高中数学高考总复习坐标系与参数方程习题及详解

合集下载

高中数学高考总复习坐标系与参数方程习题及详解

高中数学高考总复习坐标系与参数方程习题及详解

高中数学高考总复习坐标系与参数方程习题及详解一、选择题1.极坐标方程ρ=cos θ和参数方程⎩⎪⎨⎪⎧x =-1-ty =2+t (t 为参数)所表示的图形分别是( )A .直线、直线B .直线、圆C .圆、圆D .圆、直线 [答案] D[解析] 由ρ=cos θ得ρ2=ρcos θ,∴x 2+y 2-x =0.此方程所表示的图形是圆.消去方程⎩⎪⎨⎪⎧x =-1-t y =2+t 中的参数t 可得,x +y -1=0,此方程所表示的图形是直线.2.下列参数方程(t 为参数)中,与方程y 2=x 表示同一曲线的是( )A.⎩⎪⎨⎪⎧x =ty =t 2B.⎩⎪⎨⎪⎧x =tan 2t y =tan t C.⎩⎨⎧x =t y =|t |D.⎩⎪⎨⎪⎧x =tan t y =tan 2t [答案] B[解析] 将t =x 代入y =t 2得,y =x 2,故A 错,将tan t =y 代入x =tan 2t 中得,x =y 2,∵tan t ∈R ,故B 正确,C 、D 容易判断都是错的.[点评] 注意C 中⎩⎨⎧x =ty =|t |,消去t 得y =|x |,平方得y 2=|x |,∵y 2≥0限定了x 的取值必须非负,∴y 2=x ,但由于y =|x |,故它必须满足y ≥0,而y 2=x 中的y ∈R .4.直线⎩⎪⎨⎪⎧ x =1+2t y =1-2t (t 为参数)被圆⎩⎪⎨⎪⎧x =3cos αy =3sin α(α为参数)截得的弦长为( ) A .27 B.7C .47D .2 [答案] A[解析] 将直线⎩⎪⎨⎪⎧x =1+2ty =1-2t 化为普通方程得x +y =2,将圆⎩⎪⎨⎪⎧x =3cos αy =3sin α化为普通方程得x 2+y 2=9.圆心O 到直线的距离d =|0+0-2|12+12=2,所以弦长l =2R 2-d 2=27. 二、填空题7.在极坐标系中,过圆ρ=6cos θ的圆心,且垂直于极轴的直线的极坐标方程为________.[答案] ρcos θ=3[解析] 解法一:圆ρ=6cos θ的圆心极坐标(3,0),∴直线l 方程为ρcos θ=3.解法二:由ρ2=6ρcos θ得x 2+y 2=6x ,圆心C (3,0),∴过圆心垂直于极轴(即x 轴)的直线方程为x =3,其极坐标方程为ρcos θ=3.[点评] 1.在极坐标方程不熟练的情况下,化为直角坐标方程求解后,再化为极坐标形式是基本方法,故应熟记互化公式.2.掌握常见的圆、直线、圆锥曲线的极坐标方程的形式,对提高解题速度至关重要.8.若直线⎩⎪⎨⎪⎧ x =-1+2t y =-1-t (t 为参数)被曲线⎩⎪⎨⎪⎧x =1+3cos θy =1+3sin θ(θ为参数)所截,则截得的弦的长度是________.[答案]655[解析] 直线⎩⎪⎨⎪⎧x =-1+2t y =-1-t 化为x +2y +3=0;圆⎩⎪⎨⎪⎧x =1+3cos θy =1+3sin θ化为(x -1)2+(y -1)2=9, 圆心C (1,1)到直线x +2y +3=0距离d =655,半径r =3,∴弦长为2r 2-d 2=655.11.在平面直角坐标系xOy 中,已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =cos θy =sin θ+m (m 是常数,θ∈(-π,π]是参数),若曲线C 与x 轴相切,则m =________.[答案] ±1[解析] ∵⊙C :x 2+(y -m )2=1与x 轴相切, ∴m =±1.12.椭圆⎩⎪⎨⎪⎧x =3cos θy =4sin θ的离心率是________.[答案]74[解析] 由已知可得椭圆的普通方程为x 29+y 216=1,∴a =4,b =3,c =7,e =c a =74.13.已知曲线C 1:⎩⎪⎨⎪⎧ x =3+2cos θy =2+2sin θ(θ为参数),曲线C 2:⎩⎪⎨⎪⎧x =1+3t y =1-4t(t 为参数),则C 1与C 2的位置关系为________.[答案] 相离[解析] 圆C 1:(x -3)2+(y -2)2=4的圆心C 1(3,2)到直线C 2:4x +3y -7=0的距离d =115>2,∴C 1与C 2相离. 14.在极坐标系中,过点⎝⎛⎭⎫22,π4作圆ρ=4sin θ的切线,则切线的极坐标方程为______. [答案] ρcos θ=2[解析] 点⎝⎛⎭⎫22,π4的直角坐标x =22cos π4=2,y =22sin π4=2,圆ρ=4sin θ化为直角坐标方程为x 2+y 2=4y ,即x 2+(y -2)2=4,则过点(2,2)的圆的切线方程显然为x =2,即ρcos θ=2.三、解答题15.以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴,建立极坐标系(两种坐标系中取相同的单位长度),已知点A 的直角坐标为(-2,6),点B 的极坐标为⎝⎛⎭⎫4,π2,直线l 过点A 且倾斜角为π4,圆C 以点B 为圆心,4为半径,试求直线l 的参数方程和圆C 的极坐标方程.[解析] ∵直线l 过点(-2,6),倾斜角为π4,∴直线l 的参数方程为⎩⎨⎧x =-2+22ty =6+22t (t 为参数),又圆心B 的直角坐标为(0,4),半径为4, ∴圆C 的直角坐标方程为x 2+(y -4)2=16,将x =ρ·cos θ,y =ρ·sin θ代入化简得圆C 的极坐标方程为ρ=8·sin θ.16.在极坐标系中,直线l 的极坐标方程为θ=π3(ρ∈R ),以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos αy =1+cos2α(α为参数),求直线l 与曲线C 的交点P 的直角坐标.[解析] 因为直线l 的极坐标方程为θ=π3(ρ∈R )所以直线l 的普通方程为y =3x , 又因为曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos αy =1+cos2α(α为参数) 所以曲线C 的直角坐标方程为 y =12x 2(x ∈[-2,2]), 由⎩⎪⎨⎪⎧y =3x y =12x 2解得,⎩⎪⎨⎪⎧ x =0y =0,或⎩⎨⎧x =23y =6,∵-2≤x ≤2,∴⎩⎨⎧x =23y =6应舍去,故P 点的直角坐标为(0,0).17.在直角坐标系xOy 中,直线l 的参数方程为:⎩⎨⎧x =1+45ty =-1-35t (t 为参数),若以O为极点,x 轴正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为ρ=2cos(θ+π4),求直线l 被曲线C 所截的弦长.[解析] 将方程⎩⎨⎧x =1+45ty =-1-35t (t 为参数)化为普通方程得,3x +4y +1=0,将方程ρ=2cos ⎝⎛⎭⎫θ+π4化为普通方程得,x 2+y 2-x +y =0,它表示圆心为⎝⎛⎭⎫12,12,半径为22的圆,则圆心到直线的距离d =110, 弦长为2r 2-d 2=212-1100=75.。

