网络体系结构的基本原理
网络体系结构及协议
问题亟待解决,向IPv6过渡成为必然趋势。
02
网络安全性问题
随着网络攻击手段不断升级,现有网络体系结构在安全性方面存在诸多
漏洞,如DDoS攻击、网络钓鱼等,需要加强安全防护。
03
网络可扩展性问题
现有网络体系结构在面对大规模数据传输和海量设备连接时,存在可扩
展性不足的问题,难以满足未来物联网、5G等应用场景的需求。
02
ICMP(互联网控制 消息协议)
用于在IP主机和路由器之间传递 控制消息,如网络不可达、超时 等。
03
IGMP(互联网组管 理协议)
用于IPv4网络中的多播组成员资 格管理。
数据链路层和物理层协议
数据链路层协议
如Ethernet、PPP等,负责将数据封装成 帧进行传输,并提供错误检测和流量控 制等功能。
内容过滤
检查数据包内容,拦截恶意代码、垃圾邮件等不良信息。
防火墙原理及功能介绍
日志记录
记录网络访问和数据传输情况,便于审计和 故障排查。
VPN支持
提供虚拟专用网络功能,保障远程访问的安 全性。
典型防火墙配置案例分析
案例一
小型企业网络防火墙配置
配置目标
保护内部网络免受外部攻击,限制员工上网行为。
典型防火墙配置案例分析
协议作用
网络协议是网络通信的基础,它使得 不同厂商生产的计算机和网络设备能 够相互通信,实现网络资源的共享和 信息的交换。
协议层次结构划分
OSI七层模型
01
物理层、数据链路层、网络层、传输层、会话层、表示层、应
用层。
TCP/IP四层模型
02
网络接口层、网络层、传输层、应用层。
五层模型
03
计算机网络(第二版)课后习题答案第三章
计算机网络参考答案第三章(高教第二版冯博琴)1 什么是网络体系结构?网络体系结构中基本的原理是什么?答:所谓网络体系就是为了完成计算机间的通信合作,把每个计算机互连的功能划分成定义明确的层次,规定了同层次进程通信的协议及相邻层之间的接口及服务。
将这些同层进程间通信的协议以及相邻层接口统称为网络体系结构。
网络体系结构中基本的原理是抽象分层。
2 网络协议的组成要素是什么?试举出自然语言中的相对应的要素。
答:网络协议主要由三个要素组成:1)语义协议的语义是指对构成协议的协议元素含义的解释,也即“讲什么”。
2)语法语法是用于规定将若干个协议元素和数据组合在一起来表达一个更完整的内容时所应遵循的格式,即对所表达的内容的数据结构形式的一种规定(对更低层次则表现为编码格式和信号电平),也即“怎么讲”。
3)时序时序是指通信中各事件发生的因果关系。
或者说时序规定了某个通信事件及其由它而触发的一系列后续事件的执行顺序。
例如在双方通信时,首先由源站发送一份数据报文,如果目标站收到的是正确的报文,就应遵循协议规则,利用协议元素ACK来回答对方,以使源站知道其所发出的报文已被正确接收,于是就可以发下一份报文;如果目标站收到的是一份错误报文,便应按规则用NAK元素做出回答,以要求源站重发该报文。
3 OSI/RM参考模型的研究方法是什么?答:OSI/RM参考模型的研究方法如下:1)抽象系统抽象实系统中涉及互连的公共特性构成模型系统,然后通过对模型系统的研究就可以避免涉及具体机型和技术实现上的细节,也可以避免技术进步对互连标准的影响。
2)模块化根据网络的组织和功能将网络划分成定义明确的层次,然后定义层间的接口以及每层提供的功能和服务,最后定义每层必须遵守的规则,即协议。
模块化的目的就是用功能上等价的开放模型代替实系统。
5 服务原语的作用是什么?试以有确认服务为例进行说明。
答:服务在形式上是用服务原语来描述的,这些原语供用户实体访问该服务或向用户实体报告某事件的发生。
计算机网络体系结构
计算机网络体系结构清点人数,组织教学。
复习:计算机网络的定义及系统的组成和功能授新:一、计算机网络体系结构的基本概念1.网络协议在计算机网络中用于规定信息的格式以及如何发送和接收信息的一套规则、标准或约定称为网络协议,简称协议。
协议组成的三个要素是语法、语义和时序。
语法规定了进行网络通信时,数据的传输和存储格式,以及通信中需要哪些控制信息,它解决了怎么讲的问题。
语义规定了控制信息的具体内容,以及发送主机或接收主机所要完成的工作,它主要解决“讲什么”的问题。
时序规定计算机操作的执行顺序,以及通信过程中的速度匹配,主要解决“顺序和速度”问题。
2.数据封装一台计算机要发送数据到另一台计算机,数据必须要先打包,打包的过程称为封装,如图10-10所示,封装就是在用户数据前面加上网络协议规定的头部和尾部,这些头信息包括数据包发送主机的源地址、数据接收主机的目的地址、数据包采用的协议类型、数据包大小、数据包的序号、数据包的纠错信息等内容。
而且,在网络通信中,数据往往是多层次的封装的。
3.网络协议的分层为了减少网络协议的复杂性,技术专家们把网络通信问题划分为许多小问题,然后为每一个问题设计一个通信协议。
这样使得每一个协议的设计、分析、编码和测试都比较容易。
协议分层就是按照信息的流动过程,将网络的整体功能划分为多个不同的功能层。
每一层都建立在它的下层之上,每一层的目的都是向它的上一层提供一定的服务。
4.分层原则层次结构虽然有它的优点,但是如果划分的不合理,反而会带来许多负面影响。
通常要遵循如下一些原则:网络协议层次的数量不能过多,真正需要的时候才能划分一个层次。
网络协议层次的数量也不能过少,层次的数量应该保证能从逻辑上将功能分开,不同的功能不要放在同一层。
功能类似的服务应当放在同一层。
在技术经常变化的地方可以适当增加层次。
层次边界的选择要合理,用于信号控制的额外信息流量要尽量少。
5.网络体系结构计算机网络协议的分层方法及其协议层与层之间接口的集合称为网络体系结构。
OSI模型七个层的作用及工作原理
OSI模型七个层的作用及工作原理OSI模型是计算机网络体系结构的理论模型,它将计算机网络分为七个不同的层次。
每一层都有自己的具体功能和任务,通过分层设计,可以清晰地描述计算机网络的工作原理与功能,并且每一层都可以独立地进行修改和更新。
