2015年国考数量关系:排列组合与概率问题重难点讲解
公务员考试中的数量关系题可以放弃吗,我一看到计算题我就晕圈,数量关系题对我来说太难了,求解
公务员考试中的数量关系题可以放弃吗,我一看到计算题我就晕圈,数量关系题对我来说太难了,求解公务员考试中的数量关系题可以放弃吗,我一看到计算题我就晕圈,数量关系题对我来说太难了,求解? -不要放弃。
数量关系没学好,要么是基础没打好,要么是练习整太少。
学会结合选项看问题,难题直接放弃考好数量关系不难。
很多人说数量关系特别难,做了也是白做,学了也是白学,实际上不是这样的。
首先我们要认识数量关系:有简单题,有难题。
数量关系当中有难题,同时也是有简单题的。
我们需要对它们做出选择,是坚持还是放弃。
我们要把其中简单一些的题认真做完,把那些复杂的题目果断放弃。
所以我建议在公考考场上,做一半数量关系,蒙一半数量关系,简单来说就是做一半蒙一半的方法。
在备考的时候,我们需要注意,复习数量关系最有效的方法就是做题而不是看视频,要做大量的题,起码要做 30 套以上的题,也就意味着要做 300 道题目以上。
像其他的模块,比如言语理解、常识判断、判断推理的一些题目,无论你有没有复习过,也能够做出不少题目,大家之间分数差距不是太大。
我们在做题的时候,一定要去分析命题人,他们在设置选项的时候用了什么样的技巧,分析命题人是备考的核心,后面我以具体习题给大家分享如何分析命题人的命题思路。
一定要重视真题,我们可以通过今年的真题来预测明年可能怎么考,从而做到对未来做预判。
我们不要忘了行测的特点,都是单选题,选项非常重要,可以说选项才是数量关系最大的技巧。
还有一点很重要,坚持就是胜利,数量关系这个模块近几年逐渐成了区分考生素质的最佳题型,因为绝大部分考生对待数学都是放弃,我们只要坚持到底,我们就是最后胜利的那一拨人。
下面结合真题体验一下:(广东 2017-45)现有浓度为 15% 和 30% 的盐水若干,如果要配出 600g 浓度为 25% 的盐水,则分别需要浓度 15% 和30% 的盐水多少克?()a. 100、300b. 200、400c. 300、600d. 400、600题目要求的是 600g 的盐水,结合选项观察,a 选项加一起是400g,b 选项加一起是 600g,c 选项加一起是 900g,d 选项加一起是 1200g。
2015湖南公务员考试行测重难点攻克之概率问题
2015湖南省公务员考试行测重难点攻克之概率问题在湖南省公务员考试中与排列组合联系最紧密的是概率问题,在考试过程中概率问题也是我们要掌握的重要题型之一,也是与我们生活密切相关的一部分内容。
怎样才能在考试中快速准确地解决概率呢,中公教育专家在这里与各位考生分享如何解决此问题。
第一点:要了解概率问题的分类(1)古典型概率(等可能事件概率):如果实验中可能出现的结果有n个,而事件A包含的结果有m个,那么事件A的概率。
例:一个袋子里有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率是:答案:D中公解析:第一次取得蓝色珠子的概率是,第二次取得蓝色珠子的概率是,两次都是的概率就是这两个概率的乘积,利用了排列组合中的分步思想。
所以答案为D。
此题目就是最基本的概率问题,并且结合分步思想。
多次独立重复实验:某一实验独立重复n次,其中每次实验中某一事件A发生的概率是,那么事件A出现m次的概率是:。
(2)几何概率:若对于一个随机试验,每个样本点出现是等可能的,样本空间所含的样本点个数为无穷多个,且具有非零的,有限的几何度量,即,则称这一随机试验是几何概率。
当随机试验的样本空间是某个区域,并且任意一点落在度量(长度,面积,体积)相同的子区域是等可能的,则事件A的概率可定义为,其中是样本空间的度量,是构成事件A的子区域的度量。
第二点:了解常见题型注意事项(1)在题干描述过程中关于物品放回与不放回(2)当一个事件发生的概率难以求解时,往往去求其对立面发生的概率例:一个口袋共有2个红球和8个黄球,从中随机连取三个球(有放回),则恰有一个红球概率是:答案:B中公解析:由题意要求三个球中恰有一个红球的概率,则要么是第一个球是红球,第二第三是黄球,要么第二个是红球,第一和第三是黄球,要么是第三个球是红球,第一个和第二个是黄球。
因为题上说是有放回抽取,所以不管第几个是红球,每一种概率都是,所以三种情况加起来就是。
2015年贵州公务员考试:行测数学运算之常规排列组合问题
2015年贵州公务员考试:行测数学运算之常规排列组合问题在公务员考试中,数学运算问题一共分为十四个模块,其中一块是常规排列组合问题。
