为对称面;与晶体的另一部分发生对称移动,这种变形方式称为孪晶或双晶。

孪晶的结果是孪晶面两侧晶体的位向发生变化,呈镜面对称。

所以孪晶变形后,由于对光的反射能力不同,在显微镜下能看到较宽的变形痕迹——孪晶带或双晶带。

在密排六方结构的锌中,由于其滑移系少,则易以孪晶方式变形,在显微镜下看到变形孪晶呈发亮的竹叶状特征。

对体心立方结构的a一F e,在常温时变形以滑移方式进行,而在0℃以下受冲击载荷时,则以孪晶方式变形,而面心立方结构大多是以滑移方式变形的。

实验七 材料的塑性变形和再结晶

实验七   材料的塑性变形和再结晶

滑移变形具有以下特点: ①滑移在切应力作用下产生(图2)。
图 2 晶体在切应力作用下的变形
②滑移沿原子密度最大的晶面和晶 向发生。
滑移常沿晶体 中原子密度最 大的晶面和晶 向发生,因为 原子密度最大 的晶面之间间 距最大,点阵 阻力最小,原 子密度最大晶 向上原子间最 短,结合力最 弱,因此产生 滑移所需切应 力最小。
因此,一般在室温使用的 结构材料都希望获得细小而均 匀的晶粒。因为细晶粒不仅使 材料具有较高的强度、硬度, 而且也使它具有良好的塑性和 韧性,即具有良好的综合力学 性能。故生产中总是尽可能地 细化晶粒。
2.2 冷塑性变形对金属组织和性能的影响
塑性变形后,金属在组织和性能方面发生四个方面的变化: 1)产生纤维组织,性能由各向同性趋于各向异性。
• 变形金属在加热中一般经历三个过程: (1)回复 (2)再结晶 (3)晶粒长大
变形金属加热时组织和性能变化示意图
回复 再结晶
晶粒长大
组 织
变 内应力


能 变
强度

晶粒度 塑性
(1)回复
(2)再结晶
• 由于再结晶后组织的复原,因而金属的强度、硬度下降, 塑性、韧性提高,加工硬化消失。
再结晶温度(T再): 通常指经大变形度(70~80%)的变形后,在规定
图5a为锌的变形孪晶,其形貌特征为薄透镜状。纯铁在低温 下受到冲击时也容易产生变形孪晶,其形貌如图5b所示,在 这种条件下萌生孪晶并长大的速度大大超过了滑移速度。
a 锌的变形孪晶
100
b 铁的变形孪晶
图5 变形孪晶光学显微形貌
100
工业纯铁压缩变形——滑移线
纯锌冲击变形——孪晶
2.多晶体的塑性变形

金属的塑性变形与再结晶

金属的塑性变形与再结晶

实验名称:金属的塑性变形与再结晶实验类型:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、实验步骤与实验结果(必填)五、讨论、心得(必填)一、实验目的1.了解冷塑性变形对金属材料的内部组织与性能的影响;2.了解变形度对金属再结晶退火后晶粒大小的影响。

二、实验原理金属塑性变形的基本方式有滑移和孪生两种。

在切应力作用下,晶体的一部分沿某一晶面相对于另一部分滑动,这种变形方式称为滑移;在切应力作用下,晶体的一部分沿某一晶面相对另一部分产生剪切变形,且变形部分与未变形部分的位向形成了镜面对称关系,这种变形方式称为孪生。

(一) 冷塑性变形对金属组织与性能的影响若金属在再结晶温度以下进行塑性变形,称为冷塑性变形。

冷塑性变形不仅改变了金属材料的形状与尺寸,而且还将引起金属组织与性能的变化。

金属在发生塑性变形时,随着外形的变化,其内部晶粒形状由原来的等轴晶粒逐渐变为沿变形方向伸长的晶粒,在晶粒内部也出现了滑移带或孪晶带。

当变形程度很大时,晶粒被显著地拉成纤维状,这种组织称为冷加工纤维组织。

同时,随着变形程度的加剧,原来位向不同的各个晶粒会逐渐取得近于一致的位向,而形成了形变织构,使金属材料的性能呈现出明显的各向异性。

金属经冷塑性变形后,会使其强度、硬度提高,而塑性、韧性下降,这种现象称为加工硬化。

(二) 冷塑性变形后金属在加热时组织与性能的变化金属经冷塑性变形后,由于其内部亚结构细化、晶格畸变等原因,处于不稳定状态,具有自发地恢复到稳定状态的趋势。

但在室温下,由于原子活动能力不足,恢复过程不易进行。

若对其加热,因原子活动能力增强,就会使组织与性能发生一系列的变化。

1.回复当加热温度较低时,原子活动能力尚低,故冷变形金属的显微组织无明显变化,仍保持着纤组织的特征。

此时,因晶格畸变已减轻,使残余应力显著下降。

但造成加工硬化的主要原因未消除,故其机械性能变化不大。

2.再结晶当加热温度较高时,将首先在变形晶粒的晶界或滑移带、孪晶带等晶格畸变严重的地带,通过晶核与长大方式进行再结晶。

“金属的塑性变形与再结晶实验”实验报告.docx

“金属的塑性变形与再结晶实验”实验报告.docx

金属的塑性变形与再结晶实验”实验报告、实验目的( 1) 了解冷塑性变形对金属材料的内部组织与性能的影响。

( 2) 了解变形度对金属再结晶退火后晶粒大小的影响。

二、实验原理金属材料在外力作用下,当应力大于弹性极限时,不但会产生弹性变形,还会产生塑性变形。

塑性变形的结果不仅改变金属的外形和尺寸,也会改变其内部的组织和性能。

在冷塑性形变过程,随着变形程度的增大,金属内部的亚晶增多,加上滑移面转动趋向硬位向和位错密度增加等原因,金属的强度和硬度升高,塑性和韧性下降,这种现象称为加工硬化。