下面将详细介绍OSI模型的七个层及它们的作用和工作原理。
1. 物理层(Physical Layer)物理层是OSI模型的最底层,它负责将原始的比特流发送到物理媒介上,管理数据的物理传输。
物理层的主要功能包括:数据的电子和光学传输、输入/输出端口的连接和控制、线缆和连接器的规范等。
物理层常见的媒介有双绞线、光纤和无线电波。
2. 数据链路层(Data Link Layer)数据链路层位于物理层之上,它负责在直接相连的两个节点之间传输数据。
数据链路层的主要功能是将不可靠的物理连接转化为可靠的数据传输,并进行流量控制和差错检测。
数据链路层通过将数据分成帧来传输,并在每一帧中添加必要的控制信息来保证通信的可靠和准确。
3. 网络层(Network Layer)网络层位于数据链路层之上,它负责将数据从源主机传输到目标主机。
网络层的主要功能是实现数据的路由选择和转发,在不同的网络之间选择最优路径,并通过IP地址进行端到端的数据传输。
网络层使用IP协议来进行数据分组和路由选择。
4. 传输层(Transport Layer)传输层位于网络层之上,它通过提供端到端的可靠数据传输来实现进程之间的通信。
传输层的主要功能是将应用层的数据分割成更小的数据块,并负责数据的传输和错误检测。
常见的传输层协议包括传输控制协议(TCP)和用户数据报协议(UDP)。
5. 会话层(Session Layer)会话层位于传输层之上,它负责建立、管理和终止应用程序之间的会话。
会话层的主要功能是为应用程序之间提供会话控制和同步服务,包括会话的建立、终止和管理、数据传输的同步和复位操作等。
会话层通过会话协议来实现会话的管理。
五层原理体系结构
五层原理体系结构第一层:物理层(Physical Layer)物理层是网络的最底层,它主要负责数据的传输和接收。
在物理层中,传输的数据是以比特(bit)为单位传输的,比特是最小的数字量,它代表了0或1两种状态。
物理层的主要任务是将比特转化为数据信号,并通过物理媒介传到下一层,例如使用光纤、铜缆等。
物理层的标准化使不同厂商的网络设备可以相互通信。
第二层:数据链路层(Data Link Layer)数据链路层是负责将已经传输的物理层数据,转化成适合传输的数据帧,并将其传输到下一层。
该层还能够纠错,保证数据的完整性和可靠性。
数据链路层还规定了一个严格的协议,以控制网络访问、数据包的发送顺序和错误纠正。
第三层:网络层(Network Layer)网络层是实现目标地址到源地址的路由、选路等功能的层次。
该层利用路由协议学习路由表信息,传输控制数据包的流向,同时进行差错控制和流量控制。
路由器就是运行在网络层的设备,它可以通过将数据包从一条链路传递到另一条链路,实现站点之间的连通。
传输层主要负责数据的传输控制,包括数据的分段、发包、重传等。
当数据在传输过程中出现错误,传输层会进行差错控制和恢复,保证数据完整性和可靠性。
传输层协议常见的有TCP、UDP等。
应用层是最高层,也是最接近用户的层次。
该层负责网络应用程序的编程接口,例如Web浏览器、电子邮件客户端等。
应用层通过应用程序协议,与另一台计算机上运行的应用程序进行通信。
常见的应用层协议有HTTP、SMTP、FTP等,它们规定了如何处理和传输数据。
总结五层原理体系结构是将计算机网络分成五个互相衔接的层次结构,每个层次完成特定的功能,实现了设备和网络之间的互操作性、互联性和可扩展性。
每一层都有对应的协议来进行规范化,因此任何厂商的设备都可以遵循同样的标准进行通信。
该体系结构是目前计算机网络中最常用的标准架构,有助于不同厂商之间的互操作性和兼容性。
除了上述五层原理体系结构之外,还存在其他体系结构,比如七层体系结构。
MMS网络基本结构及工作原理
MMS网络基本结构及工作原理1. MMS 网络基本结构移动多媒体信息业务系统涵盖了多种类型的网络,并可以集成这些网络中现有的信息业务系统。
移动终端在多媒体信息业务环境(MMSE)中进行操作。
此环境既包括2.5G和3G网络,也有网络间的相互漫游等情况。
MMSE提供了所有相关的业务成份,如:信息的发送、存储、通知。
它们既可位于同一网络中或分布于不同的网络中。
在MMS服务投放市场以前,很多关于网络的实际准备工作必须预先完成。
在软、硬件的准备上除了可以接收MMS的终端外,还需要MMS中心、WAP网关、数据库服务器、增值服务(VAS)等。
◆多媒体信息中心(MMSC)在整个在多媒体信息业务环境(MMSE)中,多媒体信息中心(MMSC)是系统的核心。
由MMS服务器、MMS中继、信息存储器和数据库组成。
MMSC是MMS网络结构的核心,它提供存储和操作支持,允许终端到终端和终端到电子邮件的即时多媒体信息传送,同时支持灵活的寻址能力。
MMSC是将MMS信息从发送者传递到接收者的存储和转发网络元素。
MMSC的概念与SMSC相似,即服务器只在查找接收者电话的期间存储信息。
在找到接收电话以后,MMSC立即将多媒体消息转发给接收者,并且从MMSC删除此消息。
由于MMSC在能够发送的情况下不存储消息,因此它不是一个邮箱服务器。
MMSC是提供MMS服务所需的一个新的网络元素。
由于传输容量和界面需求都不同,SMSC的软件不能直接升级到MMSC。
另外,MMSC需要运行很多连接其它网络(如Internet)接口,以及提供增值服务所需的外部应用接口,MMSC 还应具备到Email的接口。
◆ WAP网关尽管用户对MMS的使用与SMS类似,但是MMS不能在SMS的传输信道进行传送,SMS的传输信道对于传送多媒体内容来说太窄了。
在协议层,MMS使用WAP无线会话协议(WSP)作为传输协议。
为了在MMS信息传输中使用WAP协议,需要一个WAP网关连接MMSC和无线WAP网络。
路由器基本原理和结构体系
路由器基本原理和结构体系路由器是网络通信领域中的一种重要设备,它在互联网的发展和扩展中发挥着至关重要的作用。
本文将介绍路由器的基本原理和结构体系,帮助读者更好地理解和使用路由器。
