四川大学物理习题册第五章解答2共18页文档

合集下载

四川大学大学物理学练习册上册习题答案

四川大学大学物理学练习册上册习题答案

,m/s 6/(1):−==t x v ΔΔ解质点运动学(1)——答案一、选择题1.D2.B3.D4.D5.D 二、填空题 1. 23 m/s2. ()[]t t A t ωβωωωββsin 2cos e 22 +−−; ()ωπ/1221+n (n = 0, 1, 2,…) 3. 0.1 m/s 24. bt +0v ; 2402/)(b R bt ++v5. −g /2; ()g 3/322v 三、计算题1.2.3.(1)t A y tA x ωωsin cos 21==,消去t 得轨道方程为1222212=+A y A x (椭圆)(2)r j t A i t A dtvd j t A i t A dtrd 2221221sin cos a cos sin v ωωωωωωωωω−=−−==+−==a 与反向,故a 恒指向椭圆中心。

(3)当t=0时,x=A 1,y=0,质点位于ωπ2=t 时,2212sin,02cosA A y A x ====ππ。

质点位于图中的Q 点。

显然质点在椭圆形轨,910(2)2t t dx/dt v −==,/16(2)s v −=,1810t −=dt dv a /(3)=s2(2)m/26−=a vx 处的速度为解:设质点在dt dx dx dv dt dv a ⋅==dxdv v =x 263+=,)63(002dx x vdv v x∫∫+=)4(631/2x x v +=道上沿反时针方向运动。

在M 点,加速度a 的切向分量t a 如图所示。

可见在该点切向加速度t 的方向与速度v 的方向相反。

所以,质点在通过M 点速率减小。

4.5.所以质点的运动方程为:解:先求质点的位置,s 2=t 225220×+×=s )(m)(60在大圆=dt ds v /=,1020t +=m/s40(2)=v 时s 2=t dt dv a t /=m/s10=R va n/2=。

电路理论(四川大学)第五章习题答案

电路理论(四川大学)第五章习题答案

5.7 已知网络N只含LTI正电阻(图5-9),但不知 道电路的初始状态,当
时,电路响应为
U
iL t 1 3e
uS
t
t
2 c o s tU
t
A

t
为单位阶跃。
2 cos t 4
求(1)求同样初始状态下,当 u S t =0时的 i L t (2)求在同样初始状态下,当电源均为零值时的 i L t

d i1
2
t
2
dt
5
d i1 t dt
4 i1 t 1 2
t
2 4U
t
(1 )
1 1,
2 4
t
通解:
i1 h t k 1 e
k 2e
4 t
A
求特解: 特解响应为t>0以后,由(1)式有:
d i1 t
3 t L
iL 0

4 9 1 e
Lh
3 0

4
A
iL

4 9 13
A
t 0 A 自由响应: i t 9 e 强迫响应: i t 4 9 1 3 由三要素法有:i t i 0 e 3 t 4 e 3 t A LZP L
0
1
U(t)存在:
iL

1
t
iL t iL 0

iL e
t
iL
t

t 0

1 1 eΒιβλιοθήκη 1 1 2e A

四川大学大学物理第五章习题册解答 PPT

四川大学大学物理第五章习题册解答 PPT

5.一无限长均匀带电圆柱体,半径为R,沿轴线方向的
线电荷密度为l,试分别以轴线和圆柱表面为电势零点,
求空z解间:的en 电 势E分dS布以Q.0轴线22为rr电hhEE势 零ll00Rr点RR22h22h

E E

lr 2 0R
l 2 0r
P
x

b
0dx
x

0 b

s 0
dx


s 0
bx

b

0 x

s 0
dx

s 0
x b
ห้องสมุดไป่ตู้
x

b

b x
0dx

0 b

s 0
dx

s 0
bx

b
s b 0
-b
o +b x
s b 0
8.一空气平板电容器,极板A、B的面积都是S,极板
Q1
4 0r 2
Q2 Q1
rP O
5.一个带负电荷的质点,在电场力作用下从A点经C 点运动到B点,其运动轨迹如图所示,已知质点运动的
速率是递减的,图中关于C点场强方向的四个图示中正 确的是:
A
E
B
C
B
C
B
E
A
A
E
C C
B D C
B
AE
d
Ft A
Fn
dt 0 at 0 运动轨迹为曲线,存在法向加速度

Q
0

E E

s 2 0
x

b, E

四川大学大学物理习题册答案05第五章静电场

四川大学大学物理习题册答案05第五章静电场

qiq0 ri3
ri
q1
q2 q3
r1 r2
r3
F3
F2
q0
F1
由力的叠加原理得 q0所受合力
F Fi
i
第五章 真空中的静电场 矢量的基本性质:具有一定的大小和方向,加法遵从 平行四边形/三角形法则的量,具有空间平移不变性。
第五章 真空中的静电场
物理学研究具体问题时,常常在参考系上建立直角坐
(A)Q 2 2q (C)Q4q
(B)Q 2q (D)Q2q
F 0
q
2
Qq
4e 0a2
QQ
4e 0 2a
2
0
Q
Q 2 2q
Q
q
5 – 2 静电场 电场强度
第五章 真空中的静电场
5.2.1.1 静电场
实验证实了两静止电荷间存在相互作用的静电力, 但其相互作用是怎样实现的?
电荷
电场
电荷
场是一种特殊形态的物质,具有质量、能量、动 量等简单带电体系统的电场强度分布。
5 – 1 库仑定律
第五章 真空中的静电场
5.1.1.1 电荷的种类 经其他物体摩擦过的物体所具有的吸引
轻小物体的性质表明物体带了电。
物体所带电荷的多少称作电量,单位C。 实验表明,自然界中只存在两种电荷:
正电荷(如:丝绸摩擦过的玻璃棒所带电荷) 负电荷(如:毛皮摩擦过的硬橡胶棒所带电荷)
静电场的两个物理量:电场强度 E 和电势 j 的概念。 ( E 是矢量场,j 是标量场,二者均具有叠加性)
二、理解高斯定理的物理意义,会用点电荷电场强 度公式 + 场强叠加原理、 高斯定理求解特殊带电体系 的电场强度分布。
三、理解静电场的环路定理,会用电势的积分定义 式、点电荷的电势公式 + 电势叠加原理求解特殊带电 体系的电势分布。

高分子物理课件 - 四川大学 - 冉蓉 - 第五章 晶态高聚物

高分子物理课件 - 四川大学 - 冉蓉 - 第五章  晶态高聚物

* 结晶高聚物最重要的证据为x射线衍射花样—— 同心环(德拜环)和衍射曲线。 * 非晶的x射线衍射花样——弥散环。 下图是等规立构的聚苯乙烯和无规立构的聚苯乙 烯的x射线衍射花样:
3、高聚物晶体中分子链的构象:
结晶过程中高聚物的密度↑ ,比容↓ ,分子链采 取位能最低的特定构象排入晶格。
1)、锯齿形构象:
4、分子量:
分子量小,结晶速率快
分子量大,结晶速率慢
5、压力、应力、溶剂、杂质
压力、应力↑
压力 应力
加速结晶
PE,Tm=137℃,一般当温度>Tm时,不结 晶,而在150MPa高压下,PE在160℃的温度 下可结晶。 应力使分子链朝某个方向排列,加速结晶—— 应力诱导结晶 NR,室温观察不到结晶,拉伸立刻产生结晶。
3)、不同高聚物的结晶速率不等: 结晶速率——体积收缩一半时对应的时间 (
t1/ 2 )的倒数。 t1/ 2 ——半结晶期
聚合物
聚异戊二烯
t1/ 2
0.42