坐标系与参数方程典型例题(含高考题----答案详细)

坐标系与参数方程典型例题(含高考题----答案详细)

.选修4-4《坐标系与参数方程》复习讲义一、选考内容《坐标系与参数方程》高考考试大纲要求: 1.坐标系:① 理解坐标系的作用.② 了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.③ 能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化. ④ 能在极坐标系中给出简单图形〔如过极点的直线、过极点或圆心在极点的圆〕的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. 2.参数方程:① 了解参数方程,了解参数的意义.② 能选择适当的参数写出直线、圆和圆锥曲线的参数方程.二、基础知识归纳总结:1.伸缩变换:设点P(x,y)是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ的作用下,点P(x,y)对应到点)y ,x (P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

2.极坐标系的概念:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)与其正方向(通常取逆时针方向),这样就建立了一个极坐标系。

3.点M 的极坐标:设M 是平面内一点,极点O与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM为终边的∠XOM 叫做点M 的极角,记为θ。

有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ. 极坐标),(θρ与)Z k )(2k ,(∈+πθρ表示同一个点。

极点O 的坐标为)R )(,0(∈θθ.4.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。

如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。

《坐标系与参数方程》练习题(含详解)

《坐标系与参数方程》练习题(含详解)

数学选修4-4 坐标系与参数方程[基础训练A 组]一、选择题1.若直线的参数方程为12()23x t t y t =+⎧⎨=-⎩为参数,则直线的斜率为( ) A .23 B .23- C .32 D .32- 2.下列在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是( ) A.1(,2 B .31(,)42- C. D.3.将参数方程222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤4.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )A .201y y +==2x 或B .1x =C .201y +==2x 或xD .1y =5.点M的直角坐标是(-,则点M 的极坐标为( )A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈ 6.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆二、填空题1.直线34()45x t t y t=+⎧⎨=-⎩为参数的斜率为______________________。

2.参数方程()2()t t t t x e e t y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为__________________。

3.已知直线113:()24x t l t y t=+⎧⎨=-⎩为参数与直线2:245l x y -=相交于点B ,又点(1,2)A ,则AB =_______________。

4.直线122()112x t t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩为参数被圆224x y +=截得的弦长为______________。

5.直线cos sin 0x y αα+=的极坐标方程为____________________。

高考数学《坐标系与参数方程》专项练习(含答案)

高考数学《坐标系与参数方程》专项练习(含答案)