常规排列组合问题是排列组合问题中的一种。
排列组合问题根据是否与顺序有关,只有排列和组合两种类型;根据事情的完成步骤,只有分类和分步两种类型;根据解题方法,只有基础公式型、分类讨论型、分步计算型、捆绑插空型、错位排列型、重复剔除型、多人传球型、等价转化型八种类型。
无论排列组合的元素怎么变化,同学只要牢牢把握这几种主要类型和解题方法,就能轻松搞定排列组合问题。
核心点拨
1、题型简介
排列组合问题在近年来各类公务员考试中出现较多。
下面给出了解决排列组合问题的几个核心知识点,从真题来看,基础公式型、分类讨论型、分步计算型、重复剔除型、等价转化型这五种题型考查较多,同学们可以重点学习。
2、核心知识
(1)基础公式法
(2)分类讨论法
根据题意分成若干类分别计算。
(3)分步计算法
根据题意,分步计算。
(4)捆绑插空法
相邻问题——捆绑法:先将相邻元素全排列,然后视为一个整体与剩余元素全排列。
不相邻问题——插空法:先将剩余元素全排列,然后将不相邻元素有序插入所成间隙中。
(5)错位排列法
错位排列问题:有n封信和n个信封,则每封信都不装在自己的信封里,可能的方法的种数计算Dn,则D1=0,D2=1,D3=2,D4=9,D5=44,D6=265…(请牢牢记住前六个数)。
(6)重复剔除法
A.平均分组问题
将NM个人平均分成N组,总共有36-2=34种分配方法。
(8)等量转换法。
公务员考试行政能力测试数学运算解题方法之排列组合问题
公务员考试行政能力测试数学运算解题方法之排列组合问题排列组合问题是公务员考试当中必考题型,题量一般在一到两道,近年国考这部分题型的难度逐渐在加大,解题方法也越来越多样化,所以在掌握了基本方法原理的基础上,还要求我们熟悉主要解题思想。
那首先什么排列、组合呢?排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。
解答排列组合问题,首先必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题,其次要抓住问题的本质特征,灵活运用基本原理和公式进行分析,同时还要注意讲究一些策略和方法技巧。
下面介绍几种常用的解题方法和策略。
解决排列组合问题有几种相对比较特殊的方法。
下面通过例题逐个掌握:一、相邻问题---捆绑法不邻问题---插空法对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可。
【例题1】一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法?A.20B.12C.6D.4【答案】A。
【解析】首先,从题中之3个节目固定,固有四个空。
所以一、两个新节目相邻的的时候:把它们捆在一起,看成一个节目,此时注意:捆在一起的这两个节目本身也有顺序,所以有:C(4,1)×2=4×2=8种方法。
二、两个节目不相邻的时候:此时将两个节目直接插空有:A(4,2)=12种方法。
综上所述,共有12+8=20种。
二、插板法一般解决相同元素分配问题,而且对被分成的元素限制很弱(一般只要求不等于零),只对分成的份数有要求。
【例题2】把20台电脑分给18个村,要求每村至少分一台,共有多少种分配方法?A.190B.171C.153D.19【答案】B。
排列组合与概率原理及解题技巧
排列组合与概率原理及解题技巧一、基础知识1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。
2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。
3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,mn A =n(n-1)…(n-m+1)=)!(!m n n -,其中m,n ∈N,m ≤n,注:一般地0n A =1,0!=1,nn A =n!。
4.N 个不同元素的圆周排列数为nA n n =(n-1)!。
5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。