加工硬化后的金属内能升高,处在不稳定的状态,并有想稳定状态转变的自发趋势。

若对其进行加热,使其内部原子活动能力增大,随着加热温度逐渐升高,金属内部依次发生回复、再结晶和晶粒长大3 个阶段。

冷塑性变形金属经再结晶退火后的晶粒大小,不仅与再结晶退火时的加热温度有关,,而且与再结晶退火前预先冷变形程度有关。

当变形度很小时,由于金属内部晶粒的变形也很小,故晶格畸变也小,晶粒的破碎与位错密度增加甚微,不足以引起再结晶现象发生,故晶粒大小不变。

当变形度在2%~10% 范围内时,由于多晶体变形的特点,金属内部各个晶粒的变形极不均匀(即只有少量晶粒进行变形) ,再结晶是晶核的形成数量很少,且晶粒极易相互并吞长大,形成较粗大的晶粒,这样的变形度称为临界变形度。

大于临界变形度后,随着变形量的增大,金属的各个晶粒的变形逐步均匀化,晶粒破碎程度与位错密度也随着增加,再结晶时晶核形成的数量也增多,所以再结晶退火后晶粒较细小而均匀。

为了观察再结晶退火后铝片的晶粒大小,必须把退火后的铝片放入一定介质中进行浸蚀,由于各个晶粒内原子排列的位向不同,对浸蚀剂的腐蚀不同,因而亮暗程度不同,就能观察到铝片内的晶粒。

三、实验装置及试件工业纯铝片、铝片拉伸机、浸蚀剂( 15%HF+45%HCL+15%HN ??3+25% ??2??组成的混合酸)、HV-120型维氏硬度计、小型实验用箱式炉、钢皮尺、划针、扳手、放大镜。

第五章 金属的塑性变形及再结晶

第五章   金属的塑性变形及再结晶

四、金属的热加工
1.热变形加工与冷变形加工的区别
从金属学的观点来看,热加工和冷加工的区别是以再结晶温 度为界限。在再结晶温度之下进行的变形加工,在变形的同时没 有发生再结晶,这种变形加工称之为冷变形加工。而金属在再结 晶温度以上进行塑性变形就称为热加工。
2.热变形加工对金属组织与性能的影响
(1)改善铸态组织 热变形加工可以使金属铸锭中的组织缺陷显 著减少,如气孔、显微裂纹等,从而提高材料的致密度,使金属 的力学性能得到提高。
在工业上常利用回复现象将冷变形金属低温加热既消除应为去应力退火力稳定组织同时又保留了加工硬化性能这种热处理方法称1再结晶过程变形后的金属在较高温度加热时原子活动能力较强时会在变形随着原子的扩散移动新晶核的边界面不断向变形的原晶粒中推进使新晶核不断消耗原晶粒而长大
金属材料及热处理
第五章 金属的塑性变形及再结晶
二、冷塑性变形对金属组织和性能的影响
2.冷塑性变形对组织结构的影响 1)产生“纤维组织”
塑性变形使金属的晶粒形状发生了变化,即随着金属外形的 压扁或拉长。当变形量较大时,各晶粒将被拉长成细条状或纤维 状,晶界变得模糊不清,形成所谓的“纤维组织”。
2)产生变形织构
由于在滑移过程中晶体的转动和旋转,当塑性变形量很大时, 各晶粒某一位向,大体上趋于一致了,这种现象称择优取向。 这种由于塑性变形引起的各个晶粒的晶格位向趋于一致的晶粒 结构称为变形织构。
二、冷塑性变形对金属组织和性能的影响
3.产生残余内应力
经过塑性变形,外力对金属所做的功,约90%以上在使金属变 形的过程中变成了热,使金属的温度升高,随后散掉;部分功转 化为内应力残留于金属中,使金属的内能增加。残余的内应力就 是指平衡于金属内部的应力,它主要是金属在外力的作用下所产 生的内部变形不均匀而引起的。 第一类内应力,又称宏观内应力。它是由于金属材料各部分变形 不均匀而造成的宏观范围内的残余应力。 第二类内应力,又称微观残余应力。它是平衡于晶粒之间的内应 力或亚晶粒之间的内应力。 第三类内应力,又称晶格畸变内应力。其作用范围很小,只是在 晶界、滑移面等附近不多的原子群范围内维持平衡。

材料科学基础-实验指导-实验10塑性变形和再结晶(精)

材料科学基础-实验指导-实验10塑性变形和再结晶(精)

实验十塑性变形和再结晶一、实验目的1. 研究金属冷变形过程机器组织性能的变化。

2. 研究冷变形金属在加热时组织性能的变化。

3. 了解金属的再结晶温度和再结晶后晶粒大小的影响因素。

4. 初步学会测定晶粒度的方法。

二、实验内容说明金属经冷加工变形后,其组织和性能均发生变化:原先的等轴晶组织,随着塑性变形量的增大,其晶粒沿变形方向逐渐伸长,变形度越大,则伸长也越显著;当变形度很大时,其组织呈纤维状。

随着组织的变化,金属的性能也发生改变:强度硬度增高,塑性则逐渐下降,即产生了“加工硬化”。

经冷变形后的金属加热到再结晶温度时,又会发生相反转变。

新的无应变的晶粒取代原先变形的晶粒,金属的性能也恢复到变形前的情况,这一过程称为再结晶。

再结晶温度与金属本性、杂质含量、冷变形程度、保温时间、材料的原始晶粒度等有关。

再结晶所产生的晶粒大小在很大程度上取决于冷变形程度的大小,在某一变形度变形,再经退火处理后晶粒异常粗大,该变形度称为临界变形度,它使材料性能恶化,是压力加工中切忌的问题。