《坐标系与参数方程》专项练习一、知识梳理. 1.极坐标与直角坐标的互化.设 M 是平面内任意一点,它的直角坐标是(x,y),极坐标是(ρ,θ),则它们之间的关系为:(1)x y cos sin, 2 x2 y2(2) tany x2.参数方程x y f g(t) (t)(t为参数)化为普通方程的常用方法.(1)代入法/加减法消参. (2)借助三角恒等式 sin2θ+cos2θ=1(θ 为参数)消参.3.直角坐标方程,极坐标方程和参数方程的转化关系.y Mρ θy O x Ax极坐标方程 (ρ,θ)⇔直角坐标方程(普通方程) (x,y)⇔参数方程 (t 为参数)二、练习专项. 【题型 1】①极坐标方程 ⇔ 直角坐标方程.②参数方程 ⇔ 直角坐标方程.1.(2016全国Ⅲ卷,文科23,10分)在直线坐标系xOy中,曲线C1的参数方程为x 3 cosy sin(α 为参数).以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线 C2 的极坐标方程为 ρsin(θ+ )=2 2 .4(Ⅰ)写出 C1 的普通方程和 C2 的直角坐标方程;(Ⅱ)设点 P 在 C1 上,点 Q 在 C2 上,求∣PQ∣的最小值及此时 P 的直角坐标.解:(Ⅰ)由x y 3 cos sin消去参数α得……………………1分(此处为消参的计算过程,可省略)变形得 x 3 cos y sin x2两边平方,得 3 cos2 ①y2 sin2 ②①+②,得 x2 +y2=13C1 的普通方程为 x2 +y2=1……………………2 分3∵ρsin(θ+ )=2 24∴ρ(sinθcos +cosθsin )=2 2 ……………………3 分44ρ( 2 sinθ+ 2 cosθ)=2 2222 ρsinθ+ 2 ρcosθ=2 222ρsinθ+ρcosθ=4……………………4 分∵ρcosθ=x,ρsinθ=y1 / 13∴x+y=4……………………5 分 (Ⅱ)由题意,可设点 P 的直角坐标为 ( 3 cos,sin ) ……………………6 分∵C2 是直线 ∴ | PQ | 的最小值即为 P 到 C2 的距离 d ( ) 的最小值d ( ) | 3 cos sin 4 | 2 | sin( ) 2 | ………………8 分23当且仅当 2k (k Z ) 时, d ( ) 取得最小值,最小值为 2 ………………9 分6此时 P 的直角坐标为 ( 3 , 1) ………………10 分 222.(2009全国卷,文/理23,10分)已知曲线C1:x y 4 3scos intt(t为参数),C2: x y 8cos 3sin(θ为参数).(Ⅰ)化 C1,C2 的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1 上的点P对应的参数为t= 2,Q为C2 上的动点,求PQ中点M到直线C3:x y 3 2t 2 t(t 为参数)距离的最小值.解:(Ⅰ)由C1:x y 4 3scost int消去参数t得……………………1分(此处为消参的计算过程,可省略)变形得x y 4 3 cost sint两边平方,得( (x y 4) 3) cos2 t 2 sin2 t① ②①+②,得(x+4)2+(y-3)2=1∴C1 的普通方程为(x+4)2+(y-3)2=1……………………2 分 ∴C1 为圆心是(-4,3),半径是 1 的圆由C2:x y 8cos 3sin消去参数θ得……………………1分(此处为消参的计算过程,可省略)变形得 x 8 y 3 co s sin两边平方,得 x2 64 y2 9 cos2 sin2 ① ② ①+②,得 x2 + y2 =1 64 9∴C2 的普通方程为 x2 + y2 =1……………………2 分64 9∴C2 为焦点在 x 轴上的椭圆(Ⅱ)当 t 时, P(4, 4) , Q(8cos,3sin )2故 M (2 4 cos , 2 3 sin ) 2C3 为直线 x 2y 7 02 / 13M 到 C3 的距离 d 5 | 4cos 3sin 13 | 5从而当 cos 4 ,sin 3 时, d 取得最小值 8 5555【题型 2】①直角坐标方程 ⇔ 极坐标方程. ②直角坐标方程 ⇔ 参数方程.3.(2016 全国Ⅱ卷,文科 23,10 分)在直角坐标系 xOy 中,圆 C 的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求 C 的极坐标方程;(Ⅱ)直线l的参数方程是x y t tcos sin(t为参数),l与C交于A,B两点,|AB|=10 .求 l 的斜率.解:(Ⅰ)由圆 C 的方程 x 62 y2 25可得……………………1 分x2+12x+36+y2=25 x2+y2+12x+11=0……………………2 分 把 x2+y2=ρ2,x=ρcosθ 代入上式得……………………3 分 ρ2+12ρcosθ+11=0……………………4 分 ∴圆 C 的极坐标方程为 ρ2+12cosθ+11=0……………………5 分(Ⅱ)在(Ⅰ)中建立的极坐标系中,直线 l 的极坐标方程为 θ=α(ρ∈R) 由 A,B 所对应的极径分别为 ρ1,ρ2……………………8 分 将 l 的极坐标方程代入 C 的极坐标方程得 ρ2+12ρcosα+11=0……………………7 分于是 1 2 12cos, 12 11,| AB || 1 2 | (1 2 )2 412 144 cos2 44, ……………………8 分由|AB|= 10 得cos2 3 , tan 15 ……………………9 分83∴l 的斜率为 15 或 15 ……………………10 分334.(2015 全国Ⅰ卷,文/理 23,10 分)在直角坐标系 xOy 中,直线 C1:x=-2,圆 C2:(x-1)2 +(y-2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求 C1,C2 的极坐标方程; (Ⅱ)若直线 C3 的极坐标方程为 θ=(ρ∈R),设 C2 与 C3 的交点为 M,N,求△C2MN 的面积.