5 × 103
尼龙-66
二、 高聚物结晶的温度依耐性:
晶核形成 与低分子一样包括 晶体长大 结晶的温度范围 Tg~Tm 而实际的结晶温度范围是: Tg~T1 ( T1< Tm) 此即是结晶过冷的现象。
不同成核和生长类型的Avrami指数值
生长类型 三维生长 (球状晶体) 二维生长 (球状晶体) 一维生长 (球状晶体) 均相成核 n=生长维数+1 异相成核 n=生长维数
n=3+1=4 n=2+1=2 n=1+1=2
n=3+0=3 n=2+0=2 n=1+0=1
“退火”(热处理方法):
将成形后的制品升温到接近熔点的某一温度,以加速次 期结晶。

四川大学物理学院理论力学第五章课件 4

四川大学物理学院理论力学第五章课件 4

x
x
l
lM
M
y
y
y
xA A xA = sint
x
l
M
x2 + y2 = l2
张纪平 制作
x2 + y2 ≤ l2
(x − sint)2 + y2 = l2
1
2、约束的分类
x 刚性杆
x
l
l
M
M
y
y
x2 + y2 = l2
x2 + y2 ≤ l2
xA A xA = sint
x
y
M
(x −sint)2 + y2 = l2
O
解: 解析法 2个自由度
α
取α、β 为广义坐标
系统所受约束符合虚功原理的适用条件
系统的主动力有 P1, P2 和 F
根据虚功原理,
P1iδ rC + P2 iδ rD + F iδ rB = 0
建立坐标系
P1δ xC + P2δ xD + Fδ yB = 0
张纪平 制作
A
β
F
O
B
α
y
C
l1 β
P1 A l2
F
x
D P2 B
18
P1δ xC + P2δ xD + Fδ yB = 0
yB = l1 cosα + l2 cos β
xC
=
1 2
l1 sin α
O
α
y
C
l1 β
xD
=
l1 sin α
+
1 2
l2
sin
β

大学物理(西南交大)作业参考答案5

大学物理(西南交大)作业参考答案5

NO.5 电势、导体与※电介质中的静电场 (参考答案)班级: 学号: 姓名: 成绩:一 选择题1.真空中一半径为R 的球面均匀带电Q ,在球心O 处有一带电量为q 的点电荷,如图所示,设无穷远处为电势零点,则在球内离球心O 距离为r 的P 点处的电势为: (A )r q04πε; (B ))(041R Qrq+πε;(C )r Qq 04πε+; (D ))(041R qQ r q-+πε;参考:电势叠加原理。

[ B ] 2.在带电量为-Q 的点电荷A 的静电场中,将另一带电量为q 的点电荷B 从a 点移动到b ,a 、b 两点距离点电荷A 的距离分别为r 1和r 2,如图,则移动过程中电场力做功为:(A ))(210114r r Q --πε; (B ))(210114r r qQ-πε;(C ))(21114r r qQ --πε; (D ))(4120r r qQ --πε。

参考:电场力做功=势能的减小量。

A=W a -W b =q(U a -U b ) 。

[ C ] 3.某电场的电力线分布情况如图所示,一负电荷从M 点移到N 点,有人根据这个图做出以下几点结论,其中哪点是正确的?(A )电场强度E M <E N ; (B )电势U M <U N ; (C )电势能W M <W N ; (D )电场力的功A >0。

[ C ]4.一个未带电的空腔导体球壳内半径为R ,在腔内离球心距离为d (d <R )处,固定一电量为+q 的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心O 处的点势为:(A )0; (B )d q04πε; (C )-R q04πε; (D ))(1140R dq-πε。

参考:如图,先用高斯定理可知导体内表面电荷为-q ,外表面无电荷(可分析)。

虽然内表面电荷分布不均,但到O 点的距离相同,故由电势叠加原理可得。

[ D ] ※5.在半径为R 的球的介质球心处有电荷+Q ,在球面上均匀分布电荷-Q ,则在球内外处的电势分别为:(A )内r Q πε4+,外r Q04πε-; (B )内r Qπε4+,0; 参考:电势叠加原理。

四川大学物理习题册第五章解答2

四川大学物理习题册第五章解答2

x2
r02

真空中的静电场(二)
第五章 真空中的静电场
s E1 2 0
取x轴正方向为正
E2

s 2 0
1
x
x2

r02

x 0,
E

E1

E2

s 2 0

s 2 0
1
x x2
r02


2 0
sx
x2 r02
x 0,
面上均匀带电,电荷面密度为s.试求通过小孔中心O并
与平面垂直的直线上各点的场强和电势.(提示:选O 点的电势为零).
解: 用割补法,该带电体=无限大平面(+s) +圆屏(-s)
由高斯定理可得,无限大平面场强
s E1 2 0 x 由场强叠加原理可得,圆屏场强
E2

s 2 0
1
x
为常数,则场强分布为 Ex=
,Ey=
.
U Ex x 2Ax
Ey
U y
2By
真空中的静Hale Waihona Puke 场(二)第五章 真空中的静电场
三、计算题 1. 如图,带电细线弯成半径为R的半圆形,
电荷线密度为=0sinq,式中0为一常数,q为半径R与
x轴所成的夹角.试求环心O处的电场强度.
解: 在细线取一线段元,由点电荷的场强公式有
d
E

dq
4 0R2
er

0
sinq Rdq 4 0R2
cosq i sinq j
y E
dE
0

sinq cosq i sin2 q j dq

四川大学物理习题册第五版答案汇编

四川大学物理习题册第五版答案汇编
4. v0 bt ; b 2 (v 0 bt)4 / R 2
5.g/2; 2 3v 2 /3g
三、计算题
1. 解 : (1)v x / t 6m/s,
(n = 0, 1, 2,…)
(2)v dx/dt 10t 9t2 ,
v(2) 16 / s,
(3)a dv/ dt 10 18t,
大学物理练习册解答
一.力学部分 质点运动学(一) 质点运动学(二) 牛顿运动定律(一) 牛顿运动定律(二) 动量与角动量(一) 动量与角动量(二) 功和能(一) 功和能(二) 刚体定轴转动(一) 刚体定轴转动(二) 狭义相对论(一) 狭义相对论(二) 二.热学部分 温度 气体分子运动论(一) 气体分子运动论(二) 热力学第一定律(一) 热力学第一定律(二) 热力学第二定律(一) 热力学第二定律(二)
A2 。
at
Q
M
质点位于图中的 Q 点。显然质点在椭圆形轨
a
an
oo
x
道上沿反时针方向运动。在 M 点,加速度 a 的切
向分量 at 如图所示。可见在该点切向加速度 at 的方向
与速度 v 的方向相反。所以,质点在通过 M 点速率减小。
4.
解:先求质点的位置
t 2s,
a
s 20 2 5 22 60(m)( 在大圆)
t
2dt
0
vy 0
dvy
t 36t 2dt
0
vx 2t
vy 12t3
v 2ti 12t3 j
dx vx dt
dx 2tdt
x
t
0 dx 0 2tdt
x t2
dy vy dt
dy 12t3dt
y
dy