本实验主要以低碳钢为对象,分析其塑性变形和再结晶过程中显微组织的变化。

观察经一定冷变形后不同退火温度下低碳钢的显微组织,测定再结晶度,此外对不同冷变形度的低碳钢材料进行高温退火,测定晶粒度,从而确定临界变形度。

三、实验步骤1. 教师讲解金属塑性变形与再结晶的组织状态,介绍用对照法、割线法测定晶粒度的方法。

2. 观察纯铁经10%,15%,20%,50%,70%变形度变形后的显微组织。

描绘其组织特征。

3. 观察纯铁经70%变形度在400℃,450℃,500℃,600℃,850℃退火半小时后的试样,一组五只,从中找得再结晶后晶粒大小与退火温度之间的定性关系。

4. 观察纯铁经10%,20%,30%,50%,70%五种变形度变形后在850℃退火半小时后组织,分别用对照法和割线法测得其晶粒度,确定其临界变形度的大致范围。

5. 观察并描绘纯铁冷变形的滑移线和冲击载荷下产生的机械双晶及纯锌压延后机械双晶、黄铜的退火双晶。

机械工程材料第二章金属塑性变形与再结晶

机械工程材料第二章金属塑性变形与再结晶

4. 再结晶与重结晶
相同点:晶粒形核、长大的过程。
不同点: (1)再结晶转变前后的晶格类型没有发生变化, 重结晶时晶格类型发生改变。 (2)再结晶是对冷塑性变形的金属而言的,没有 发生冷塑性变形的金属不存在再结晶问题。
三、晶粒长大 再结晶刚刚完成后的晶粒是无畸变的等轴晶粒, 如果继续升高温度或延长保温时间,晶粒之间就 会通过晶界的迁移相互吞并而长大。
➢ 产生残余应力。
(二)其他性能
塑性变形影响金属的物理、化学性能, 如电阻增大,导磁率下降,耐腐蚀性能 降低。 密度、导热系数下降。
三、残余应力(约占变形功的10%)
(一)宏观内应力(第一类内应力) 原因:由工件不同部位的宏观变形不均匀而引起的。 作用范围:作用于整个工件。
金属棒弯曲变形后 的残余应力
正火组织
带状组织
金属冷拉拔后 的残余应力
(二)微观内应力(第二类内应力) 原因:晶粒或亚晶粒之间的变形不均匀引起的。 作用范围:与晶粒尺寸相当。
(三)点阵畸变(第三类内应力)80-90%
原因:晶体缺陷而引起的畸变应力。 作用范围:约几百到几千个原子范围内。
金属强化 主要原因
➢第一类、第二类残余应力: 弊:对金属材料的性二、塑性变形对金属性能的影响
(一)力学性能 加工硬化(形变强化):随着冷塑性变形量 的增加,金属的强度、硬度升高,塑性、韧 性下降的现象。
工业纯铜
45钢
➢加工硬化是强化金属的重要手段之一。
对于不能热处理强化的金属和合金尤为重要。
链条板的轧制
材料为Q345(16Mn) 钢 的自行车链条经过五 次轧制,厚度由3.5mm压缩到1.2mm,总变形 量为65%。
原始横截面积的百分比。
Ψ=

金属的塑性变形与再结晶(3)

金属的塑性变形与再结晶(3)
滑移实质上是位错在滑移面上运动的结果,在切 应力的作用下,晶体中存在的正刃位错逐步移动, 当这个位错移到晶体的右边缘时,移出晶体的上 半部就相对于下半部移动了一个原子间距,形成 一个原子间距的滑移量。
同一滑移面上若有大量的位错移出,则在晶体表 面形成一条滑移线。
位错在晶体中移动时所需切应力很小,因为当位错中心前 进一个原子间距时,一齐移动的只是位错中心少数原子, 而且其位移量都不大,形成逐步滑移,这就比一齐移动所 需的临界切应力要小得多,这称为“位错的易动性”。
研究表明,亚晶界的存在使晶体的变形抗力增加, 是引起加工硬化的重要因素之一。
3.形变织构
在塑性变形过程中,当金属按一定的方向变形量 很大时(变形量大于70%以上),多晶体中原来任 意位向的各晶粒的取向会大致趋于一致,这种有 序化结构叫作“变形织构”,又称为“择优取 向”,
金属材料的加工方式不同形成不同类型的织构: 拉拔时形成的织构称为丝织构,其特征是各个晶 粒的某一晶向平行于拉拔方向;轧制时形成的织 构称为板织构,其特征是不仅某一晶面平行于轧 制平面,而且某一晶向也平行于轧制方向。
3.变形引起的内应力
在金属塑性变形过程中,大约有10%的能量转化为内应力而残留在金属中, 使其内能增加。
这些残留于金属内部且平衡于金属内部的应力称为残余内应力。它是由于金 属在外力作用下各部分发生不均匀的塑性变形而产生的。
内应力一般可分为三种类型:Βιβλιοθήκη (1)宏观内应力(第一类内应力)
金属材料在塑性变形时,由于各部分变形不均匀,使整个工件或在较大的 宏观范围内(如表层与心部)产生的残余应力。
3.1.2多晶体金属塑性变形的特点
大多数金属材料是由多晶体组成的。 多晶体塑性变形的实质与单晶体一样。 要考虑到晶粒彼此之间在变形过程中的约束作用,以及晶界对塑性变形的影

金属的塑性变形与再结晶

金属的塑性变形与再结晶

等轴晶粒,机械性能完全恢复。
(三)再结晶后晶粒大小与变形量的关系
冷变形金属再结晶后晶粒大小除与加 热温度、保温时间有关外,还与金属的预 先变形量有关。 当变形度很小时,金属不发生再结晶。
晶粒 大小
这是由于晶内储存的畸变能很小,不足以
进行再结晶而保持原来状态,当达到某一 变形度时,再结晶后的晶粒特别粗大,该
2
3 4
低碳钢
低碳钢 低碳钢
压缩58%
压缩45%,550℃退火半小时 压缩58%,550℃退火半小时
伸长的晶粒
部分等轴晶 部分等轴晶
5
6 7 8
低碳钢
低碳钢 低碳钢 低碳钢
压缩45%,650℃退火半小时
压缩58%,650℃退火半小时 压缩45%,700℃退火半小时 压缩58%,700℃退火半小时
完全再结晶
c. 对比分析不同变形量,不同退火温度对晶粒大小的影响。
(二)塑性变形后的回复与再结晶
金属经冷塑性变形后,在热力学上处于不稳定状态,
必有力求恢复到稳定状态的趋势。
但在室温下,由于原子的动能不足,恢复过程不易进 行,加热会提高原子的活动能力,也就促进了这一恢复 过程的进行。 加热温度由低到高,其变化过程大致分为回复、再结 晶和晶粒长大三个阶段,当然这三个阶段并非截然分开。
变形度称之临界变形度。
一般金属的临界变形度在2%~10%范 围内。此后,随着变形度的增加,再结晶
临界变形度
预先变形程度
预先变形程度对晶粒度的影响
后的晶粒度逐渐变细。
三、实验方法
1.实验材料及设备 (1)金相显微镜; (2)低碳钢不同变形量及再结晶状态金相样品一套;
编号 1 材料 低碳钢 处理状态 压缩45% 组织 伸长的晶粒