解:(Ⅰ)把 x=ρcosθ 代入 C1:x=-2 得 ρcosθ=-2……………………1 分 ∴C1 的极坐标方程为 ρcosθ=-2………………2 分 由 C2:(x-1)2+(y-2)2=1 得 (x2-2x+1)+(y2-4y+4)=1 x2+y2-2x-4y+1+4=1 x2+y2-2x-4y+4=0………………3 分 把 ρ2=x2+y2,x=ρcosθ,y=ρsinθ 代入上式得………………4 分 C2 的极坐标方程为 ρ2-2ρcosθ-4ρsinθ+4=0………………5 分(Ⅱ)将 θ= 代入 ρ2-2ρcosθ-4ρsinθ+4=0,得3 / 13ρ2-3 ρ+4=0………………6 分 解得 ρ1=2 ,ρ2= ………………7 分 故 ρ1-ρ2= ,即|MN|= ………………8 分 由于 C2 的半径为 1∴△C2MN 的面积为 ………………10 分5.(2014全国Ⅰ卷,文/理23,10分)已知曲线C:x2 4y2 9 1,直线l:x y 2 2 t 2t(t为参数).(Ⅰ)写出曲线 C 的参数方程,直线 l 的普通方程;(Ⅱ)过曲线 C 上任意一点 P 作与 l 夹角为 30°的直线,交 l 于点 A,求|PA|的最大值与最小值.解:(Ⅰ)∵曲线 C: =1∴ ( x)2 ( y)2 1 23又∵sin2θ+cos2θ=1∴ x =cosθ, y =sinθ23∴x=2cosθ,y=3sinθ曲线C的参数方程为x y 2 cos 3sin(θ为参数).由直线 l:消去参数 t 得(此处为消参的计算过程,可省略) 把③代入②,得y=2-2(x-2)由①得 t=x-2 ③整理得 2x+y-6=0直线 l 的普通方程为 2x+y-6=0.(Ⅱ)曲线 C 上任意一点 P(2cosθ,3sinθ)到 l 的距离为d= |4cosθ+3sinθ-6|则|PA|=|5sin(θ+α)-6|,其中 α 为锐角,且 tanα=当 sin(θ+α)=-1 时,|PA|取得最大值,最大值为当 sin(θ+α)=1 时,|PA|取得最小值,最小值为6.(2014 全国Ⅱ卷,文/理 23,10 分)在直角坐标系 xOy 中,以坐标原点为极点,x 轴正半轴为 极轴建立极坐标系,半圆 C 的极坐标方程为 ρ=2cosθ,θ∈[0, ]. 2 (Ⅰ)求 C 的参数方程; (Ⅱ)设点 D 在 C 上,C 在 D 处的切线与直线 l:y= 3 x+2 垂直,根据(Ⅰ)中你得到的 参数方程,确定 D 的坐标.解:(Ⅰ)∵ρ=2cosθ4 / 13∴ρ2=2ρcosθ 把 x2+y2=ρ2,x=ρcosθ 代入上式得5 / 13x2+y2=2x ∴C 的普通方程为(x-1)2+y2=1(0≤y≤1) ∴半圆 C 的圆心为(1,0),半径为 1可得 C 的参数方程为(t 为参数,0≤t≤π)(Ⅱ)设 D(1+cost,sint)由(Ⅰ)知 C 是以 G(1,0)为圆心,1 为半径的上半圆∵C 在点 D 处的切线与 l 垂直∴直线 GD 与 l 的斜率相同.tant= ,t=故 D 的直角坐标为,即【题型 3】极坐标方程 ⇔ 参数方程.7.(2016全国Ⅰ卷,文/理23,10分)在直角坐标系xOy中,曲线C1的参数方程为x y a 1cos t asint(t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线 C2:ρ=4cosθ.(Ⅰ)说明 C1 是哪一种曲线,并将 C1 的方程化为极坐标方程;(Ⅱ)直线 C3 的极坐标方程为 θ=α0,其中 α0 满足 tanα0=2,若曲线 C1 与 C2 的公共点都在 C3 上,求 a.解:(Ⅰ)解法一:C1 是圆的方程…………1 分由x y a 1cos t asint消去参数t得…………2分(此处为消参的计算过程,可省略)移项,得x y a cost 1 a sint即x 2 ( y a2 1) 2cos2 a2t sin2t① ②①+②,得两边平方,得x 2 ( y (a 1) 2cost)2 (a sint)2x2+(y-1)2=a2cos2t+a2sin2t x2+(y-1)2=a2(cos2t+sin2t) x2+(y-1)2=a2x2 y 12 a2 ①整理得 x2 y2 2y 1 a2 0 …………3 分∴把 x2 y2 2 ,y sin 代入上式得…………4 分2 2 sin 1 a2 0∴ C1 的极坐标方程为 2 2 sin 1 a2 0 …………5 分 (Ⅱ)由 C2:ρ=4cosθ 得两边同乘 ρ 得 ρ2=4ρcosθ ∵ρ2=x2+y2,ρcosθ=xx2 y2 4x …………6 分即 x 22 y2 4 ②…………7 分C3:化为普通方程为 y 2x …………8 分由题意: C1 和 C2 的公共方程所在直线即为 C3 ①-②得: 4x 2y 1 a2 0 ,即为 C3 …………9 分5 / 13∴1 a2 0 6 / 13∴ a 1 …………10 分8.(2013全国Ⅰ卷,文/理23,10分)已知曲线C1的参数方程为x y 4 5 5 cos t 5sint(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线 C2 的极坐标方程为 ρ=2sinθ.(Ⅰ)把 C1 的参数方程化为极坐标方程;(Ⅱ)求 C1 与 C2 交点的极坐标(ρ≥0,0≤θ<2π).解:(Ⅰ)将x y 4 5 5 cos t 5sint消去参数t得C1 的普通方程为(x-4)2+(y-5)2=25即 C1:x2+y2-8x-10y+16=0将x y cos sin代入上式得ρ2-8ρcosθ-10ρsinθ+16=0∴C1 的极坐标方程为 ρ2-8ρcosθ-10ρsinθ+16=0 (Ⅱ)∵C2 的极坐标方程为 ρ=2sinθ∴C2 的普通方程为 x2+y2-2y=0由x x2 2 y2 y28x 10y 16 0 2y 0① ②(此处为解方程的过程,可省略)提取 x,得 x(x-1)=0②-①,得 8x+8y-16=0∴x=0 或 x-1=0整理,得 y=2-x③解得 x=0 或 x=1把③代入②,得把 x=0 代入③,得 y=2x2+(2-x)2-2(2-x)=0把 x=1 代入③,得 y=1整理,得 x2-x=0(特别注意,x 是未知数,不能约去的)解得x y 0 2或x y 1 1C1 与 C2 交点的直角坐标分别为(0,2),(1,1)对于点(0,2)有:ρ= x2 y2 = 02 22 =2,θ= 2对于点(1,1)有:ρ= x2 y2 = 12 12 = 2 ,tanθ= y =1,θ= x4∴C1 与 C2 交点的极坐标分别为(2, ),( 2 , )24【题型 4】其它题型:.