一、路由器的基本原理路由器作为数据包在网络中的传递和转发设备,具有以下基本原理:1. 数据包转发原理路由器通过接收到达的数据包,并根据其目标地址进行转发。
路由器内部有一个路由表,记录了不同网络的地址信息以及对应的下一跳节点。
当收到数据包时,路由器根据目标地址查找路由表,确定下一跳节点,并将数据包发送到相应的输出接口。
2. 路由选择原理路由器通过路由选择协议(如OSPF、BGP等)来更新和维护路由表,实现网络中路由的动态调整和最优路径的选择。
路由选择原理的目标是实现网络的高效通信和负载均衡,使数据包能够快速准确地到达目标节点。
3. 包过滤和安全性原理路由器可以根据设置的ACL(Access Control List)进行包过滤,实现对网络中的数据包进行筛选和控制。
同时,路由器还能够通过防火墙等机制提供基本的安全性保护,抵御网络攻击和威胁。
路由器的结构体系包括硬件和软件两个层面,下面将对其进行介绍:1. 硬件结构(1)中央处理单元(CPU):负责路由器的整体控制和管理,包括运行操作系统、处理转发决策等。
(2)接口:用于与其他设备进行通信和连接,包括以太网接口、串口、光纤接口等。
(3)内存:用于存储路由器的操作系统和路由表等数据。
(4)高速缓存:用于临时存储最常用的数据包和路由表项,提高数据转发的效率。
(5)交换总线:用于连接各个硬件组件,实现数据的传输和交换。
2. 软件结构(1)操作系统:路由器的操作系统通常是专用的路由器操作系统,如Cisco的IOS、Juniper的Junos等。
操作系统负责路由器的整体管理、配置和控制。
(2)路由协议:路由器的软件包括各种路由协议的实现,如RIP、OSPF、BGP等。
路由协议用于路由表的更新和维护,实现路由的选择和转发。
五层原理体系结构
五层原理体系结构
五层原理体系结构(Five-layer Model)是一种计算机网络体系结构模型,也被称为TCP/IP五层模型。
它由五个层次组成,分别是物理层、数据链路层、网络层、传输层和应用层。
1. 物理层:该层是网络的最底层,负责将数据从一个节点传输到另一个节点。
它定义了数据传输的物理媒介,包括电缆、光纤、无线电波等,以及传输的基本单位比特(bit)。
2. 数据链路层:该层主要是将物理层传输的比特组成数据帧,通过物理链接将数据帧传输到目标节点。
该层还负责处理数据传输的错误控制和流量控制,保障数据的可靠传输。
3. 网络层:该层负责处理数据的路由和转发,以及处理不同网络之间的连接和通信。
该层的核心是IP协议,用于定义数据在网络中的传输规则和寻址方式。
4. 传输层:该层提供端到端的可靠数据传输和控制,包括错误控制、流量控制、连接控制和可靠数据传输。
该层的核心是TCP协议和UDP协议,TCP协议提供可靠的数据传输,UDP 协议则提供无连接的、不可靠的数据传输。
5. 应用层:该层是用户接口层,为用户提供网络服务和应用程序。
该层负责处理诸如电子邮件、文件传输、远程登录、Web 浏览器等应用程序的协议和接口。
五层原理体系结构是网络通信中最常用的体系结构,它提供了
一个标准化的网络通信模型,不同的网络设备和应用程序都可以在该模型中进行通信。
同时它也是TCP/IP协议族的基础,TCP/IP协议族中的各种协议都是基于该模型的不同层级进行设计的。
计算机网络体系结构
分层结构的一般概念
实体:实体表示任何可发送/接收信息的硬件
或软件进程。 一般情况: 指一个特定的软件模 块 服务:被高一层看得见的功能称为服务。
面向连接的服务和无连接的服务
服务访问点 (SAP): 息交换的接口。
指相邻二层实体进行信
服务原语:请求、指示、响应、确认 数据单元
鼠标接口 键盘接口
串行端口
DTE
RS232接口的连线
DCE 1 2 3 ¡ ¡ ¡ ¡
DTE
DTE 2 3 4 5 8 6 20 7
1 2 3 ¡ ¡ ¡ ¡
2 3 4 5 8 6 20 7
23 24 25
23 24 25
2、DTE/DTE
1、
DTE/DCE
主机
Modem
主机
主机
基于物理层的问题: • 物理连接两端的用户通话 是时断时续的,并且也不 需特别长的时间。(可以 设法提高物理连接利用率) • 物理连接是有差错和不可 靠的。 • 物理设备之间可能存在传 输速度不匹配的问题。
网络层功能 ISO/OSI RM中 (1) 提供编址(地址编码方案) 基于DL层的问题 各层的主要功能 和路由技术,确保用户数据可 (1) 数据链路层仅提供点对点(包括 DTE-DCE或DCE-DCE之间)的数据链路, 以进行端-端传输。 用户数据具有端到端(DTE-DTE,可能经 (2) 利用复用/解复用和分组 技术,使得多对用户的数据可 过多个DCE的合作和转发)的要求; 以交织在同一条数据链路上传 (2)当用户设备连入网络时,希望可以 和任一其他用户通信(不受物理媒体连接 输;(虚电路) (3) 提供分组的组装功能。分 的限制); 组是本层实体之间交换的一种 (3)多个用户可能同时希望传输信息; 数据结构(数据块); (4)数据链路的利用率较低:用户之间 (4) 提供分组的存储—转发 的通信往往是断断续续的。 (交换设备具有存储空间的要 求)。
计算机网络技术大学试讲教案
课程名称:计算机网络技术授课对象:大学本科生授课时间:2课时教学目标:1. 理解计算机网络的基本概念和发展历程。
2. 掌握计算机网络体系结构的基本原理。
3. 了解常见网络协议的工作原理和应用场景。
4. 培养学生分析网络问题、解决问题的能力。
教学内容:一、计算机网络的基本概念和发展历程1. 计算机网络的定义和功能2. 计算机网络的发展历程3. 计算机网络的分类二、计算机网络体系结构1. OSI七层模型和TCP/IP四层模型2. 物理层、数据链路层、网络层、传输层、会话层、表示层和应用层的作用3. 各层协议的主要功能和典型协议三、网络协议与应用1. TCP/IP协议族- IP协议:工作原理、地址结构、路由选择- TCP协议:工作原理、三次握手、四次挥手- UDP协议:工作原理、应用场景2. 其他网络协议- HTTP协议:工作原理、应用场景- FTP协议:工作原理、应用场景- SMTP协议:工作原理、应用场景教学过程:第一课时一、导入新课1. 提问:同学们,什么是计算机网络?请举例说明。