从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用mn C 表示:.)!(!!!)1()1(m n m n m m n n n C m n -=+--=6.组合数的基本性质:(1)m n n m n C C -=;(2)11--+=n nm n m n C C C ;(3)kn k n C C kn =--11;(4)n nk k n n nnnC C C C 2010==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)kn m n m k k n C C C --=。
高考数学 排列组合与概率知识点 排列组合典型题 基本方法 技巧
排列组合与概率经典教案两个基本原理:1.加法原理(分类计数原理):做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法, 在第二类办法中有2m 种不同的方法, ……,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:n m m m m N +⋅⋅⋅+++=321种不同的方法.2.乘法原理(分步计数原理): 做一件事,完成它有n 个步骤,做第一步有1m 种不同的方法, 做第二步有有2m 种不同的方法, ……, 做第n 步有n m 种不同的方法,那么完成这件事共有: n m m m m N ⨯⋅⋅⋅⨯⨯⨯=321种不同的方法.特别注意:分类是独立的、一次性的;分步是连续的、多次的。
三组基本概念:1.排列1)排列:从n 个不同元素中取出m(m ≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。
2)排列数:从n 个不同元素中取出m(m ≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数。
通常用mn A 表示。
特别地,当n m =时,称为全排列,当n m π时,称为选排列。
2. 组合1)组合:从n 个不同元素中取出m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
2)组合数:从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,记作mn C 。
3. 事件与概率1)事件的分类:(1)必然事件:在一定的条件下必然要发生的事件;(2)不可能事件:在一定的条件下不可能发生的事件;(3)随机事件:在一定的条件下可能发生也可能不发生的事件。
2)一些特殊事件:(1)等可能事件:对于每次随机试验来说,只可能出现有限个不同的试验结果;另外,所有不同的试验结果,它们出现的可能性是相等的。
(2)互斥事件:不可能同时发生的两个事件,我们把它称为互斥事件。
如果事件A 1,A 2,…,A n 中的任何两个都是互斥事件,那么就说事件A 1,A 2,…,A n 彼此互斥。
国家公务员行测高频考点排列组合解答技巧
国家公务员行测高频考点排列组合解答技巧国家公务员行测考试中,排列组合也是一个比较常见的考点。
这部分的内容的特点是题型的种类很多,单独看排列组合的形式,常考的也有6种以上的题型。
据分析,近几年虽然没有直接的考察排列组合,但是这个知识点和概率的考察现在紧密的联系在一起,另外就是和最值问题考察,这也符合近几年行测试题的难度变化。
拿排列组合来说,题型有很多种,解答的方法有“优限法”、“捆绑法”、“插空法”、“间接法”、“穷举法”等,每一种方法是针对一种题型而设置,而且这些方法之间并不是单独存在的,有些时候一道题需要几种方法的混合使用,虽然这种题目的难度不大,但是综合性很强。
这里就拿“捆绑法”、“插空法”来说,“相邻问题”捆绑法,即在解决对于某几个元素要求相邻的问题时,先将其“捆绑”后整体考虑,也就是将相邻元素视作“一个”大元素进行排序,然后再考虑大元素内部各元素间排列顺序。
“不邻问题”插空法,即在解决对于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置,从而将问题解决的策略。
例1.若有A、B、C、D、E五个人排队,要求A和B两个人必须站在相邻位置,则有多少排队方法?。
行测:数量关系中排列组合问题的七大解题策略
行测:数量关系中排列组合问题的七大解题策略
中公教育研究与辅导专家邹继阳
排列组合问题是历年公务员考试行测的必考题型,并且随着近年公务员考试越来越热门,国考中这部分题型的难度也在逐渐的加大,解题方法也趋于多样化。
解答排列组合问题,必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题;同时要抓住问题的本质特征,灵活运用基本原理和公式进行分析,还要注意讲究一些策略和方法技巧。