成都四川师范大学附属实验学校高中物理选修三第五章《原子核》知识点复习

成都四川师范大学附属实验学校高中物理选修三第五章《原子核》知识点复习

一、选择题1.贝可勒尔在120 年前首先发现了天然放射现象,如今原子核的放射性在众多领域中有着广泛应用。

下列属于核聚变的是( )A .23411120H H He n +→+ B .427301213130He Al P n +→+ C .14140671C N e -→+D .2351131103192053390U n I Y 2n +→++2.下面关于结合能和比结合能的说法中,正确的有( ) A .原子核拆解成核子放出的能量称为结合能B .比结合能越大的原子核越稳定,因此它的结合能也一定越大C .重核与中等质量原子核相比较,重核的结合能和比结合能都大D .中等质量原子核的结合能和比结合能均比轻核的要大 3.以下说法正确的是( )A .β衰变所释放的电子是原子核内的中子转变为质子时产生的B .23290Th 成为原子核20882Pb ,要经过8次α衰变和6次β衰变C .α、β、γ三种射线中,γ射线的穿透能力和电离能力都最强D .2812Mg 半衰期为21小时,则10个2812Mg 原子核,经过21小时后还有5个未衰变 4.下列说法正确的是( )A .23892U 衰变为22286Rn 要经过4次α衰变和2次β衰变B .衰变中产生的β射线实际上是原子的核外电子挣脱原子核的束缚而形成的C .查德威克发现了中子,并第一次实现了人工合成放射性同位素D .汤姆孙在研究阴极射线时发现了电子,并准确测出了电子的电荷量 5.下列说法中正确的是( )A .机械波和光有波动性,实物粒子不具有波动性B .用弧光灯发出紫外线照射锌板并发生光电效应后,锌板带正电C .由于核聚变需要很高的环境温度,21H 和31H 发生聚变过程中是需要从外界吸收能量的 D .构成物体的质量是守恒不变的 6.下列说法中正确的是( ) A .钍的半衰期为24天。

1g 钍23490Th 经过 120 天后还剩0.2g 钍B .一单色光照到某金属表面时,有光电子从金属表面逸出,延长入射光照射时间,光电子的最大初动能不会变化 C .放射性同位素23490Th 经α、β衰变会生成22286Rn ,其中经过了2次α衰变和 3 次β衰变D .大量处于n =4激发态的氢原子向低能级跃迁时,最多可产生4种不同频率的光子 7.钍23490Th 具有放射性,它能放出一个新的粒子而变为镤23491Pa ,同时伴随γ射线产生,其方程为2342349091Th Pa x →+,钍的半衰期为24天,则下列说法中正确的是( )A .此反应为钍核裂变,释放大量的核能,方程中的x 代表质子B .x 是钍核中的一个中子转化成一个质子时产生的C .γ射线是镤原子核外电子跃迁放出的高速粒子D .1g 钍23490Th 经过120天后还剩0.2g 钍8.关于天然放射线性质的说法正确的是( )A .γ射线就是中子流B .α射线有较强的穿透性C .电离本领最强的是γ射线D .β射线是高速电子流 9.有一钚的同位素23994Pu 核静止在匀强磁场中,该核沿与磁场垂直的方向放出x 粒子后,变成铀(U )的一个同位素原子核.铀核与x 粒子在该磁场中的旋转半径之比为1:46,则( )A .放出的x 粒子是42He B .放出的x 粒子是01e -C .该核反应是β衰变反应D .x 粒子与铀核在磁场中的旋转周期相等10.铀(23892U )经过α、β衰变后形成稳定的铅(20682Pb ),在衰变过程中,中子转变为质子的个数为( )A .6个B .14个C .22个D .32个11.本题用大写字母代表原子核,E 经α衰变边长F ,再经β衰变变成G ,再经α衰变成为H ,上述系列衰变可记为下式:E F G βαα→→→H ;另一系列衰变如下:P Q R S ββα→→→,已知P 是F 的同位素,则下列判断正确的是( )A .Q 是G 的同位素,R 是H 的同位素B .R 是G 的同位素,S 是H 的同位素C .R 是E 的同位素,S 是F 的同位素D .Q 是E 的同位素,R 是F 的同位素12.2020年11月27日0时41分,华龙一号核电5号机组首次并网成功,标志着我国正式进入核电技术先进国家行列。

