稀溶液法测定偶极矩

合集下载

实验 稀溶液法测偶极矩

实验 稀溶液法测偶极矩

实验二十二稀溶液法测偶极矩一、目的要求1.用溶液法测定极性分子的偶极矩,了解偶极矩与分子电性质的关系。

2.掌握稀溶液法测定偶极矩的实验技术。

二、原理偶极矩是表示分子中电荷分布情况的物理量,它的数值大小可以量度分子的极性。

偶极矩是一个向量,规定其方向由正到负,定义为分子正负电荷中心所带的电荷量q与正负电荷中心之间的距离d的乘积:μ = q ² d(1)从分子的偶极矩数据的大小可以了解分子的对称性、空间构型等结构特征。

由于分子中原子间距离数量级是10-8cm,电子电量数量级是10-10静电单位,故分子偶极矩的单位习惯上用"德拜(Debye)"表示,记为D,它与国际单位库仑²米(c²m)的关系为:1D=1³10-18静电单位²厘米=3.336³10-30C²m (2)偶极矩的大小与配合物中的原子排列的对称性有关。

对于[M A2B2]或[M A4B2]型配合物,他们的反式构型应具有对称中心,其偶极矩为0或者比较小,而顺式构型要大得多。

应用这一方法的必要条件是配合物在非极性溶剂中要有一定的溶解度。

分子偶极矩通常可采用微波波谱法、分子束法、介电常数法等几种方法进行测量。

由于受仪器和样品的局限,前两种方法使用极少,文献上发表的偶极矩数据均来自介电常数法。

介电常数的测定又主要分频率谐振法和直接电容法,本实验采用小电容测量仪直接测溶液的介电常数--严格地从物理学的意义上讲是与真空相比的相对介电常数,同时也介绍谐振法的实验原理。

偶极矩理论最初由Debye于1912年提出,在Debye方程的理论体系中,通常采用溶液法,先将被测物质与非极性溶剂配制成不同浓度的稀溶液,再通过测量这些溶液的介电常数,折射率和密度来计算溶质分子的偶极矩。

对于由极性溶质和非极性溶剂所组成的溶液,Debye提出它的摩尔极化度公式为:(3)式中:P为摩尔极化度;M为分子量;X为摩尔分数;表示密度;符号下标l表示溶剂,2表示溶质,12表示溶液。

溶液法测定极性分子的偶极矩

溶液法测定极性分子的偶极矩

测定精度较高
通过精确测量溶液的折射 率和电导率等参数,可以 获得较为准确的偶极矩值。
缺点
受溶液浓度影响
01
溶液法测定偶极矩时,结果会受到溶液浓度的影响,需要严格
控制溶液的浓度和纯度。
对测量仪器要求高
02
为了获得准确的测量结果,需要使用高精度的测量仪器,如电
导率计、折射仪等。
对实验条件要求严格
03
溶液法测定偶极矩需要在恒温、恒压的条件下进行,实验条件
为了更好地了解分子间的相互作用和分子结构与性质的关系,未来研究 将更加注重多尺度测量方法的发展,以实现从原子、分子、到宏观尺度 多层次的测量和分析。
新型实验设备与技术
随着实验设备和技术的发展,未来溶液法测定极性分子偶极矩的研究将 更加注重新型实验设备与技术的应用,以推动研究工作的深入开展。
THANKS FOR WATCHING
分子光谱学研究
偶极矩对分子的电子结构和光谱性质有重要影响,通过溶液法测定偶极矩,可以深入理 解分子的光谱行为。
在物理研究中的应用
电磁学研究
偶极矩是电磁学中重要的物理量,通过溶液法测定偶极矩, 可以研究分子的电磁性质和行为。
表面物理和界面物理
在表面物理和界面物理研究中,溶液法测定偶极矩可以揭示分 子在表面或界面上的取向和排列,有助于理解表面和界面现象
02 溶液法测定偶极矩的实验 方法
实验准备
准备实验器材
包括磁力搅拌器、电导率计、电 极、电解槽等。
准备实验试剂
需要选择适当的电解质溶液,如 KCl、NH4Cl等,以及待测极性分 子。
实验环境要求
确保实验室温度、湿度适宜,避免 外界干扰因素对实验结果的影响。
实验步骤

偶极矩实验报告 物理化学

偶极矩实验报告 物理化学

稀溶液法测定极性分子的偶极矩摘要本实验依据分子的分子偶极矩与极化之间的关系,通过将正丁醇溶于环己烷中以达到模拟理想气体的状态,并且忽略原子极化度,通过测定了正丁醇—环己烷溶液的密度、介电常数及纯正丁醇的折射率,计算得到正丁醇的偶极矩为(1.560.05)()D μσμ±=±,实验值相对误差3%;与文献值1.66(D )误差6%。

引言1. 理论概念物质的分子尺度中普遍存在分子间偶极矩,它是由分子正负电荷中心偏移而产生的;用以表征分子的极性大小。

其定义为分子正负电荷中心所带电荷q 和分子正负电荷中心之间的距离l 的乘积μ=ql 。

μ的单位是Debye ,1D =3.33564×10-30C m ⋅。

在电场存在的条件下,分子会产生诱导极化,包括由电子相对原子核位移产生的电子极化和由原子核间相对位移产生的原子极化。

诱导极化大小为二者的加和。

同时,极性分子在电场中会出现一定的取向有规律排列现象,以降低势能;这称为分子的转向极化,用摩尔转向极化度P μ衡量。

这一过程也会产生偶极矩,大小可通过下式计算2019AP N kTμμε=……(1) 其中A N 为Avogadro 常数,k 为Boltzmann 常数,0ε为真空介电常数,T 为热力学温度,μ为分子的永久偶极矩。

总摩尔极化度为电子、原子、转向极化度之和。

E A P P P P μ=++ (2)在外电场方向发生改变时,偶极矩方向也会随之改变,这一改变时间称为弛豫时间。

不同类型的极化弛豫时间不同:极性分子转向极化:10-11~10-12 s 原子极化:10-14 s 电子极化:10-15 s在明确了弛豫时间概念后,可以通过改变外电场频率,有针对性地对各种极化进行测量。

2. 实际测量摩尔极化度与物质介电常数有关,通过进行稀溶液假设忽略分子间作用力时,关系可以用Clausius-Mosotti-Debye 方程表示12MP εερ-=⋅+……(3) 其中M 为摩尔质量,ρ为密度。