2. 引导学生思考:计算机网络的发展历程是怎样的?二、讲授新课1. 计算机网络的基本概念和发展历程- 讲解计算机网络的基本概念,包括定义、功能等。
- 介绍计算机网络的发展历程,如第一代、第二代、第三代计算机网络等。
2. 计算机网络体系结构- 讲解OSI七层模型和TCP/IP四层模型,包括各层的作用。
- 举例说明物理层、数据链路层、网络层、传输层、会话层、表示层和应用层的主要功能。
三、课堂练习1. 学生分组讨论,分析一个简单的计算机网络体系结构。
2. 学生互相提问,教师解答。
第二课时一、复习上节课内容1. 复习计算机网络的基本概念和发展历程。
2. 复习计算机网络体系结构。
二、讲授新课1. 网络协议与应用- 讲解TCP/IP协议族,包括IP协议、TCP协议、UDP协议等。
- 介绍HTTP协议、FTP协议、SMTP协议等。
2. 课堂练习- 学生分组讨论,分析一个实际的网络应用场景,并说明其使用的协议。
sdh的基本原理(一)
sdh的基本原理(一)sdh的基本原理分析1. 什么是sdh?SDH(Synchronous Digital Hierarchy)是一种以同步传输为基础的数字通信传输体系结构。
它利用光纤或微波链路传输数字信号,具有高带宽、低时延和强容错性等特点,被广泛应用于电信运营商的光纤传输网中。
2. sdh的结构以及工作原理SDH的结构SDH采用了一种分层的结构,根据传输需求将信号划分为不同的层次。
常用的层次有STM-1、STM-4、STM-16等,其中STM-1为最基本的层次。
SDH的基本结构如下所示:•首部:用于传输控制信息,包括传输路径标识、错误校验等。
•负载:承载传输的数据信息,可以是电话、数据或视频等。
•长度信息:用于标识数据帧的长度。
SDH的工作原理SDH基于同步传输的原理,其中有两个重要的概念:主时钟和从时钟。
主时钟是网络中的时间源,提供精确的时间参考信号。
所有设备都以主时钟为基准进行同步,保证数据的传输速率和时序一致。
从时钟是依赖于主时钟的设备,通过接收主时钟信号进行同步。
每个设备都有一个时钟恢复单元,用于接收、恢复和传播时钟信号。
SDH的传输过程如下所示:1.信号接收:将外部信号转换为电信号,并进行放大和滤波。
2.时钟恢复:利用时钟恢复单元接收主时钟信号,恢复时钟同步。
3.信号分析:对接收到的信号进行解析,提取出控制信息和数据负载。
4.错误校验和纠错:通过错误检测和纠错技术,确保数据的完整性和正确性。
5.信号调整:根据网络需求对信号进行调整,如增加虚拟通道和虚拟路径。
6.信号传输:将调整后的信号通过光纤或微波链路传输到目标设备。
7.信号恢复:在目标设备上,通过接收和恢复信号,还原原始数据。
8.数据处理:对还原的数据进行处理,如解码、解密等。
3. sdh的优势和应用SDH的优势•高可靠性:采用冗余传输和差错校验技术,保证数据传输的可靠性。
•高带宽:SDH提供高带宽的传输能力,满足大容量数据的传输需求。
深入理解计算机网络的工作原理
深入理解计算机网络的工作原理计算机网络是现代社会中不可或缺的一部分,它连接了世界各地的计算设备,使得信息的传递和共享变得更加便捷和高效。
然而,要想深入理解计算机网络的工作原理,我们需要从不同的角度来探究,包括网络体系结构、通信协议、数据传输以及网络安全等方面。
一、网络体系结构计算机网络的体系结构主要包括客户端-服务器模型、对等网络模型和分布式网络模型。
其中,最常见的是客户端-服务器模型,它基于请求-响应模式,客户端向服务器请求资源,服务器将资源返回给客户端。
对等网络模型中,计算机之间的地位是平等的,每台计算机既可以提供资源,又可以请求资源。
而分布式网络模型则是将网络中的计算和存储任务分布到不同的计算机上,实现资源的共享和协同工作。
二、通信协议通信协议是计算机网络中实现数据传输和交换的关键。
常见的网络协议有TCP/IP协议、HTTP协议、FTP协议等。
TCP/IP协议是互联网使用最广泛的协议,它定义了数据如何在网络中传输,保证了数据的可靠传输。
HTTP协议是用于在Web浏览器和Web服务器之间传输超文本的协议,它采用请求-响应的模式,实现了万维网的功能。
FTP协议则是用于在计算机之间进行文件传输的协议,它允许用户上传和下载文件。
三、数据传输在计算机网络中,数据的传输是通过分组交换实现的。
数据在发送端被分割成小的数据包,每个数据包都附有目标地址和序列号等信息,并通过路由器等网络设备按照一定的路由规则传输到目标地址。
在传输过程中,可能会出现数据包丢失、错误或乱序等问题,因此需要使用一些技术来保证数据的可靠传输,例如使用确认应答机制、检验和校验等技术。
四、网络安全网络安全是计算机网络中一个非常重要的方面,它涉及到网络中的数据保密性、完整性和可用性。
为了保护计算机网络免受未经授权的访问和恶意攻击,需要采取一系列安全措施。
常见的网络安全技术包括防火墙、加密算法、访问控制列表等。
防火墙用于监控网络流量并筛选出潜在的恶意流量,加密算法则是通过对数据进行加密和解密来保证数据的机密性,访问控制列表则用于限制网络中的主机或用户的访问权限。
计算机网络第三章参考答案
第三章作业参考答案1.什么是网络体系结构?网络体系结构中的基本原理是什么?答:(1)计算机网络中,层、协议和层间接口的集合被称为计算机网络体系结构(2)网络体系结构中的基本原理是分层原理:计算机网络中采用了分层方法,把复杂的问题划分为若干个较小的、单一的局部问题,在不同的层次上予以解决。
2.什么是实体?什么是对等实体?什么是服务数据单元?什么是协议数据单元?答:(1)实体:任何可以发送或接收信息的硬件/软件进程;(2)对等实体:分别位于不同系统对等层中的两个实体;(3)服务数据单元:指定层的接口数据的总和;(4)协议数据单元:网络体系结构中,对等层之间交换的信息报文统称为协议数据单元。