第六章 金属和合金的塑性变形

第六章  金属和合金的塑性变形

第六章 金属和合金的塑性变形和再结晶金属材料(包括纯金属和合金)在外力的作用下引起的形状和尺寸的改变称为变形。

去除外力,能够消失的变形,称弹性变形;永远残留的变形,称塑性变形。

工业生产上正是利用塑性变形对金属材料进行加工成型的,如锻造、轧制、拉拔、挤压、冲压等。

塑性变形不仅能改变工件的形状和尺寸,还会引起材料内部组织和结构的变化,从而使其性能发生变化。

以再结晶温度为界,金属材料的塑性变形大致可分为两类:冷塑性变形和热塑性变形,在生产上,通常称为冷加工和热加工。

经冷塑性变形的金属材料有储存能,自由能高,组织不稳定。

若升高温度,使原子获得足够的扩散能力,则变形组织会恢复到变形前的状态,这个恢复过程包括:回复、再结晶和晶粒长大三个阶段。

从金属材料的生产流程来看,一般是先进行热加工,然后才进行冷加工和再结晶退火。

但为了学习的方便,本章先讨论冷加工,再讨论再结晶和热加工。

§6.1 金属材料的变形特性一、 应力—应变曲线金属在外力作用下,一般可分为弹性变形、塑性变形、断裂三个阶段。

图6.1是低碳钢拉伸时的应力—应变曲线,这里的应力和应变可表示为:000,L L L L L A F ∆=-==εσ 公式中F 是拉力,00,L A 分别是试样的原始横截面积和原始长度。

从图中可以得到三个强度指标:弹性极限e σ,屈服强度s σ,抗拉强度b σ。

当拉应力小于弹性极限e σ时,金属只发生弹性变形,当拉应力大于弹性极限e σ,而小于屈服强度s σ时,金属除发生弹性变形外,还发生塑性变形,当拉应力大于抗拉强度b σ时,金属断裂。

理论上,弹性变形的终结就是塑性变形的开始,弹性极限和屈服强度应重合为一点,但由于它们不容易精确测定,所以在工程上规定:将残余应变量为0.005%时的应力值作为弹性极限,记为005.0σ,而将残余应变量为0.2%时的应力值作为条件屈服极限,记为2.0σ。

s σ和2.0σ都表示金属产生明显塑性变形时的应力。

实验二 金属的塑性变形与再结晶

实验二 金属的塑性变形与再结晶

实验二金属的塑性变形与再结晶一、实验目的1、了解工业纯铁经冷塑性变形后,变形量对硬度和显微组织的影响2、研究变形量对工业纯铝再结晶退火后晶粒大小的影响二、实验原理金属在外力作用下,当应力超过其弹性极限时将发生不可恢复的永久变形称为塑性变形。

金属发生塑性变形后,除了外形和尺寸发生改变外,其显微组织与各种性能也发生明显的变化。

经塑性变形后,随着变形量的增加,金属内部晶粒沿变形方向被拉长为偏平晶粒。

变形量越大,晶粒伸长的程度越明显。

变形量很大时,各晶粒将呈现出“纤维状”组织。

同时内部组织结构的变化也将导致机械性能的变化。

即随着变形量的增加,金属的强度、硬度上升,塑性、韧性下降,这种现象称为加工硬化或应变硬化。

在本实验中,首先以工业纯铁为研究对象,了解不同变形量对硬度和显微组织的影响。

冷变形后的金属是不稳定的,在重新加热时会发生回复、再结晶和晶粒长大等过程。

其中再结晶阶段金属内部的晶粒将会由冷变形后的纤维状组织转变为新的无畸变的等轴晶粒,这是一个晶粒形核与长大的过程。

此过程完成后金属的加工硬化现象消失。

金属的力学性能将取决于再结晶后的晶粒大小。

对于给定材料,再结晶退火后的晶粒大小主要取决于塑性变形时的变形量及退火温度等因素。

变形量越大,再结晶后的晶粒越细;金属能进行再结晶的最小变形量通常在2~8%之间,此时再结晶后的晶粒特别粗大,称此变形度为临界变形度。

大于此临界变形度后,随变形量的增加,再结晶后的晶粒逐渐细化。

在本实验中将研究工业纯铝经不同变形量拉伸后在550℃温度再结晶退火后其晶粒大小,从而验证变形量对再结晶晶粒大小的影响。

三、实验设备和材料1、实验设备箱式电阻炉、万能拉伸机、卡尺、低倍4X型金相显微镜、洛氏硬度计等2、实验材料(1)变形度为0%、30%、50%、70%的工业纯铁试样两套,其中一套用于塑性变形后的硬度测定,一套为已制备好的不同变形量下的金相标准试样,用于观察组织(2)工业纯铝试样,尺寸为160mm×20m m×0.5mm,(3)腐蚀液:40mlHNO3+30mlHCl+30mlH2O+5g纯Cu),硝酸溶液四、实验内容及步骤1、测定工业纯铁的硬度(HRB )与变形度的关系,观察不同塑性变形量后工业纯铁的金相显微组织(1)将工业纯铁的试样在万能拉伸实验机上分别进行0%、30%、50%、70%的压缩变形。