溶液法测定极性分子的偶极矩-1

溶液法测定极性分子的偶极矩-1

溶液法测定极性分子的偶极矩摘要:为了解电介质极化与分子极化的概念,掌握溶液法测定极性分子永久偶极矩的理论模型和实验技术。

通过配制不同浓度的乙酸乙酯的极稀溶液,测定它们的介电常数和折光率以及溶液密度,得到a、b、c。

实验测得a=1.3489,b=0.0859,c=-0.0464再通过克劳修斯-莫索提-德拜方程求得P m=81.1516, P E=22.7002,最后得到乙酸乙酯的偶极矩为μ=5.93*e-30C*m,与文献值的相对误差为7.54%。

由此可看出溶液法测定极性分子的偶极矩是一项非常简单易操作的实验方法。

关键词:永久偶极矩溶液法介电常数Abstract To understand the concept of dielectric polarization and molecular polarization, master determination of theoretical models and experimental techniques permanent dipole moment of the polar molecule solution method.By formulating different concentrations of ethyl acetate in a very dilute solution, measuring their dielectric constant and refractive index and density of the solution, to give a, b, c.Experimentally measured a = 1.3489, b = 0.0859, c=-0.0464Through Clausius - Mosuo Ti - Debye equation obtained Pm= 81.1516, P E= 22.7002,Finally get the dipole moment of ethyl acetate μ = 5.93 * e-30C *m,Literature values and the relative error is 7.54%.Thereby determining the dipole moment of the polar molecule can be seen a very simple solution method is easy to operate experimental method. Keywords: Permanentdipole momentSolution methodPermittivity分子结构可以看成是由电子和分子骨架所构成的。

溶液法测定极性分子的偶极矩

溶液法测定极性分子的偶极矩

溶液法测定极性分子的偶极矩偶极矩是描述分子极性程度的指标之一,在化学研究和生产中有着广泛的应用,如分子的结构确定、溶解度的计算、反应活性的预测等。

测定偶极矩的方法有很多种,其中一种重要的方法是溶液法测定。

本文将对溶液法测定极性分子的偶极矩进行详细介绍。

一、基本原理分子的偶极矩是描述分子极性和分子中心对称性的物理量,它是由分子中正、负电荷分布不均匀而引起的。

在外电场的作用下,极性分子会发生偶极矩与电场方向相同的取向,这种取向是分子能量最低的状态。

偶极矩p与电场强度E之间的关系可以用下式表示:p = kE式中k为比例常数,被称为偶极极化率。

偶极矩的单位通常是D (戴括林)。

1D = 3.336 × 10-30 库仑米。

在溶液中,极性分子会与分子间作用力相互作用,分子取向受到周围分子的干扰。

但是随着电场强度的增加,溶液中的极性分子的取向会出现相应的改变。

假设极性分子的取向只有二种取向,即与电场方向相同或相反,这种取向称为取向相干。

电场强度E的变化范围非常小,足以保证溶液中极性分子的取向相对稳定。

根据统计学原理,对于一大量具有取向相干的分子,它们的平均取向相同。

根据Maxwell-Boltzmann分布函数,溶液中分子的偶极矩分布在一个分子取向分布函数与电场强度之积的函数上。

分子取向分布函数可以表示为:f(θ) = sinθ e - (epE cosθ) / (kT)式中θ为分子的取向角度,ep为分子的偶极极化率,T为温度,k为玻尔兹曼常数。

二、实验步骤1. 准备溶液选择一个具有已知浓度的极性分子溶解于一个电介质中,制备极性分子溶液。

通常使用丙酮、正己烷、四氯化碳、氯仿等非极性溶剂溶解极性分子。

使用电介质可以基本消除电场强度产生的影响。

2. 进行偶极矩测定将溶液装入两个平行的电极板中。

两个电极板之间应保持足够的距离,使得在两板之间的电场强度趋于均匀。

控制电场强度E保持不变,并测量极间电位差V0。

溶液法测定偶极矩结构化学实验二

溶液法测定偶极矩结构化学实验二

结构化学实验二溶液法测定极性分子的偶极矩一、实验目的1.用溶液法测定正丁醇的偶极矩2.了解偶极矩与分子电性质的关系3. 掌握溶液法测定偶极矩的实验技术二、实验原理1.偶极矩与极化度两个大小相等方向相反的电荷体系的偶极矩定义为:μ=q d (1)极性分子在电场作用下极化程度可用摩尔定向极化度P定向来衡量:P定向=4/3πN A*μ02/(3kT)=4/9πN A*μ02/(kT) (2)极性分子所产生的摩尔极化度P是摩尔定向极化度、摩尔电子诱导极化度和摩尔原子诱导极化度的总和:P=P定向+P诱导=P定向+P电子+P原子(3)2. 溶液法测定偶极矩无限稀释时溶质的摩尔极化度的公式:P=P2∞=3αε1/(ε1+2)2* Μ1/ρ1+ (ε1-1)/(ε1+2) * (Μ2-βΜ1)/ρ1(9) 习惯上用溶质的摩尔折射度R2表示高频区测得的摩尔极化度,因为此时P 定向=0,P原子=0,推导出无限稀释时溶质的摩尔折射度的公式:P电子=R2∞=(n12-1)/(n12+2) * (Μ2-βΜ1)/ρ1+6n12Μ1γ/[(n12+2)2*ρ1] (13) 稀溶液的近似公式:ε溶=ε1(1+α* x2) (7)ρ溶=ρ1(1+β*x2) (8)n溶=n1(1-γ*x2) (12) 由P定向=P2∞-R2∞=4/9πN A*μ02/(kT) (14)得μ0=0.0128*[(P2∞-R2∞)*T]1/2 (D)(15)需测定参数:α,β,γ,ε1,ρ1 n1三、仪器和试剂仪器:阿贝折光仪1台;比重管1只;电容测量仪一台;电容池一台;电子天平一台;电吹风一只;25ml容量瓶4支;25ml、5ml、1ml移液管各一支;滴管5只;5ml针筒一支;针头一支;吸耳球两个试剂:正丁醇(分析纯);环己烷(分析纯);蒸馏水;丙酮四、实验步骤1.溶液的配制配制4种正丁醇的摩尔分数分别是0.05、0.10、0.15、0.20的正丁醇-环己烷溶液。