3.什么是网络协议?它在网络中的作用是什么?网络协议的三要素是什么?答:(1)网络协议:计算机网络中进行数据交换而建立的规则、标准或约定的集合;(2)作用:约定通信双方在通信时必须遵守的规则;(3)三要素:语法、语义、时序(“同步”也可以,但不如“时序”更贴切)。
4. 协议与服务之间的区别是什么?答:协议:对等实体间通信时必须遵守的规则;服务:某一层向它的上一层提供的一组操作,定义了该层要代表其用户执行哪些操作;协议是不同网络系统对等层之间的关系,而服务则是相同网络系统上下层之间的关系。
5. 服务分哪两类?有什么区别?比较数据报与虚电路两种服务各自的优缺点及适用场合?答:(1)服务分为:面向连接服务和无连接服务;区别如下:1)面向连接服务:在数据交换之前,必须先建立连接,当数据交换结束后,则应终止这个连接;具有连接建立、数据传输和连接释放三个阶段;静态分配资源,传输前需建立连接;提供可靠的传输服务,无错、按序、无丢失、不重复;仅在连接阶段需要完整的目的地址;适用在一段时间内向同一目的地发送大量报文,实时性要求高的场合。
2)无连接服务:两个实体在数据传输时动态地进行分配通信时所需的资源。
动态分配资源,不能防止报文的损失、失序、丢失和重复;需要为每一个报文提供完整的目的地址,适用少量零星报文的场合。
计算机网络原理 网络体系结构的基本概念
计算机网络原理网络体系结构的基本概念网络体系结构是指通信系统的整体设计,它为网络硬件、软件、协议、存取控制和拓扑提供标准。
OSI参考模型用物理层、数据链路层、网络层、传送层、对话层、表示层和应用层七个层次描述网络的结构,它的规范对所有的厂商是开放的,具有知道国际网络结构和开放系统走向的作用。
它直接影响总线、接口和网络的性能。
目前常见的网络体系结构有FDDI、以太网、令牌环网和快速以太网等。
从网络互连的角度看,网络体系结构的关键要素是协议和拓扑。
下面我们首先来学习网络体系结构的一些基本概念,其中包含了实体、协议、网络体系结构等等1.实体在计算机网络中,其主要功能是网络资源共享,因此,在网络中不同系统通过实体间来进行通信的。
在计算机网络中,实体是指系统中能够收发信息和处理信息的任何东西。
实体可以包括应用程序、电子邮件设备、数据库管理程序和终端等。
系统可以包含一个或者多个实体,指各种终端设备等。
2.协议计算机网络中,两个实体间要进行通信时,双方之间必须所采用的一种通信语言,遵守相同的通信规则。
这些规则的集合称为协议。
协议通常被认为两实体之间控制数据交换的规则的集合。
简单的说,协议就是通信双方的约定。
网络协议含有三个要素即语义、语法和时序。
●语义指构成协议的协议元素的含义,不同类型的协议元素规定了通信双方所要表达的不同内容,而协议元素是指控制信息或命令及应答。
●语法指数据或控制信息的数据结构形式或格式。
●时序也称规则,即事件的执行顺序。
在通信过程中,我们通常所说的规则和约定,一般包含有通信内容、通信形式和通信时间。
3.网络体系结构网络体系结构是从体系结构的角度来设计网络体系,其核心是网络系统的逻辑结构和功能分配定义,即描述实现不同终端设备之间互连和通信的方法和结构,是层和协议的集合。
通常采用结构化设计方法,将计算机网络系统划分成若干个模块,形成层次分明的网络体系结构。
在分层过程中,通常采用自顶向下逐步求精的方法采用分层式网络结构,可以使每一层实现一种相对独立的功能,从而将一个难以处理的复杂问题分解为若干较容易处理的小问题,而且每一层都是向它的上一层提供服务。
计算机网络的基本原理与体系结构
计算机网络的基本原理与体系结构计算机网络是现代社会中基础设施的重要组成部分,它通过通信链路将各种终端设备连接起来,实现信息的传输和共享。
计算机网络的基本原理和体系结构是我们理解和应用计算机网络的关键。
本文将介绍计算机网络的基本原理与体系结构,并分析其在现实生活中的应用。
一、计算机网络的基本原理计算机网络的基本原理包括数据传输、数据交换、网络拓扑结构和网络协议等几个方面。
首先,数据传输是指通过物理媒介将数据从发送端传输到接收端的过程。
数据传输可以通过有线或无线的方式进行,其中常见的有线传输方式包括以太网和光纤传输,无线传输方式包括无线局域网和蓝牙等。
其次,数据交换是指计算机网络中数据的传输方式。
常见的数据交换方式有电路交换、报文交换和分组交换。
电路交换是在通信建立时为通信双方专用分配一条通路,直到通信结束。
报文交换是将数据分成较小的报文进行交换,每个报文带有地址信息,可以独立传输和交换。
分组交换是将数据分成固定大小的数据包进行交换,每个数据包称为分组,通过网络中的路由器进行转发。
再次,网络拓扑结构是指计算机网络中各个节点之间的连接方式。
常见的网络拓扑结构有星型结构、总线结构、环形结构和网状结构。
星型结构是以一个中央节点为核心,其他节点通过物理链路与中央节点相连。
总线结构是将所有节点连接到同一个总线上,数据传输通过总线进行。
环形结构是在每两个相邻节点之间建立一条连接,形成一个环形结构。
网状结构是多个节点之间相互连接形成的任意结构。
最后,网络协议是计算机网络中数据传输和交换的规则和约定。
常见的网络协议有TCP/IP协议和OSI参考模型。
TCP/IP协议是互联网上应用最广泛的协议,它将数据分成多个数据包,通过IP地址确定数据包的传输路径,并通过TCP协议实现可靠传输。
OSI参考模型是一个理论框架,将网络协议分成七层,分别是物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
二、计算机网络的体系结构计算机网络的体系结构是指计算机网络按照功能划分成不同的层次或模块,并规定每个模块的功能和接口。
3.1 1_4节 网络体系结构
来实现;
每一层功能简单, 易于实现和维护;
某一层需改动时, 只要不改变接口服务关系, 其
它层则不受影响, 灵活性好;
有利于促进标准化;
层次如何划分?
