不等式的基本性质练习及答案

合集下载

不等式的基本性质1

不等式的基本性质1

又3(abc) 9( abc) ≥2 27 6 3, ③ 所以原不等式成立.
2 3

2 3
当且仅当a b c时, ①式和②式等号成立当且仅当 . 3(abc) 9(abc) 时, ③式等号成立. 即当且仅当a b c 3 时, 原式等号成立.
1 4 2 3
2 3
2 2 2 2
当且仅当a b c时, ①式和②式等号成立,当且仅当a b c, ab bc ac 3时, ③式等号成立.
2 2 2 1 4
即当且仅当a b c 3 时, 原式等号成立.
[点评]不等式的证明常用方法有:比较法、分析法与综合法,在 解决问题时注意结合平均值不等式来证明.
设g(x)=f(x)+f(x+5).
由|x-2|+|x+3|≥|(x-2)-(x+3)|=5(当且仅当-3≤x≤2时等号成立) 得,g(x)的最小值为5. 从而,若f(x)+f(x+5)≥m即g(x)≥m对一切实数x恒成立,则m的 取值范围为(-∞,5]. 变式2:对于任意实数a(a≠0)和b,不等式|a+b|+|a-b|≥|a|(|x1|+|x-2|)恒成立,求实数x的取值范围.
(3)|x+10|-|x-2|>8.
【例】已知关于x的不等式|x-3|+|x-4|<a.
(1)当a=2时,解上述不等式;
(2)如果关于x的不等式|x-3|+|x-4|<a的解集为

空集,求实数a的取值范围;
[解] 1 a 2, x 3 x 4 2, 5 当x 3时, 原不等式化为7 2x 2, 解得x , 2 5 x 3; 2 当3≤x≤4时, 原不等式化为1 2, 3≤x≤4, 9 当x 4时, 原不等式化为2x 7 2, 解得x . 2 9 4 x . 2 5 9 综上可知, 原不等式的解集为 x x . 2 2

不等式的基本性质经典练习题

不等式的基本性质经典练习题

不等式的基本性质经典练习题9.1.2 不等式的基本性质练题要点感知不等式的性质有:不等式的性质1:不等式的两边加(或减)同一个数(或式子),不等号的方向不变,即如果 $a>b$,那么 $a\pmc>b\pm c$。

不等式的性质2:不等式的两边乘(或除以)同一个正数,不等号的方向不变,即如果 $a>b。

c>0$,那么 $ac>bc$(或$\frac{a}{c}>\frac{b}{c}$)。

不等式的性质3:不等式的两边乘(或除以)同一个负数,不等号的方向改变,即如果 $a>b。

c<0$,那么 $ac<bc$(或$\frac{a}{c}<\frac{b}{c}$)。

预练1-1:若 $a>b$,则 $a-b>0$,其依据是(A)不等式性质1.1-2:若$a”“<”或“=”)。

1-3:设 $a>b$,用“”填空,并说出是根据哪条不等式性质。

1) $3a>3b$,根据不等式性质2.2) $a-8<b-8$,根据不等式性质1.3) $-2a<-2b$,根据不等式性质3.4) $2a-5<2b-5$,根据不等式性质1.5) $-3.5a-1<-3.5b-1$,根据不等式性质2.知识点1:认识不等式的性质1.如果 $b>0$,那么 $a+b$ 与 $a$ 的大小关系是(C)$a+b\geq a$。

2.下列变形不正确的是(D)$-5x>-a$ 得 $x>$。

3.若 $a>b。

am<bm$,则一定有(B)$m<0$。

4.在下列不等式的变形后面填上依据:1) 如果 $a-3>-3$,那么 $a>0$;依据不等式性质1.2) 如果 $3a<6$,那么 $a<2$;依据不等式性质2.3) 如果 $-a>4$,那么 $a<-4$;依据不等式性质3.5.利用不等式的性质填“>”或“<”。

高一数学不等式的性质试题答案及解析

高一数学不等式的性质试题答案及解析

高一数学不等式的性质试题答案及解析1.若则下列不等式成立的是()A.B.C.D.【答案】D【解析】由题意可得又有基本不等式可得,且,对不四个选项可得.【考点】基本不等式;不等关系与不等式.2.如果,则下列各式正确的是()A.B.C.D.【答案】D【解析】由于,不等式两边同时乘以,得,其他三项不一定正确,符号不确定,,.【考点】不等式的大小判定.3.,,则与的大小关系为.【答案】【解析】作差法比较大小,,,,所以p-q,【考点】利用不等式比较大小4.下列结论正确的是()A.若ac>bc,则a>b B.若a2>b2,则a>bC.若a>b,c<0,则 a+c<b+c D.若<,则a<b【答案】D【解析】的正负不定,故A错;的正负不定,故B错;不等式两边加上同一个数,不等号方向不变,故C错。

【考点】不等式基本性质的应用。

5.已知不等式的解集是.(1)若,求的取值范围;(2)若,求不等式的解集.【答案】(1)(2)【解析】(1)由,说明元素2满足不等式,代入即可求出的取值范围;(2)由,是方程的两个根,由韦达定理即可求出,代入原不等式解一元二次不等式即可;(1)∵,∴,∴(2)∵,∴是方程的两个根,∴由韦达定理得解得∴不等式即为:其解集为.【考点】一元二次不等式的解法6.设,则不等式的解集为()A.B.C.D.【答案】A【解析】当时,(舍去);当时,;综上所述,不等式的解集为.【考点】不等式的解法、等价转换思想.7.如果, 设, 那么()A.B.C.D.M与N的大小关系随t的变化而变化【答案】A【解析】,已知,所以,.【考点】比较大小.8.如果且,那么下列不等式中不一定成立的是( )A.B.C.D.【答案】D【解析】A是不等式两边同乘-1,正确;B,,C,由,得所以正确,D,不等式两边同乘,但不知道的符号,不一定成立.【考点】不等式的基本性质.9.若为实数,则下列命题正确的是()A.若,则B.若,则C.若,则D.若,则【答案】B【解析】试题分析. A 若,则不成立;C 对两边都除以,可得,C不成立;D令则有所以D不成立,故选B.【考点】不等式的基本性质.10.函数,的值域为_________.【答案】【解析】,又,则,,可知.所以.【考点】本题主要考查分离变量法求函数的值域,不等式的性质.11.若,则下列不等式一定不成立的是()A.B.C.D.【答案】C【解析】根据题意,由于,则根据倒数性质可知成立,对于对数函数性质,底数大于1是递增函数,故成立,对于D, 根据作差法可知成立,而对于C,应该是大于等于号,即左边大于等于右边,故选C。

八年级数学上册《第三章 不等式的基本性质》练习题及答案-浙教版

八年级数学上册《第三章 不等式的基本性质》练习题及答案-浙教版

八年级数学上册《第三章不等式的基本性质》练习题及答案-浙教版一、选择题1.已知实数a、b,若a>b,则下列结论正确的是()A. a﹣5<b﹣5B.2+a<2+bC.2a<2bD.3a>3b2.已知a<b,则下列不等式中不正确的是( )A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-43.下列不等式一定成立的是()A.5a>4aB.x+2<x+3C.-a>-2aD.4.若x>y,则下列式子错误的是()A.1﹣2x>1﹣2yB.x+2>y+2C.﹣2x<﹣2yD.2x>2y5.如果a<b,那么下列不等式中一定正确的是()A.a﹣2b<﹣bB.a2<abC.ab<b2D.a2<b26.下列不等式中,解集是x>1的不等式是()A.3x>-3B.x+4>3C.2x+3>5D.-2x+3>57.已知a,b,c都是实数,则关于三个不等式:a>b,a>b+c,c<0的逻辑关系的表述,下列正确的是( )A.因为a>b+c,所以a>b,c<0B.因为a>b+c,c<0,所以a>bC.因为a>b,a>b+c,所以c<0D.因为a>b,c<0,所以a>b+c8.已知四个实数a,b,c,d,若a>b,c>d,则( )A.a+c>b+d B.a﹣c>b﹣d C.ac>bd D.>二、填空题9.当a<0时,6+a 6-a(填“<”或“>”).10.若a<b<0 ,则2a-1 2b-1.11.关于x的不等式(m-2)x>1的解集为x>1m-2,则m的取值范围是________.12.如果a>0,b>0,那么ab 0.13.若关于x的不等式3m﹣2x<5的解集是x>3,则实数m的值为________.14.若m<n,比较下列各式的大小:(1)m-3______n-3 (2)-5m_____-5n (3)______(4)3-m______2-n (5)0_____m-n (6)_____三、解答题15.判断下列推导是否正确,并说明理由.因为4a>4b,所以a>b;16.下面是解不等式的部分过程,如果错误,说明错误原因并改正;如果正确,说明理由.(1)由2x>﹣4,得x<﹣2;(2)由16x﹣8>32﹣24x,得2x﹣1>4﹣3x;(3)由﹣3x>12,得x<﹣4.17.某单位打算和一个体车主或一出租车公司签订月租合同.个体车主答应除去每月1 500元租金外,每千米收1元;出租车公司规定每千米收2元,不收其他费用.设该单位每月用车x千米时,乘坐出租车合算,请写出x的范围.18.若不等式(2k+1)x<2k+1的解集是x>1,求k的取值范围.19.某单位为改善办公条件,欲购进20台某品牌电脑,据了解,该品牌电脑的单价大致在6000元至6500元之间,则该单位购进这批电脑应预备多少钱?20.利用不等式的基本性质,将下列不等式化为“x>a”或“x<a”的形式:(1)x+2>7. (2)3x<-12. (3)-7x>-14. (4)13x<2.参考答案1.D2.C3.B4.A5.A6.C7.D8.A9.答案为:<.10.答案为:<;11.答案为:m>2.12.答案为:>.13.答案为:11/3.14.答案为:(1)<(2)>(3)>(4)>(5)>(6)<15.解:因为4a>4b所以a>b;正确利用不等式两边同除以一个数不等号的方向不变;16.解:(1)错误.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,所以由2x>﹣4,得x>﹣2;(2)正确.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,所以把16x﹣8>32﹣24x两边都除以8得到2x﹣1>4﹣3x;(3)正确.不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,所以﹣3x>12两边都除以﹣3,得到x<﹣4.17.解:根据题意,得1 500+x>2x,解得x<1 500.∵单位每月用车x(千米)不能是负数∴x的取值范围是0<x<1 500.18.答案为:k<-0.5.19.解:设该品牌电脑的单价为x元.则6000≤x≤6500.∴6000×20≤20x≤6500×20(不等式的基本性质3)即120000≤20x≤130000.答:该单位购买这批电脑应预备的钱数在12000元至13000元之间.20.解:(1)两边都减去2,得x>5.(2)两边都除以3,得x<-4.(3)两边都除以-7,得x<2.(4)两边都乘3,得x<6.。