稀溶液法测定偶极矩实验报告

稀溶液法测定偶极矩实验报告

稀溶液法测定偶极矩实验报告实验名称:稀溶液法测定偶极矩实验目的:1.通过稀溶液法测定物质的偶极矩大小。

2.掌握使用秤量准确测量固体物质的质量的方法。

3.熟悉使用溶液法进行实验,掌握制备溶液的方法。

实验原理:偶极矩是描述一分子或者一原子对外界电场的敏感程度的量,是电场相互作用下分子或原子各正、负电荷间位移产生的极矩。

测定偶极矩可以通过稀溶液法进行,其原理是在电场作用下,极化的溶液会在两电极之间产生一个电流,通过测量这个电流的大小可以计算出溶液中的物质的偶极矩。

实验仪器:1.常温电陶炉2.落地电子天平3.平行电场选阻电桥4.多用数字表实验步骤:1.利用电子天平精确称取待测物质的质量。

2.制备一定浓度的溶液,要求该溶液中待测物质的质量分数低于5%。

3.将制备好的溶液放入选阻电桥中,使溶液在电极之间。

4.将电场导线连接到电桥上,将电桥的两个电极放入溶液中。

5.调整电桥的电位使其平衡,记录下测定的电位差。

6.利用已知的标准物质的偶极矩大小,构建校准曲线。

7.将实验测得的电位差代入校准曲线中,计算出待测物质的偶极矩大小。

实验结果与分析:根据实验数据计算得出的待测物质的偶极矩大小为X,误差为Y。

经过与理论值的对比发现,实验结果较为准确,误差较小。

结论:通过稀溶液法测定偶极矩的实验,我们成功地得到了待测物质的偶极矩大小,并且得到的结果较为准确。

实验结果证明了该方法的可行性,并且具有一定的准确性。

实验总结:稀溶液法测定偶极矩是一种常用的实验方法,通过这次实验我们掌握了相关的实验技能和操作方法。

在实验过程中,我们注意到了一些实验操作的要点,例如使用电子天平称量物质的方法,制备溶液的步骤等。

这些经验和技巧对我们的实验能力提升有很大的帮助。

然而,在整个实验过程中,也存在一些问题和不足。

例如在制备溶液时,难以控制溶液中待测物质的质量分数低于5%;在测量电位差时,由于仪器精度的限制,测量结果存在一定的误差等。

为了提高实验结果的准确性,我们需要进一步改进实验方法和技术。

稀溶液法测定偶极矩实验报告(华南师范大学物化实验)

稀溶液法测定偶极矩实验报告(华南师范大学物化实验)

稀溶液法测定偶极矩、实验目的(1)掌握溶液法测定偶极矩的主要实验技术(2)了解偶极矩与分子电性质的关系(3)测定正丁醇的偶极矩二、实验原理2.1偶极矩与极化度分子结构可以近似地看成是由电子云和分子骨架(原子核及层电子)所构成。

由于空间构型的不同,其正负电荷中心可能重合,也可能不重合。

前者称为非极性分子,后者称为极性分子。

1912年,德拜提出“偶极矩”的概念来度量分子极性的大小,其定义是卩qd (1)式中,q是正负电荷中心所带的电量;d为正负电荷中心之间的距离;卩是一个矢量,其方向规定为从正到负,的数量级是10-3°Cm通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。

极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。

所以偶极矩的统计值等于零。

若将极性分子置于均匀的电场E中,则偶极矩在电场的作用下,趋向电场方向排列。

这时称这些分子被极化了。

极化的程度可以用摩尔转向极化度P卩来衡量。

R与永久偶极矩卩的平方成正比,与绝对温度T成反比。

(2)(6)4 nN A A 巳-9kF式中,k 为波兹曼常数;NA 为阿弗加德罗常数;T 为热力学温度;A 为分子 的永久偶极矩。

在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架 的相对移动,分子骨架也会发生形变。

这称为诱导极化或变形极化。

用摩尔诱导摩尔极化度P 与介电常数c 之间的关系式。

极化度P 诱导来衡量。

显然, P 诱导可分为两项,即电子极化度 P e 和原子极化度因此诱导=p e + P a(3)如果外电场是交变场, 极性分子的极化情况则与交变场的频率有关。

当处于频率小于101O H Z 的低频电场或静电场中,极性分子所产生的摩尔极化度 P 是转向极化、电子极化和原子极化的总和。

A+ P e +R(4)介电常数实际上是在107HZ 一下的频率测定的,测得的极化度为 P A+ P e +P a 。

稀溶液法测定乙酸乙酯分子偶极矩的试验

稀溶液法测定乙酸乙酯分子偶极矩的试验

稀溶液法测定乙酸乙酯分子偶极矩的试验是一种常见的实验方法,其原理是通过测量物质在不同浓度下的电导率,来确定其分子偶极矩的大小。

在这篇文章中,我们将深入探讨这种实验的原理、方法和实验步骤,并介绍一些注意事项和实验结果的分析。

一、实验原理乙酸乙酯是一种极性分子,具有较大的分子偶极矩。

在溶液中,其分子偶极矩会导致电荷分布的不均匀性,从而影响溶液的电导率。

当溶液浓度越来越低时,由于分子之间的相互作用越来越小,电导率也越来越低。

通过测量溶液在不同浓度下的电导率,可以得到一条电导率与浓度之间的曲线。

根据这条曲线的斜率,可以计算出溶液的摩尔电导率,从而求得乙酸乙酯分子的偶极矩大小。

二、实验方法1. 实验仪器和材料(1) 电导仪:用于测量溶液的电导率。

(2) 恒温水浴:用于控制实验温度。

本实验常用温度为25℃。

(3) 毛细管滴管:用于准确地加入溶液。

(4) 稀盐酸:用于将乙酸乙酯分子转化为其离子形式。

(5) 乙酸乙酯:用于制备溶液。

(6) 双壁玻璃烧杯、洁净钢管和滤纸:用于实验操作。

(7) 电子天平:用于称量一定质量的乙酸乙酯溶液。

(8) 正十二烷:用于制备稀溶液。

2. 实验步骤(1) 将乙酸乙酯用电子天平称重,制备一定浓度的溶液。

本实验中,一般取0.5g乙酸乙酯和30ml正十二烷,制备0.02mol/L的乙酸乙酯稀溶液。

(2) 在洁净烧杯中加入一定量的稀盐酸,将乙酸乙酯溶液滴入其中,并用毛细管滴加一定量的双壁玻璃烧杯中的正十二烷,制备一定浓度的乙酸乙酯溶液。

本实验中,一般取10ml稀盐酸、3ml乙酸乙酯稀溶液和6ml正十二烷,制备不同浓度的乙酸乙酯溶液,分别为0.01mol/L、0.02mol/L、0.03mol/L、0.04mol/L和0.05mol/L。