网络的层次分得过多(太细),则网络各个 功能层的“职责”分明,便于实现;但分得过 细会产生许多衔接上的麻烦,增加各功能层接 口之间交互的信息量,增加系统开销,也等于 降低了连网计算机的响应速度和工作效率。 分的层次太少(粗),则容易发生不同性质 的功能模块相互混淆在一起,由于结构不合理 而造成设计上以及今后维护上的困难。
本 节 结
束
返
回
3.2 开放系统互连参考模型
两个最重要的网络参考模型: OSI参考模型, TCP/IP参考模型。
OSI参考模型
– 1974年,IBM公布了SNA(System Network Architecture)
– DEC 公布了 DNA(Distributed Network Architecture)
ISO/OSI
物理接口
– 机械特性:如接插件规格
– 电气特性:如信号电平
传输规则
– 功能特性: 如引脚功能 – 规程特性: 如何通信
具体表现
– 线路结构:点对点、多点 – 传输方式:单工、半双工、全双工 – 拓扑结构:网状、星型、树型、总线、环型 – 编码方式:单极、双极、双相等等 – 物理介质:电缆、光纤、无线介质
SDU与(N)-UD的关系
服务原语的种类
①
请求 N N+1 证实
②
指示
N+1 响应 N
④
③
请求(Request):服务用户向服务提供者请求服务,如
网络层的工作原理
网络层的工作原理
网络层是计算机网络体系结构中的第三层,它负责在源主机和目标主机之间进行数据包的传输。
网络层的工作原理主要包括以下几个方面:
1. IP地址:网络层使用IP地址来标识和寻址网络中的主机和路由器。
IP地址由32位二进制数表示,分为网络地址和主机地址两部分。
其中网络地址用于标识不同的网络,主机地址用于标识一个网络中的不同主机。
2. 路由选择:网络层负责选择数据包传输的路径,这个过程称为路由选择。
路由选择是通过路由器来实现的,路由器根据预先设定的路由表和路由算法,选择最佳的路径将数据包从源主机传输到目标主机。
3. 分组交换:网络层使用分组交换技术进行数据传输。
数据被拆分成较小的数据包(分组),每个数据包都包含了源和目标主机的IP地址信息。
这些数据包通过网络独立传输,并在目标主机上重新组装成完整的数据。
4. 网络互联:网络层负责不同网络之间的互联。
通过路由器,网络层可以将不同网络的数据包转发到目标网络,实现跨网络的通信。
5. IP协议:网络层使用IP协议进行数据包的编址和传输。
IP 协议定义了数据包的格式、传输方式以及数据包的路由选择过程。
6. 错误处理:网络层也负责处理发生在数据传输过程中的错误。
例如,当数据包在传输过程中发生错误时,网络层可以使用差错检测和纠错技术进行错误的检测和修复。
通过以上的工作原理,网络层可以实现不同主机之间的通信,并在互联网中实现数据的快速和可靠传输。
计算机网络体系结构课程设计
计算机网络体系结构课程设计1. 概述计算机网络是现代信息化社会中不可或缺的基本设施之一。
计算机网络体系结构是指网络中的各个层次及其关系,其主要作用是规定了网络中信息流、控制流和管理信息传输的方式。
本文档旨在介绍计算机网络体系结构的概念、原理和实现方法,并针对其设计了一个网络体系结构样例。
2. 计算机网络体系结构的概念计算机网络体系结构是指网络中的各个层次及其关系,常见的体系结构包括OSI七层模型和TCP/IP五层模型。
OSI七层模型通信分为七个层次:物理层、数据链路层、网络层、传输层、会话层、表示层及应用层;TCP/IP五层模型通信分为五个层次:物理层、数据链路层、网络层、传输层和应用层。
虽然不同的体系结构模型的名称、层数和功能有所不同,但其主要目的均是为了保证数据在不同网络节点间的无损传输。
3. 计算机网络体系结构的原理计算机网络体系结构的原理主要有以下几点:3.1 分层原理计算机网络体系结构的核心原则是分层原理。
网络中分层是指把信息传输过程划分为多个不同层级,从而使整个传输过程更加灵活、可控、可管理。
每一层只关心本层所需处理的信息,而不关心上层和下层所做的处理,相互之间只通过规定的接口进行通信。
这样可以从结构上分开问题,便于网络设计、维护和升级。
3.2 协议原理协议是不同层次上实现互相通信的基础。
在计算机网络中,协议指的是为了保证数据在不同网络节点间的无损传输,定义了通信双方发送和接收数据的规则集合。
协议能确保传输数据的可靠性和正确性,从而适应网络各种环境和应用需求。
3.3 开放性原则计算机网络体系结构还遵循开放性原则,这意味着网络的各个层次、协议和接口必须尽可能地开放给其他网络,以保证不同厂商或组织制造的计算机和网络设备可以共享和兼容。
开放性能够促进网络的发展,便于用户选择和搭配网络设备。
4. 计算机网络体系结构的实现方法计算机网络体系结构的实现方法包括两部分:4.1 硬件实现计算机网络体系结构的硬件实现主要包括网络媒介、网络适配器、交换机、路由器和防火墙等组成部分。
互联网的架构
互联网的架构互联网作为当今信息社会的基础设施,已经深刻地改变了人类的生活方式与社会结构。
它的快速发展与普及,离不开其独特的架构。
本文将从互联网的架构层面进行探讨,以帮助读者更好地理解互联网的运作原理。
一、互联网的基本架构互联网的基本架构是一种分层结构,它由多个网络层次构成。
最底层是物理层,负责传输数据的硬件设备,如光纤、网线等。
其上是数据链路层,负责将传输数据分段,将网络层的数据包封装成帧。
再上一层是网络层,它负责数据包的传递和寻址,决定最佳的传输路径。
最上层是应用层,这是用户与互联网交互的接口,包括各种应用程序,如电子邮件、网页浏览器等。
二、互联网的协议体系互联网的架构依赖于大量的通信协议来完成各种功能。
其中最核心的协议是TCP/IP协议,它是整个互联网的基础。
TCP/IP协议提供了可靠的数据传输和网络互连功能,确保了数据的正确传输。
此外,还有诸多其他协议,如HTTP协议用于网页的传输,SMTP协议用于电子邮件的传送等。
三、互联网的网络拓扑结构从网络拓扑结构的角度看,互联网可以表现为多种形式。
其中最常见的是星型拓扑和网状拓扑。
星型拓扑是以一个中心节点为核心,其他节点通过链路与之相连,形成一个星形结构。