初二数学不等式的基本性质试题与答案汇总1

初二数学不等式的基本性质试题与答案汇总1

绝密★启用前不等式的基本性质测试时间:20分钟一、选择题1.若-2a<-2b,则a>b,其依据是( )A.不等式的基本性质1B.不等式的基本性质2C.不等式的基本性质3D.以上都不对2.已知4>3,则下列结论正确的是( )①4a>3a;②4+a>3+a;③4-a>3-a.A.①②B.①③C.②③D.①②③3.下列结论正确的是( )A.如果a>b,c>d,那么a-c>b-dB.如果a>b,那么ab>1C.如果a>b,那么1a <1bD.如果ac2<bc2,那么a<b4.下列命题中正确的是( )A.若a>b,b<c,则a>cB.若a>b,则ac>bcC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b二、填空题5.若-m2<-n6,则3m n.(填“<”“>”或“=”)6.将不等式-2x>-2中未知数的系数化为1,可得x<1,该过程的依据是.7.若|2x-1|=1-2x,则x的取值范围是.三、解答题8.利用不等式的基本性质解下列不等式:(1)x+3<-2;(2)9x>8x+1;(3)12x≥-4;(4)-10x≤5.9.(1)①如果a-b<0,那么a b;②如果a-b=0,那么a b;③如果a-b>0,那么a b;(2)根据(1)中的结论,你能归纳出比较a与b大小的方法吗?请用文字语言叙述出来.(3)能否比较3x2-3x+7与4x2-3x+7的大小?如果能,请写出比较过程.横线以内不许答题参考答案 一、选择题 1.答案 C 将不等式-2a<-2b 两边都除以-2,不等号的方向改变,得a>b,其依据是不等式的基本性质3,故选C. 2.答案 C 根据不等式的基本性质1可知②③正确,因a 的正负不确定,故①不一定正确,故选C. 3.答案 D ∵c>d,∴-c<-d, ∴如果a>b,c>d,那么a-c>b-d 不一定成立,∴选项A 不符合题意; ∵b=0时,a b 无意义,∴选项B 不符合题意; ∵a>0>b 时,1a >1b ,∴选项C 不符合题意; ∵如果a c 2<b c 2,那么a<b,∴选项D 符合题意.故选D. 4.答案 D A 中,当a=1,b=-1,c=2时不成立;B,C 中,当c=0时,均不成立.故选D. 二、填空题 5.答案 > 解析 不等式两边同乘-6,根据不等式两边都乘(或除以)同一个负数,不等号的方向改变,可知填>. 6.答案 不等式的基本性质3. 7.答案 x≤12 解析 ∵|2x -1|=1-2x,∴1-2x≥0,∴x≤12. 三、解答题8.解析 (1)利用不等式的基本性质1,两边都减3,得x<-5.(2)利用不等式的基本性质1,两边都减8x,得x>1.(3)利用不等式的基本性质2,两边都乘2,得x≥-8.(4)利用不等式的基本性质3,两边都除以-10,得x≥-12.9.解析 (1)①< ②= ③>(2)能.叙述如下:比较a,b 两数的大小,若a 与b 的差大于0,则a 大于b;若a 与b 的差等于0,则a 等于b;若a 与b 的差小于0,则a 小于b.(3)能.比较过程如下:(3x 2-3x+7)-(4x 2-3x+7)=-x 2≤0,∴3x 2-3x+7≤4x 2-3x+7.。

初二数学不等式的基本性质试题

初二数学不等式的基本性质试题

初二数学不等式的基本性质试题1.判断下列各题是否正确?正确的打“√”,错误的打“×”(1)不等式两边同时乘以一个整数,不等号方向不变.()(2)如果a>b,那么3-2a>3-2b.()(3)如果a是有理数,那么-8a>-5a.()(4)如果a<b,那么a2<b2.()(5)如果a为有理数,则a>-a.()(6)如果a>b,那么ac2>bc2.()(7)如果-x>8,那么x>-8.()(8)若a<b,则a+c<b+c.()【答案】(1)错;(2)错;(3)错;(4)错;(5)错;(6)错;(7)错;(8)对【解析】根据不等式的基本性质依次分析各小题即可判断.(1)错,注意当此整数为0时,此不等式变为等式了,当此整数为负数时,不等号应改变方向;(2)错,正确答案应为3-2a<3-2b,这可由不等式的基本性质3得到;(3)错,当a>0时,-8a<-5a;(4)错,当a=-4,b=1时,有a<b,但a2>b2;(5)错,当a≤0时,a≤-a;(6)错,当c=0时,ac2=bc2;(7)错,由不等式的基本性质3应有x<-8;(8)对,这可由不等式的基本性质1得到.【考点】本题考查的是不等式的基本性质点评:解答本题的关键是要注意“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.2.若m<n,则下列各式中正确的是()A.m-3>n-3B.3m>3n C.-3m>-3n D.m/3-1>n/3-1【答案】C【解析】根据不等式的基本性质依次分析各项即可得到结果.∵m<n∴m-3<n-3,3m<3n,-3m>-3n,-1<-1故选C.【考点】本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.若a<0,则下列不等关系错误的是()A.a+5<a+7B.5a>7a C.5-a<7-a D.a/5>a/7【答案】D【解析】根据不等式的基本性质依次分析各项即可得到结果.∵a<0∴a+5<a+7,5a>7a,5-a<7-a,<故选D.【考点】本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.下列各题中,结论正确的是()A.若a>0,b<0,则b/a>0B.若a>b,则a-b>0C.若a<0,b<0,则ab<0D.若a>b,a<0,则b/a<0【答案】B【解析】根据不等式的基本性质依次分析各项即可得到结果.A.若a>0,b<0,则,C.若a<0,b<0,则ab>0,D.若a>b,a<0,则,故错误;B.若a>b,则a-b>0,本选项正确.【考点】本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.若a-b<0,则下列各式中一定成立的是()A.a>b B.ab>0C.a/b<0D.-a>-b【答案】D【解析】由a-b<0可得a<b,再依次分析各项即可判断.由a-b<0可得a<b,则-a>-b,故选D.【考点】本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.绝对值不大于2的整数的个数有()A.3个B.4个C.5个D.6个【答案】C【解析】根据绝对值的定义及有理数的大小比较法则即可得到结果.绝对值不大于2的整数有-2、-1、0、1、2共5个,故选C.【考点】本题考查的是绝对值,有理数的大小比较点评:解答本题的关键是熟练掌握互为相反数的两个数的绝对值相等.7.若a<0,则-____-【答案】>【解析】由-,再有a<0根据不等式的基本性质即可判断.∵-,a<0∴->-【考点】本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.8.设a<b,用“>”或“<”填空:a-1____b-1,a+3____b+3,-2a____-2b,____【答案】<,<,>,<【解析】根据不等式的基本性质即可判断.∵a<b,∴a-1<b-1,a+3<b+3,-2a>-2b,<【考点】本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.实数a,b在数轴上的位置如图所示,用“>”或“<”填空:a-b____0,a+b____0,ab____0,a2____b2,____,︱a︱____︱b︱【答案】<,<,>,>,>,>【解析】先由数轴可得,再依次分析即可.由数轴可得,则a-b<0,a+b<0,ab>0,a2>b2,>,︱a︱>︱b︱.【考点】本题考查的是数轴的应用点评:解答本题的关键是熟练掌握数轴上的点表示的数,右边的数大于左边的数.10.若a<b<0,则(b-a)____0【答案】>【解析】由a<b<0可得b-a>0,即可得到结果.∵a<b<0∴b-a>0∴(b-a)>0.【考点】本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.。

不等式的基本性质 同步练习(含答案)

不等式的基本性质 同步练习(含答案)

8.1.2不等式的基本性质1.2x ﹣4≥0的解集在数轴上表示正确的是( )A 、B 、C 、D 、2.在下列表示的不等式的解集中,不包括-5的是 ( )A.x ≤ 4B.x ≥ -5 C .x ≤ -6 D .x ≥ -73.不等式 -21x > 1 的解集是 ( ) A.x >-21 B .x >-2 C.x <-2 D.x < -21 4.已知x <y ,下列不等式成立的有 ( )①x -3<y -3 ②-5x < -6y ③-3x +2 <-3y +2 ④-3x +2 > -3y +2A.①②B.①③C.①④D.②③5.若不等式(m -2)x > n 的解集为x > 1,则m ,n 满足的条件是 ( )A.m = n -2 且 m >2B. m = n - 2 且 m < 2C.n = m -2 且 m >2D. n = m -2且 m < 26.在二元一次方程12x +y = 8中,当 y <0 时,x 的取值范围是 ( )A. x < 32B. x >- 32C. x > 32D. x <- 32 7.不等式5(x – 1)< 3x + 1 的解集是8.若关于x 的方程kx – 1 = 2x 的解为正实数,则k 的取值范围是9.已知关于x 的不等式x – m <1的解集为x <3,则m 的值为10.解下列不等式:(1)21-x < 354-x (2)- 31+x > 3(3)2 -24+x ≥ 31x - (4)1- 23-y > 3 + 4y(5)21-x - 312+x < 6x (6)25+x - 1 < 223+x11.已知不等式5x -2 < 6x +1的最小正整数解是方程 3x - 23ax = 6的解,求 a 的值。