(3) 将制备好的不同浓度的乙酸乙酯溶液分别倒入电导池中,测量其电导率。

注意,每次测量前须将电导仪的电极清洗干净,以避免干扰实验结果。

(4) 通过测量电导率随浓度变化的曲线来计算其斜率,进而求得乙酸乙酯分子的偶极矩大小。

大学物理化学实验报告-溶液法测定极性分子的偶极距

大学物理化学实验报告-溶液法测定极性分子的偶极距

物理化学实验报告院系化学化工学院班级化学061学号13姓名沈建明实验名称 溶液法测定极性分子的偶极距 日期 2009.3.26 同组者姓名 史黄亮 室温 17.86℃ 气压 101.21kPa 成绩一、目的和要求1、了解偶极距与分子电性质的关系;2、掌握溶液法测定偶极距的试验技术;3、用溶液法测定乙酸乙酯的偶极距。

二、基本原理 1. 偶极矩和极化度分子的极性可以用“偶极矩”来度量。

其定义为(1)q 为正、负电荷中心所带电荷量,d 为正、负电荷中心距离。

是向量,其方向规定从正到负。

若将极性分子置于均匀电场E 中,则偶极矩在电场的作用下趋向电场方向排列,分子被极化,极化的程度可用摩尔转向极化度P 转向来衡量:(2)在外电场作用下,不论永久偶极为零或不为零的分子都会发生电子云对分子骨架的相对移动,分子骨架也辉因电场分布不均衡发生变形。

用摩尔变形极化度P 变形来衡量:P 变形 = P 电子 + P 原子 (3)分子的摩尔极化度:P = P 转向 +P 变形 = P 转向 +P 电子 +P 原子 (4)dq μ⋅=24μP =πL 9kT转向μ该式适用于完全无序和稀释体系(互相排斥的距离远大于分子本身大小的体系),即温度不太低的气相体系或极性液体在非极性溶剂中的稀溶液。

在中频场中转向P = 0。

则P =P 电子 +P 原子 (5) 在高频场中原子P =0 则P =P 电子 (6) 因此,原则上只要在低频电场下测得极性分子的摩尔极化度P ,在红外频率下测得极性分子的摩尔诱导极化度诱导P ,两者相减得到极性分子的摩尔转向极化度转向P ,然后代人(2)式就可算出极性分子的永久偶极矩μ来。

2、极化度的测定首先利用稀溶液的近似公式()211x αεε+=溶 (7) ()211x βρρ+=溶 (8)再根据溶液的加和性,推导出无限稀释时溶质摩尔极化度的公式()11211112112022123lim 2ρβεερεαεM M M P P P x -⋅+-+⋅+===→∞ (9) 根据光的电磁理论,在同一频率的高频电场作用下,透明物质的介电常数ε与折光率n 的关系为 2n =ε 因为此时转向P = 0,原子P =0,则R 2 =电子P = ρMn n ⋅+-2122 (10) 在稀溶液情况下也存在近似公式()211x n n γ+=溶 (11)同样,从(9)式可以推导得无限稀释时溶质的摩尔折射度的公式 电子P ()122112111221212022621lim 2ργρβ++-⋅+-===→∞n M n M M n n R R x (12) 从(2)、(4)、(9)和(12)式可得转向P kTL RP22294μπ=-=∞∞ 即()m C TR P⋅-⨯=∞∞-22301004274.0μ3、介电常数的测定介电常数是通过测定电容计算而得。

稀溶液法测定极性分子的偶极矩0109

稀溶液法测定极性分子的偶极矩0109

稀溶液法测定极性分子的偶极矩一、实验目的1. 掌握溶液法测定偶极矩的原理、方法和计算。

2. 熟悉小电容仪、折射仪和比重瓶的使用。

3. 测定正丁醇的偶极矩,了解偶极矩与分子电性质的关系。

二、实验原理 1. 分子的极性分子是由带正电荷的原子核和带负电荷的电子组成的。

分子呈电中性,但因空间构型的不同,正负电荷中心可能重合,也可能不重合,前者为非极性分子,后者称为极性分子,分子极性大小用偶极矩μ来度量,其定义为μ=qd (1)式中:q 为正、负电荷中心所带的电荷量,单位是C ;d 是正、负电荷中心的距离,单位是m 。

μ是偶极矩,单位是(SI 制)库[仑]米(C·m)。

而过去习惯使用的单位是德拜(D):1D =1×10-18静电单位·厘米=3.338×10-30C·m在不存在外电场时,非极性分子虽因振动,正负电荷中心可能发生相对位移而产生瞬时偶极矩,但宏观统计平均的结果,实验测得的偶极矩为零。

极性分子具有永久偶极矩,由于分子热的运动,偶极矩在空间各个方向的取向几率均等,统计值等于零。

若将极性分子置于均匀的外电场中,分子将沿电场方向转动,同时还会发生电子云对分子骨架的相对移动和分子骨架的变形,称为极化。

极化的程度用摩尔极化度P 来度量。

分子因转向而极化的程度用摩尔转向极化度P转向来表示,因变形而极化的程度用摩尔变形极化度P 变形来表示。

而P 变形又由P 电子 (电子极化度)和P 原子 (原子极化度)两部分组成,于是有P =P 转向+P 变形=P 转向+(P 电子+P 原子) (2) P转向与永久偶极矩的平方μ2的值成正比,与热力学温度T 成反比:kTN p A 334412μππε⋅⋅⋅=转向 (3)式中:N A 为阿佛加德罗(Avogadro)常数;k 为玻耳兹曼(Boltzmann)常数。

由于P 原子在P 中所占的比例很小,所以在不很精确的测量中可以忽略P 原子,(2)式可写成:P =P 转向 + P 电子 (4)只要在低频电场(υ<1010s -1)或静电场中,测得的是P 。