这种结构简单、易于维护,但中心节点出现故障就会导致整个网络瘫痪。
网状拓扑则是每个节点都与其他节点直接相连,形成一个复杂的网状结构。
这种结构具有较好的容错性,但对网络的管理和维护要求较高。
四、互联网的自治系统互联网的自治系统(AS)是互联网中一组相互连接的IP网络的集合,它们由同一机构或组织管理和运营。
自治系统通过路由协议相互通信,实现网络之间的互联。
每个自治系统都被分配了全球唯一的自治系统号(ASN),以便在互联网中进行识别和寻址。
五、互联网的发展趋势随着科技的不断进步,互联网的架构也在不断演变。
未来互联网将朝着更加去中心化和智能化的方向发展。
目前,区块链技术已经在互联网中得到应用,为信息的安全和数据的可信传输提供了新的解决方案。
深入理解计算机网络体系结构
深入理解计算机网络体系结构计算机网络体系结构是计算机网络的基本框架,它分为物理层、数据链路层、网络层、传输层和应用层五层。
每层都有自己的特点和功能,通过逐层分析可以深入理解计算机网络的原理和实现。
1. 物理层物理层是计算机网络的最底层,它主要负责把数字信号转换成模拟信号或光信号,通过物理介质进行传输。
例如,传输电信号时需要使用电缆,传输光信号时需要使用光纤。
物理层的传输速率和带宽是由物理介质的质量决定的。
物理层的主要协议有TCP/IP 和 OSI。
2. 数据链路层数据链路层是物理层之上的一层,它负责将数据分成若干个数据帧进行传输,并添加帧头、帧尾等控制信息,保证数据进行有序传输。
数据链路层还可以通过差错检测和纠错等技术保证传输的可靠性。
数据链路层的协议主要有以太网、Wi-Fi、蓝牙等。
3. 网络层网络层是数据链路层之上的一层,它负责把不同网络之间的数据进行转发和路由选择,实现整个网络的互联互通。
在网络层中,数据被封装为报文进行传输。
网络层的协议主要有 IP 协议、ICMP 协议和 ARP 协议。
4. 传输层传输层是网络层之上的一层,它负责将数据分成若干个数据段进行传输,并添加 TCP 或 UDP 等传输控制协议,保证数据的正确传输和可靠性。
传输层的协议主要有 TCP 协议和 UDP 协议。
5. 应用层应用层是计算机网络体系结构的最高层,它负责处理网络数据的具体应用,例如 Web 浏览器、电子邮件、文件传输等。
应用层的协议有 Telnet、FTP、SMTP、HTTP 等。
通过逐层分析计算机网络体系结构,我们可以更深入地理解计算机网络的实现和原理。
计算机网络体系结构的五层各司其职,形成了一套完整的协议标准,让计算机网络成为了无处不在的基础设施。
同时,计算机网络体系结构也在不断发展和扩展,例如物联网、云计算等新兴技术的出现,都将对计算机网络体系结构产生全新的影响和挑战。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5)接入控制:当多个节点共享通信链路时,确定在某一时间内由哪个节点发送数据
常见的数据链路层协议有两类:一是面向字符型传输控制规程BSC;一是面向比特的传输控制规程HDLC
流量控制技术
(1)停-等流量控制:发送节点在发送一帧数据后必须等待对方回送确认应答信息到来后再发下一帧.接收节点检查帧的校验序列,无错则发确认帧,否则发送否认帧,要求重发.
2)物理层的数据交换单元为二进制比特:对数据链路层的数据进行调制或编码,成为传输信号(模拟,数字或光信号)
3)比特的同步:时钟的同步,如异步/同步传输
4)线路的连接:点—点(专用链路),多点(共享一条链路)
5)物理拓扑结构:星型,环型,网状
6)传输方式:单工,半双工,全双工
典型的物理层协议有RS-232系列,RS449,V.24,V.28,X.20,X.21
功能:实现通信子网端到端的可靠传输(保证通信的质量)
信息传送的基本单位:报文
传输层采用的协议是ISO8072/3
会话层(Session Layer)
又称为会晤层,是利用传输层提供的端到端的服务向表示层或会话层用户提供会话服务.
功能:提供一个面向用户的连接服务,并为会话活动提供有效的组织和同步所必须的手段,为数据传送提供控制和管理.
功能:实现分别位于不同网络的源节点与目的节点之间的数据包传输(数据链路层只是负责同一个网络中的相邻两节点之间链路管理及帧的传输),即完成对通信子网正常运行的控制.
关键技术:路由选择
传送信息的基本单位:包(Packer)
网络层采用的协议是X.25分组级协议
网络层的服务:
面向连接服务:指数据传输过程为连接的建立,数传的维持与拆除连接三个阶段.如电路交换
计算机网络由多个互连的结点组成,结点之间要不断地交换数据和控制信息,要做到有条不紊地交换数据,每个结点就必须遵守一整套合理而严谨的结构化管理体系.计算机网络就是按照高度结构化设计方法采用功能分层原理来实现的,即计算机网络体系结构的内容.
网络体系结构及协议的概念
网络体系和网络体系结构
网络体系(Network Architecture):是为了完成计算机间的通信合作,把每台计算机互连的功能划分成有明确定义的层次,并规定了同层次进程通信的协议及相邻之间的接口及服务.
ISO发布的最著名的ISO标准是ISO/IEC 7498,又称为X.200建议,将OSI/RM依据网络的整个功能划分成7个层次,以实现开放系统环境中的互连性(interconnection),互操作性(interoperation)和应用的可移植性(portability).
分层原则
ISO将整个通信功能划分为7个层次,分层原则如下:
发送窗口
0123412345重源自13456756701
接收窗口
01(0对1错)
12(1等2对)
12(正确)
34(正确)
……
滑动窗口的大小与协议的关系:
WT >1,WR=1,协议为退回N步的ARQ(自动反馈请求)
WT >1,WR>1,协议为选择重传的ARQ
WT =1,WR=1,协议为停-等式的ARQ
网络层(Network Layer)
协议(Protocol)
网络中计算机的硬件和软件存在各种差异,为了保证相互通信及双方能够正确地接收信息,必须事先形成一种约定,即网络协议.
协议:是为实现网络中的数据交换而建立的规则标准或约定.