第一讲 不等式的基本性质(基础训练)(解析版)

第一讲 不等式的基本性质(基础训练)(解析版)

第一讲不等式的基本性质一、单选题1.若m>n,下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.>D.m2>n2【答案】D【解析】试题分析:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选D.【考点】不等式的性质.2.下列推理正确的是( )A.因为a<b,所以a+2<b+1 B.因为a<b,所以a-1<b-2C.因为a>b,所以a+c>b+c D.因为a>b,所以a+c>b-d【答案】C【解析】【分析】根据不等式的基本性质逐项分析即可.【详解】A. 因为由a<b,变为a+2<b+1,两边不是加的同一个数,故不正确;B. 因为由a<b,变为a-1<b-2,两边不是减的同一个数,故不正确;C. 因为由a>b,所以a+c>b+c,符合不等式的性质1,故正确;D. 因为由a>b,变为a+c>b-d,两边不是同时加上或减去同一个数,故不正确;故选C.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.3.如果t>0,那么a+t与a的大小关系是( )A.a+t>a B.a+t<a C.a+t≥a D.不能确定【答案】A【解析】试题分析:根据不等式的基本性质即可得到结果.t>0,①a+t>a,故选A.考点:本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变.4.把不等式-3x>-6变形为x<2的依据是不等式的( )A .基本性质1B .基本性质2C .基本性质3D .以上都不是【答案】C【解析】【分析】根据不等式的基本性质,结合变形的方法求解即可.【详解】①把不等式-3x >-6的两边都除以-2可变形为x <2,①变形的依据是不等式的基本性质3.故选C.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.5.若-2a <-3a ,则a 一定满足的条件是( ) A .a >0B .a <0C .a≥0D .a≤0 【答案】A【解析】将原不等式两边都乘以﹣6,得:3a >2a ,移项、合并,得:a >0,故选A .6.设“○”、“□”、“①”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“①”这样的物体,按质量从小到大的顺序排列为( )A.○□①B.○①□C.□○①D.①□○【答案】D【解析】由图1可知1个○的质量大于1个□的质量,由图2可知1个□的质量等于2个①的质量,因此1个□质量大于1个①质量.故选D7.a,b,c在数轴上的对应点的位置如图所示,下列式子:①b+c>0;①a+b>a+c;①bc>ac;①ab>ac.其中正确的有( )A.1个B.2个C.3个D.4个【答案】C【分析】根据数轴上右边的数总大于左边的数,原点右边表示正数,左边表示负数,结合有理数运算法则进行判断即可求解.【详解】解:依题意得-2<c<-1<0<b<1<2<a①b+c<0,故说法错误;①a+b>a+c,故说法正确;①bc>ac,故说法正确;①a-b>0,故说法正确;①正确的是①①①,共3个.故选C.【点睛】此题主要考查了利用数轴比较两个负数的大小,绝对值大的反而小.8.2a与3a的大小关系()A.2a<3a B.2a>3a C.2a=3a D.不能确定【答案】D【分析】题目中没有明确a的正负,故要分情况讨论.【详解】当a<0时,2a>3a;当a=0时,2a=3a;当a>0时,2a<3a,故选D.【点睛】本题考查的是不等式的基本性质,解答本题的关键是熟练掌握不等式的基本性质3:不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变.9.若x+5>0,则()A.x+1<0B.x﹣1<0C.<﹣1D.﹣2x<12【答案】C【解析】试题分析:根据不等式x+5>0,求得x>﹣5,然后可知:A、根据x+1<0得出x<﹣1,故本选项不符合题意;B、根据x﹣1<0得出x<1,故本选项不符合题意;C、根据<﹣1得出x<5,故本选项符合题意;D、根据﹣2x<12得出x>﹣6,故本选项不符合题意;故选C.考点:不等式的性质10.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2C.﹣a<﹣b D.2a>3b【答案】D【解析】试题分析:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b.故选D.考点:不等式的性质.点睛:根据不等式的性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变,来判断各选项.11.在平面直角坐标系中,点A ()7,21m --+在第三象限,则m 的取值范围是( )A .12m >B .12m >-C .12m <-D .12m < 【答案】A【分析】点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得-2m+1<0,求不等式的解即可.【详解】解:①点在第三象限,①点的横坐标是负数,纵坐标也是负数,即-2m+1<0,解得m >12. 故选A .【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 12.当0<x <1时,x 2、x 、1x的大小顺序是( ) A .21x x x <<B .21x x x <<C .21x x x <<D .21x x x<< 【答案】A【解析】 分析:先在不等式0<x <1的两边都乘上x ,再在不等式0<x <1的两边都除以x ,根据所得结果进行判断即可.详解:当0<x <1时,在不等式0<x<1的两边都乘上x,可得0<x2<x,在不等式0<x<1的两边都除以x,可得0<1<1x,又①x<1,①x2、x、1x的大小顺序是:x2<x<1x.故选A.点睛:本题主要考查了不等式,解决问题的关键是掌握不等式的基本性质.不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若a>b,且m>0,那么am>bm或a bm m >.二、填空题13.用“>”“=”或“<”填空:(1) 若a>b,且a<0,则a2________ab;(2) 若a+5<b+5,则-a_________-b.【答案】<>【解析】【分析】(1)根据不等式的性质3求解即可(2)先根据不等式的性质1,再根据性质3求解即可.【详解】(1) ①a>b,且a<0,①a2>ab;(2) ①a+5<b+5,①a<b,①-a>-b.故答案为:(1)< , (2)>.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.14.已知a>b ,选择适当的不等号填空:(1)-3a ________-3b ; (2)1-5a__________1-5b ;(3)ax 2_________bx 2;(4)a(-c 2-1)_________b(-c 2-1).【答案】< < ≥ <【解析】【分析】(1)根据不等式的性质3两边都除以-3解答即可;(2)先用不等式的性质3两边都乘以-5,,再用不等式的性质1两边都加1解答;(3)先判断x 2的取值范围,再根据不等式的性质解答;(4)先判断-c 2-1的取值范围,再根据不等式的性质解答.【详解】(1) ① a >b ,①-3a <-3b ; (2) ① a >b ,①-5a <-5b , ①1-5a <1-5b ;(3) ① a >b ,x 2≥0,①ax 2≥bx 2;(4) ①c2≥0,①-c2≤0,①-c2-1<0;① a>b,①a(-c2-1)<b(-c2-1).故答案为:(1)<;(2) <;(3) ≥ ;(4) <.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.15.若7x+2<7y+2,则x_______y,它经历了两步,第一步是将不等式7x+2<7y+2的两边_______________,第二步是将不等式的两边_______________.【答案】<都减去2 都除以7【解析】【分析】先根据不等式的性质1两边都减去2,再根据不等式的性质2两边都除以7.【详解】若7x+2<7y+2,则x<y,它经历了两步,第一步是将不等式7x+2<7y+2的两边都减去2,第二步是将不等式的两边都除以7.故答案为:<;都减去2 ;都除以7.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.16.当x____________时,代数式2x-3的值是正数.【答案】>3 2先由题意列出不等式,再根据不等式的基本性质即可得到结果.【详解】由题意得2x-3>0,解得x>3 2 .考点:本题考查的是不等式的基本性质【点睛】解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变;不等式的基本性质2:不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变.三、解答题17.将下列不等式化为“x>a”或“x<a”的形式:(1)2x>3x-4;(2)5x-1<14;(3)-19x<-3;(4) 13x<12x+1.【答案】(1) x<4;(2) x<3;(3) x>27;(4) x>-6.【解析】(1)先根据不等式的性质1两边都减去3x,合并同类项后,再根据不等式的性质3两边都除以-1;(2)先根据不等式的性质1两边都加1,合并同类项后,再根据不等式的性质2两边都除以5;(3)先根据不等式的性质3两边都乘以-9即可;(4)先根据不等式的性质1两边都减去12x,合并同类项后,再根据不等式的性质2两边都除以6.【详解】(1) ①2x>3x-4,①2x-3x>-4,①-x>-4,①x<4;(2) ①5x-1<14,①5x<14+1,①5x<15,①x<3;(3)-19x<-3,①-19x×(-9)>-3×(-9)①x>27;(4) ① 13x<12x+1,①13x-12x<1,①-16x<1,①x>-6.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.18.指出下列各式成立的条件.(1)由a>b,得ac≤bc;(2)由(a-3)x>a-3,得x>1;(3)由a<b,得(m-2)a>(m-2)b.【答案】(1)c≤0;(2)a>3;(3)m<2.【解析】试题分析:根据不等式的性质,又不等式的不等号的变化判断即可.试题解析:(1)由a>b,得ac≤bc,根据不等式的性质3,可知c≤0;(2)由(a-3)x>a-3,得x>1,根据不等式的基本性质2,可得a-3>0,即a>3;(3)由a<b,得(m-2)a>(m-2)b,根据不等式的性质3,可知m-2<0,解得m<2.19.已知x>0,试比较10x2-3x+2与8x2-3x+2的大小【答案】10x2-3x+2>8x2-3x+2.【解析】【分析】先把两个式子相减,并去括号合并同类项,然后由x>0,结合不等式的性质判断差的正负即可.【详解】解:(10x2-3x+2)-(8x2-3x+2)=2x2,①x>0,①2x2>0,①10x2-3x+2>8x2-3x+2.【点睛】本题考查了不等式的性质和利用作差法比较两个代数式的大小.作差法比较大小的方法是:如果a-b>0,那么a>b;如果a-b=0,那么a=b;如果a-b<0,那么a<b;另外本题还用到了不等式的传递性,即如果a>b,b>c,那么a>b>c.20.已知x>y,试比较(m-1)x与(m-1)y的大小【答案】见解析【解析】【分析】分三种情况①m-1>0,①m-1=0,①m-1<0,根据不等式的性质解答即可.【详解】解:当m-1>0,即m>1时,(m-1)x>(m-1)y;当m-1=0,即m=1时,(m-1)x=(m-1)y;当m-1<0,即m<1时,(m-1)x<(m-1)y.【点睛】本题考查了不等式的基本性质及分类讨论的数学思想,分三种情况解答是解答本题的关键.21.小明从一商店买了3个相同的玻璃杯,平均每个a元,又从另一个商店买了2个相同的玻璃杯,平均每个b 元,后来他以每个2a b +元的价格把玻璃杯全部都卖给了乙,结果赔了钱,你能用不等式的知识说明原因吗?【答案】见解析【解析】【分析】 先理解题意知道赔钱是什么意思,进而利用题中数量关系列出不等式2a b +<3a +2b >5,根据不等式的基本性质变形即可得到赔钱的原因.【详解】 解:因为赔了钱,所以×5<3a +2b ,①5a +5b <6a +4b ,①-a +b <0,即b <a ,①赔钱的原因是b <a.【点睛】本题考查了不等式的基本性质的应用,根据题意列出不等式并能根据不等式的基本性质变形是解答本题的关键.。