一、排列和组合的概念
排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。
二、七大解题策略
1.特殊优先法
特殊元素,优先处理;特殊位置,优先考虑。
对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。
例:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有( )
(A) 280种 (B)240种 (C)180种 (D)96种
正确答案:。
2015河南事业单位行测数量关系-排列组合问题解法
2015河南事业单位行测数量关系-排列组合问题解法排列组合与概率问题作为数学运算中相对独立的一块,难度本身不小,在事业单位考试中的出场率颇高。
这部分题型的难度逐渐在加大,这就需要考生在掌握基本方法的基础上对其熟练运用,加法原理和乘法原理看起来很简单,但很多考生容易在这里混淆不清,所以考试吧要在这里给大家夯实基础。
加法原理和乘法原理是解决排列组合与概率问题的基础,也是最常用、最基本的原理,所以熟练掌握这两个原理至关重要。
加法原理:完成一件事情,有m类不同的方式,而每种方式又有多种方法可以实现。
那么,完成这件事的方法数就需要把每一类方式对应的方法数加起来。
例如:从A地到B地,坐火车有3种方法,坐汽车有5种方法,坐飞机有2种方法,那么从A地到B地一共应该有3+5+2=10种方法。
这里从A地到B地有火车、汽车和飞机三类方式,可使用加法原理。
乘法原理:完成一件事请,需要n个步骤,每一个步骤又有多种方法可以实现。
那么完成这件事的方法数就是把每一个步骤所对应的方法数乘起来。
例如:从A地到B地坐飞机需要在C地转机,已知从A地到C地有4种方法,从C地到B地有3种方法。
这里从A地到B 地,需要分两个步骤完成,第一步从A地到C地,第二步从C地到B地,因此从A地到B地有4×3=12种方法。
总之,记住:分类用加法原理,分步用乘法原理。
有的考生可能在面对具体题目时,不知道什么是分类、什么是分步。
实际上,对于分类和分步,可以这样区分:在分类的情况下,完成一件事,每一类中的每一种方法都可以达到目的,即都可以完成这件事。
在分步计数中,完成一件事,只有各个步骤都完成了,才算完成这件事。
我们回过头来看前面举的那个例子:从A地到B地,坐火车有3种方法,坐汽车有5种方法,坐飞机有2种方法,那么我们只要任选一种方式,都可以从A地到达B地,所以这是一个分类的过程;而对于第二个例子,就必须要先到C地,才能到B地,也就是说A-B、B-C这两步你要都完成了,才能最终成功,所以这是一个分步的过程。
2015年六安公务员考试行测答题技巧:概率问题
2015年六安公务员考试行测答题技巧:概率问题概率指某事件发生的可能性,取值在0到1之间。
常考的概率问题有3种,一是古典型概率;二是多次独立重复试验;三是几何概率。
重点为大家讲解第一种,也就是古典型概率。
在古典型概率中目标数和总可能数是可以数出来的,具体的数目通常可以用排列组合运算得出。
那么事件A发生的概率P就等于目标数m除以总可能数n,
例2:甲某打电话时忘记了对方电话号码最后一位数字,但记得这个数字不是0。
甲某尝试用其他数字代替最后一位数字,恰好第二次尝试成功的概率是( )。
A. 1/9
B.1/8
C. 1/7
D. 2/9
答案:A
中公解析:运用分步的思想去理解并进行计算。
恰好第二次尝试成功则说明第一次猜错,第二次猜对,分了两个步骤,则其概率为8/9×1/8=1/9。
更多信息查看:安徽人事考试网安徽公务员考试网。
2015河南省公务员考试行测技巧 排列组合
2015河南省公务员考试行测技巧:排列组合基本知识点回顾:1 、排列:从N 不同元素中,任取M 个元素(被取元素各不相同)按照一定的顺序排成一列,叫做从N 个不同元素中取出M 个元素的一个排列。
2 、组合:从N 个不同元素中取出M 个元素并成一组,叫做从N 个不同元素中取出M 个元素的一个组合(不考虑元素顺序)3 、分步计数原理(也称乘法原理):完成一件事,需要分成n 个步骤,做第1 步有ml 种不同的方法,做第2 步有m2 种不同的方法…做第n 步有mn 种不同的方法。
那么完成这件事共有N = m1*m2* … *mn 种不同的方法。
4 、分类计数原理:完成一件事有n 类办法,在第一类办法中有ml 种不同的方法,在第二类办法中有m2 种不同的方法……在第n 类办法中有mn 种不同的方法,那么完成这件事共有N = ml + m2 + …+mn 种不同的方法。