大学物理习题答案解析第五章

大学物理习题答案解析第五章

第二篇 电磁学求解电磁学问题的基本思路和方法本书电磁学部分涉及真空中和介质中的静电场和恒定磁场、电磁感应和麦克斯韦电磁场的基本概念等内容,涵盖了大学物理课程电磁学的核心内容.通过求解电磁学方面的习题,不仅可以使我们增强对有关电磁学基本概念的理解,还可在处理电磁学问题的方法上得到训练,从而感悟到麦克斯韦电磁场理论所体现出来的和谐与美.求解电磁学习题既包括求解一般物理习题的常用方法,也包含一些求解电磁学习题的特殊方法.下面就求解电磁学方面的方法择要介绍如下.1.微元法在求解电场强度、电势、磁感强度等物理量时,微元法是常用的方法之一.使用微元法的基础是电场和磁场的叠加原理.依照叠加原理,任意带电体激发的电场可以视作电荷元d q 单独存在时激发电场的叠加,根据电荷的不同分布方式,电荷元可分别为体电荷元ρd V 、面电荷元σd S 和线电荷元λd l .同理电流激发的磁场可以视作为线电流元激发磁场的叠加.例如求均匀带电直线中垂线上的电场强度分布.我们可取带电线元λd l 为电荷元,每个电荷元可视作为点电荷,建立坐标,利用点电荷电场强度公式将电荷元激发的电场强度矢量沿坐标轴分解后叠加统一积分变量后积分,就可以求得空间的电场分布.类似的方法同样可用于求电势、磁感应强度的分布. 此外值得注意的是物理中的微元并非为数学意义上真正的无穷小,而是测量意义上的高阶小量.从形式上微元也不仅仅局限于体元、面元、线元,在物理问题中常常根据对称性适当地选取微元.例如,求一个均匀带电圆盘轴线上的电场强度分布,我们可以取宽度为d r 的同心带电圆环为电荷元,再利用带电圆环轴线上的电场强度分布公式,用叠加的方法求得均匀带电圆盘轴线上的电场强度分布.2.对称性分析对称性分析在求解电磁场问题时是十分重要的.通过分析场的对称性,可以帮助我们了解电磁场的分布,从而对求解电磁学问题带来极大方便.而电磁场的对称性有轴对称、面对称、球对称等.下面举两个例子.在利用高斯定律求电场强度的分布时,需要根据电荷分布的对称性选择适当的高斯面,使得电场强度在高斯面上为常量或者电场强度通量为零,就能够借助高斯定律求得电场强度的分布.相类似在利用安培环路定律求磁感强度的分布时,依照电流分布的对称性,选择适当的环路使得磁感强度在环路上为常量或者磁场环流为零,借助安培环路定律就可以求出磁感强度的分布.3.补偿法补偿法是利用等量异号的电荷激发的电场强度,具有大小相等方向相反的特性;或强度相同方向相反的电流元激发的磁感强度,具有大小相等方向相反这一特性,将原来对称程度较低的场源分解为若干个对称程度较高的场源,再利用场的叠加求得电场、磁场的分布.例如在一个均匀带电球体内部挖去一个球形空腔,显然它的电场分布不再呈现球对称.为了求这一均匀带电体的电场分布,我们可将空腔带电体激发的电场视为一个外半径相同的球形带电体与一个电荷密度相同且异号、半径等于空腔半径的小球体所激发电场的矢量和.利用均匀带电球体内外的电场分布,即可求出电场分布.4.类比法 在电磁学中,许多物理量遵循着相类似的规律,例如电场强度与磁场强度、电位移矢量与磁感强度矢量、电偶αr l λεE l l cos d π4122/2/0⎰-=极子与磁偶极子、电场能量密度与磁场能量密度等等.他们尽管物理实质不同,但是所遵循的规律形式相类似.在分析这类物理问题时借助类比的方法,我们可以通过一个已知物理量的规律去推测对应的另外一个物理量的规律.例如我们在研究L C 振荡电路时,我们得到回路电流满足的方程显然这个方程是典型的简谐振动的动力学方程,只不过它所表述的是含有电容和自感的电路中,电流以简谐振动的方式变化罢了.5.物理近似与物理模型几乎所有的物理模型都是理想化模型,这就意味着可以忽略影响研究对象运动的次要因素,抓住影响研究对象运动的主要因素,将其抽象成理想化的数学模型.既然如此,我们在应用这些物理模型时不能脱离建立理想化模型的条件与背景.例如当带电体的线度远小于距所考察电场这一点的距离时,一个带电体的大小形状可以忽略,带电体就可以抽象为点电荷.但是一旦去研究带电体临近周围的电场分布时,将带电体当作点电荷的模型就失效了.在讨论物理问题时一定要注意物理模型的适用条件.同时在适用近似条件的情况下,灵活应用理想化模型可大大简化求解问题的难度.电磁学的解题方法还有很多,我们希望同学们通过练习自己去分析、归纳、创新和总结.我们反对在学习过程中不深入理解题意、不分析物理过程、简单教条地将物理问题分类而“套”公式的解题方法.我们企盼同学们把灵活运用物理基本理论求解物理问题当成是一项研究课题,通过求解问题在学习过程中自己去领悟、体会,通过解题来感悟到用所学的物理知识解决问题后的愉悦和快乐,进一步加深理解物理学基本定律,增强学习新知识和新方法的积极性.01d d 22=+i LCt i第五章 静 电 场5 -1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )分析与解 “无限大”均匀带电平板激发的电场强度为,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ).5 -2 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ).5 -3 下列说法正确的是( )(A ) 电场强度为零的点,电势也一定为零(B ) 电场强度不为零的点,电势也一定不为零(C ) 电势为零的点,电场强度也一定为零(D ) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解 电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D ).*5 -4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A ) 沿逆时针方向旋转直到电偶极矩p 水平指向棒尖端而停止(B ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D ) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动2εσ分析与解 电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B ).5 -5 精密实验表明,电子与质子电量差值的最大范围不会超过±10-21 e ,而中子电量与零差值的最大范围也不会超过±10-21e ,由最极端的情况考虑,一个有8 个电子,8 个质子和8 个中子构成的氧原子所带的最大可能净电荷是多少? 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析 考虑到极限情况, 假设电子与质子电量差值的最大范围为2×10-21 e ,中子电量为10-21 e ,则由一个氧原子所包含的8 个电子、8 个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为二个氧原子间的库仑力与万有引力之比为显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 5 -6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带 的上夸克和两个带的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律F 与径向单位矢量e r 方向相同表明它们之间为斥力.5 -7 质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k .证明电子的旋转频率满足其中ε0 是真空电容率,电子的运动可视为遵守经典力学规律.分析 根据题意将电子作为经典粒子处理.电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷.点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有由此出发命题可证.()e q 21max 10821-⨯⨯+=1108.2π46202max <<⨯==-Gmεq F F g e e 32e 31-()r r r r e εr q q εe e e F N 78.3π41π412202210===4320232me E εk =v 2202π41r e εr m =v证 由上述分析可得电子的动能为电子旋转角速度为由上述两式消去r ,得5 -8 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构.(1) 求氯离子所受的库仑力;(2) 假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力.分析 铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加.为方便计算可以利用晶格的对称性求氯离子所受的合力.解 (1) 由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故F 1 =0.(2) 除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力F 2 的值为F 2 方向如图所示.5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为(2) 在棒的垂直平分线上,离棒为r 处的电场强度为 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.re εm E K 202π8121==v 3022π4mr εe ω=432022232π4me E εωK ==v N 1092.1π3π4920220212⨯===aεe r εq q F 2204π1Lr Q εE -=2204π21L r r Q εE +=分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为整个带电体在点P 的电场强度接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,(2) 若点P 在棒的垂直平分线上,如图(A )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是证 (1) 延长线上一点P 的电场强度,利用几何关系 r ′=r -x 统一积分变量,则电场强度的方向沿x 轴. (2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为利用几何关系 sin α=r /r ′, 统一积分变量,则当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度r r q εe E 20d π41d '=⎰=E E d ⎰=LE i E d ⎰⎰==Ly E αE j j E d sin d ⎰'=L r πεq E 202d ()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰E r εq αE L d π4d sin 2⎰'=22x r r +='()2203/22222041π2d π41L r r εQ r x L xrQ εE L/-L/+=+=⎰此结果与无限长带电直线周围的电场强度分布相同[图(B )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线. 5 -10 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第5 -3 节的例1 可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元,在点O 激发的电场强度为由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系,统一积分变量,有积分得 5 -11 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.rελL r L Q r εE l 0220π2 /41/π21lim =+=∞→θθR δS δq d sin π2d d 2⋅==()i E 3/2220d π41d r x qx ε+=θR x cos =θR r sin =()θθθεδθθR πδR θR πεr x q x πεE d cos sin 2 d sin 2cos 41d 41d 02303/2220=⋅=+=02/004d cos sin 2εδθθθεδE π⎰==分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为,而夹角为2θ.叠加后水分子的电偶极矩大小为,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布.