金属的塑性变形与再结晶金属的塑性变形冷塑

金属的塑性变形与再结晶金属的塑性变形冷塑

3.1.2 冷塑性变形对金属性能与组织的影响
1.冷塑性变形对金属显微组织的影响 2.亚结构的变化 3.形变织构的产生 形变织构有两种类型: ①拔丝时形成的形变织构称为丝织构,其主要特 征为各晶粒的某一晶向趋于平行于拉 拔方向。 ②轧板时形成的形变织构称为板织构,其主要特 征为各晶粒的某一晶面和晶向分别趋 于平行于 轧制面和轧制方向。
3.2 高分子材料的变形特点
3.2.1 高聚物的弹性变形 图3-7是橡胶的拉伸曲线。
图3-7 橡胶的拉伸曲线
3.2.2 高聚物的黏弹性变形 3.2.3 线型高聚物的变形特点 如图3-8(a)所示。
图3-8 线型高聚物的应力-应变曲线
3.2.4 体型高聚物的变形特点
图3-9 环氧树脂在室温下 单向拉伸和压缩时的应力-应变曲线
思考题
3-1 什么是滑移?
3-2 单晶体塑性变的最基本方式是什么?在实际晶体中,它是通过 什么来实现的?
3-3 多晶体的塑性变形比单晶体复杂,它的不同点主要表现在哪几个 方面?
3-4 塑性变形对金属性能的影响有哪些?
3-5 什么是加工硬化?它在生产中有何利弊?如何消除加工硬化?
3-6 简述加热温度对冷塑性变形金属的组织和性能的影响。
3-7 实际生产中,金属的再结晶温度是如何确定的?
3-8 热加工与冷加工的本质区别是什么?它对金属的组织和性能有何 影响?
3-9 简述高聚物的变形特点。
3-10简述陶瓷的变形特点。
目录
3.晶粒长大
3.1.4 金属的热塑性变形
1.热加工与冷加工的本质区别 金属的冷塑性变形加工和热塑性变形加工是以再结 晶温度来划分的。 凡在金属的再结晶温度以上进行的加工,称为热加 工,如锻造热轧等; 在再结晶温度以下进行的加工称为冷加工,如冷轧 冷拉等。 2.热加工对金属组织和性能的影响 (1)消除铸态金属的组织缺陷 (2)细化晶粒 (3)形成纤维组织 (4)形成带状组织

吉林大学工程材料第2章 金属的塑性变形和再结晶

吉林大学工程材料第2章 金属的塑性变形和再结晶
实质——晶界迁移过程
1、晶粒正常长大: 再结晶后的晶粒均匀、稳速地长大的现象。发生在
再结晶晶粒细小且均匀时。(希望的长大方式)
2、晶粒异常长大:
再结晶后的晶粒不均匀,急剧长大的现象。在再结晶 粒大小不均时,大晶粒吞并小晶粒,将得到异常粗大的 晶粒,也称“二次再结晶”。
d晶↑ 晶界面积↓ 能量↓∴晶粒长大是自发的 过程。因为粗晶是弱化,所以要避免晶粒长大,特别要
方向 σb(MPa) σ0.2(MPa) δ(%) ψ(%) αk(KJ/M2)
平行 701 垂直 659
460
17.5 62.8
608
431
10.0 31.0
294
34
四 、热加工的不足
在实际生产中,热加工与冷加工相比也有不足处
(1)热加工需要加热,不如冷加工简单易行。 (2)热加工制品的组织与性能不如冷加工均匀和易 于控制。
目的:1. 消除加工硬化 使、σ、HB↓ δ%、 %、ak↑ 2. 消除内应力,但保留加工硬化,使理化性能↑
对于冷加工后的金属,由于10%的变形能储存在 金属中,在加热时,随着温度的升高,原子活动能力 提高,在变形能的作用下,就要发生组织和性能的变 化,其主要包括三个阶段:回复、再结晶及晶粒长大。
18
底面对角线
1 面×3 方向=3
7
4、滑移机理
临界切应力(c): 能够发生滑移的最小切应
力叫做为)。当切应力()满足 c时滑移才 能发生。
铜的滑移临界切应力:理论计算 1500 Mpa 实际测试 1 MPa
滑移是由于滑移面上的位错运动造成的。
8
位错运动造成滑移示意图
9
10
二、 多晶体金属的塑性变形
700℃

实验三 金属塑性变形与再结晶

实验三 金属塑性变形与再结晶

实验三金属塑性变形与再结晶一、实验目的认识金属冷变形加工后及经过再结晶退火后的组织性能和特征变化;研究形变程度对再结晶退火前后组织和性能的影响。

加深对加工硬化现象和回复再结晶的认识。

二、基本原理1、金属冷塑性变形后的显微组织和性能变化金属冷塑性变形为金属在再结晶温度以下进行的塑性变形。

金属在发生塑性变形时,外观和尺寸发生了永久性变化,其内部晶粒由原来的等轴晶逐渐沿加工方向伸长,在晶粒内部也出现了滑移带或孪晶带,当变形程度很大时,晶界消失,晶粒被拉成纤维状。

相应的,金属材料的硬度、强度、矫顽力和电阻等性能增加,而塑性、韧性和抗腐蚀性降低。

这一现象称为加工硬化。

为了观察滑移带,通常将已抛光并侵蚀的试样经适量的塑性变形后再进行显微组织观察。

注意:在显微镜下滑移带与磨痕是不同的,一般磨痕穿过晶界,其方向不变,而滑移带出现在晶粒内部,并且一般不穿过晶界。

2、冷塑性变形后金属加热时的显微组织与性能变化金属经冷塑性变形后,在加热时随着加热温度的升高会发生回复、再结晶、和晶粒长大。

(1)回复当加热温度较低时原子活动能力尚低,金属显微组织无明显变化,仍保持纤维组织的特征。

但晶格畸变已减轻,残余应力显著下降。

但加工硬化还在,固其机械性能变化不大。

(2)再结晶金属加热到再结晶温度以上,组织发生显著变化。

首先在形变大的部位(晶界、滑移带、孪晶等)形成等轴晶粒的核,然后这些晶核依靠消除原来伸长的晶粒而长大,最后原来变形的晶粒完全被新的等轴晶粒所代替,这一过程为再结晶。

由于金属通过再结晶获得新的等轴晶粒,因而消除了冷加工显微组织、加工硬化和残余应力,使金属又重新恢复到冷塑性变形以前的状态。

金属的再结晶过程是在一定的温度范围能进行的,通常规定在一小时内再结晶完成95%所对应的温度为再结晶温度,实验证明,金属熔点越高,再结晶温度越高,其关系大致为:T=0.4T熔。