解题技巧:首先要弄清一件事是“分类”还是“分步”完成,对于元素之间的关系,还要考虑“是有序”的还是“无序的”,也就是会正确使用分类计数原理和分步计数原理、排列定义和组合定义,其次,对一些复杂的带有附加条件的问题,需掌握以下儿种常用的解题方法:一、特殊元素(位置)用优先法把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。
例1 . 6 人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。
元素分析法:因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有4 种站法;第二步再让其余的5 人站在其他5 个位置上,有120 种站法,故站法共有:480 (种)国家公务员| 事业单位| 村官| 选调生| 教师招聘| 银行招聘| 信用社| 乡镇公务员| 各省公务员|二.相邻问题用捆绑法对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。
2015河南检察院考试行测难题巧解:排列组合
2015河南检察院考试行测难题巧解:排列组合“排列组合”问题和“行程问题”一样,是广大考生最为头痛的题型,也几乎是历年考试的必考重点题型。
大家之所以认为排列组合问题难原因有两点:(1)基础知识点的遗忘。
因为部分考生自从高中毕业之后,就很少再接触排列组合的知识,所以再应用时就会觉得很陌生,不知从何下手。
(2)常考模型的不熟悉。
所以建议大家在备考时主要从这两方面着手。
对于基础知识部分,大家需要掌握两大原理:加法和乘法原理;两个概念:排列和组合;三个公式:排列公式,组合公式和逆向公式。
对常考题型,总结主要有捆绑插空模型﹑错位重排模型﹑和插板模型等。
下面结合具体例题向大家介绍。
一,捆绑插空模型基本模型捆绑法:针对有主体要求在一起或相邻的问题。
解题思路分为两步第一步:将要求在一起(或相邻)的主体捆绑起来看做一个主体,和其余主体一起排列;第二步:将捆绑起来的主体松解,将这些捆绑起来的主体进行排列。
插空法:针对有主体要求在不一起或不相邻的问题。
解题思路分为两步第一步:不考虑要求不在一起(或不相邻)的主体,只排列无特殊要求的主体;第二步:将有要求的主体插在已排好顺序的主体所形成的空隙中。
典型例题【例】某人射击8枪,命中4枪,恰有3枪连续命中的情形有多少种?()A.720B.480C.224D.20【解析】题目要求命中的四枪中,恰有3枪连续命中,就是说4枪中,3枪连在一起,剩余的1枪要和这3枪不在一起。
根据我们捆绑插空的模型,在一起的3枪使用捆绑法,将其捆绑起来看做1个主体;另外1枪不得与前面3枪相连,考虑插空。
先将未命中的4枪排列,形成5个空;再将命中“3”枪和命中“1”枪插入其中的2个空中,共有(种)情形,故答案是D.二,错位重排模型国家公务员| 事业单位| 村官| 选调生| 教师招聘| 银行招聘| 信用社| 乡镇公务员| 各省公务员|国家公务员| 事业单位| 村官| 选调生| 教师招聘| 银行招聘| 信用社| 乡镇公务员| 各省公务员|。
2015国考数量关系
2015国考数量关系:61, 某农场有36台收割机,要收割完所有的麦子需要14天时间。
现收割了7天后增加4台收割机,并通过技术改造使每台机器的效率提升,问收割完所有的麦子还需要几天:A3B4C5D6正确答案是D,你的答案是C。
易错项为B解析:方法一:赋值法,赋值每台收割机每天的工作效率为1,则工作总量为36X 14,剩下的36X 7由36+ 4= 40台收割机完成,每台收割机效率为1.05,故剩下需要的时间为(36 X 7)-(40X 1.05 ) = 6 天。
方法二:比例法。
由题意,原有收割机36台,增加4台后变为40台,提高效率5%后相当于原先40X(1 + 5% = 42台收割机的工作效率。
效率比为6:7,故所有时间比为7:6,故还需6天即可完成。
故正确答案为Db考点:计算问题62, 某单位有50人,男女性别比为■--,其中有15人未入党,若从中任选1人,则此人为男性党员的概率最大为多少:3 2 3 5A B C.D正确答案是A,你的答案是C。
易错项为B解析:满足此人为男性党员的概率最大,即要求男性党员尽量多,15个未入党的名额全部给女性,由题意可知,男性党员最多为30个,因此最大概率是(满足要求的情况数十总的情况数)。
故正确答案为A考点:概率问题63, 某技校安排本届所有毕业生分别去甲、乙、丙3个不同的工厂实习。