解1 水分子的电偶极矩在电偶极矩延长线上解2 在对称轴线上任取一点A ,则该点的电场强度由于 代入得 测量分子的电场时, 总有x >>r 0 , 因此, 式中,将上式化简并略去微小量后,得 5 -12 两条无限长平行直导线相距为r 0 ,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.00er P =θer P cos 20=302π41x p εE =θer θP P cos 2cos 200==30030030cos π1cos 4π412π41x θer εx θer εx p εE ===+-+=E E E 2020π42π4cos 2cos 2x εe r εθer E βE E -=-=+θxr r x r cos 202022-+=rθr x βcos cos 0-=()⎥⎥⎦⎤⎢⎢⎣⎡--+-=23/20202001cos 2cos π42x θxr r x θr x εe E ()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x θr x x θr x θxr r x cos 2231cos 21cos 2033/2033/20202300cos π1x θe r εE =分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力. 解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有(2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.5 -13 如图为电四极子,电四极子是由两个大小相等、方向相反的电偶极子组成.试求在两个电偶极子延长线上距中心为z 的一点P 的电场强度(假设z >>d ).分析 根据点电荷电场的叠加求P 点的电场强度.解 由点电荷电场公式,得()i i E E E x r x r ελx r x ελ-=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2i E F 00π2r ελλ==-+i E F 002π2r ελλ-=-=+-考虑到z >>d ,简化上式得 通常将Q =2qd 2 称作电四极矩,代入得P 点的电场强度5 -14 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析 方法1:由电场强度通量的定义,对半球面S 求积分,即 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而解1 由于闭合曲面内无电荷分布,根据高斯定理,有依照约定取闭合曲面的外法线方向为面元d S 的方向,解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为① ()()k k k E 202020π41π412π41d z q εd z q εz q ε++-+=()()k k k E 42022220222206π4...321...32112π4/11/1112π4z qd εq z d z d z d z d z z εq z d z d z z εq =⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++-+++++-=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+-+-=k E 403π41zQ ε=⎰⋅=S S d s E Φ∑⎰==⋅01d 0q εS S E ⎰⎰'⋅-=⋅=S S S E S E Φd d ⎰⎰'⋅-=⋅=S S S E S E Φd d E R πR E 22πcos π=⋅⋅-=Φ()r θθθE e e e E sin sin cos sin cos ++=5 -15 边长为a 的立方体如图所示,其表面分别平行于Oxy 、Oyz 和Ozx 平面,立方体的一个顶点为坐标原点.现将立方体置于电场强度 (k ,E 1 ,E 2 为常数)的非均匀电场中,求电场对立方体各表面及整个立方体表面的电场强度通量.解 如图所示,由题意E 与Oxy 面平行,所以任何相对Oxy 面平行的立方体表面,电场强度的通量为零,即.而考虑到面CDEO 与面ABGF 的外法线方向相反,且该两面的电场分布相同,故有同理因此,整个立方体表面的电场强度通量5 -16 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径(为地球平均半径).由高斯定理r θθR e S d d sin d 2=ER θθER θθER SS2π0π2222πdsin d sin dd sin sin d ===⋅=⎰⎰⎰⎰S E Φ()12E kx E +E =i +j 0==DEFG OABC ΦΦ()[]()2221ABGF d a E dS E kx E =⋅++=⋅=⎰⎰j j i S E Φ22a E ABGF CDEO -=-=ΦΦ()[]()2121AOEF d a E dS E E -=-⋅+=⋅=⎰⎰i j i S E Φ()[]()()2121BCDG d a ka E dS E ka E Φ+=⋅++=⋅=⎰⎰i j i S E 3ka ==∑ΦΦ1m V 120-⋅E R R ≈E R ∑⎰=-=⋅q εR E E 021π4d S E地球表面电荷面密度单位面积额外电子数5 -17 设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析 通常有两种处理方法:(1) 利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有根据高斯定理,可解得电场强度的分布. (2) 利用带电球壳电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为,每个带电球壳在壳内激发的电场,而在球壳外激发的电场由电场叠加可解得带电球体内外的电场分布解1 因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理得球体内(0≤r ≤R )∑--⨯-=-≈=2902cm 1006.1π4/E εR q σE 25cm 1063.6/-⨯=-=e σn ()()R r ρkr ρ>=≤≤= 0R r 02Sπ4d r E ⋅=⋅⎰S E ⎰⎰=⋅V ρεd 1d 0S E r r ρq ''⋅=d π4d 20d =E rrεqe E 20π4d d =()()()()R r r r Rr>=≤≤=⎰⎰d R r 0d 0E E E E ⎰⎰=⋅V ρεd 1d 0S E ()4202πd π41π4r εk r r kr εr r E r==⎰球体外(r >R )解2 将带电球分割成球壳,球壳带电由上述分析,球体内(0≤r ≤R )球体外(r >R )5 -18 一无限大均匀带电薄平板,电荷面密度为σ,在平板中部有一半径为r 的小圆孔.求圆孔中心轴线上与平板相距为x 的一点P 的电场强度.分析 用补偿法求解利用高斯定理求解电场强度只适用于几种非常特殊的对称性电场.本题的电场分布虽然不具有这样的对称性,但可以利用具有对称性的无限大带电平面和带电圆盘的电场叠加,求出电场的分布.若把小圆孔看作由等量的正、负电荷重叠而成,挖去圆孔的带电平板等效于一个完整的带电平板和一个带相反电荷(电荷面密度σ′=-σ)的小圆盘.这样中心轴线上的电场强度等效于平板和小圆盘各自独立在该处激发电场的矢量和. 解 由教材中第5 -4 节例4 可知,在无限大带电平面附近为沿平面外法线的单位矢量;圆盘激发的电场它们的合电场强度为()r εkr r e E 024=()4202πd π41π4r εk r r kr εr r E R==⎰()r εkR r e E 024=r r r k V ρq '''==d π4d d 2()r r rεkr r r r r k εr e e E 0222004d π4π41=''⋅'=⎰()r r Rr εkR r r r πr k πεr e e E 20222004d 441=''⋅'=⎰n εσe E 012=n e n r x x εσe E ⎪⎪⎭⎫⎝⎛+--=220212在圆孔中心处x =0,则E =0在距离圆孔较远时x >>r ,则上述结果表明,在x >>r 时,带电平板上小圆孔对电场分布的影响可以忽略不计.5 -19 在电荷体密度为ρ 的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O ′的矢量用a 表示(如图所示).试证明球形空腔中任一点的电场强度为分析 本题带电体的电荷分布不满足球对称,其电场分布也不是球对称分布,因此无法直接利用高斯定理求电场的分布,但可用补偿法求解.挖去球形空腔的带电球体在电学上等效于一个完整的、电荷体密度为ρ 的均匀带电球和一个电荷体密度为-ρ、球心在O ′的带电小球体(半径等于空腔球体的半径).大小球体在空腔内P 点产生的电场强度分别为E 1 、E 2 ,则P 点的电场强度 E =E 1 +E 2 . 证 带电球体内部一点的电场强度为所以 , 根据几何关系,上式可改写为n rx x εσe E E E 22212+=+=n nεσx r εσe e E 02202/112≈+=a E 03ερ=r E 03ερ=r E 013ερ=2023r E ερ-=()210213r r E E E -=+=ερa r r =-21a E 03ερ=5 -20 一个内外半径分别为R 1 和R 2 的均匀带电球壳,总电荷为Q 1 ,球壳外同心罩一个半径为R 3 的均匀带电球面,球面带电荷为Q 2 .求电场分布.电场强度是否为离球心距离r 的连续函数? 试分析.分析 以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而 .在确定高斯面内的电荷后,利用高斯定理即可求出电场强度的分布.解 取半径为r 的同心球面为高斯面,由上述分析r <R 1 ,该高斯面内无电荷,,故 R 1 <r <R 2 ,高斯面内电荷 故 R 2 <r <R 3 ,高斯面内电荷为Q 1 ,故r >R 3 ,高斯面内电荷为Q 1 +Q 2 ,故电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图(B )所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3 的带电球面两侧,电场强度的跃变量这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -21 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 >R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .24d r πE ⋅=⎰S E ∑q ∑⎰=/d εq S E ∑=⋅02/π4εq r E 0=∑q 01=E ()31323131R R R r Q q --=∑()()23132031312π4r R R εR r Q E --=2013π4r εQ E =20214π4r εQ Q E +=230234π4ΔεσR εQ E E E ==-=分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且,求出不同半径高斯面内的电荷.即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理r <R 1 ,在带电面附近,电场强度大小不连续,电场强度有一跃变 R 1 <r <R 2 ,r >R 2,在带电面附近,电场强度大小不连续,电场强度有一跃变这与5 -20 题分析讨论的结果一致.5 -22 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.⎰⋅=rL E d π2S E ∑q ∑=⋅0/π2εq rL E 0=∑q 01=E L λq =∑rελE 02π2=0=∑q 03=E 000π2π2ΔεσrL εL λr ελE ===分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为其中E 是点电荷Q 1 、Q 3 产生的合电场强度. (2) 根据电场力作功与电势能差的关系,有其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势). 解1 由题意Q 1 所受的合力为零解得由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为解2 与解1相同,在任一点电荷所受合力均为零时,并由电势 的叠加得Q 1 、Q 3 在点O 的电势将Q 2 从点O 推到无穷远处的过程中,外力作功比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多.5 -23 已知均匀带电长直线附近的电场强度近似为l E d 02⎰∞=Q W ()0202V Q V V Q W =-=∞()02π4π420312021=+d εQ Q d εQ Q Q Q Q 414132-=-=()2/322031π2yd εQ E E E yy y +=+=()dεQ y y d εQ Q Q W y 022/322002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E Q Q 412-=dεQd εQ d εQ V 003010π2π4π4=+=dεQ V Q W 0202π8=-='。