网络协议三要素:语法,语义,交换规则(或称时序/定时关系)
注:通信协议的特点是:层次性,可靠性和有效性.
实体(Entity)
Internet的体系结构
Internet是由无数不同类型的服务器,用户终端以及路由器,网关,通信线路等连接组成,不同网络之间,不同类型设备之间要完成信息的交换,资源的共享需要有功能强大的网络软件的支持,TCP/IP就是能够完成互联网这些功能的协议集.
OSI/RM中系统间的通信信息流动过程
在OSI/RM中系统间的通信信息流动过程如下:发送端的各层从上到下逐步加上各层的控制信息构成的比特流传递到物理信道,然后再传输到接收端的物理层,经过从下到上逐层去掉相应层的控制住信息得到的数据流最终传送到应用层的进程.
由于通信信道的双向性,因此数据的流向也是双向的.
实体:是通信时能发送和接收信息的任何软硬件设施
接口(Interface)
接口:是指网络分层结构中各相邻层之间的通信
开放系统互连参考模型(OSI/RM)
OSI/RM参考模型
基本概述
为了实现不同厂家生产的计算机系统之间以及不同网络之间的数据通信,就必须遵循相同的网络体系结构模型,否则异种计算机就无法连接成网络,这种共同遵循的网络体系结构模型就是国际标准——开放系统互连参考模型,即OSI/RM.
信息传送的基本单位:报文
表示层采用的协议是ISO8822/3/4/5
应用层(Application Layer)
应用层是计算机网络与最终用户间的接口,是利用网络资源唯一向应用程序直接提供服务的层.
功能:包括系统管理员管理网络服务所涉及的所有问题和基本功能.
信息传送的基本单位:用户数据报文
应用层采用的协议有:用于文件传送,存取和管理FTAM的ISO8571/1~4;用于虚终端VP的ISO9040/1;用于作业传送与操作协议JTM的ISO8831/2;用于公共应用服务元素CASE的ISO8649/50
两个计算机通过网络进行通信时,除了物理层之外(说明了只有物理层才有直接连接),其余各对等层之间均不存在直接的通信关系,而是通过各对等层的协议来进行通信,如两个对等的网络层使用网络层协议通信.只有两个物理层之间才通过媒体进行真正的数据通信.
当通信实体通过一个通信子网进行通信时,必然会经过一些中间节点,通信子网中的节点只涉及到低三层的结构.
存在问题:双方无休止等待(数据帧或确认帧丢失),解决办法发送后使用超时定时器;重帧现象(收到同样的两帧),解决办法是对帧进行编号
适用:半双工通信
(2)滑动窗口流量控制:是指对于任意时刻,都允许发送端/接收端一次发送/接收多个帧,帧的序号个数称为发送/接收窗口大小
适用:全双工
工作原理:以帧控制段长为8位,则发送帧序号用3bit表示,发送窗口大小为WT=5,接收窗口大小为WR=2为例来说明
计算机网络结构采用结构化层次模型,有如下优点:
各层之间相互独立,即不需要知道低层的结构,只要知道是通过层间接口所提供的服务
灵活性好,是指只要接口不变就不会因层的变化(甚至是取消该层)而变化
各层采用最合适的技术实现而不影响其他层
有利于促进标准化,是因为每层的功能和提供的服务都已经有了精确的说明
网络协议
流量控制:
拥塞控制:是指在通信子网中由于出现过量的数据包而引起网络性能下降的现象.
传输层(Transport Layer)
是计算机网络中的资源子网和通信子网的接口和桥梁,完成资源子网中两节点间的直接逻辑通信.
传输层下面的三层属于通信子网,完成有关的通信处理,向传输层提供网络服务;传输层上面的三层完成面向数据处理的功能,为用户提供与网络之间的接口.由此可见,传输层在OSI/RM中起到承上启下的作用,是整个网络体系结构的关键.
面向无连接服务:指传输数据前后没有连接的建立,拆除,分组依据目的地址选择路由.如存储转发
网络层的内容:
逻辑地址寻址:是指从一个网络传输到另一个网络的源节点和目的节点的逻辑地址NH(数据链路层中的物理地址是指在同一网络中)
路由功能:路由选择是指根据一定的原则和算法在传输通路中选出一条通向目的节点的最佳路由.有非适应型(有随机式,扩散式,固定式路选法)和自适应型(有孤立的,分布的,集中的路选法)两种选择算法
网络中各结点都有相同的层次
不同结点的同等层具有相同的功能
同一结点内相邻层之间通过接口通信
每一层使用下层提供的服务,并向其上层提供服务
不同结点的同等层按照协议实现对等层之间的通信
第七层
应用层
第六层
表示层
第五层
会话层
第四层
传输层
第三层
网络层
第二层
数据链路层
第一层
物理层
OSI/RM参考模型
OSI/RM的配置管理主要目标就是网络适应系统的要求.
比特流的构成:
数据DATA应用层(DATA+报文头AH,用L7表示)表示层(L7+控制信息PH)会话层(L6+控制信息SH)传输层(L5+控制信息TH)网络层(L4+控制信息NH)数据链路层(差错检测控制信息DT+L3+控制信息DH)物理层(比特流)
OSI/RM各层概述
物理层(Physical Layer)
低三层可看作是传输控制层,负责有关通信子网的工作,解决网络中的通信问题;高三层为应用控制层,负责有关资源子网的工作,解决应用进程的通信问题;传输层为通信子网和资源子网的接口,起到连接传输和应用的作用.
ISO/RM的最高层为应用层,面向用户提供应用的服务;最低层为物理层,连接通信媒体实现数据传输.
层与层之间的联系是通过各层之间的接口来进行的,上层通过接口向下层提供服务请求,而下层通过接口向上层提供服务.
数据链路层(Data Link Layer)
通过物理层提供的比特流服务,在相邻节点之间建立链路,对传输中可能出现的差错进行检错和纠错,向网络层提供无差错的透明传输.
主要负责数据链路的建立,维持和拆除,并在两个相邻机电队线路上,将网络层送下来的信息(包)组成帧传送,每一帧包括一定数量的数据和一些必要的控制信息.为了保证数据帧的可靠传输应具有差错控制功能.
直接与物理信道直接相连,起到数据链路层和传输媒体之间的逻辑接口作用.
功能:提供建立,维护和释放物理连接的方法,实现在物理信道上进行比特流的传输.