去甲厂实习的毕业生占毕业生总数的工,去乙厂实习的毕业生比甲厂少6人,且占毕业生总数的-。
问去丙厂实习的人数比去甲厂实习的人数:A少9人B多9人C少6人D多6人正确答案是B,你的答案是C。
易错项为C解析:根据题意去甲厂实习的人数占二,去乙厂实习的人数占-,因此去丙厂实习的人数占•' ,故去丙厂的人数比去甲厂多5智「签馮=1赠;而去甲厂实习的人数比去乙厂的多爭几…恳味—叹一,为6人,故去丙厂的人数比去甲厂的应多'0考点:计算问题64, 甲、乙、丙、丁四人共同投资一个项目,已知甲的投资额比乙、丙二人的投资额之1和高,丙的投资额是丁的,总投资额比项目的资金需求高。
排列组合概率题解题技巧
排列组合概率题解题技巧
1.排列、组合、概率与错位公式
2.排列组合概率解题思路——分类法
3.例题1:繁琐的计算导致正确率变低
4.例题2:通过选项思考暴力破解的可能性
5.例题3:极为简单,一半做错的题
6.例题4:分不同情况考虑安排方案
7.例题5:分不同情况考虑安排方案
8.例题6:理解排列组合题的关键
一、排列、组合、概率与错位公式
「数量关系」板块中的「排列、组合、概率」方面的题目每年必考、国考省考都会考,而此类题的难度一般较高,因此掌握它们的解题方法是非常有必要的。
2015国家公务员考试暑期每日一练第二周数量关系:排列组合与概率问题重难点讲解
2015国家公务员考试暑期每日一练第二周数量关系:排列组合与概率问题重难点讲解中公教育专家通过对真题的深入研究发现,排列组合与概率问题在国家公务员考试中出现频率较大,几乎每年都会考查该类题型。
公务员的日常工作更多地涉及到统计相关知识,因此这部分题型会愈加被重视。
在现实生活中我们经常会遇到排座次、分配任务等问题,用到的都是排列组合原理,即便是最简单的概率问题也要利用排列组合原理计算。
与此同时,排列组合中还有很多经典问题模型,其结论可以帮助我们速解该部分题型。
一、基础原理二、基本解题策略面对排列组合问题,中公教育专家通过多年的研究经验找出了其常用的三种解题策略:1.合理分类策略①类与类之间必须互斥(互不相容);②分类涵盖所有情况。
2.准确分步策略①步与步之间互相独立(不相互影响);②步与步之间保持连续性。
3.先组后排策略当排列问题和组合问题相混合时,应该先通过组合问题将需要排列的元素选择出来,然后再进行排列。
【例题1】奶奶有6 颗口味各不相同的糖,现分给3 个孙子,其中1 人得1 颗、1 人得2 颗、1人得3颗,则共有( )种分法。
A.60B.120C.240D.360中公解析:此题答案为D。
此题既涉及排列问题(参加6颗口味各不同的糖),又涉及组合问题(分给三个孙子,每人分得糖数不同),应该先组后排。
三、概率问题概率是一个介于0到1之间的数,是对随机事件发生可能性的测度。
概率问题经常与排列组合结合考查。
因此解决概率问题要先明确概率的定义,然后运用排列组合知识求解。
1.传统概率问题【例题2】田忌与齐威王赛马并最终获胜被传为佳话。
假设齐威王以上等马、中等马和下等马的固定顺序排阵,那么田忌随机将自己的三匹马排阵时,能够获得两场胜利的概率是( )。
2.条件概率在事件B已经发生的前提下,事件A发生的概率称为条件概率,即A在B条件下的概率。
P(AB)为AB同时发生的概率,P(B)为事件B单独发生的概率。
【例题3】小孙的口袋里有四颗糖,一颗巧克力味的,一颗果味的,两颗牛奶味的。
高考数学概率知识点复习:排列组合和概率易错易混考点
高考数学概率知识点复习:排列组合和概率易错易混
考点
陈列、组合和概率
69.解陈列组分解绩的依据是:分类相加,分步相乘,有序陈列,无序组合。
解陈列组分解绩的规律是:相邻效果捆绑法;不邻效果插空法;多排效果单排法;定位效果优先法;定序效果倍缩法;多元效果分类法;有序分配效果法;选取效果先排后排法;至少至少效果直接法。
70.二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。
二项式系数最大项与展开式中系数最大项易混。
二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r.
71.你掌握了三种罕见的概率公式吗?(①等能够事情的概率公式;②互斥事情有一个发作的概率公式;③相互独立事情同时发作的概率公式。
)
72.二项式展开式的通项公式、n次独立重复实验中事情A发作k次的概率易记混。
通项公式:它是第r+1项而不是第r项;
事情A发作k次的概率:。
其中k=0,1,2,3,,n,且0
73.求散布列的解答题你能把步骤写全吗?