溶液法测定极性分子的偶极矩实验报告

溶液法测定极性分子的偶极矩实验报告
(3)极性分子所产生的摩尔极化度P是摩尔定向极化度、摩尔电子诱导极化度和摩尔原子诱导极化度的总和:
P=P定向+P诱导=P定向+P电子+P原子
2.偶极矩的测定方法(溶液法测定偶极矩)
(1)无限稀释时溶质的摩尔极化度的公式:
P=P2∞=3αε1/(ε1+2)2* Μ1/ρ1+ (ε1-1)/(ε1+2) * (Μ2-βΜ1)/ρ1
C0=(C/标-C/空)/(ε标-1)=(5.48-5.24)/(2.207-1)=0.199
Cd=C/空-C0=5.24-0.199=5.04
由ε溶=(C/溶- Cd)/ C0,可算出:
ε(环己烷)=2.207
ε(0.05)=2.66
ε(0.10)=2.56
ε(0.15)=3.16
ε(0.20)=2.86
3.介电常数的测定
(1)先接好介电常数测量仪的配套电源线,打开电源开关,预热5分钟;用配套测试线将数字电常数测量仪与电容池连接起来;待显示稳定后,按下“采零”键,以清除仪表系统零位漂移,屏幕显示“00.00”。
(2)电容C0和Cd的测定:本实验采用环己烷为标准物质,其介电常数的温度公式为:ε标=2.203-0.0016(t-20)
4.溶液密度的测定
取干净的比重管称重m0。然后用针筒注入已恒温的蒸馏水,定容,称重,记为m1。用丙酮清洗并吹干。同上,测量各溶液,记为m2。则环己烷和各溶液的密度为:
ρ溶=(m2-m0)/(m1-m0) *ρ水,ρ25℃水=0.99707g/mL
5.清洗、整理仪器
上述实验步骤完成后,确认实验数据的合理性。确认完毕,将剩余溶液回收,容量瓶、比重管、针筒洗净、吹干。整理实验台,仪器恢复实验前的摆放。

稀溶液法测定偶极矩实验报告(华南师范大学物化实验)

稀溶液法测定偶极矩实验报告(华南师范大学物化实验)

稀溶液法测定偶极矩一、实验目的(1)掌握溶液法测定偶极矩的主要实验技术 (2)了解偶极矩与分子电性质的关系 (3)测定正丁醇的偶极矩二、实验原理2.1偶极矩与极化度分子结构可以近似地看成是由电子云和分子骨架(原子核及层电子)所构成。

由于空间构型的不同,其正负电荷中心可能重合,也可能不重合。

前者称为非极性分子,后者称为极性分子。

1912年,德拜提出“偶极矩”的概念来度量分子极性的大小,其定义是qd →μ (1)式中,q 是正负电荷中心所带的电量;d 为正负电荷中心之间的距离;→μ是一个矢量,其方向规定为从正到负,的数量级是10-30C ·m 。

通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。

极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。

所以偶极矩的统计值等于零。

若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,趋向电场方向排列。

这时称这些分子被极化了。

极化的程度可以用摩尔转向极化度P μ来衡量。

P μ与永久偶极矩μ的平方成正比,与绝对温度T 成反比。

kT 9μπN 4P A μ=(2)式中,k 为波兹曼常数;NA 为阿弗加德罗常数;T 为热力学温度;μ为分子的永久偶极矩。

在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。

这称为诱导极化或变形极化。

用摩尔诱导极化度P 诱导来衡量。

显然,P 诱导可分为两项,即电子极化度P e 和原子极化度P a ,因此P 诱导 = P e + P a (3) 如果外电场是交变场,极性分子的极化情况则与交变场的频率有关。

当处于频率小于1010H Z 的低频电场或静电场中,极性分子所产生的摩尔极化度P 是转向极化、电子极化和原子极化的总和。

P = P μ+ P e +P a (4) 介电常数实际上是在107H Z 一下的频率测定的,测得的极化度为 P μ+ P e +P a 。

实验12 正丁醇偶极矩的测定

实验12 正丁醇偶极矩的测定

正丁醇偶极矩的测定摘要:当分子中正、负电荷中心不重合时,分子就会具有极性,分子极性的大小用偶极矩μ来度量,偶极矩的大小与无限稀溶液的摩尔极化度和摩尔折光率有关。

本实验将通过溶液法测定正丁醇的偶极矩,即通过测量正丁醇—环己烷稀溶液折射率、介电常数、溶液密度等随浓度的变化,求得正丁醇固有偶极矩的大小。

关键词:偶极矩正丁醇极化稀溶液法Measurement on Dipole Moment of n-ButanolAbstract:Molecule is called polar one while the centers of positive and negative charge do not coincide. Dipole moments is the measure of molecular polarity, which is related to molar polarization and molar refractivity of infinitely dilute solution. In the experiment, we research the relationship between the concentration of n-butyl alcohol—cyclohexane and the refractivity, dielectric constant, and density, to obtain the dipole moment of n-butyl alcohol.Keywords:Dipole Moment n-Butanol Polarization Dilute Solution Method1.前言分子中正负电荷中心不重合,从整个分子来看,电荷的分布是不均匀的,不对称的,这样的分子为极性分子,以极性键结合的双原子分子一定为极性分子,极性键结合的多原子分子视结构情况而定如CH4就是非极性分子。

稀溶液法测定偶极矩

稀溶液法测定偶极矩

华 南 师 范 大 学 实 验 报 告学生姓名 学 号 专 业 化学(师范) 年级班级 课程名称 结构化学实验 实验项目 稀溶液法测定偶极矩 实验类型 □验证 □设计 √综合 实验时间 2013年10月29日实验指导老师 彭彬 实验评分【实验目的】1. 掌握溶液法测定偶极矩的主要实验技术2. 了解偶极矩与分子电性质的关系3. 测定正丁醇的偶极矩 【实验原理】1.偶极矩与极化度分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。

由于空间构型的不同,其正负电荷中心可能重合,也可能不重合。

前者称为非极性分子,后者称为极性分子。

1912年,德拜提出“偶极矩”的概念来度量分子极性的大小,其定义是qd →μ ①式中,q 是正负电荷中心所带的电量;d 为正负电荷中心之间的距离;→μ是一个矢量,其方向规定为从正到负。

因分子中原子间的距离的数量级为10-10m ,电荷的数量级为10-20C ,所以偶极矩的数量级是10-30C ·m 。

通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。

极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。

所以偶极矩的统计值等于零。

若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,趋向电场方向排列。

这时称这些分子被极化了。

极化的程度可以用摩尔转向极化度P μ来衡量。

P μ与永久偶极矩μ的平方成正比,与绝对温度T 成反比。

kT 9μπN 4P A μ=②式中,k 为波兹曼常数;NA 为阿弗加德罗常数;T 为热力学温度;μ为分子的永久偶极矩。

在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。

这称为诱导极化或变形极化。

用摩尔诱导极化度P 诱导来衡量。

显然,P 诱导可分为两项,即电子极化度P e 和原子极化度P a ,因此P 诱导 = P e + P a ③如果外电场是交变场,极性分子的极化情况则与交变场的频率有关。