(3)晶粒长大再结晶完成后,继续升温(或保温),则等轴晶粒以并容的方式聚集长大,温度越高,晶粒越大。

第四章 金属的塑性变形与回复再结晶

第四章 金属的塑性变形与回复再结晶

第四章金属的塑性变形与回复再结晶第一节金属的塑性变形金属的一项重要特性是具有塑性,能够在外力作用下进行塑性变形。

外力除去后,永久残留的变形,称为塑性变形。

塑性变形的基本方式有滑移和孪生两种,最常见的是滑移。

下面我们就讨论:一、光学金相显微镜下滑移带、变形孪晶与退火孪晶的特征滑移:所谓滑移即在切应力作用下晶体的一部分沿一定的晶面和晶向相对于另一部分产生滑动。

所沿晶面和晶向称为滑移面和滑移方向。

1.滑移带经表面抛光的金属单晶体或晶粒粗大的多晶体试样,在拉伸(或压缩)塑性变形后放在光学显微镜下观察,在抛光的晶体表面上可见到许多互相平行的线条,称为滑移带,如图4一1所示。

a黄铜的滑移带600⨯b 纯铁的滑移带 400⨯图4-1 滑移带的光学显微形貌由图可见,纯铁的滑移带特征与黄铜的略有不同,往往呈波纹状。

这主要由于纯铁本身层错能较高,其扩展位错容易束集,加之体心立方晶体可进行滑移的晶面多,因而产生大量交滑移的缘故。

如果用电子显微镜作高倍观察,会发现每条滑移带(光学显微镜下的每根线条)是由许多密集在一起的滑移线群所组成。

实际上,每条滑移线表示晶体表面上因滑移而产生的一个小台阶,而滑移带是小台阶累积的大台阶。

正因为晶体表面有这些台阶的出现才显示出上述的微观形貌。

如果将这些小台阶磨掉,即使重新抛光并浸蚀也看不出滑移带,因为滑移面两侧的晶体位向不随滑移而改变,故只能借助晶体表面出现的小台阶来观察。

1.变形孪晶孪生通常是晶体难以进行滑移时而发生的另一种塑性变形方式。

以孪生方式形变的结果将产生孪晶组织,在面心立方晶体中一般难以见到变形孪晶,而在密排六方晶体中比较容易见到。

因为密排六方晶体的滑移系少,塑性变形经常以孪生方式进行。

图4一2a为锌的变形孪晶,其形貌特征为薄透镜状。

纯铁在低温下受到冲击时也容易产生变形孪晶,其形貌如图4一2b所示,在这种条件下萌生孪晶并长大的速度大大超过了滑移速度。

a 锌的变形孪晶100⨯b 铁的变形孪晶 100⨯图4—2 变形孪晶光学显微形貌如果将变形孪晶试样重新磨制、抛光、浸蚀,是否如同滑移带那样也会消失呢?并不是这样的。

第四章金属材料的塑性变形与再结晶

第四章金属材料的塑性变形与再结晶

滑移方向上原子间距的 小于孪生方向上的原
整数倍,较大。
子间距,较小。
很大,总变形量大。
有限,总变形量小。
有一定的临界分切 压力 一般先发生滑移
所需临界分切应力远高于 滑移
滑移困难时发生
变形机制
全位错运动的结果 分位错运动的结果 34
(二) 多晶体金属的塑性变形
单个晶粒变形与单晶体相似,多晶体变形比单晶体复杂
① 晶界的特点:原子排列不规则;分布有大量缺陷
② 晶界对变形的影响:滑移、孪生多终止于晶界,极少穿 过。
35
当位错运动到晶界附近时,受到晶界的阻碍而堆积 起来,称位错的塞积。要使变形继续进行, 则必须增加 外力, 从而使金属的变形抗力提高。
36
晶界对塑性变形的影响
Cu-4.5Al合金晶 界的位错塞积
55
(4) 几何硬化:由晶粒转动引 起 由于加工硬化, 使已变形部 分发生硬化而停止变形, 而 未变形部分开始变形。没有 加工硬化, 金属就不会发生 均匀塑性变形。
未变形纯铁
加工硬化是强化金属的重要
手段之一,对于不能热处理
强化的金属和合金尤为重要
变形20%纯铁中的位错
56
2 对力学性能的影响
利弊
d. 孪生本身对金属塑性变形的贡献不大,但形成 的孪晶改变了晶体的位向,使新的滑移系开动, 间接对塑性变形有贡献。
33
总结
滑移
孪生
相同点
晶体位向
位移量 不 同 对塑变的贡献 点
变形应力
变形条件
1 切变;2 沿一定的晶面、晶向进行;3 不 改变结构。 不改变(对抛光面 改变,形成镜面对称关系 观察无重现性)。 (对抛光面观察有重现性)
1、晶粒取向和晶界对塑性变形的影响

实验指导书-金属的塑性变形、回复与再结晶

实验指导书-金属的塑性变形、回复与再结晶

实验名称:金属的塑性变形、回复与再结晶一、实验目的•研究金属冷变形后,变形量对材料硬度的影响。

•研究同一退火温度下不同变形量对回复、再结晶后材料硬度的影响。

•研究再结晶温度对冷变形材料进行回复、再结晶后的硬度影响。

二、实验内容说明•金属经塑性变形后不但外形发生变化,而且晶粒内部结构和力学性能也发生明显的变化。

变形量越大,这些变化越明显。

•金属塑性变形后的退火处理可以导致材料产生回复与再结晶,退火温度对回复和再结晶过程有影响。

•冷变形量、热处理温度与时间的差异可导致材料回复与再结晶特征不同。

三、实验步骤1、实验用设备和材料•设备:轧机,游标卡尺,箱式电炉,热电偶及控温仪表,硬度计等;•材料:紫铜板片约20-40块。

2、实验内容与实验过程•紫铜试样作四种不同变形量的轧制变形;变形量20%-80%;•测量变形试样的硬度;•变形试样做不同温度(3-4个)的再结晶退火;温度范围200-500°C;退火时间约0.5小时;•测量退火试样的硬度;•做出材料硬度与变形和热处理工艺参数的关系曲线;•总结规律并且分析原因。