74.如何对总体散布停止估量?(用样本估量总体,是研讨统
计效果的一个基本思想方法,普通地,样本容量越大,这种估量就越准确,要求能画出频率散布表和频率散布直方图;了解频率散布直方图矩形面积的几何意义。
)
75.你还记得普通正态总体如何化为规范正态总体吗?(对任一正态总体来说,取值小于x的概率,其中表示规范正态总体取值小于的概率)
以上就是查字典数学网高考频道为您整理的2021年高考数学概率知识点温习:陈列、组合和概率易错易混考点,欢迎大家进入高考频道了解2021年最新的信息,协助同窗们学业有成!。
2015国家公务员考试行测判断推理:七招速解排列组合
排列组合题是行政能力测试中判断推理模块逻辑判断部分常考的题型,然而由于这种题目已知信息较为复杂,使得很多同学难以在很短时间内将其解答出来。
提醒考生注意,解答排列组合问题,必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题;同时要抓住问题的本质特征,灵活运用基本原理和公式进行分析,还要注意讲究一些策略和方法技巧1.间接法即部分符合条件排除法,采用正难则反,等价转换的策略。
为求完成某件事的方法种数,如果我们分步考虑时,会出现某一步的方法种数不确定或计数有重复,就要考虑用分类法,分类法是解决复杂问题的有效手段,而当正面分类情况种数较多时,则就考虑用间接法计数。
例:从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同的选法?A.240B.310C.720D.1080正确答案【B】解析:此题从正面考虑的话情况比较多,如果采用间接法,男女至少各一人的反面就是分别只选男生或者女生,这样就可以变化成C(11,4)-C(6,4)-C(5,4)=310。
2.科学分类法问题中既有元素的限制,又有排列的问题,一般是先元素(即组合)后排列。
对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生。
同时明确分类后的各种情况符合加法原理,要做相加运算。
例:某单位邀请10为教师中的6为参加一个会议,其中甲,乙两位不能同时参加,则邀请的不同方法有( )种。
A.84B.98C.112D.140正确答案【D】解析:按要求:甲、乙不能同时参加分成以下几类:a.甲参加,乙不参加,那么从剩下的8位教师中选出5位,有C(8,5)=56种;b.乙参加,甲不参加,同(a)有56种;c.甲、乙都不参加,那么从剩下的8位教师中选出6位,有C(8,6)=28种。
故共有56+56+28=140种。
3.特殊优先法特殊元素,优先处理;特殊位置,优先考虑。
排列组合概率题解题技巧
排列组合概率题解题技巧排列组合概率题解题技巧有哪些?怎么样解决这类问题?下面是小编为大家整理的关于排列组合概率题解题技巧,希望对您有所帮助。
欢迎大家阅读参考学习!排列组合概率题解题技巧1.排列、组合、概率与错位公式2.排列组合概率解题思路——分类法3.例题1:繁琐的计算导致正确率变低4.例题2:通过选项思考暴力的可能性5.例题3:极为简单,一半做错的题6.例题4:分不同情况考虑安排方案7.例题5:分不同情况考虑安排方案8.例题6:理解排列组合题的关键一、排列、组合、概率与错位公式「数量关系」板块中的「排列、组合、概率」方面的题目每年必考、国考省考都会考,而此类题的难度一般较高,因此掌握它们的解题方法是非常有必要的。
总体来说,此类题目的公式非常简单,大致只有三个半,即排列公式、组合公式、概率公式和错位排列公式。
(1)排列公式A(总个数,选出排列的个数)特点是每个个体有「排列」的独特性,谁先选、谁后选会影响结果。
例如5个人选3个排队,5个项目选3个先后完成,两种情况的运算均为:A(5,3)=5×4×3=60种方式(2)组合公式C(总个数,选出组合的个数)特点是每个个体没有「排列」的独特性,谁先选、谁后选都不影响结果。
例如5个人选3个参加比赛,5个项目选3个于今年内完成(不要求完成顺序),则运算均为:C(5,3)=C(5,2)=5×4÷(1×2)=10种方式注意C(5,3)一般要转换为C(5,2),其原因是:C(5,3)=5×4×3÷(1×2×3)=5×4÷2,中间要约去3,因此可能会多花两三秒钟,故要尽量节约时间。
注:排列组合公式很好记忆,由于公考中考察的「排列组合概率」题的数值不会很大,因此在实际考试中,直接在纸上用笔列草稿即可:总数×(总数-1)×(总数-2)×……一直让相乘数字的个数达到「选出的个数」,即为排列公式;再从1开始乘,乘到「选出的个数」,用排列公式得出的结果除以该数即为「组合公式」。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年国考数量关系:排列组合与概率问题重难点讲解