高中试卷-2.2 基本不等式 练习(1)(含答案)

高中试卷-2.2 基本不等式 练习(1)(含答案)

第二章 一元二次函数、方程和不等式2.2等式性质与不等式性质(共2课时)(第1课时)一、选择题1.(2019·内蒙古集宁一中高一期末)下列不等式一定成立的是( )A .a b2B .a b 2≤C .x +1x ≥2D .x 2+1x 2≥2【答案】D【解析】当a ,b ,x 都为负数时,A,C 选项不正确.当a ,b 为正数时,B 选项不正确.根据基本不等式,有x 2+1x 2≥=2,故选D.2.(2019山东师范大学附中高一期中)已知x >0,函数9y x x=+的最小值是( )A .2B .4C .6D .8【答案】C【解析】∵x >0,∴函数96y x x =+³=,当且仅当x=3时取等号,∴y 的最小值是6.故选:C .3.(2019广东高一期末)若正实数a ,b 满足a +b =1,则下列说法正确的是( )A .ab 有最小值14BC .1a +1b 有最小值4D .a 2+b 2【答案】C【解析】∵a >0,b >0,且a +b =1;∴1=a +b ≥∴ab ≤14;∴ab 有最大值14,∴选项A 错误;=a +b =1+1+=2,∴B 项错误.1a+1b ==1ab ≥4,∴1a +1b 有最小值4,∴C 正确;a 2+b 2=(a +b )2―2ab =1―2ab ≥1―2×14=12,∴a 2+b 2的最小值是12,不是∴D 错误.4.(2019·柳州市第二中学高一期末)若x >―5,则x +4x 5的最小值为( )A .-1B .3C .-3D .1【解析】x +4x5=x +5+4x 5―5≥2×2―5=―1,当且仅当x =―3时等号成立,故选A.5.(2019吉林高一月考)若()12f x x x =+- (2)x >在x n =处取得最小值,则n =( )A .52B .3C .72D .4【答案】B 【解析】:当且仅当时,等号成立;所以,故选B.6.(2019·广西桂林中学高一期中)已知5x 2³,则f(x)= 24524x x x -+-有A .最大值B .最小值C .最大值1D .最小值1【答案】D【解析】()()()2211112122222x f x x x x -+éù==-+³=ê--ëû当122x x -=-即3x =或1(舍去)时, ()f x 取得最小值1二、填空题7.(2019·宁夏银川一中高一期末)当1x £-时,1()1f x x x =++的最大值为__________.【答案】-3.【解析】当1x £-时,()11[(1)111f x x x x x =+=--+--++又1(1)21x x -+-³+,()11[(1)1311f x x x x x =+=--+--£-++,故答案为:-38.(2019·上海市北虹高级中学高一期末)若0m >,0n >,1m n +=,且41m n+的最小值是___.【答案】9【解析】∵0m >,0n >,1m n +=,4()5414519n m m n m n m n m n æö\+=++=+++=ç÷èø…,当且仅当12,33n m == 时“=”成立,故答案为9.9.(2019·浙江高一期末)已知0a >,0b >,若不等式212ma b a b+³+恒成立,则m 的最大值为【答案】9.【解析】由212m a b a b +³+得()212m a b a b æö£++ç÷èø恒成立,而()212225a b a b a b b a æö++=++ç÷èø5549³+=+=,故9m £,所以m 的最大值为9.10.(2019·浙江高一月考)设函数24()(2)(0)f x x x x x=-++>.若()4f x =,则x =________.【答案】2【解析】因为2(2)0y x =-³,当2x =时,取最小值;又0x >时,44y x x=+³=,当且仅当06(,),即2x =时,取最小值;所以当且仅当2x =时,24()(2)f x x x x=-++取最小值(2)4f =.即()4f x =时,2x =.故答案为2三、解答题11.(2016·江苏高一期中)已知a >0,b >0,且4a +b =1,求ab 的最大值;(2)若正数x ,y 满足x +3y =5xy ,求3x +4y 的最小值;(3)已知x <54,求f (x )=4x -2+145x -的最大值;【答案】(1)的最大值;(2)的最小值为5;(3)函数的最大值为【解析】(1),当且仅当,时取等号,故的最大值为(2),当且仅当即时取等号(3)当且仅当,即时,上式成立,故当时,函数的最大值为.12.(2019·福建高一期中)设0,0,1a b a b >>+= 求证:1118a b ab++³ 【答案】可以运用多种方法。

专题-不等式基本性质(解析版)

专题-不等式基本性质(解析版)

专题10不等式基本性质1.设{}2560,A x x x x R =--=∈,{}260,B x mx x x R =-+=∈,且A B B ⋂=,则m 的取值范围为 . 【难度】★★【答案】1024m m >=或2.设集合{}{}2135,322,A x a x a B x x A B =+≤≤-=≤≤⊆恒成立,则实数a 的取值范围为 . 【难度】★★ 【答案】(,9]-∞3.设全集{}R y x y x U ∈=,|),(,⎭⎬⎫⎩⎨⎧∈=--=,,,123|),(R y x x y y x A ,{}R y x x y y x B ∈+==,,1|),(,则UC AB =.热身练习【难度】★★ 【答案】(){}2,3⎧⎪⎪⎨⎪⎪⎩基本性质比较大小不等式基本性质不等式范围问题不等式综合1.不等式的性质(1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇔a >c ;(3)可加性:a >b ⇔a +c >b +c ,a >b ,c >d ⇔a +c >b +d ;知识梳理模块一:(4)可乘性:a>b,c>0⇔ac>bc;a>b,c<0⇔ac<bc;a>b>0,c>d>0⇔ac>bd;(5)可乘方:a>b>0⇔a n>b n(n⇔N,n≥2);(6)可开方:a>b>0⇔na>nb(n⇔N,n≥2);(7) a>b,ab>0⇔11a b<;a>b>0,0<c<d⇔a b c d>.【例1】判断下列命题的真假。

(1)若a>b,那么ac>2bc2。

()(2)若ac>2bc2,那么a>b。

()(3)若a>b,c>d,那么a-c>b-d。

不等式的基本性质(答案)

不等式的基本性质(答案)

励志长廊:打开失败旁边的窗户,也许你就看到了希望。

寒假作业之六 不等式的基本性质(答案)学习目标及导航预习课本P 7—10内容,弄懂例1、例2的解题思路和步骤。

等式基本性质1:等式的两边都加上(或减去)同一个整式,等式仍旧成立。

等式基本性质2:等式的两边都乘以(或除以)同一个不为0的数,等式仍旧成立。

不等式基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。

不等式基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

不等式基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

题型归类:不等式的基本性质的简单应用:1. 将下列不等式化成“x a >”或“x a <”的形式. (1)51x -<;(2)34x x >-; (3)132x >-;(4)52x -<-.答案:解:(1)根据不等式的基本性质1,两边都加上5,得15x <+,即6x <. (2)根据不等式的基本性质1,两边都减去x ,得34x x ->-,即24x >-. 根据不等式的基本性质3,两边都除以2,得2x >-. (3)根据不等式的基本性质2,两边都乘以2,得6x >-. (4)根据不等式的基本性质3,两边都除以5-,得25x >.不等式的基本性质的综合应用: 2.(1)若a <b ,则-3a +1________-3b +1. (2)若-35x >5,则x ________-3.答案:(1)>;(2)<;必做题目:1. 如果b a <,则下面不等式错误的是( B )A.b a 66<B.34+<+b aC.33-<-b aD.22b a ->-2.已知x >y 且xy <0,a 为任意实数,下列式子正确的是( C )A.-x >yB.a 2x >a 2y C.a -x <a -y D.x >-y 3.若a +3>b +3,则下列不等式中错误的是( B ) A.-55b a -< B.-2a >-2b C.a -2<b -2 D.-(-a )>-(-b )4.若a >b ,c <0,则下列不等式成立的是( B )A.ac >bcB.cb c a < C.a -c <b -c D.a +c <b +c5.根据不等式的基本性质,把下列不等式化成x a >或x a <的形式. (1)100x ->; (2)162x x >-; (3)350x +<;(4)125x -<-.答案:(1)10x <(2)12x >- (3)53x <-(4)10x >6.如果3415x -<,那么3154x <+,其根据是 ,如果33a b ->-ππ,则a b <,其根据是 .答案:不等式的基本性质1,不等式的基本性质3. 7.用“<”或“>”号填空. ①已知a <b<0,则-a ______-b ;a1______b1;②若a >b ,则a -6______b -6;③若a <b ,c ≠0,则-ac 2______-bc 2. 答案:①> > ②> ③>;8.若0a b >>,则b a - 0,22a b - 0答案:<>>,, 9.若2x >时,化简|2|x -= .解:由2x >,得2x <.20x ∴-<.|2|(2)2x x x ∴-=--=-.选做题目:1.方程组3133x y k x y +=+⎧⎨+=⎩,的解为x y ,,且24k <<,则x y -的取值范围是( )A .102x y <-< B .01x y <-< C .31x y -<-<- D .11x y -<-<解:方程组中两个方程相减得222x y k -=-.22k x y -∴-=.24k << , 022k ∴<-<,2012k -<<.01x y ∴<-<.应选B .2.已知x y x x y y ->+<,,则下列不等式中正确的是( ) A .0xy < B .x y > C .0x y +> D .0x y -<解:由x y x x y y ->+<,,得00y x -><,. 00y x ∴<<,.000xxy x y y ∴>>+<,,. 000xxy x y y∴>>+<,,.x y< 不一定成立.0x y ∴-<也不一定成立.综上,0x y >.应选B .3.若实数1a >,比较实数M a =,23a N +=,213a P +=的大小关系,并说明原因。