四、实验注意事项•全班学生拟分成3-4组;•先进行安全教育和设备使用的讲解;•关键步骤教师先进行示范,并全程监控学生实验。

五、实验报告要求•写出实验目的、原理和步骤;•绘出硬度与变形量、退火后硬度与变形量、退火后硬度与退火温度的关系曲线;•说明变形量对硬度的影响;•说明在相同的温度与保温时间条件下,变形量不同对再结晶后硬度的影响;•说明在相同的变形量与保温时间条件下,不同温度对再结晶后硬度的影响;•分析其中的原因。

六、思考题•分析金属的堆垛层错能高低对冷变形组织、静态回复、动态回复、静态再结晶和动态再结晶的影响。

•退火温度的升高,变形组织将依次发生哪些变化?•回复和再结晶阶段空位和位错的变化对金属的组织和性能所带来哪些影响?•影响材料的硬度的主要因素有哪些?。

第四章金属的塑性变形与再结晶

第四章金属的塑性变形与再结晶

第四章金属的塑性变形与再结晶铸态组织具有晶粒粗大且不均匀、组织不致密及成分偏析等缺陷,需要经压力加工再使用。

金属的压力加工,就是通过使金属产生一定的塑性变形获得制件。

压力加工不仅改变其外形尺寸,且使内部的组织和性能发生改变。

因此研究金属塑性变形以及变形后材料的组织结构的变化规律,对于深入了解金属材料各项力学性能指标的本质,充分发挥材料强度的潜力,正确制定和改进金属压力加工的工艺,提高产品的质量以及合理使用材料等都具有重要意义。

第一节金属的塑性变形[教学目的] 理解单晶体的塑性变形,掌握多晶体的塑性变形。

[教学重点] 多晶体的塑性变形。

[教学难点] 多晶体的塑性变形。

[教学方法] 讲授。

[教学内容]所有变形中,塑性变形对组织和性能的影响最大。

为认识塑性变形的规律,首先研究单晶体的塑性变形。

一单晶体的塑性变形单晶体的塑性变形主要通过滑移和孪生方式进行。

1 滑移切应力作用下,晶体的一部分沿着一定晶面(滑移面)上的一定方向(滑移方向)相对于另一部分发生滑动,称为滑移。

外力在一定的晶面分解为垂直于晶面的正应力σN和平行于晶面的切应力τN。

σN引发弹性变形和脆性断裂,断口呈金属光泽;τN引发弹性变形、弹塑性变形和韧性断裂,断口灰暗无光泽。

滑移变形的5个要点:1)滑移只能在切应力作用下发生;2)滑移主要发生在原子排列最紧密或较紧密的晶面上,并沿着这些晶面上原子排列最紧密的方向进行。

(原因:最密排晶面之间的距离最远;最密排晶面上原子与邻近原子之间的阻力最小)3)滑移必然伴随着晶体的转动(正应力引起)。

4)滑移是滑移面上的位错运动造成的。

位错运动所需切应力远远小于刚性的整体滑移所需的切应力。

如铜刚性滑移要1540MPa,实际只有1MPa。

二多晶体的塑性变形1 晶界与晶粒位向的影响①晶界竹节现象多晶体金属中,晶界原子的排列不规则,局部晶格畸变严重,且易产生杂质原子和空位等缺陷的偏聚。

位错运动到晶界附近时容易受到晶界的阻碍。

金属材料与热处理 模块三 课题二冷变形后的金属在加热时组织和性能的变化

金属材料与热处理 模块三 课题二冷变形后的金属在加热时组织和性能的变化

再结晶过程仍然是一个形核与晶核长大的过程。
金属的塑性变形与再结晶
2 变形后的金属发生再结晶的温度是一个温度范围,并非某一恒定温度。一般所说的再结
晶温度指的是最低再结晶温度再,通常用经过大变形量(70%以上)的冷塑性变形的金属, 在一小时加热后能完全再结晶的最低温度来表示。最低再结晶温度与该金属的熔点有如下 关系。 T再=(0.35~0.4)T熔
案例分析
以上两种现象都表现为金属材料在冷塑性变形后性能发生了变化。冷塑性变形后的金属 材料产生加工硬化,同时又有内应力存在。为了消除内应力和加工硬化现象,使金属组织 和性能恢复到变形前的状态,均必须通过加热来完成。
金属的塑性变形与再结晶
必备知识
金属经塑性变形后,组织结构和性能会发生很大的变化。如果对变形后的金属进行加热, 金属的组织结构和性能又会发生变化。随着加热温度的提高,变形金属将相继发生回复、 再结晶和晶粒长大过程,如图3-12所示。
生产中利用回复现象可将已产生冷变形强化的金属材料在较低温度下加热,使残留内应 力基本消除而保留强化的力学性能,这种处理称为低温去应力退火。例如,用冷拉钢丝卷 制弹簧,卷成之后要进行250~300 ℃
金属的塑性变形与再结晶
二、再结晶
1