大学物理(肖剑荣主编)-习题答案-第5章

大学物理(肖剑荣主编)-习题答案-第5章

B = µ0I 2pr
(3) b < r < c
B2pr
=
-µ0 I
r2 c2
- b2 - b2
+
µ0I
B = µ0 I (c2 - r 2 ) 2pr(c2 - b2 )
(4) r > c
B2pr = 0
B=0
5-8 在磁感应强度为 B! 的均匀磁场中,垂直于磁场方向的平面内有一段载流弯曲
导线,电流为 I ,如题 6-9 图所示.求其所受的安培力.
CD 段产生
B3
=
µ0I 4p R
(sin 90°
-
sin
60° )
=
µ0I 2pR
(1 -
3 2
)
,方向
^
向里
2
∴ B0
=
B1
+
B2
+
B3
=
µ0I 2pR
(1 -
3 + p ) ,方向 ^ 向里. 26
5-3 在真空中,有两根互相平行的无限长直导线 L1 和 L2 ,相距 0.1m,通有方向 相反的电流, I1 =20A, I 2 =10A,如图所示. A , B 两点与导线在同一平面内.这
(1)导线 AB 的磁场对矩形线圈每边所作用的力;
(2)矩形线圈所受合力和合力矩.
题 5-9 图
! 解:(1) FCD 方向垂直 CD 向左,大小
FCD
=
I
2
b
µ0 I1 2pd
= 8.0 ´10 -4
N
! 同理 FFE 方向垂直 FE 向右,大小
FFE
=
I2b
µ0 I1 2p (d + a)

大学物理习题册及答案

大学物理习题册及答案

3
6. 质点沿半径为 R = 3m 的圆周运动,见图 2-6,已知切向加速度 aτ = 6t m/s2, t = 0
时质点在 O′点,其速度 v0 = 0, s0 = 0,试求: (1) t = 1s 时质点速度和加速度的大小; (2) 第 2 秒内质点所通过的路程。
s R
О′
图 2-6
4
练习三 运动的描述(三)
班级
学号
姓名
1. 质点作圆周运动,其角加速度 β = 6t (SI),若质点具有初角速度 ω 0 ,则任意时刻 t
质点的角速度为
、转过的角度为

2. 一质点沿半径为 R 的圆周运动,已知角速度 ω 与时间 t 的关系为 ω = kt 2 (SI) 、k 为
常数,已知 t = 0 时,θ 0 = 0、 ω0 = 0,则 t 时刻的角加速度为
1
6. 路灯离地面高度为 H ,一个身高为 h 的人,在灯下水平路面上非匀速步行,如图 1-6 所示。当人与灯的水平距离为 s 时,人的步行速度大小为 v0 ,方向向右,求此时他的头顶在 地面上的影子移动的速度。
H
v0
h s 图 1-6
2
练习二 运动的描述(二)
班级
学号
姓名
1. 如图 2-1 所示,质点沿路径 s 运动,在 P 点的速度为 v 、
量值相等的是:
A. ∆r = ∆s ; B. d r = ∆s ; C. d r = d s ; D. d r = ∆r ; E. ∆r = d s 。
4. [
]对于作曲线运动的物体,以下几种说法中哪一种是正确的:
A. 切向加速度必不为零;
B. 法向加速度必不为零(拐点处除外);
C. 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零;

高分子物理复习材料by四川大学冉蓉(精)

高分子物理复习材料by四川大学冉蓉(精)

高分子物理习题集第一章高聚物的结构1.简述高聚物结构的主要特点。

2.决定高分子材料广泛应用的基本分子结构特征是什么?3.高分子凝聚态结构包括哪些内容?4.高分子的构型和构象有何区别?如果聚丙烯的规整度不高,是否可以通过单键的内旋转提高它的规整度?5.试写出线型聚异戊二烯加聚产物可能有那些不同的构型。

6.分子间作用力的本质是什么?影响分子间作用力的因素有哪些?试比较聚乙烯、聚氯乙烯、聚丙烯、聚酰胺(尼龙 -66 、聚丙烯酸各有那些分子间作用力?7.下列那些聚合物没有旋光异构,并解释原因。

A .聚乙烯 B .聚丙烯 C . 1, 4-聚异戊二烯 D . 3, 4-聚丁二烯 E .聚甲基丙烯酸甲酯 F .硫化橡胶8.何谓大分子链的柔顺性?试比较下列高聚物大分子链的柔顺性,并简要说明理由。

9. 写出下列各组高聚物的结构单元,比较各组内几种高分子链的柔性大小并说明理由 :1 聚乙烯,聚丙烯,聚苯乙烯;2 聚乙烯,聚乙炔,顺式 1,4聚丁二烯;3 聚丙烯,聚氯乙烯,聚丙烯腈;4 聚丙烯,聚异丁稀;5 聚氯乙烯,聚偏氯乙烯;6 聚乙烯,聚乙烯基咔唑,聚乙烯基叔丁烷;7 聚丙烯酸甲酯,聚丙烯酸丙脂,聚丙酸戌酯;8 聚酰胺 6.6,聚对苯二甲酰对苯二胺;9 聚对苯二甲酸乙二醇酯,聚对苯二甲酸丁二醇酯。