稀溶液法测定偶极矩

稀溶液法测定偶极矩

【数据处理】1、数据记录表表一:溶液配制实验数据表三:电容测定实验数据2、数据处理2.2c 。

4.0ml 1.4094 0.1745斜率:-0.0668 截距:1.4212 相关系数:0.99832.3计算环己烷的介电常数ε,求出电容池的分布电容Cx 。

环己烷介电常数: =2.0118 电容池的分布电容 =2.77计算溶液的介电常数ε。

真空电容量 =2.03样品的介电常数)20(0016.0023.2环--=t ε1C -'''--=标空标空εC C C x 1C ''0--=标空标εC C 0'C C C x-=溶溶ε2.4绘制ε-x2 工作曲线,由直线测得斜率a,截距ε1。

斜率:4.1364 截距:2.0596 相关系数:0.9987 2.5绘制作ρ1。

斜率:0.1068 截距:0.7689 相关系数:0.98012.6计算,计算Pe 。

=196.2403P ∞2P∞2122112111221212022)2(621lim ρρ++-⨯+-===→∞n c M n bM M n n R R P x e 1121111211221)2(3ρεερεεbM M M a P -⨯+-+⨯+=∞=20.59022.7计算P μ,计算偶极矩。

P μ=-P e =196.2403-20.5902=175.6501TR P N T R P k A)(0128.04)(92222∞∞∞∞-=-=πμ=2.9383德拜【结果与讨论】1、实验测得的以环己烷为溶剂时乙酸乙酯的偶极矩为2.9383德拜,温度为27.0℃,查找文献得,乙酸乙酯在25℃中的偶极矩为1.78德拜。

2、实验所测得的三条工作曲线n1,2-x2, ε-x2, ρ1,2 -x2的相关系数分别为0.9983,0.9987,0.9801,数据的线性较好。

【思考题】1、实验误差主要来源①本实验所用试剂均易挥发.。

溶液法测分子偶极距

溶液法测分子偶极距

溶液法测定极性分子的偶极矩Ⅰ、实验目的:(1) 了解偶极矩与分子电性质的关系; (2) 掌握溶液法测定偶极矩的实验技术; (3) 用溶液法测定乙酸乙酯的偶极矩;Ⅱ、实验目的:偶极矩(μ)的概念来度量分子极性的大小:μ=q ·d 。

P 转向与永久偶极矩平方成正比,与热力学温度T 成反比。

在外电场的作用下产生的诱导极化:P 诱导=P 电子+P 原子。

如果在外加电场: P=P 转向+P 电子+P 原子极化度的测定:P=21+-εε·ρM稀溶液的近似公式:)1(21溶X +=αεε )1(21溶X +=βρρ 稀溶液的无限稀释公式:P=2311+εαε·11ρM+21+-εε·112ρβM -M 在高频率电场作用下,透明物质的介电常数:ε=n 2极化度:R 2=P 电子=ρmn n ∙+-2122n=n1(1+γχ2)故,无限稀释:R=121121)2(6ργ+M n n +212121+-n n ·112ρβM -M 偶极矩的测定:由于原子的极化度相当于电子的极化度5%—10%。

μ/(C ·m )=0.04274×10-30T R P )(22∞∞- (C ·m )T 为开氏温度T )R -P (128.00T )R -p (L4k 9/2222∞∞∞∞=∙=πμDd 标、标C C +=C d 空、空C C C +=介电常数的计算:00C Cx x ==εεε Ⅲ、实验步骤:一、溶液的配制用称重法配制5种不同浓度(0.01979、0.05939、0.09903、0.1387、0.1784 g/cm 3) 的乙酸乙酯-四氯化碳溶液,分别盛于容量瓶中,控制乙酸乙酯的浓度在0.15左右,操作时应注意防止溶液和溶剂的挥发以及吸收较大的水汽,为此溶液配好后迅速盖好瓶塞,置于干燥箱中。

二折光率的测定在(25±0.1)℃条件下用阿贝折射仪测定四氯化碳及各组中所配溶液的折光率。

偶极矩的测定

偶极矩的测定

摩尔分数 X2
(2) 四氯化碳及各溶液的折光率n:
编号 折射率
1
2
3
4
5
n1
n2
n3
n平均
(3) 计算 Co 、Cd 及各溶液的介电常数ε:
Co =
Cd
2
=
编号 电容及介电常数
1
3
4
5
C
' 样
Cd
C样
C样 / C0
(4) 作ε—X2图,由直线斜率求得α;
作ρ—X2图,由直线斜率求得β; 作n—X2图,由直线斜率求得γ。 (5) 将
一、实验目的
1.用稀溶液法测定乙酸乙酯的偶极矩。 2. 掌握溶液法测定偶极矩的主要实验技 术。 3.了解偶极矩与分子电性的关系 。 4.学会电容测量仪的使用。
二、实验原理
(1) 偶极矩与极化度 分子结构可以近似地看成是由电子云和分子骨架(原子 核及内层电子)所构成。由于其空间构型的不同,其正 负电荷中心可以是重合的,也可以不重合。前者称为 非极性分子,后者称为极性分子。
P转向
4 N 3 3KT
2
2
4 N 9 KT
式中:K为玻兹曼常数,N
(2)
在外电场作用下,不论极性分子或非极性分子,都会发生电子 云对分子骨架的相对移动,分子骨架也会发生形变。这称为诱 导极化或变形极化。用摩尔诱导极化度 P诱导来衡量。显然P诱导 可分为二项,即电子极化度P电子和原子极化度P原子,因此P诱导 =P电子+P原子。P诱导与外电场强度成正比,与温度无关。 如果外电场是交变场,极性分子的极化情况则与交变场的频率 有关。当处于频率小于 1010s-1 的低频电场或静电场中,极性分 子所产生的摩尔极化度 P是转向极化、电子极化和原子极化的 总和。

溶液法测定偶极矩

溶液法测定偶极矩

(3)由样品折光率计算样品质量组成 将测得的折光率求平均后平方,带入之前做出的标准曲线,即可得到样品的质量分数
J1 J2 n1 1.4534 1.4563 n2 1.4534 1.4562 n3 1.4534 1.4563 n4 1.4533 1.4564 n 1.4534 1.4563 2 ������ 2.112299 2.12081 W 0.035627 0.016192 (4)计算样品介电常数,做������ − ������图 J1 J2 C1′(pF) 8.51 8.01 C2′(pF) 8.51 8.01 C3′(pF) 8.5 8 ������ ′(pF) 8.507 8.007 C(pF) 6.386613 5.886613 ε (图中保 2.531076 2.332922 留四位)
折光率对浓度标准曲线
2.13 2.125 折 光 2.115 率 平 2.11 方 2 2.105 n 2.12 2.1203 2.1190 2.1146 2.1282 y = -0.437x + 2.127 R² = 0.963
2.1086
2.1 2.095 0 0.01 0.02 0.03 0.04
15 -1
10 -1
12
14 -1
p电子 R
n2 1 M n 2 2 (5)
因此,分别在低频和中频电场下测出分子的摩尔极化度,两者相减即可得到 P 转向,再由(3) 式计算 μ 。 通过测定偶极矩, 可以了解分子中电子云的分布和分子对称性, 判断几何异构体和分子 的立体结构。 所谓溶液法就是将极性待测物溶于非极性溶剂中进行测定, 然后外推到无限稀释。 因为 在无限稀的溶液中, 极性溶质分子所处的状态与它在气相时十分相近, 此时分子的摩尔极化 度就可视为(5)的 P。 在稀溶液当中,溶液的摩尔极化度 P 可用下式求出: (6) P P1 x1 p 2 x 2 (1-溶剂,2-溶质,x-摩尔分数)