求交点坐标,求点的坐标,求轨迹方程等.9.(2015全国Ⅱ卷,文/理23,10分)在直角坐标系xOy中,曲线C1: x y t tcos sin(t为参数,t≠0),其中 0≤α<π.在以 O 为极点,x 轴正半轴为极轴的极坐标系中,曲线 C2:ρ=2sinθ,C3:ρ=2 3 cosθ. (Ⅰ)求 C2 与 C3 交点的直角坐标; (Ⅱ)若 C1 与 C2 相交于点 A,C1 与 C3 相交于点 B,求|AB|的最大值. 解:(Ⅰ)∵C2:ρ=2sinθ6 / 13∴ρ2=2ρsinθ 把 ρ2=x2+y2,y=ρsinθ 代入上式得 曲线 C2 的直角坐标方程为 x2+y2-2y=0 ①………………1 分∵C3:ρ=2 cosθ∴ρ2=2 ρcosθ 把 ρ2=x2+y2,x=ρcosθ 代入上式得曲线 C3 的直角坐标方程为 x2+y2-2 3 x=0 ②………………2 分联立①②得x 2x 2 y2 y22y 0 2 3x 0① ………………3 分②(此处为解方程的过程,可省略)提取 x,得 x(2x- 3 )=0①-②,得 -2y+2 3 x=0∴x=0 或 2x- 3 =0整理,得 y= 3 x③ 把③代入①,得 x2+3x2-2 整理,得 2x2- 3 x=03 x=0解得 x=0 或 x= 32把 x=0 代入③,得 y=0(特别注意,x 是未知数,不能约去的) 把 x= 3 代入③,得 y= 322解得x y 0或 0x y 3 2 3 2………………4分∴C2 与 C3 交点的直角坐标为(0,0)和………………5 分(Ⅱ)曲线 C1 的极坐标方程为 θ=α(ρ∈R,ρ≠0),其中 0≤α<π因此 A 的极坐标为(2sinα,α),B 的极坐标为(2 cosα,α)∴|AB|=|2sinα-2 cosα|=4 当 α= 时,|AB|取得最大值,最大值为 410.(2013全国Ⅱ卷,文/理23,10分)已知动点P,Q都在曲线C:x y 2 cos t 2sint(t为参数)上,对应参数分别为 t=α 与 t=2α(0<α<2π),M 为 PQ 的中点.(Ⅰ)求 M 的轨迹的参数方程;(Ⅱ)将 M 到坐标原点的距离 d 表示为 α 的函数,并判断 M 的轨迹是否过坐标原点.解:(Ⅰ)∵动点 P,Q 都在曲线 C:(t 为参数)上∴P(2cosα,2sinα),Q(2cos2α,2sin2α)∵M 为 PQ 的中点∴xM= 2cos 2cos2 =cosα+cos2α 2yM= 2sin 2sin2 =sinα+sin2α 2∴M(cosα+cos2α,sinα+sin2α).∴M 的轨迹的参数方程为(α 为参数,0<α<2π). 7 / 13(Ⅱ)M 点到坐标原点的距离 d=(0<α<2π).8 / 13当α=π时,d =0,故M 的轨迹过坐标原点11.(2012全国卷,文/理23,10分)已知曲线C 1的参数方程是⎩⎨⎧==ϕϕsin 3cos 2y x (φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为(2,3π). (Ⅰ)求点A ,B ,C ,D 的直角坐标; (Ⅱ)设P 为C 1上任意一点,求|PA |2+|PB |2+|PC |2+|PD |2的取值范围.解:(Ⅰ)∵点A 的极坐标为 ∴点B 的极坐标为点C 的极坐标为点D 的极坐标为∴x A ==1,y A == x B =2cos =-,y B =2sin=1 x C =2cos +π=-1,y C =2sin +π=-x D =2cos =,y D =2sin =-1即A(1,),B(-,1),C(-1,-),D(,-1)(Ⅱ)设P(2cos φ,3sin φ),令S =|PA|2+|PB|2+|PC|2+|PD|2则S =16cos 2φ+36sin 2φ+16=32+20sin 2φ∵0≤sin 2φ≤1∴S 的取值范围是[32,52]12.(2011全国卷,文/理23,10分)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧+==ααsin 22cos 2y x (α为参数),M 是C 1上的动点,P 点满足OP =2OM ,P 点的轨迹为曲线C 2. (Ⅰ)求C 2的方程;(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=3π与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.解:(Ⅰ)设P (x ,y ),则由条件知M (2x ,2y ). 由于M 点在C 1上∴⎪⎪⎩⎪⎪⎨⎧+==ααsin 222cos 22y x 即⎩⎨⎧+==ααsin 44cos 4y x 从而C 2的参数方程为⎩⎨⎧+==ααsin 44cos 4y x (α为参数)(Ⅱ)曲线C 1的极坐标方程为ρ=4sin θ曲线C 2的极坐标方程为ρ=8sin θ射线θ=3π与C 1的交点A 的极径为ρ1=4sin 3π 射线θ=3π与C 2的交点B 的极径为ρ2=8sin 3π ∴|AB |=|ρ2-ρ1|=2313.(2010全国卷,文/理23,10分)已知直线C 1:⎩⎨⎧=+=ααsin cos 1t y t x (t 为参数),圆C 2:⎩⎨⎧==θθsin cos y x (θ为参数). (Ⅰ)当α=3π时,求C 1与C 2的交点坐标; (Ⅱ)过坐标原点O 做C 1的垂线,垂足为A ,P 为OA 的中点,当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.解:(Ⅰ)当α=3π时 C 1的普通方程为1)y x -C 2的普通方程为221x y += 联立方程组⎪⎩⎪⎨⎧=+-=1)1(322y x x y 解得C 1与C 2的交点为(1,0),1(,2 (Ⅱ)C 1的普通方程为sin cos sin 0x y ααα--=.A 点坐标为2(sin ,cos sin )a a a -,故当a 变化时,P 点轨迹的参数方程为21sin 21sin cos 2x a y a a ==-⎧⎨⎩(a 为参数) P 点轨迹的普通方程为2211()416x y -+= 故P 点是圆心为1(,0)4,半径为14的圆(注:文档可能无法思考全面,请浏览后下载,供参考。