C H 2C H C lnC H C H 2nNC H 2nC C H 3C H C H 2C H 2nC H 2H O nO10.为什么真实的内旋高分子链比相应的高斯链的均方末端距要大些? 11.分子量不相同的聚合物之间用什么参数比较其大分子链的柔顺性? 12.试从统计热力学观点说明高分子链柔顺性的实质。

13.用键为单位统计大分子链的末端距与用链段为单位统计末端距有何异同?那种方法更复合实际情况?14.一个高分子链的聚合度增大 100倍,其链的尺寸扩大了多少倍? 15. 假定聚丙烯中键长为 0.154nm , 键角 109.5o , 无扰尺寸 A=483510nm -⨯, 刚性因子(空间位阻参数1.76σ=,求其等效自由结合链的链段长度 b 。

大学物理习题册详细解析(电磁学、光学)

大学物理习题册详细解析(电磁学、光学)

四川大学大学物理习题册详细解析(电磁学、光学)[主编聂娅]四川大学物理学院二〇一二年十月大学物理习题册解答答静电场1一. 选择和填空题1. B ,2. A ,3.A ,4. D ,5. B 二. 填空题1. ()40216/R S Q ε∆π 由圆心O 点指向△S2. λ=Q / a 异号3.4(V/m ) 向上 4.3028R qdεπ 指向缺口 5.E R 2π三.计算题1. 解:如图所示,由于对称分布,放在中心处的q 0无论电荷多少都能取得平衡.因四个定点上的电荷受力情况相同,因此只需考虑任一顶点上的电荷受力情况.例如考虑D 点处的电荷,顶点A 、B 、C 及中心处的电荷所激发的电场对D 处点电荷的作用力的大小分别为:()2002000122/24a qq a qq qE f εεπ=π== ()202222824aq a q qE f B εεπ=π== 20234a q qE f A επ==20244a q qE f C επ== 各1分各力方向如图所示,α=45°.D 处电荷的受力平衡条件为:∑=0x f , ∑=0y f 用0cos cos 123=-+=∑ααf f f f x 3分 将f 1,f 2,f 3式代入上式化简得:()4/2210q q +==0.957 q 2分用∑=0y f 得同样结果.2.解:在φ处取电荷元,其电荷为d q =λd l = λ0R sin φ d φ它在O 点产生的场强为R R qE 00204d sin 4d d εφφλεπ=π= 3分在x 、y 轴上的二个分量d E x =-d E cos φ 1分 d E y =-d E sin φ 1分 对各分量分别求和⎰ππ=000d cos sin 4φφφελR E x =0 2分RR E y 0002008d sin 4ελφφελ-=π=⎰π 2分∴j Rj E i E E y x008ελ-=+= 1分3.解:(1)如图示,电荷元dx dq λ=(L Q=λ)在P 点的场强为20)(4x r dxdE -=πελ 整个带电直线在P 点的场强为)4/(4)(42202/2/20L r Lx r dxdE E L L -=-==⎰⎰-πελπελ 方向沿x 轴正向(2)根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为⎰'=L r dqE 24sin πεα利用几何关系22,sin x r r r r+=''=α,统一积分变量得 2202/3222/2/0412)(41rL r Qr x L r Q d x E L L +=+=⎰-πεπε当∞→L 时,若棒单位长度所代电荷λ为常量,则P 点电场强度 rL r LQ r E L 02202/41/21limπελπε=+=∞→4.解:将半球壳分割为一组平行细圆环,任一圆环所代电荷元θθπσσd R dS dq sin 22==,在点O 激发的电场强度为i r x x d q E d2/3220)(41+=πε 由于平行细圆环在O 激发的电场强度相同,利用几何关系θcos R x =xLzθsin R r =统一积分变量,有θθθεσθθπσθπεπεd d R R R r x xdq dE cos sin 2sin 2cos 41)(4102302/3220==+=积分得 02/004c o s s i n 2εσθθθεσπ==⎰d E四.证明题1.证明:以λ表示线上线电荷密度,如图。

四川大学大学物理练习册答案第一章至第五章作业讲评

四川大学大学物理练习册答案第一章至第五章作业讲评

x 12 3
2
(3) 位矢与其速度矢量垂直的条件为:
dy dx vx 3, v y 6t , dt dt
r v xvx yv y 9t 6t (12 3t 2 ) 0 t 0,1.87( s )
有物理意义的解为:t=0和 (4) 电子离原点最近条件是电子位矢大小平方取极小值。

0
1 2 kt 0 2
1.一质点沿x轴运动,其加速度a与位置坐标的关系为 a 3 6 x 2 (SI), 如果质点在原点处的速度为零,试求其在任意位置的速度 为 .
d d dx d a dt dx dt dx
d adx (3 6 x 2 )dx
T2 T3 解:因开始时系统处于平衡状态, T1 各物体的受力分析如右图。 A B C mg mg 绳刚剪断时,弹簧形变状态未 mg T2 T3 变,此时B物体未受T3作用,对 B物体应用牛顿第二定律有: x
1 2 3
m1
A
m2 m3
B C
m2 aB m2 g T2 m2 g (m2 m3 )g ―(m /m )g aB 3 2 i
dr dt
(A)只有(1)、(4)是对的. (C)只有(2)是对的.
6 下列说法哪一条正确? (A) 加速度恒定不变时,物体运动方向也不变. (B) 平均速率等于平均速度的大小. ( v1 , v 2分别为初、末速率) (C) 不管加速度如何,平均速率表达式总可以写成 v v 1 v 2 / 2
3 7 质量为0.10 kg的质点,由静止开始沿曲线 r (5 / 3)t i 2 j (SI)
该题也可用动能定理求解
1.质量分别为m1、m2、m3的三个物体A、B、C,用一根细绳和两 根轻弹簧连接并悬于固定点O,如图.取向下为x轴正向,开始时 系统处于平衡状态,后将细绳剪断,则在刚剪断瞬时,物体B的加 速度 物体A的加速度 。 O

大学物理答案第五章 西南交大版

大学物理答案第五章 西南交大版

第五章 角动量 角动量守恒定律5-1 选择题:(1)一质点作匀速率圆周运动时,(A )它的动量不变,对圆心的角动量也不变。

(B )它的动量不变,对圆心的角动量不断改变。

(C )它的动量不断改变,对圆心的角动量不变。

(D )它的动量不断改变,对圆心的角动量也不断改变。

[C] 解:质点作匀速率圆周运动时,其速度大小虽不变,但速度方向不断改变,故其动量不断改变。

而该质点对圆心角动量大小不变,方向始终垂直于圆轨道平面,指向也不变。

(2)已知地球的质量为m ,太阳的质量为M ,地心与日心的距离为R ,引力常数为G ,则地球绕太阳作圆周运动的轨道角动量为(A )GMR m (B )RGMm(C )R G Mm(D )RGMm 2 [A] 解:由万有引力定律和牛顿第二定律有R v m RmM G 22=得地球绕日运动速率RGM v =由角动量定义得GMR m mvR L ==(3)一刚体以每分钟60转绕Z 轴做匀速转动(ω沿z 轴正方向),设某时刻刚体上一点P 的位置矢量为k j i r 543++=,其单位为“m 102-”,若以“12s m 10--⋅”为速度单位,则该时刻P 点的速度为:(A )k j i v 0.1576.1252.94++= (B )j i v 8.181.25+-= (C )j i v 8.181.25--=(D )k v 4.31= [B] 解:刚体转动平面与转轴垂直,所以P 点速度无z 分量。