高中数学 第1讲 不等式和绝对值不等式 一、不等式 第一课时 不等式的基本性质练习 新人教A版选修4

高中数学 第1讲 不等式和绝对值不等式 一、不等式 第一课时 不等式的基本性质练习 新人教A版选修4

第一课时 不等式的基本性质[基础达标]1.若a >b >0,c <d <0,则一定有 A.a d >b c B.a d <b cC.a c >b dD.a c <b d解析 解法一 令a =3,b =2,c =-3,d =-2, 则a c =-1,b d=-1,排除选项C ,D ;又a d =-32,b c =-23,所以a d <bc,所以选项A 错误,选项B 正确.故选B. 解法二 因为c <d <0,所以-c >-d >0,所以1-d >1-c >0.又a >b >0,所以a -d >b -c ,所以a d <bc .故选B.答案B2.如果a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是 A.ab >ac B.c (b -a )>0 C.cb 2<ab 2D.ac (a -c )<0解析 由条件c <b <a ,ac <0,得a >0,c <0,但b 的正负情况不确定.解法一 取a =1,b =0,c =-1分别代入选项A ,B ,C ,D 中验证可知选项C 不成立. 解法二 由题意,知c <0,a >0,则选项A 一定正确;因为c <0,b -a <0,所以c (b -a )>0,所以选项B 一定正确;因为ac <0,a -c >0,所以ac (a -c )<0,所以选项D 一定正确,故选C(当b =0时,不成立).答案C3.已知a >b ,则下列不等式: ①a 2>b 2;②lg(a -b )>0;③1a -b >1a. 其中不一定成立的个数为 A.0 B.1 C.2 D.3解析 对于①,a 2-b 2=(a -b )(a +b ),且a -b >0,但a +b 的正负无法确定;对于②,a -b >0,但a -b 与1的关系无法确定;对于③,1a -b -1a =b (a -b )a ,且a -b >0,但ba 的正负无法确定,所以这三个不等式都无法确定是否成立.答案D4.当a >0时且a ≠1时,log a (1+a )与log a ⎝⎛⎭⎪⎫1+1a 的大小关系为________.解析log a (1+a )-log a ⎝⎛⎭⎪⎫1+1a=log a 1+a1+1a=log a a =1,因此log a (1+a )>log a ⎝ ⎛⎭⎪⎫1+1a .答案log a (1+a )>log a ⎝⎛⎭⎪⎫1+1a5.已知x ,y 均为正数,设m =1x +1y ,n =4x +y ,试比较m 和n 的大小.解析m -n =1x +1y -4x +y=x +y xy -4x +y =(x +y )2-4xy xy (x +y )=(x -y )2xy (x +y ), ∵x ,y 均为正数,∴x >0,y >0,xy >0,x +y >0,(x -y )2≥0, ∴m -n ≥0即m ≥n .[能力提升]1.若a ,b 为实数,则“0<ab <1”是“a <1b 或b >1a”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析 当0<ab <1时,若b >0,则有a <1b ;若b <0,则a <0,从而有b >1a.“0<ab<1”是“a <1b 或b >1a”的充分条件.反之,取b =1,a =-2,则有a <1b 或b >1a,但ab <0.故选A.答案A2.已知函数f (x )=x +x 3,x 1,x 2,x 3∈R ,x 1+x 2<0,x 2+x 3<0,x 3+x 1<0,那么f (x 1)+f (x 2)+f (x 3)的值A.一定大于0B.一定小于0C.等于0D.正负都有可能解析x 1+x 2<0⇒x 1<-x 2,又∵f (x )=x 3+x 为奇函数,且在R 上递增, ∴f (x 1)<f (-x 2)=-f (x 2), 即f (x 1)+f (x 2)<0. 同理:f (x 2)+f (x 3)<0,f (x 1)+f (x 3)<0.以上三式相加得2[f (x 1)+f (x 2)+f (x 3)]<0. 即f (x 1)+f (x 2)+f (x 3)<0. 答案B3.若1a <1b <0,则下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④b a +ab>2中,正确的不等式有A.1个B.2个C.3个D.4个解析1a <1b <0⇔b <a <0,∴a +b <0<ab ,|a |<|b |,b a +a b>2b a ·ab=2(∵b <a <0,故等号取不到),即①④正确,②③错误,故选B.(注:本题亦可用特值法,如取a =-1,b =-2验证得)答案B4.若0<x <y <1,则下列不等式正确的是 A.4y<4xB.x 3>y 3C.log 4x <log 4yD.⎝ ⎛⎭⎪⎫14x <⎝ ⎛⎭⎪⎫14y解析由0<x <y <1,则4y>4x,x 3<y 3,log 4x <log 4y ,⎝ ⎛⎭⎪⎫14x>⎝ ⎛⎭⎪⎫14y.故选C. 答案C5.已知三个不等式:ab >0,bc -ad >0,c a -db>0(其中a ,b ,c ,d 均为实数),用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的正确命题的个数是A.0B.1C.2D.3答案D6.已知a ,b ,c 满足c <b <a 且ac <0,则下列选项中不恒成立的是 A.b a >c a B.b -ac>0C.b 2c >a 2cD.a -cac<0 解析 ∵c <b <a 且ac <0, ∴a >0,c <0.由b >c ,a >0,即1a >0,可得b a >ca,故A 恒成立.∵b <a ,∴b -a <0. 又c <0,∴b -ac>0,故B 恒成立. ∵c <a ,∴a -c >0. 又ac <0,∴a -cac<0,故D 恒成立. 当b =-2,a =1时,b 2>a 2,而c <0,∴b 2c <a 2c,故C 不恒成立. 答案C7.以下四个不等式:①a <0<b ;②b <a <0;③b <0<a ;④0<b <a .其中使1a <1b成立的充分条件是________.解析1a <1b ⇔b -a ab<0⇔b -a 与ab 异号,依题设①②④能使b -a 与ab 异号.答案 ①②④8.设a >b ,(1)ac 2>bc 2;(2)2a >2b ;(3)1a <1b;(4)a 3>b 3;(5)a 2>b 2中正确的结论有________.解析 若c =0,(1)错;若a ,b 异号或a ,b 中有一个为0,(3)(5)错. 答案 (2)(4)9.实数a ,b ,c ,d 满足下列三个条件:①d >c ;②a +b =c +d ;③a +d <b +c .则将a ,b ,c ,d 按照从小到大的次序排列为________.解析 本题条件较多,若两两比较,需6次,很麻烦.但如果能找到一个合理的程序,则可以减少解题步骤.⎭⎪⎬⎪⎫③⇒d -b <c -a ②⇒c -a =b -d ⇒⎩⎪⎨⎪⎧d -b <b -d ,a -c <c -a ⇒⎩⎪⎨⎪⎧d <b ,a <c ,又由①,得a <c <d <b . 答案a <c <d <b10.若a >0,b >0,求证:b 2a +a 2b≥a +b .证明b 2a +a 2b -(a +b )=(a +b )(a 2-ab +b 2)ab-(a +b )=(a +b )(a -b )2ab.∵a >0,b >0,∴a +b >0,ab >0,(a -b )2≥0.∴b 2a +a 2b≥a +b . 11.已知f (x )=ax 2+c ,且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值X 围. 解析 由-4≤f (1)≤-1,-1≤f (2)≤5, 得-4≤a +c ≤-1,-1≤4a +c ≤5. 设u =a +c ,v =4a +c ,则有a =v -u 3,c =4u -v 3.∴f (3)=9a +c =-53u +83v .又⎩⎪⎨⎪⎧-4≤u ≤-1,-1≤v ≤5,∴⎩⎪⎨⎪⎧53≤-53u ≤203,-83≤83v ≤403. ∴-1≤-53u +83v ≤20.∴f (3)∈[-1,20]. 12.已知a >0,a ≠1. (1)比较下列各组大小①a 2+1与a +a ;②a 3+1与a 2+a ;③a 5+1与a 3+a 2. (2)探讨在m ,n ∈N +条件下,am +n+1与a m +a n的大小关系,并加以证明.解析 (1)①a 2+1>a +a ;②a 3+1>a 2+a ;③a 5+1>a 3+a 2. (2)根据(1)可探讨,得am +n+1>a m +a n.(证明如下)a m +n +1-(a m +a n )=a m (a n -1)+(1-a n )=(a m-1)(a n-1). 当a >1时,a m>1,a n>1,∴(a m-1)(a n-1)>0;当0<a<1时,0<a m<1,0<a n<1,∴(a m-1)(a n-1)>0;总之(a m-1)(a n-1)>0,即a m+n+1>a m+a n.。

3.2 不等式的基本性质 八年级数学上册基础训练 浙教版(Word版,含答案)

3.2  不等式的基本性质 八年级数学上册基础训练 浙教版(Word版,含答案)