高考数学压轴专题专题备战高考《坐标系与参数方程》全集汇编含答案

高考数学压轴专题专题备战高考《坐标系与参数方程》全集汇编含答案

【高中数学】数学复习题《坐标系与参数方程》知识点练习一、131.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42a πρθ⎛⎫+= ⎪⎝⎭,曲线2C 的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数,0θπ剟).若1C 与2C 有且只有一个公共点,则实数a 的取值范围是( )A .2±B .(2,2)-C .[1,1)-D .[1,1)-或2【答案】D 【解析】 【分析】先把曲线1C ,2C 的极坐标方程和参数方程转化为直角坐标方程和一般方程,若1C 与2C 有且只有一个公共点可转化为直线和半圆有一个公共点,数形结合讨论a 的范围即得解. 【详解】因为曲线1C 的极坐标方程为2sin ,42a πρθ⎛⎫+= ⎪⎝⎭即222(sin cos )222a ρθθ+= 故曲线1C 的直角坐标方程为:0x y a +-=.消去参数θ可得曲线2C 的一般方程为:221x y +=,由于0θπ剟,故0y ≥如图所示,若1C 与2C 有且只有一个公共点,直线与半圆相切,或者截距11a -≤< 当直线与半圆相切时122O l d a -==∴=由于为上半圆,故02a a >∴= 综上:实数a 的取值范围是[1,1)-2 故选:D 【点睛】本题考查了极坐标、参数方程与直角坐标方程、一般方程的互化,以及直线和圆的位置关系,考查了学生数形结合,数学运算的能力,属于中档题.2.曲线2cos sin x y θθ=⎧⎨=⎩(θ为参数)上的点到原点的距离的最大值为( )A .1B .3C .2D .4【答案】C 【解析】 【分析】根据点到直线的距离求最值. 【详解】 曲线2cos sin x y θθ=⎧⎨=⎩(θ为参数)上的点到原点的距离为:2=,当且仅当cos 1θ=±时取得等号 故选C. 【点睛】本题考查椭圆参数方程的应用.3.在极坐标系中,曲线1C 的极坐标方程为2sin ρθ=,曲线2C的极坐标方程为ρθ=,若曲线1C 与2C 交于A 、B 两点,则AB 等于( )A .1 BC .2D.【答案】B 【解析】 【分析】由题意可知曲线1C 与2C 交于原点和另外一点,设点A 为原点,点B 的极坐标为()(),0,02ρθρθπ>≤<,联立两曲线的极坐标方程,解出ρ的值,可得出AB ρ=,即可得出AB 的值. 【详解】易知,曲线1C 与2C 均过原点,设点A 为原点,点B 的极坐标为()(),0,02ρθρθπ>≤<,联立曲线1C 与2C的坐标方程2sin ρθρθ=⎧⎪⎨=⎪⎩,解得3πθρ⎧=⎪⎨⎪=⎩,因此,AB ρ== 故选:B. 【点睛】本题考查两圆的相交弦长的计算,常规方法就是计算出两圆的相交弦方程,计算出弦心距,利用勾股定理进行计算,也可以联立极坐标方程,计算出两极径的值,利用两极径的差来计算,考查方程思想的应用,属于中等题.4.直线34x ty t=-⎧⎨=+⎩,(t 为参数)上与点()3,4P的点的坐标是( )A .()4,3B .()4,5-或()0,1C .()2,5D .()4,3或()2,5【答案】D 【解析】 【分析】 【详解】因为直线3(4x tt y t=-⎧⎨=+⎩为参数), 所以设直线上到点(3,4)P的点的坐标是(3,4)t t --,=1t =±,代入直线的参数方程,得点的坐标为(4,3)或(2,5),故选D.5.已知点()1,2A -,()2,0B ,P为曲线y =上任意一点,则AP AB ⋅u u u v u u u v 的取值范围为( ) A .[]1,7 B .[]1,7-C.1,3⎡+⎣D.1,3⎡-+⎣【答案】A 【解析】 【分析】结合已知曲线方程,引入参数方程,然后结合和角正弦公式及正弦函数的性质即可求解. 【详解】解:设(),P x y则由y =()221043x y y +=≥,令2cos ,x y θθ==,[](0,θπ∈,()1,2AP x y ∴=-+u u u v ,()1,2AB =u u u v,124232cos 34sin 36AP AB x y x y πθθθ⎛⎫∴⋅=-++=++=++=++ ⎪⎝⎭u u u v u u u v ,0θπ≤≤Q ,7666πππθ∴≤+≤, 1sin 126πθ⎛⎫-≤+≤ ⎪⎝⎭, 14sin 376πθ⎛⎫∴≤++≤ ⎪⎝⎭,【点睛】本题主要考查了平面向量数量积的运算及三角函数性质的简单应用,参数方程的应用是求解本题的关键.6.在同一平面直角坐标系中,经过伸缩变换53x xy y''=⎧⎨=⎩后,曲线C 变为曲线2241x y ''+=,则曲线C 的方程为( )A .2225361x y +=B .2291001x y +=C .10241x y +=D .22281259x y += 【答案】A 【解析】 【分析】将伸缩变换53x x y y''=⎧⎨=⎩代入曲线2241x y ''+=中即可解.【详解】解:把53x x y y''=⎧⎨=⎩代入曲线2241x y ''+=,可得:()()225431x y +=,即2225361x y +=,即为曲线C 的方程. 故选:A . 【点睛】考查平面直角坐标系的伸缩变换,题目较为简单. 伸缩变换:设点(,)P x y 是平面直角坐标系中的任意一点,在变换,(0):,(0)x x y y λλϕμμ'=⋅>⎧⎨'=⋅>⎩的作用下,点(,)P x y 对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.7.直线34100x y ++=和圆25cos 15sin x y θθ=+⎧⎨=+⎩的位置关系是( )A .相切B .相离C .相交但不过圆心D .相交且过圆心【答案】C 【解析】 【分析】 将圆的参数方程25cos ()15sin x y θθθ=+⎧⎨=+⎩为参数化成圆的普通方程,则可得其圆心,和半径r ,再用点到直线的距离公式求出圆心到直线34100x y ++=的距离d ,再将距离d 与圆的半径r 比大小即可解. 【详解】解:由25cos 15sin x y θθ=+⎧⎨=+⎩,得圆的普通方程为()()222125x y -+-=,∴圆的圆心为()2,1,半径=5r .