实验十五偶极矩的测定溶液法

实验十五偶极矩的测定溶液法

实验十五 偶极矩的测定──溶液法一、实验目的1.用溶液法测定乙酸乙酯的偶极矩。

2.了解用溶液法测定偶极矩的原理、方法和计算,并了解偶极矩与分子电性质的关系。

二、实验原理分子电偶极矩(简称偶极矩μ)是用来描述分子中电荷分布情况的物理量,分子中正、负电荷中心不重合的分子称为极性分子,分子极性的大小用偶极矩来衡量,偶极矩的定义为正、负电荷中心间的距离d 与电荷量q 的乘积:μ=q d(1)μ为向量,其方向规定为从正到负,数量级是10-30C x m 。

通过偶极矩的测定,可以了解分子结构中有关电子云的分布,分子的对称性,以及判别几何异构体和分子的立体结构等。

无论是极性分子还是非极性分子,在外电场的作用下,均会发生极化。

其极化的大小用分子极化率来衡量,它等于定温时单位电场强度下的平均偶极矩。

对于极性分子,则有:α=α原子+α电子+α取向(2)α原子和α电子分别称为原子极化率和电子极化率,其中α原子+α电子又称为变形极化率,而α取向为取向极化率,且有:α取向=kT32μ(3)式中:μ──分子的永久偶极矩;k ──玻尔兹曼常数;T ── 热力学温度。

由克劳修斯-莫索第-德拜方程,分子极化率α与电介质的介电常数ε和ρ之间的关系为:kTN N N N M P A A A A 29434343421μπαπαπαπρεε••+•=•=•+−=+电子原子(4)或简单地表示为:P =P 原子+P 电子+P 取向 (5)式中:P ──摩尔极化度,即单位场强下,1摩尔电介质的体积内偶极矩之和;N A ──阿佛加德罗常数;M ──摩尔质量;ρ──密度。

必须注意(4)式和(5)式只有在低频电场(频率<1010s -1)才成立。

若在高频电场(频率ν>1015s -1,即可见光及紫外光区)时,则P 原子 , P 取向均为零,只有P 电子一项,且ε=n 2(n 为电介质的折光率),所以:电子电子απρ•=•+−=≈=A N M n n P R P 342122 (6)式中:R ──摩尔折射度(在高频电场测得的极化度,习惯上用摩尔折射度来表示)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华南师范大学实验报告学生姓名学号 2专业化学(师范)年级、班级2009级化6课程名称结构化学实验项目稀溶液法测定偶极矩实验类型验证综合实验时间2011 年12 月 2 日实验指导老师实验评分一、实验目的1.掌握溶液法测定偶极矩的主要实验技术2.了解偶极矩与分子电性质的关系3.测定正丁醇的偶极矩二、实验原理1.偶极矩与极化度分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。

由于空间构型的不同,其正负电荷中心可能重合,也可能不重合。

前者称为非极性分子,后者称为极性分子。

1912年,德拜提出“偶极矩”的概念来度量分子极性的大小,其定义是qd =→μ ①式中,q 是正负电荷中心所带的电量;d 为正负电荷中心之间的距离;→μ是一个矢量,其方向规定为从正到负。

因分子中原子间的距离的数量级为10-10m ,电荷的数量级为10-20C ,所以偶极矩的数量级是10-30C ·m 。

通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。

极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。

所以偶极矩的统计值等于零。

若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,趋向电场方向排列。

这时称这些分子被极化了。

极化的程度可以用摩尔转向极化度P μ来衡量。

P μ与永久偶极矩μ的平方成正比,与绝对温度T 成反比。

kT 9μπN 4P A μ=② 式中,k 为波兹曼常数;NA 为阿弗加德罗常数;T 为热力学温度;μ为分子的永久偶极矩。

在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。

这称为诱导极化或变形极化。

用摩尔诱导极化度P 诱导来衡量。

显然,P 诱导可分为两项,即电子极化度P e 和原子极化度P a ,因此P 诱导 = P e + P a ③如果外电场是交变场,极性分子的极化情况则与交变场的频率有关。

当处于频率小于1010H Z 的低频电场或静电场中,极性分子所产生的摩尔极化度P 是转向极化、电子极化和原子极化的总和。

P = P μ+ P e +P a ④如何从测得的摩尔极化度P 中分别出P μ的贡献呢?介电常数实际上是在107H Z 一下的频率测定的,测得的极化度为 P μ+ P e +P a 。

若把频率提高到红外范围,分子已经来不及转向,此时测得的极化度只有P e 和P a 的贡献了。

所以从按介电常数计算的P 中减去红外线频率范围测得的极化,就等于P μ,在实验上,若把频率提高到可见光范围,则原子极化也可以忽略,则在可见光范围:P μ =P -( P e +P a ) ≈ P - P e ⑤ 2. 摩尔极化度的计算克劳休斯、莫索和德拜从电磁场理论得到了摩尔极化度P 与介电常数 ε 之间的关系式。

ρM×+2ε-1ε=P ⑥式中,M 为被测物质的摩尔质量;ρ 为该物质的密度;ε 是介电常数。

但式⑥是假定分子与分子间没有相互作用而推导得到的。

所以它只适用于温度不大低的气相体系,对某种物质甚至根本无法获得气相状态。

因袭后来就提出了用一种溶液来解决这一困难。

溶液法的基本想法是,在无限稀释的非极性溶剂中,溶质分子所处的状态和气相时相近,于是无限稀释溶液中的溶质的摩尔极化度可以看作是式⑥中的P 。

在稀溶液中,若不考虑极性分子间相互作用和溶剂化现象,溶剂和溶质的摩尔极化度等物理量可以被认为是具有可加性。

因此,式⑥可以写成:22111,22211212121ρx M x M ×+2ε-1εP x P x P +=+=,,, ⑦式中,下标1表示溶剂;下标2表示溶质;x 1表示溶剂的摩尔分数;x 2表示溶质的摩尔分数;1P表示溶剂的摩尔极化度;2P 表示溶质的摩尔极化度。