中公教育专家通过对真题的深入研究发现,排列组合与概率问题在国家公务员考试中出现频率较大,几乎每年都会考查该类题型。
公务员的日常工作更多地涉及到统计相关知识,因此这部分题型会愈加被重视。
在现实生活中我们经常会遇到排座次、分配任务等问题,用到的都是排列组合原理,即便是最简单的概率问题也要利用排列组合原理计算。
与此同时,排列组合中还有很多经典问题模型,其结论可以帮助我们速解该部分题型。
一、基础原理
二、基本解题策略
面对排列组合问题,中公教育专家通过多年的研究经验找出了其常用的三种解题策略:
1.合理分类策略
①类与类之间必须互斥(互不相容);②分类涵盖所有情况。
2.准确分步策略
①步与步之间互相独立(不相互影响);②步与步之间保持连续性。
3.先组后排策略
当排列问题和组合问题相混合时,应该先通过组合问题将需要排列的元素选择出来,然后再进行排列。
【例题1】奶奶有6 颗口味各不相同的糖,现分给3 个孙子,其中1 人得1 颗、1 人得2 颗、1人得3颗,则共有( )种分法。
A.60
B.120
C.240
D.360
中公解析:此题答案为D。
此题既涉及排列问题(参加6颗口味各不同的糖),又涉及组合问题(分给三个孙子,每人分得糖数不同),应该先组后排。
三、概率问题
概率是一个介于0到1之间的数,是对随机事件发生可能性的测度。
概率问题经常与排列组合结合考查。
因此解决概率问题要先明确概率的定义,然后运用排列组合知识求解。
1.传统概率问题
【例题2】田忌与齐威王赛马并最终获胜被传为佳话。
假设齐威王以上等马、中等马和下等马的固定顺序排阵,那么田忌随机将自己的三匹马排阵时,能够获得两场胜利的概率是( )。
2.条件概率
在事件B已经发生的前提下,事件A发生的概率称为条件概率,即A在B条件下的概率。
P(AB)为AB同时发生的概率,P(B)为事件B单独发生的概率。
【例题3】小孙的口袋里有四颗糖,一颗巧克力味的,一颗果味的,两颗牛奶味的。
小孙任意从口袋里取出两颗糖,他看了看后说,其中一颗是牛奶味的。
问小孙取出的另一颗糖也是牛奶味的可能性(概率)是多少?
四、排列组合问题特殊解法
排列组合问题用到的方法比较特殊,缘于这些方法都是在对问题进行变形,把不容易理解的问题转化为简单的排列组合问题。
1.捆绑法
排列时如要求几个元素相邻,则将它们捆绑起来视为一个整体参与排列,然后再考虑它们内部的排列情况。
【例题4】某展览馆计划4月上旬接待5个单位来参观,其中2个单位人较多,分别连续参观3天和2天,其他单位只参观1天,且每天最多只接待1个单位。
问:参观的时间安排共( )种。
A.30
B.120
C.2520
D.30240
2.插空法
排列时如要求几个元素不相邻,则把不能相邻的元素插到其他元素形成的“空隙”中去。
【例题5】将三盆同样的红花和四盆同样的黄花摆放成一排,要求三盆红花互不相邻,共有多少种不同的方法?
A.8
B.10
C.15
D.20
3.插板法
若要求把n个元素分成m堆(每堆至少有1个),则把(m-1)个木板插入这n 个元素形成的(n-1)个“空隙”中去可实现上述要求。
【例题6】某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料。
问一共有多少种不同的发放方法?
A.7
B.9
C.10
D.12
【例题7】一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法?
A.20
B.12
C.6
D.4
5.分析问题对立面
很多问题分类讨论起来很麻烦,但是它的对立面却很好计算,此时只需要算出总体的情况数再减去对立面的情况数。
【例题8】某班同学要订A、B、C、D四种学习报,每人至少订一种,最多订四种,那么每个同学有多少种不同的订报方式?
A.7种
B.12种
C.15种
D.21种
中公解析:从中公的命题分析来看,题中的事件有多种情况,最直接的方法自然是分类讨论,但类别太多,此时应优先考虑它的对立面,看是不是要比问题本身简单。
“至少1种,至多4种”,结合题干,其反面是“1本都不订”。
每种报纸有订或不订2种选择,则共有2×2×2×2=16种订法,反面情况为1种,则所求就是16-1=15种。
五、经典问题模型
排列组合中有若干经典问题分析起来较复杂,我们可直接利用这类问题的结论。
其中主要介绍以下三类经典问题:环线排列问题、错位重排问题、传球问题。
我们需要记住这些问题的结论。
更多2015年国家公务员考试信息及备考资料请关注:湖南省国家公务员考试网(/html/guojiagongwuyuan/)。