由题意,作出P 的位矢,可知该时刻P 点速度的x 分量为负而y 分量为正,故答案(B )正确。

(4)均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A )角速度从小到大,角加速度从大到小。

(B )角速度从小到大,角加速度从小到大。

(C )角速度从大到小,角加速度从大到小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由电势的叠加原理有,
o 1 2 3q 4 p 2 q 0 d e3 q4 p0 6 eq a32 3 p3 0 q a e
3q
A eQ oEd lQ o3 2p3Q 0a e qA exa
a
O
q
a
2q
真空中的静电场(二)
第五章 真空中的静电场
8.空间某一区域的电势分布为=Ax2+By2,其中A、B
5.已知某电场的电场线分布情况如图所示.现观察到 一负电荷从M点移到N点.有人根据这个图作出下列几 点结论,其中哪点是正确的?
(A) 电场强度EM<EN. (B) 电势M<N.
(C) 电势能WM<WN. (D) 电场力的功A>0.
电场线密处,电场强度大.
电场线由高电位指向低电位.
-q
E M E N , M N , M 0 N M
真空中的静电场(二)
第五章 真空中的静电场
2.在一个带有负电荷的均匀带电球外,放置一电偶极
子,其电矩 的方向如图所示.当电偶极子被释放后,该
电偶极子将
(A) 沿逆时针方向旋转直到电矩 p 沿径向指向球面
而停止.
(B)沿逆时针方向旋转至 p 沿径向指向球面,同时沿
电场线方向向着球面移动.
(C) 沿逆时针方向旋转至 p 沿径向指向球面,同时
3 1 3
q 1 5
(B)
4pe 0l
5
(D)
q
4pe 0l
5 1 5
D l
C l -q
B l A +q
E lF
pe pepe A qC FC FC F 4 q 0 lq 4 q 0 l 4 1-1q 0 题5 图l
真空中的静电场(二)
第五章 真空中的静电场
逆电场线方向远离球面移动.
(D) 沿顺时针方向旋转至 p 沿径向朝
+
外,同时沿电场线方向向着球面移动.
- p
真空中的静电场(二)
第五章 真空中的静电场
3. 如图,A和B为两个均匀带电球体,A带电荷+q,B
带电荷-q,作一与A同心的球面S为高斯面.则
(A) 通过S面的电场强度通量为零,S面上各点的场
Rr
真空中的静电场(二)
第五章 真空中的静电场
6. 如图,一无限大平面中部有一半径为r0的圆孔,设平
面上均匀带电,电荷面密度为s.试求通过小孔中心O并
与平面垂直的直线上各点的场强和电势.(提示:选O 点的电势为零).
r= Cr (r≤R,C为常量)r= 0 (r>R)
试求:(1) 带电球体的总电荷; (2) 球内、外各点的电场
强度; (3) 球内、外各点的电势.
解:
R
R
1)Qrd V r4pr2d r4pC3d r rpC4R
0
0
2) r≤R时:
r
Cr 4pr2dr
E4pr2 0 e0
E
Cr 2
4e0
er
r>R时:
pe pqeq q q d E 4 d 0 R 2 q e r0 s 40 iR R 2 n d co i ssijn
yE
Rdq
R
dE p4p00eRp 0siqncpo qissi2n qjdq siqncoqdsq0,si2nqdqp2
q
0
0
dE O
x
3-2 题图
E 0 j 8e0R
pe p pe pe E 缺 口 4d 0 R 2 2R q d 4d 0 R 2 82 q0 R d 3
RoBiblioteka d真空中的静电场(二)
第五章 真空中的静电场
7.图示为一边长均为a的等边三角形,其三个顶点分 别放置着电荷为q、2q、3q的三个正点电荷,若将一电 荷为Q的正点电荷从无穷远处移至三角形的中心O处, 则外力需作功A=__________.
真空中的静电场(二)
第五章 真空中的静电场
2. 如图,一无限长圆柱面,其面电荷密度为s=s0cosa, 式中a为半径R与x轴所夹的角,试求圆柱轴线上一点的
场强.
解: 无限长圆柱面可以分为很多无限长条形面元,由
高斯定理有 2 pR d h E sh e0 R a dd E s 2 p d a 0 es0 c 2 pa o 0 d a es
B
-q
真空中的静电场(二)
第五章 真空中的静电场
4. 如图,CDEF为一矩形,边长分别为l和2l.在DC延 长线上CA=l处的A点有点电荷+q,在CF的中点B点有点 电荷-q,若使单位正电荷从C点沿CDEF路径运动到F点, 则电场力所作的功等于:
(A) q 5 1
4pe 0l 5 l
(C)
q
4pe 0l
da
dE
E xdxE dc Ea o s 2 0 ps0c 2 p2 o a 0d ea s 2 s e0 0 E ydyE dsE ian 2 0 ps0s4 pi2 a 0 n eda0
EExiEy j2se00i
真空中的静电场(二)
第五章 真空中的静电场
3. 一半径为R的带电球体,其电荷体密度分布为
N
Wp qp AqMN0 1 -2 题 图
真空中的静电场(二)
二、填空题
第五章 真空中的静电场
1.如图,一半径为R的带有一缺口的细圆环,缺口长
度为d(d<<R).环上均匀带正电,总电量为q.则圆
心O处的场强大小E=
.场强方向为

指向缺口
E 缺 环 E 整 环 E 缺 口 0 E 缺 口 E 缺口
R
E4pr2 Cr4pr2dre0
0
E
CR4
4e0r2
er
真空中的静电场(二)
第五章 真空中的静电场
rR,
EC4e0r2 er
rR,
E4C e0rR42 er
3)p PEd l R rrC 44C ee002rr4 R d2dr R r4C 4 C ee0r04 R r4 R 2dr4rC 1R 3 Re2 0C3r
强为零。
(B) 通过S面的电场强度通量为q/e0,S面上场强的
大小为E=q/(4pe0r2).
(C) 通过S面的电场强度通量为(-q/e0),S面上场强
的大小为E=q/(4pe0r2).
(D) 通过S面的电场强度通量为q/e0,但S面上各点
的场强不能直接由高斯定理求出.
S
r
S面上各点场强与两带电体均有关. A +q
为常数,则场强分布为 Ex=
,Ey=
.
Ex
U2Ax x
Ey
U y
2By
真空中的静电场(二)
第五章 真空中的静电场
三、计算题 1. 如图,带电细线弯成半径为R的半圆形,
电荷线密度为=0sinq,式中0为一常数,q为半径R与
x轴所成的夹角.试求环心O处的电场强度.
解: 在细线取一线段元,由点电荷的场强公式有
相关文档
最新文档