圆心到直线的距离4d ==.∵0d r <<,∴直线与圆相交但不过圆心. 故选:C . 【点睛】考查圆的参数方程化普通方程,考查直线和圆的位置关系,运用了点到直线的距离公式. 点到直线距离公式:点()00,P x y 到直线:0l Ax By C ++=的距离为:d =.8.在极坐标系中,点(),ρθ与(),ρπθ--的位置关系为( ) A .关于极轴所在直线对称 B .关于极点对称 C .重合 D .关于直线()2R πθρ=∈对称【答案】A 【解析】 【分析】由点(),ρπθ--和点(,)ρθ-为同一点. 则比较点(,)ρθ-和点(),ρθ,可推出点(),ρθ与(),ρπθ--的位置关系.【详解】解:点(),ρπθ--与点(),ρθ-是同一个点,(),ρθ-与点(),ρθ关于极轴对称.∴点(),ρθ与(),ρπθ--关于极轴所在直线对称.故选:A. 【点睛】考查极坐标的位置关系.题目较为简单,要掌握极坐标的概念.9.在极坐标系中,设圆8:sin C ρθ=与直线 ():4l R πθρ=∈交于A B ,两点,则以线段AB 为直径的圆的极坐标方程为( ) A.4πρθ⎛⎫=+ ⎪⎝⎭B.4πρθ⎛⎫=- ⎪⎝⎭C.4πρθ⎛⎫=+⎪⎝⎭D.4πρθ⎛⎫=-⎪⎝⎭【答案】A 【解析】 【分析】首先把极坐标方程化为直角坐标方程,进一步求出圆心坐标和半径,再把直角坐标方程化为极坐标方程,即可得到答案. 【详解】由题意,圆8:sin C ρθ=化为直角坐标方程,可得22(4)16x y +-=,直线():4l R πθρ=∈化为直角坐标方程,可得y x =,由直线与圆交于,A B 两点,把直线y x =代入圆22(4)16x y +-=,解得00x y =⎧⎨=⎩或44x y =⎧⎨=⎩,所以以线段AB 为直径的圆的圆心坐标为(2,2),半径为, 则圆的方程为22(2)(2)8x y -+-=,即22440x y x y +--=, 又由cos sin x y ρθρθ=⎧⎨=⎩,代入可得24cos 4sin 0ρρθρθ--=,即4cos 4sin 4θπρθθ⎛⎫=+= ⎝+⎪⎭,故选A . 【点睛】本题主要考查了极坐标方程与直角坐标方程的互化,以及圆的标准方程的求解,其中解答中把极坐标方程互为直角坐标方程,得到以线段AB 为直径的圆的标准方程是解答的关键,着重考查了推理与运算能力,属于基础题.10.在正方形ABCD 中,动点P 在以点C 为圆心且与BD 相切的圆上,若AP x AB y AD =+u u u v u u u v u u u v,则x y +的最大值为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】设正方形ABCD 的边长为2,以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立平面直角坐标系xAy ,可得出圆C 的方程为()()22222x y -+-=,可设点P 的坐标为()2,2θθ+,根据向量的坐标运算可将x y +用θ的三角函数表示,利用辅助角公式和正弦函数的有界性可求出x y +的最大值. 【详解】设正方形ABCD 的边长为2,以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系xAy ,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,直线BD 的方程为221x y+=,即20x y +-=,点C 到直线BD 的距离为22211d ==+,则以点C 为圆心且与直线BD 相切的圆C 的方程为()()22222x y -+-=,设点P 的坐标为()22,22θθ+,由AP x AB y AD =+u u u r u u u r u u u r,得()()()()22,222,00,22,2x y x y θθ+=+=,212212x y θθ⎧=+⎪⎪∴⎨⎪=+⎪⎩, 所以,22cos 2sin 2224x y πθθθ⎛⎫+=++=++ ⎪⎝⎭, 因此,x y +的最大值为3. 故选:C. 【点睛】本题考查利用平面向量的基本定理求参数和的最小值,利用圆的有界性结合圆的参数方程来求解是解题的关键,考查计算能力,属于中等题.11.在极坐标系中,与点8,6π⎛⎫- ⎪⎝⎭关于极点对称的点的一个坐标是( ) A .8,6π⎛⎫⎪⎝⎭B .58,6π⎛⎫-⎪⎝⎭C .58,6π⎛⎫- ⎪⎝⎭D .8,6π⎛⎫--⎪⎝⎭【答案】A 【解析】 【分析】由点(),ρθ关于极点对称的点为()(),2k k Z ρππθ++∈,结合极径为负数的点的定义,即可得答案; 【详解】点(),ρθ关于极点对称的点为()(),2k k Z ρππθ++∈, 故点8,6π⎛⎫- ⎪⎝⎭关于极点对称的点的一个坐标为78,6π⎛⎫- ⎪⎝⎭,即8,6π⎛⎫ ⎪⎝⎭. 故选:A. 【点睛】本题考查极径为负数的极坐标的定义,考查对概念的理解,属于基础题.12.方程sin cos k ρθθ=++ 的曲线不经过极点,则k 的取值范围是( )A .0k ≠B .k R ∈C .k >D .k …【答案】C 【解析】 【分析】由题意可知,极点不在方程表示的sin cos k ρθθ=++曲线上,可知sin cos k θθ+=-无解,利用辅助角公式得出4sin cos πθθθ⎛⎫+=+ ⎪⎝⎭,结合正弦函数的性质,即可得出k 的取值范围. 【详解】当0ρ=时,sin cos k θθ+=-,则此方程无解由4sin cos πθθθ⎛⎫+=+≤ ⎪⎝⎭k >时,方程无解.故选:C 【点睛】本题主要考查了点与直线的位置关系,涉及了正弦函数的性质,属于中档题.13.在极坐标系中,曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为ρθ=,若曲线1C 与2C 的关系为( )A .外离B .相交C .相切D .内含【答案】B 【解析】 【分析】将两曲线方程化为普通方程,可得知两曲线均为圆,计算出两圆圆心距d ,并将圆心距d 与两圆半径差的绝对值和两半径之和进行大小比较,可得出两曲线的位置关系. 