3.2 不等式的基本性质1.若x >y ,则下列式子中,错误的是(D ) A .x -3>y -3 B.x 3>y3C .x +3>y +3D .-3x >-3y2.若x >y ,则下列不等式不一定成立的是(D ) A. x +1>y +1 B. 2x >2y C. x 2>y2D. x 2>y 2 3.下列不等式变形正确的是(A ) A .1≥2-x ⇒x ≥1 B .-x <3⇒x <-3 C.13x >-6⇒x >-2 D .-7x ≤8⇒x ≥-78 4.(1)若-4x >-3,则x __<__34.(2)若a c 2>bc 2(c ≠0),则a __>__b .(3)若-x π<-yπ,则x __>__y .5.满足不等式12x <1的非负整数是0,1.6.现有不等式的两个性质:①在不等式的两边都加上(或减去)同一个数(或整式),不等号的方向不变.②在不等式的两边都乘同一个数(或整式),乘的数(或整式)为正时不等号的方向不变,乘的数(或整式)为负时不等号的方向改变.请解决以下两个问题:(1)利用性质①比较2a 与a 的大小(a ≠0). (2)利用性质②比较2a 与a 的大小(a ≠0). 【解】 (1)当a >0时,a +a >a +0,即2a >a . 当a <0时,a +a <a +0,即2a <a .(2)当a >0时,由2>1,得2·a >1·a ,即2a >a . 当a <0时,由2>1,得2·a <1·a ,即2a <a .7.(1)若x >y ,请比较2-3x 与 2-3y 的大小,并说明理由. 【解】 2-3x <2-3y .理由如下: ∵x >y (已知),∴-3x <-3y (不等式的基本性质3), ∴2-3x <2-3y (不等式的基本性质2). (2)若x >y ,请比较(a -3)x 与(a -3)y 的大小. 【解】 当a >3时,∵ x >y , a -3>0, ∴ (a -3)x >(a -3)y . 当a =3时,∵ a -3=0, ∴ (a -3)x =(a -3)y =0. 当a <3时,∵ x >y , a -3<0, ∴ (a -3)x <(a -3)y .8.利用不等式的基本性质,将下列不等式化为“x >a ”或“x <a ”的形式: (1)x +2>7.【解】 两边都减去2,得x >5. (2)3x <-12.【解】 两边都除以3,得x <-4. (3)-7x >-14.【解】 两边都除以-7,得x <2. (4)13x <2. 【解】 两边都乘3,得x <6.9.已知关于x 的不等式x >a -32表示在数轴上如图所示,则a 的值为(A )(第9题)A .1B .2C .-1D .-2【解】 由题意,知a -32=-1,解得a =1.10.当0<x <1时,x 2,x ,1x 的大小顺序是(A )A. x 2<x <1xB. 1x <x <x 2C. 1x <x 2<xD. x <x 2<1x 【解】 ∵0<x <1,∴在不等式0<x <1的两边都乘x ,得0<x 2<x ; 在不等式0<x <1的两边都除以x ,得0<1<1x .∴x 2<x <1x.11.已知关于x 的不等式(m -1)x >6,两边同除以m -1,得x <6m -1,则化简:|m -1|-|2-m |=-1.【解】 ∵(m -1)x >6,两边同除以m -1,得x <6m -1,∴m -1<0,两边都加上1,得m <1,∴2-m >0, ∴|m -1|-|2-m |=(1-m )-(2-m ) =1-m -2+m =-1.12.已知有理数a 在数轴上的位置如图所示:(第12题)试比较a ,-a ,|a |,a 2和1a的大小,并将它们按从小到大的顺序,用“<”或“=”连接起来.【解】 由图可知-1<a <0, ∴0<-a <1,|a |=-a , a <a 2<-a ,1a <-1<a ,∴1a <a <a 2<-a =|a |.13.(1)若x <y ,且(a -2)x <(a -2)y ,求a 的取值范围. 【解】 ∵x <y 两边同时乘(a -2),得(a -2)x <(a -2)y ,由于不等号的方向不变,因此可以判断不等式两边同乘了一个正数, ∴a -2>0,∴a >2.(2)已知关于x 的不等式(1-a )x ≥2可化为x ≤21-a,试确定a 的取值范围. 【解】 ∵(1-a )x ≥2两边同时除以(1-a ),得x ≤21-a ,由于不等号的方向改变了,因此可以判断不等式 两边同时除以了一个负数, ∴1-a <0,∴a >1.14.已知a ,b ,c 是三角形的三边,求证:a b +c +b c +a +ca +b <2.【解】 由“三角形两边之和大于第三边”可知, a b +c ,b c +a ,c a +b均是真分数, 再利用分数与不等式的性质,得 a b +c <a +a b +c +a =2a b +c +a . 同理,b c +a <2b c +a +b ,c a +b <2c a +b +c. ∴a b +c +b c +a +c a +b <2a b +c +a +2b c +a +b +2ca +b +c =2(a +b +c )a +b +c=2.。

《不等式的基本性质》典型例题及解析

《不等式的基本性质》典型例题及解析

《不等式的基本性质》典型例题及解析典型例题一例题01 根据不等式的基本性质,把下列不等式化成或的形式:(1);(2);(3);(4).解答(1)根据不等式的性质,不等式的两边都加5,不等号的方向不变,所以,∴.(2)根据不等式的性质,两边都减去,不等号的方向不变,所以,∴.(3)根据不等式的性质,两边都乘以4,不等号的方向不变,所以,∴.(4)根据不等式的性质,两边都除以-5,不等号的方向改变,所以,∴.例题02 若,用“<”或“>”来填空:(1);(2).分析由于,不等式两边都减去5,不等号的方向不变,不等式的两边都乘以-5,不等号的方向改变.解答(1)<,(2)>.例题03 用“”或“”号填空若且则:(1) _____;(2) _____;(3) _____;(4) _____;(5) _____;(6) _____;(7) _____;(8) _____.解答(1)因为,根据不等式的性质1,有;(2)因为,根据不等式的性质1,有;(3)因为,根据不等式的性质2,有;(4)因为,根据不等式的性质3,有,再由不等式性质1,有;(5)因为,由不等式的性质1,;(6)因为,由不等式的性质1,;(7)因为且,由不等式性质2知;(8)因为且,由不等式性质3,有说明解这类题应先观察不等号左右两边是由原来的不等式进行了什么样的变形得来的,弄清楚了,再对照不等式的性质,决定是否要改变不等号的方向.例题04 判断下列各题的结论是否正确,并说明理由.(1)如果,,那么;(2)如果,那么;(3)如果,那么;(4)如果,且,那么.解答(1)不正确.因为当或时,不成立;(2)正确.因为成立,必有且,根据不等式基本性质2,得;(3)正确.根据不等式基本性质1,由,两边都加上,得;(4)不正确.因为,那么有可能大于0,也有可能小于0,当时,根据不等式基本性质3,两边同除以得.说明①注意成立则隐含着这个条件且;②要注意(4)小题中的条件“”的讨论,因为代表有理数,所以可能取正,也可能取负数.例题05 根据不等式的基本性质,把下列不等式化成或的形式.(1);(2);(3);(4)解答(l)根据不等式基本性质1,不等式两边都加上5,不等号的方向不改变,所以,即(2)根据不等式基本性质1,不等式的两边都减去,不等式不改变方向,所以,即(3)根据不等式基本性质2,不等式两边同除以(或乘以),不等号不改变方,所以,即(4)根据不等式基本性质3,不等式两边同乘以-2(或除以-);不等号改变方向,所以,即说明在运用不等式基本性质3时,一定不要忘记改变不等号的方向.典型例题二1.有理数a,b在数轴上的位置如图,在下列各题中表示错误的是( )A.a−b>0 B.ab> 0 C.c−a<c−b D.>答案:D说明:不难看出a>b>0,所以A、B中表示的显然正确;由a>b可得−a<−b,两边同时加上c,则有c−a<c−b成立;只有D中的表示错误,因为a>b>0,所以将a>b两边同时除以ab,不等号方向不改变,即此时有>成立,所以答案为D.2.有理数a、b、c在数轴上的对应点的位置如图所示,下列式子中正确的有( )①b+c>0 ②a+b>a+c ③bc>ac ④ab>acA.1个 B.2个 C.3个 D.4个答案:C说明:由图中所给a、b、c三个数在数轴上点的位置,可以得到:①b>0,c<0且|b|<|c|,从而b+c<0;②b>c,不等式两边都加上a,得a+b>a+c;③a>b,不等式两边同乘以c(c<0),得ac<bc,即bc>ac;④b>c,不等式两边同乘以a(a>0),得ab>ac;所以②③④正确,答案为C.判断正误:①如果−a>−b,则a>b ( )错;−a>−b两边同乘以−1,不等号方向改变,得a<b②如果 2a>−2b,则a>−b ( )对; 2a>−2b两边同除以2,不等号方向不变,得a>−b③如果ab>ac,则b>c ( )错;当a≤0时,由ab>ac无法得出b>c④若x>,则x>1 ( )错;取x = −,则x>成立,但此时x>1不成立⑤若a−5>b−5,则a>b ( )对;a−5>b−5两边同加5即a>b⑥若a>b,则a2>b2 ( )错;取a = −1,b = −2,此时a>b成立,但a2<b2⑦若>,则a<b ( )错;取a = 1,b = −1,此时>成立,但a>b⑧若a>b,c>d,则ac>bd ( )错;取a = 1,b = 0,c = −1,d = −2,此时a>b,c>d都成立,但ac<bd。

基本不等式练习题带答案

基本不等式练习题带答案
• a. 假设 a > b,则 ab > b^2(反面结论); • b. 根据已知条件,推导出 ab - b^2 = b(a - b) < 0(矛盾); • c. 否定反面结论,得出 a ≤ b,从而证明原命题成立。
06
基本不等式的扩展 知识
基本不等式的推广形式
单击此处添加标题
平方和与平方差形式:a²+b² ≥ 2ab 和 a²-b² ≥ 2ab
• 题目:已知 x > 0,y > 0,且 xy = 4,则下列结论正确的是 ( ) A. x + y ≥ 4 B. x + y ≤ 4 C. x + y ≥ 8 D. x + y ≤ 8 答案: A
• A. x + y ≥ 4 B. x + y ≤ 4 • C. x + y ≥ 8 D. x + y ≤ 8 • 答案:A
基本不等式的应用:在数学、物 理、工程等领域有广泛的应用, 用于解决最优化问题、估计值域 和解决一些数学竞赛问题等。
添加标题
添加标题
添加标题
添加标题
基本不等式的形式:常见的形式 有AM-GM不等式、CauchySchwarz不等式和Holder不等式 等。
基本不等式的证明方法:可以通 过代数、几何和概率统计等方法 证明基本不等式。
• 题目:若 a > b > c,且 a + b + c = 1,则下列结论正确的是 ( ) A. ac + bc ≥ ab B. ac + bc ≤ ab C. ac + bc > ab D. ac + bc < ab 答案:B
• A. ac + bc ≥ ab B. ac + bc ≤ ab • C. ac + bc > ab D. ac + bc < ab