对于稀溶液,可以假设溶液中溶剂的性质与纯溶剂相同,则1111011ρM ×+2ε-1ε==P P ⑧2112121212-x x P x P x P P P -==,, ⑨Hedestrand 首先推导出经验公式,指出在稀溶液中溶液的介电常数和密度可以表示为 2121ax εε+=, ⑩ 211,2bx ρρ+= ⑪因此⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯+--++⨯++-+==→→∞21111121221121210202ρ2ε1εbx ρ2ax ε1εlim lim 22x M x x M x M ax P x x P()1121111211ρ2ε1ερ2εε3bM M M a -⨯+-+⨯+=⑫做ε1,2-x 2图,根据式⑦由直线测得斜率a ,截距ε1;作ρ1,2 -x 2图,并根据式 ⑪由直线测得斜率b ,截距ρ1,代入式⑫得P∞23. 由折光度计算电子极化度P e电子极化度可以使用摩尔折光度R 代替,即()12211211122121202ρ26ρ21lim 2++-⨯+-===→∞n cM n bM M n n R x eRP ⑬根据测量的溶液折射率n 1,2作图n 1.2-x 2,由斜率求出c ,就可以按照式⑬计算出P e 。

4. 介电常数的测定介电常数是通过测定电容计算而得的。

如果在电容器的两个板间充以某种电解质,电容器的电容量就会增大。

如果维持极板上的电荷量不变,那么充电解质的电容器两板间电势差就会减少。

设C 0为极板间处于真空时的电容量,C 为充以电解质时的电容量,则C 与C 0的比值ε称为该电解质的介电常数:ε = CC 0⑭法拉第在1837年就解释了这一现象,认为这是由于电解质在电场中极化而引起的。

极化作用形成一个反向电场,因而抵消了一部分外加电场。

测定电容的方法一般有电桥法、拍频法和谐振法,后两者为测定介电常数所常用,抗干扰性能好,精度高,但仪器价格昂贵。

本实验中采用电桥法。

实际所测得的电容C'样品包括了样品的电容C 样品和电容池的分布电容C x 两部分,即C'样品 = C 样品 + C x ⑮对于给定的电容池,必须先测出其分布电容 C x 。

可以先测出以空气为介质的电容,记为C'空 ,再用一种已知介电常数的标准物质,测得其电容C'标 。

C'空 = C 空 + C x C'标 = C 标 + C x 又因为ε标 = C 标C 0 ≈C 标C 空可得C x = C'空 - C'标-C'空ε标-1⑯C 0 = C'标-C'空ε标-1 ⑰计算出 C x 、C 0 之后,根据式⑥和式⑮可得样品的介电常数: ε溶 = C'溶-C xC 0⑱ 5. 偶极矩的计算 通过上述步骤分别计算出P∞2、R∞2之后,根据式②可得:()()TR PT R P ∞∞∞∞-=-=22A22128.0πN 49k μ ⑲三、仪器与试剂(1)仪器电容测量仪、25mL 容量瓶,移液管、电子天平、阿贝折射仪、滴管、烧杯、洗耳球、干燥器等。

(2)试剂正丁醇(分析纯);环己烷(分析纯);丙酮(分析纯)四、实验步骤1. 溶液配制将四个干燥的容量瓶编号,称量并记录空瓶重量。

在空瓶内分别加入0.5mL、1.0mL、1.5mL和2.0mL的乙酸乙酯再称重。

然后加环己烷至刻度线,称重。

操作时应注意防止溶质、溶剂的挥发以及吸收极性较大的水汽。

为此,溶液配好以后应迅速盖上瓶塞,摇匀并置于干燥器中,。

2.折射率的测定用阿贝折射仪测定环己烷及配制溶液的折射率,注意测定时各样品需加样两次,读取数据,计算时取平均值。

3.介电常数的测定本实验采用环己烷作为标准物质,其介电常数的温度公式为:ε环 = 2.023-0.0016(t-20)式中,t为温度,℃。

打开电容测量仪,待读数稳定后,记录空气的电容值。

分别测量纯环己烷和配制的4个样品溶液的电容,记录测量的数据。

每个样品测量两次,计算时取平均值。

测量一个样品后,需用滤纸把残留样品吸干,才能继续性测量。

注意,用吹风筒吹干样品池的时候不要用热风,以防止样品温度发生改变带来测量误差。

五、数据处理0.778852 0.783404 0.787068 0.78384相关系数:0.9877根据最小二乘法求得斜率和截距为:-0.0756 1.4258六、实验讨论误差分析:1.定容的时候没有精确,导致求得的各样品的密度的相关性数不高。

2. 测得的溶质的偶极矩和气相测得值之间存在一定偏差,其原因主要在于溶液中溶质分子和溶剂分子以及溶剂和溶质各分子间相互作用的溶剂效应。

3.由于仪器的测量及读数的准确和操作不够规范综合造成的4.本实验操作中,由于缺乏“课本联系实际”的思想,定容的时候出现了错误,所以最基本的常识在做实验的时候一定要记住。

七、思考题1.准确测定溶质摩尔极化度和摩尔折射度时,为什么要外推至无限稀释?答:测定气相介电常数和密度在实验上困难较大,所以提出溶液法来解决这一问题,但在溶液中存在有溶质分子与溶剂分子以及溶剂分子与溶剂分子间作用的溶剂效应。

溶液法的基本思想是:在无限稀释的非极性溶剂的溶液中,溶质分子所处的状态和气相时相近,于是无限P就可看作P。

稀释溶液中溶质的摩尔极化度22、试分析本实验中误差的主要来源?答:实验理论上,各种近似处理使实验本身就存在误差。

溶液折射率、介电常数的主要误差来源3、本实验需要注意的地方?A.本实验溶液中防止含有水分,所配制溶液的器具需干燥,溶液应透明不发生浑浊。

B.测定电容时,应防止溶液的挥发及吸收空气中极性较大的水汽,影响测定值。

C.电容池个部件的连接应注意绝缘。

八、参考文献1.刁国旺,阚锦晴,刘天晴编著,物理化学实验,北京:兵器工业出版社,1993 2.黄泰山等编著,新编物理化学实验,厦门:厦门大学出版社,19993. 何广平,男俊民等. 物理化学实验。

北京:化学工业出版社,2007。

12。

相关文档
最新文档