当冷变形金属在较高温度加热时,由于原子扩散能力增大,被拉长(或压扁)、破碎
金属的塑性变形与再结晶
三、 再结晶完成后的晶粒是细小的,但如果继续加热,加热温度过高或保温时间过长时,晶
粒会明显长大,最后得到粗大晶粒的组织,使金属的强度、硬度、塑性、韧性等机械性能 都显著降低。一般情况下晶粒长大是应当避免发生的现象。
当金属变形较大,产生织构,含有较多的杂质时,晶界的迁移将受到阻碍,因而只会有 少数处于优越条件的晶粒(如尺寸较大,取向有利等)优先长大。晶粒长大实质上是大晶 粒迅速吞食周围的大量小晶粒,最后获得晶粒异常粗大的组织。这种不均匀的长大过程类 似于再结晶的生核(较大稳定亚晶粒生成)和长大(吞食周围的小亚晶粒)的过程,所以 称为二次再结晶。二次再结晶会大大降低金属的机械性能。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
5.残余应力
内应力分为三类: ①宏观残余应力:是由工件不同部分的宏观 变形不均引起的。 ②微观残余应力:是由晶粒或亚晶粒之间的 变形不均产生的。 ③点阵畸变:是由工件在塑性变形中形成的 大 量 点 阵 缺 陷 (如空位、间隙原子、位错等)引 起的。 内应力的产生使材料变脆,耐蚀性降低。
a
8
3.1.3 回复与再结晶
12
3.2.4 体型高聚物的变形特点
图3-9 环氧树脂在室温下
单向拉伸和压缩时的应力-应变曲线
a
13
3.3 陶瓷材料的变形
3.3.1 陶瓷材料的弹性变形
材料在静拉伸载荷下,一般都要经过弹性变形、塑性 变形及断裂三个阶段。
3.3.2 陶瓷材料的塑性变形及蠕变
3.3.3 陶瓷材料的强度、硬度和断裂
目前主要采用以下几种方法提高陶瓷材料的实际强度 及改善其脆性:
②轧板时形成的形变织构称为板织构,其主要特
征为各晶粒的某一晶面和晶向分别趋 于平行于
轧制面和轧制方向。
a
6
4.塑性变形对金属性能的影响
塑性变形后金属 性能变化最显著的是 力学性能。随着塑性 变形的增加,金属的 强度、硬度提高,而 塑性、韧性下降的现 象称为加工硬化或形 变强化。
a
图3-6 冷冲压示意图
度,而且也使它具有良好的塑性和韧性,即具有良好的综
合力学性 能。故生产中总a 是尽可能地细化晶粒。
5
3.1.2 冷塑性变形对金属性能与组织的影响
1.冷塑性变形对金属显微组织的影响
2.亚结构的变化
3.形变织构的产生
形变织构有两种类型:
①拔丝时形成的形变织构称为丝织构,其主要特 征为各晶粒的某一晶向趋于平行于拉 拔方向。
图 3-2 晶体在切a应力作用下的变形
3
滑移的机理
图3-3 位错的运动
图3-4 通过位错运动产生滑移的示意图
a
4
2.多晶体的塑性变形
(1)晶粒取向的影响 (2)晶界的影响 (3)晶粒大小的影响
图3-5 两个晶粒试样在拉伸时的变形
因此,一般在室温使用的结构材料都希望获得细小而
均匀的晶粒。因为细晶粒不仅使材料具有较高的强度、硬
1.回复
2.再结晶
对于工业用纯金属(纯度大于99.9%),其再结晶温度 与熔点间的关系可按下列经 验公式计算:
T再=(0.35~0.4)T熔 式中 T再——金属的再结晶温度,K;
T熔——金属的熔点,K。
实际生产中,为了消除加工硬化,必须进行中间退 火。经冷变形后的金属加热到再结晶温度以上100~ 200℃,保温适当时间,使变形晶粒重新结晶为均匀的等 轴晶粒,以消除加工硬化和残余应力的退火,称为再结 晶退火。
3.3 陶瓷材料的变形
3.3.1 陶瓷材料的弹性变形
3.3.2 陶瓷材料的a塑性变形及蠕变
目录
1
3.3.3 陶瓷材料的强度、硬度和断裂
3.1 金属的塑性变形与再结晶
3.1.1 金属的塑性变形 1.单晶体的塑性变形 滑移带,如图3-1所示。
图3-1 纯锌单a晶体滑移变形示意图
2
滑移变形具有以下特点: ①滑移在切应力作用下产生(图3-2)。 ②滑移沿原子密度最大的晶面和晶向发生。 ③滑移时两部分晶体的相对位移是原子间距的整数倍。 ④滑移的同时伴随着晶体的转动。如图3-1(b)右图所示。
第3章 材料的变形
3.1 金属的塑性变形与再结晶 3.1.1 金属的塑性变形 3.1.2 冷塑性变形对金属性能与组织的影响
3.1.3 回复与再结晶
3.1.4 金属的热塑性变形
3.2 高分子材料的变形特点
3.2.1 高聚物的弹性变形
3.2.2 高聚物的粘弹性变形
3.2.3 线型高聚物的变形特点
3.2.4 体型高聚物的变形特点
3-3 多晶体的塑性变形比单晶体复杂,它的不同点主要表现在哪几个 方面?
3-4 塑性变形对金属性能的影响有哪些?
3-5 什么是加工硬化?它在生产中有何利弊?如何消除加工硬化?
3-6 简述加热温度对冷塑性变形金属的组织和性能的影响。
3-7 实际生产中,金属的再结晶温度是如何确定的?
3-8 热加工与冷加工的本质区别是什么?它对金属的组织和性能有何 影响?
(2)细化晶粒
(3)形成纤维组织
(4)形成带状组织
a
10
3.2 高分子材料的变形特点
3.2.1 高聚物的弹性变形 图3-7是橡胶的拉伸曲线。
图3-7 黏弹性变形 3.2.3 线型高聚物的变形特点 如图3-8(a)所示。
图3-8 线型高聚物的a 应力-应变曲线
①制造颗粒细的、致密度高的、均匀的、较纯净的陶瓷, 以尽量减少组织中的各种杂质和缺陷。
②将陶瓷制成纤维,甚至晶须,可以大大减小各种缺陷 产生的几率,能使强度提高1~2个数量级。
③在陶瓷表面造出一个残余应力层。
a
14
思考题
3-1 什么是滑移?
3-2 单晶体塑性变形的最基本方式是什么?在实际晶体中,它是通过 什么来实现的?
3-9 简述高聚物的变形特点。 3-10简述陶瓷的变形特点。 a
目录
15
3.晶粒长大
a
9
3.1.4 金属的热塑性变形
1.热加工与冷加工的本质区别
金属的冷塑性变形加工和热塑性变形加工是以再结 晶温度来划分的。
凡在金属的再结晶温度以上进行的加工,称为热加 工,如锻造热轧等;
在再结晶温度以下进行的加工称为冷加工,如冷轧 冷拉等。
2.热加工对金属组织和性能的影响
(1)消除铸态金属的组织缺陷
相关文档
最新文档