2024届新高考数学复习:专项(不等式的概念及基本性质)好题练习(附答案)

2024届新高考数学复习:专项(不等式的概念及基本性质)好题练习(附答案)

2024届新高考数学复习:专项(不等式的概念及基本性质)好题练习[基础巩固]一、选择题1.如果a <b <0,那么下列各式一定成立的是( ) A .a -b >0 B .ac <bcC .a 2>b 2D .1a <1b2.下列不等式中,正确的是( ) A .若ac 2>bc 2,则a >b B .若a >b ,则a +c <b +c C .若a >b ,c >d ,则ac >bdD .若a >b ,c >d ,则a c >bd3.使得a >b >0成立的一个充分不必要条件是( )A .1b >1a B .e a >e bC .a b >b aD .ln a >ln b >04.已知x ,y ∈R ,且x >y >0,则( )A .1x -1y >0 B .sin x -sin y >0C .⎝⎛⎭⎫12 x -⎝⎛⎭⎫12 y <0D .ln x +ln y >05.若a ,b ∈R ,且a >|b |,则( ) A .a <-b B .a >bC .a 2<b 2D .1a >1b6.若a >b >c 且a +b +c =0,则下列不等式一定成立的是( ) A .ac >bc B .ab >bc C .ab <bc D .ac <bc7.若α,β满足-π2 <α<β<π2 ,则2α-β的取值范围是( ) A .-π<2α-β<0 B .-π<2α-β<πC .-3π2 <2α-β<π2 D .0<2α-β<π8.已知实数a ,b ,c ,满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >b9.(多选)[2023ꞏ山东淄博实验中学检测]若a >b >0,则下列不等式中一定不成立的是( )A .b a >b +1a +1B .a +1a >b +1bC .a +1b >b +1a D .2a +b a +2b >a b二、填空题10.若a <0,b <0,则p =b 2a +a 2b 与q =a +b 的大小关系为________.11.若实数a ,b 满足0<a <2,0<b <1,则a -b 的取值范围是________. 12.[2023ꞏ山东济南外国语学校检测]已知a ,b ,c ,d 均为实数,有下列命题:①若ab >0,bc -ad >0,则ca -db >0;②若ab >0,c a -d b >0,则bc -ad >0;③若bc -ad >0,c a -d b >0,则ab >0.其中正确的命题是________.[强化练习]13.已知下列四个条件:①b >0>a ;②0>a >b ;③a >0>b ;④a >b >0,能推出1a <1b 成立的有( )A .1个B .2个C .3个D .4个14.(多选)若a <b <-1,c >0,则下列不等式一定成立的是( )A .a -1a >b -1b B .a -1b <b -1aC .ln (b -a )>0D .(ab )c >(b a )c15.已知有三个条件:①ac 2>bc 2;②a c >bc ;③a 2>b 2,其中能成为a >b 的充分条件是________.(填序号)16.已知2b <a <-b ,则ab 的取值范围是________.参考答案1.C ∵a <b <0,∴a 2>b 2.2.A ∵ac 2>bc 2,c 2>0,∴a >b .A 正确.3.D 当a >b >0时,1b >1a ,e a >e b 成立,即1b >1a ,e a >eb 是a >b >0的必要条件,不符合题意,排除A ,B.当a b >b a 时,可取a =1,b =-1,但a >b >0不成立,故a b >b a 不是a >b >0的充分条件,排除C.函数y =ln x 在(0,+∞)上单调递增,当ln a >ln b >0时,a >b >1>0;当a >b >0时,取a =1e ,b =1e 2 ,则ln b <ln a <0.综上,ln a >ln b >0是a >b >0的充分不必要条件.4.C 方法一 (取特殊值进行验证)因为x >y >0,选项A ,取x =1,y =12 ,则1x -1y=1-2=-1<0,排除A ;选项B ,取x =π,y =π2 ,则sin x -sin y =sin π-sin π2 =-1<0,排除B ;选项D ,取x =2,y =12 ,则ln x +ln y =ln (xy )=ln 1=0,排除D.方法二 (利用函数的单调性)因为函数y =⎝⎛⎭⎫12 x 在R 上单调递减,且x >y >0,所以⎝⎛⎭⎫12x<⎝⎛⎭⎫12 y ,即⎝⎛⎭⎫12 x -⎝⎛⎭⎫12 y <0.故选C.5.B 可取a =2,b =±1逐一验证,B 正确. 6.D ∵a >b >c 且a +b +c =0 ∴a >0,c <0,b 不确定 ∴ac <bc .7.C ∵-π2 <α<β<π2 ,∴-π2 <α<π2 ,-π<α-β<0,∴-3π2 <2α-β<π2 .8.A 因为c -b =4-4a +a 2=(a -2)2≥0, 所以c ≥b .又b +c =6-4a +3a 2,所以2b =2+2a 2,b =a 2+1,所以b -a =a 2-a +1=(a -12 )2+34 >0, 所以b >a , 所以c ≥b >a .9.AD ∵a >b >0,则b a -b +1a +1 =b (a +1)-a (b +1)a (a +1) =b -a a (a +1) <0,∴b a >b +1a +1一定不成立;a +1a -b -1b =(a -b )⎝⎛⎭⎫1-1ab ,当ab >1时,a +1a -b -1b >0,故a +1a >b +1b 可能成立;a +1b -b -1a =(a -b )⎝⎛⎭⎫1+1ab >0,故a +1b >b +1a 恒成立;2a +b a +2b -a b=b 2-a 2b (a +2b ) <0,故2a +b a +2b >ab一定不成立.故选AD.10.p ≤q答案解析:p -q =(b 2a +a 2b )-(a +b )=(b 2a -a )+(a 2b -b )=(1a -1b )(b 2-a 2)=(b -a )2(b +a )ab,又a <0,b <0,所以b +a <0,ab >0,(b -a )2≥0,所以(b 2a +a 2b )-(a +b )≤0,所以p ≤q . 11.(-1,2)答案解析:∵0<b <1,∴-1<-b <0 又∵0<a <2 ∴-1<a -b <2. 12.①②③答案解析:对于①,若ab >0,bc -ad >0,不等式两边同时除以ab 得c a -db >0,所以①正确;对于②,若ab >0,ca -db >0,不等式两边同时乘以ab 得bc -ad >0,所以②正确;对于③,若ca -db >0,当两边同时乘以ab 时可得bc -ad >0,所以ab >0,所以③正确.13.C ①中,因为b >0>a ,所以1b >0>1a ,因此①能推出1a <1b 成立,所以①正确;②中,因为0>a >b ,所以ab >0,所以aab >b ab ,所以1b >1a ,所以②正确;③中,因为a >0>b ,所以1a >0>1b ,所以1a >1b ,所以③不正确;④中,因为a >b >0,所以a ab >b ab ,所以1b >1a ,所以④正确.故选C.14.BD 利用取特殊值法,令a =-3,b =-2,代入各选项,验证可得正确的选项为BD.15.①答案解析:①由ac 2>bc 2可知c 2>0,即a >b ,故“ac 2>bc 2”是“a >b ”的充分条件;②当c <0时,a <b ;③当a <0,b <0时,a <b ,故②③不是a >b 的充分条件.16.(-1,2)答案解析:∵2b <a <-b ,∴2b <-b ,∴b <0,∴1b <0,∴-b b <a b <2bb ,即-1<a b <2.。

职高数学第二章不等式习题集附详细标准答案

职高数学第二章不等式习题集附详细标准答案

3、 3,3
1、不等式 x 2 2 地解集为
2、不等式 x 3 0 地解集为
3、不等式 2x 1 2 地解集为 4、不等式 8 2x 3 地解集为
参考答案:
1、 0, 4
2、, 33,
3、
3 2
,
1 2
4、
5 2
,211
2 /4
个人收集整理 仅供参考学习
版权申明
本文部分内容,包括文字、图片、以及设计等在网上搜集整理. 版权为个人所有
3 /4
个人收集整理 仅供参考学习
转载或引用本文内容必须是以新闻性或资料性公共免费信息为 使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改, 并自负版权等法律责任.
Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.
参考答案:
1、 ,12,
Байду номын сангаас
2、 6,1
3、 1,3
4、
1,
4 3
2.4 含绝对值地不等式习题
练习 2.4.1 不等式 x a或 x a
1、不等式2 x 地解集为

不等式的基本性质及答案

不等式的基本性质及答案

不等式的基本性质知识导引不等式和方程一样,也是代数里的一种重要模型,在概念方面,它与方程很类似,尤其重要的是不等式具有一系列基本性质,而且数学的基本结果往往是一些不等式而不是等式. 本讲的主要知识点:1、不等号有“≠”,“>”,“<”,“≥”,“≤”。

“≥”表示大于或等于;“≤”表示小于或等于.2、一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,即不等式的解集.3、不等式性质1:不等式两边同时加上或减去一个相同的数,不等号方向不变; 不等式性质2:不等式两边同时乘以或除以同一个正数,不等号方向不变;不等式性质3:不等式两边同时乘以或除以同一个负数,不等号方向改变;4、在数轴上表示解集,必须注意空心圈与实心点表示的不同含义.5、不等式解集口诀:大大取大,小小取小,小大大小连起写,大大小小题无解.6、解决与不等式相关的问题,常用到分类讨论、数形结合等相关概念和方法.典例精析例1:下列四个命题中,正确的有( )①若a >b ,则a +1>b +1;②若a >b ,则a -1>b -1;③若a >b ,则-2a <-2b ;④若a >b ,则2a <2b .A 、1个B 、2个C 、3个D 、4个例1—1:已知a ,b ,c 是有理数,且a >b >c ,则下列式子中正确的是( )A 、ab >bcB 、a +b >b +cC 、a -b >b -cD 、c b c a > 例2:若实数a >1,则实数a M =,32+=a N ,312+=a P 的大小关系为( ) A 、P >N >M B 、M >N >P C 、N >P >M D 、M >P >N例3:解不等式5456110312-≥+--x x x ,并把它的解集在数轴上表示出来.例3—1:请你写出一个满足不等式2x -1<6的正整数x 的值: .例3—2:若关于x 的不等式3m -2x <5的解集是x >2,则实数m 的值为 .例4:某童装加工企业今年五月份,工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%,为了提高工人的劳动积极性,按时完成外商订货任务,企业计划从六月份起进行工资改革,改革后每位工人的工资分两部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元.(1)为了保证所有工人每月的工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元?(精确到分)(2)根据经营情况,企业决定每加工1套童装奖励5元,工人小张争取六月份工资不少于1200元,则小张在六月份至少应加工多少套童装?探究活动例:三边均不相等的△ABC 的两条高的长度分别为4和12,若第三条高的长也是整数,试求它的长.学力训练A 组 务实基础1、若a >b ,c 为有理数,则下列各式一定成立的是( )A 、ac >bcB 、ac <bcC 、22bc ac >D 、22bc ac ≥2、不等式121>-x 的解集是( )A 、21->xB 、2->xC 、2-<xD 、21-<x 3、四个小朋友玩跷跷板,他们的体重分别为P 、Q 、R 、S ,如图所示,则他们体重的大小关系是( )A 、P >R >S >QB 、Q >S >P >RC 、S >P >Q >RD 、S >P >R >Q4、如果不等式(a -1)x >a -1的解为x <1,则a 必须满足( )A 、a <1B 、a >1C 、a >0D 、a <05、已知三角形的两边分别是2,6,第三边长也是偶数,则三角形的周长是 .6、关于x 的方程2(x +a )=a +x -2的解是非负数,在a 的取值范围是 .7、如果x ≥-5的最小值是a ,x ≤5的最大值是b ,则a +b = .8、规定一种新运算:a △b =ab -a -b +1,如3△4=12-3-4+1,请比较:(-3)△4 4△(-3)(填“>”、“<”或“=”).9、已知关于x 的方程3(x -2a )+2=x -1的解适合不等式2(x -5)≥8a ,求a 的取值范围.10、关于x 的不等式64141a x x ->-+的解都是不等式2214x x -<-的解,求a 的取值范围.B 组 瞄准中考1、(邵阳中考)如图,数轴上表示的关于x 的一元一次不等式的解集为( )A 、x ≤1 B、x ≥1 C、x <1 D 、x >12、(烟台中考)不等式4-3x≥2x-6的非负整数解有( )A 、1个B 、2个C 、3个D 、4个3、(深圳中考)已知a 、b 、c 均为实数,若a >b ,c ≠0,下列结论不一定正确的是( )A 、a +c >b +cB 、c -a <c -bC 、22cb c a > D 、22b ab a >> 4、(凉山中考)下列不等式变形正确的是( )A 、由a >b ,得ac >bcB 、由a >b ,得-2a <-2bC 、由a >b ,得-a >-bD 、由a >b ,得a -2<b -25、(乐山中考)下列不等式变形正确的是( )A 、由a >b ,得a -2<b -2B 、由a >b ,得-2a <-2bC 、由a >b ,得b a >D 、由a >b ,得22b a > 6、解不等式x x 329721-≤-,得其解的范围为( ) A 、61≥x B 、61≤x C 、23≥x D 、23≤x 7、(永州中考)某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费0.2元,以后每分钟收费0.1元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为0.5元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费0.4元.如果你想给某同学打市话,准备通话10分钟,则你所需的电话费至少为( )A 、0.6元B 、0.7元C 、0.8元D 、0.9元8、(临沂中考)有3人携带会议材料乘坐电梯,这三人的体重共210kg ,每捆材料重20kg ,电梯的最大负荷为1050kg ,则该电梯在此3人乘坐的情况下最多还能搭载 捆材料.9、(重庆中考)解不等式3132+<-x x ,并把解集在数轴上表示出来.10、(苏州中考)解不等式:1)1(23<--x .11、(广州中考)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.一直小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算:所购买商品的价格在什么范围内时,采用方案一更合算?C 组 冲击金牌1、⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++=++=++52154154354324321321a x x x a x x x a x x x a x x x a x x x ,其中1a ,2a ,3a ,4a ,5a 是常数,且1a >2a >3a >4a >5a ,则1x ,2x ,3x ,4x ,5x 的大小顺序是( )A 、1x >2x >3x >4x >5xB 、4x >2x >1x >3x >5xC 、3x >1x >4x >2x >5xD 、5x >3x >1x >4x >2x2、不等式100<+y x 有 组整数解.3、已知121219991998++=M ,121220001999++=N ,那么M ,N 的大小关系是 . 4、已知x <0,-1<y <0,将x ,xy ,2xy 按从小到大的顺序排列.5、实数a ,b 满足不等式b a a b a a +-<+-)(,试判定a ,b 的符号.6、解不等式:1325<+--x x .7、已知:正有理数1a 是3的一个近似值,设12112++=a a ,求证:3介于1a 和2a 之间.8、某地区举办初中数学联赛,有A 、B 、C 、D 四所中学参加.选手中,A ,B 两校共16名,B ,C 脸两校共20名,C ,D 两校共34名,并且各校选手人数的多少是按A 、B 、C 、D 中学的顺序选派的,试求各中学的选手人数.不等式的基本性质参考答案典例精析1、C 1—1、B2、D3、x ≤2,数轴上表示略 3—1、1或2或33—2、3 4、(1)设企业每套奖励x 元,由题意得:200+60%×150x ≥450,解得x ≥2.78,因此,该企业每套至少应奖励2.78元.(2)设小张在六月份加工y 套,由题意得:200+5y ≥1200,解得y ≥200.因此,小张在六月份至少应加工200套童装.探究活动解:设长度为4和12的高所对的边为a 、b ,又设第三边及其边上的高为c 、h ,则4a =12b =ch .a :b =3:1=3h :h ,b :c =h :12,∴a :b :c =3h :h :12,可设三边长为3hk ,hk ,12k (k 为正整数),∵3hk >hk ,∴3hk +hk >12k ,hk +12k >3hk ,即3<h <6,又∵h 是整数,∴h =4(舍去),5,∴h =5.学力训练A 组1、D2、C3、D4、A5、146、a ≤-27、08、=9、a ≤-6.5 10、a ≤14.5B 组1、D2、C3、D4、B5、B6、A7、B8、429、解集为x <2,数轴上表示略. 10、x >2 11、(1)120×0.95=114(元),所以实际应支付114元.(2)设购买商品的价格为x 元,由题意得:0.8x +168<0.95x ,解得x >1120,所以当购买商品的价格超过1120元时,采用方案一更合算.C 组1、C2、197023、m >n4、∵x -xy =x (1-y ),且x <0,-1<y <0,所以x (1-y )<0,即x <xy ,∵0)1(2<-=-y xy xy xy ,∴xy xy <2,因为)1)(1(2y y x xy x =+=-<0,∴2xy x <,综上所述,x <2xy <xy .5、a 为负,b 为正6、x <-7或31>x 7、略 8、A 校7人,B 校9人,C 校11人,D 校23人.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式的基本性质练习及答案
1.若x >y ,则下列式子中错误的是( ) A .x -3>y -3 B .x +3>y +3 C .-3x >-3y
D.x 3>y
3
2.下列不等式变形正确的是( ) A .由a >b 得ac >bc B .由a >b 得-2a >-2b
C .由a >b 得-a <-b
D .由a >b 得a -2<b -2
3.下列变形中,不正确的是( ) A .由x -5>0可得x >5 B .由1
2x >0可得x >0
C .由-3x >-9可得x >3
D .由-34x >1可得x <-4
3
4.因为-1
3x >1,所以x -3(填“>”或“<”),依据
是 .
5.用不等号填空:(1)若a >b ,则ac 2 bc 2;(2)若a >b ,则3-2a 3-2b .
6.把不等式2x >3-x 化为x >a 或x <a 的形式是( ) A .x >3 B .x <3 C .x >1
D .x <1
7.小明的作业本上有四道利用不等式的性质,将不等式化为x >a 或x <a 的作业题:①由x +7>8解得x >1;②由x <2x +3解得x <3;③由3x -1>x +7解得x >4;④由-3x >-6解得x <-2.其中正确的有( ) A .1题 B .2题 C .3题
D .4题
8.根据不等式的基本性质,可将“mx <2”化为“x >2
m
”,则m 的取值范围
是 .
9.已知x 满足-5x +5<-10,则x 的范围是 .
10.根据不等式的基本性质,把下列不等式化成x >a 或x <a 的形式:
(1)2x>-4; (2)x-4<-2;
(3)-2x<1; (4)1
2
x<2.
11.某商店先在广州以每件15元的价格购进某种商品10件,后来又到深圳以每件12.5元的价格购进同种商品40件,如果商店销售这些商品时,每件定价为x 元,则会获得不少于12%的利润,用不等式表示以上问题中的不等关系,并把这个不等式变形为“x≥a”或“x≤a”的形式.
12.某商贩去菜摊买西红柿,他上午买了30斤,价格为每斤x元;下午,他又
买了20斤,价格为每斤y元,后来他以每斤x+y
2
元的价格卖完后.发现自己赔
了钱,你知道是什么原因吗?
答案:
1. C
2. C
3. C
4. <不等式的基本性质3
5. ><
6. C
7. B
8. m<0
9. x>3
10. 解:(1)x>-2 (2)x<2
(3)x>-1
2
(4)x<4
11. 解:由题意得(10+40)x-(15×10+12.5×40)≥(15×10+
12.5×40)×12%,∴x≥14.56.
12. 解:由题意得:(30x+20y)-x+y
2
×50>0.整理得5x-5y>0.根据不等式
的性质1,两边都加上5y,得5x>5y,所以x>y.即此商贩上午所买的西红柿的单价高于下午的单价,所以赔了钱.。

相关文档
最新文档