【详解】在曲线1C 的极坐标方程两边同时乘以ρ,得24sin ρρθ=,化为普通方程得224x y y +=,即()2224x y +-=,则曲线1C 是以点()10,2C 为圆心,以12r =为半径的圆,同理可知,曲线2C的普通方程为(2212x y -+=,则曲线2C是以点()2C 为圆心,以2r = 两圆圆心距为4d ==,1222r r -=-=,122r r +=+,1212r r d r r ∴-<<+,因此,曲线1C 与2C 相交,故选:B.【点睛】本题考查两圆位置关系的判断,考查曲线极坐标方程与普通方程的互化,对于这类问题,通常将圆的方程化为标准方程,利用两圆圆心距与半径和差的大小关系来得出两圆的位置关系,考查分析问题和解决问题的能力,属于中等题.14.椭圆2242x y +=上的点到直线280x y --=的距离的最小值为( ) AB C .3 D .6【答案】A 【解析】 【分析】设P (2cosθsinθ),0≤θ<2π,求出P 到直线2x ﹣y ﹣8=0 的距离d ,由此能求出点P 到直线的距离的最小值. 【详解】∵椭圆4x 2+y 2=2,P 为椭圆上一点,∴设P (2cosθsinθ),0≤θ<2π, ∴P 到直线2x ﹣y ﹣8=0 的距离:d5==≥, 当且仅当cos (4πθ+)=1时取得最小值.∴点P 到直线2x ﹣y ﹣8=0的距离的最小值为d min =. 故选:A . 【点睛】本题考查点到直线的距离公式的最小值的求法,解题时要认真审题,注意椭圆的参数方程的合理运用.15.在极坐标系中,点2,6π⎛⎫⎪⎝⎭到直线sin 16πρθ⎛⎫-= ⎪⎝⎭的距离是( ) AB .3C .1D .2【答案】C 【解析】 【分析】先将点的极坐标化成直角坐标,直线的极坐标方程化为直角坐标方程,然后用点到直线的距离求解. 【详解】在极坐标系中,点2,6π⎛⎫⎪⎝⎭,1),直线ρsin (θ﹣6π)=1化为直角坐标方程为x+2=0,1)到x+2=0的距离1=,即点(2,6π)到直线ρsin (θ﹣6π)=1的距离为1, 故选C . 【点睛】本题考查直角坐标和极坐标的互化,考查点到直线的距离公式的应用,属于基础题.16.在极坐标系中,由三条直线0θ=,3πθ=,cos sin 1ρθρθ+=围成的图形的面积为( ) A .14BCD .13【答案】B 【解析】 【分析】求出直线0θ=与直线cos sin 1ρθρθ+=交点的极坐标()1,0ρ,直线3πθ=与直线cos sin 1ρθρθ+=交点的极坐标2,3πρ⎛⎫ ⎪⎝⎭,然后利用三角形的面积公式121sin 23S πρρ=可得出结果.【详解】设直线0θ=与直线cos sin 1ρθρθ+=交点的极坐标()1,0ρ,则1cos 01ρ=,得11ρ=. 设直线3πθ=与直线cos sin 1ρθρθ+=交点的极坐标2,3πρ⎛⎫ ⎪⎝⎭,则22cos sin 133ππρρ+=,即22112ρρ+=,得21ρ=. 因此,三条直线所围成的三角形的面积为)12113sin 1123224S πρρ==⨯⨯⨯=, 故选:B.【点睛】本题考查极坐标系中三角形面积的计算,主要确定出交点的极坐标,并利用三角形的面积公式进行计算,考查运算求解能力,属于中等题.17.在平面直角坐标系xOy 中,曲线3cos :sin x C y θθ=⎧⎨=⎩(θ为参数)上的点到直线84:1x t l y t =+⎧⎨=-⎩的距离的最大值为( )A B C D 【答案】B【解析】【分析】将直线84:1x t l y t =+⎧⎨=-⎩,化为直角方程,根据点到直线距离公式列等量关系,再根据三角函数有界性求最值.【详解】Q 84:1x t l y t =+⎧⎨=-⎩可得:4120x y +-=根据点到直线距离公式,可得C 上的点到直线l 的距离为=≤=【点睛】本题考查点到直线距离公式以及三角函数有界性,考查基本分析求解能力,属中档题.18.已知实数x ,y 满足2212x y +≤,则2222267x y x y x +-++-+的最小值等于( )A.5B.7 C- D.9- 【答案】D【解析】【分析】设x θ=,sin y θ=,去绝对值,根据余弦函数的性质即可求出.【详解】 因为实数x ,y 满足2212x y +„,设x θ=,sin y θ=,222222222|2||67||2cos sin 2||2cos sin 7||sin |x y x y x θθθθθθ∴+-++-+=+-++-+=-+2|cos 8|θθ-+,22cos 8(cos 100θθθ-+=-->Q 恒成立,222222|2||67|sin cos 899x y x y x θθθθ∴+-++-+=+-+=--… 故则2222|2||67|x y x y x +-++-+的最小值等于9-故选:D .【点睛】本题考查了椭圆的参数方程、三角函数的图象和性质,考查了运算能力和转化能力,意在考查学生对这些知识的理解掌握水平.19.椭圆22:1169x y C +=上的点P 到直线:34180l x y ++=的距离的最小值为( ) ABCD【答案】C【解析】【分析】设点P 的坐标为()4cos ,3sin θθ,其中[)0,2θ∈π,再利用点到直线的距离公式和三角函数的有界性,即可得答案.【详解】设点P 的坐标为()4cos ,3sin θθ,其中[)0,2θ∈π,则点P 到直线l的距离12cos 12sin 185d θθ++==1818455πθ⎛⎫++ ⎪-⎝⎭=≥,当sin 14πθ⎛⎫+=- ⎪⎝⎭时,等号成立. 因为[)0,2θ∈π,所以54πθ=. 所以当54πθ=时,d取得最小值185-. 故选:C.【点睛】本题考查椭圆参数方程的应用、点到直线距离的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意点的参数设法及三角函数的有界性运用.20.若点P的直角坐标为(1,,则它的极坐标可以是( ) A .52,3π⎛⎫ ⎪⎝⎭B .42,3π⎛⎫ ⎪⎝⎭C .72,6π⎛⎫ ⎪⎝⎭D .112,6π⎛⎫ ⎪⎝⎭ 【答案】A【解析】【分析】 设点P 的极坐标为()(),02ρθθπ≤<,计算出ρ和tan θ的值,结合点P 所在的象限求出θ的值,可得出点P 的极坐标.【详解】设点P 的极坐标为()(),02ρθθπ≤<,则2ρ==,tan θ==. 由于点P 位于第四象限,所以,53πθ=,因此,点P 的极坐标可以是52,3π⎛⎫ ⎪⎝⎭,故选:A. 【点睛】本题考查点的直角坐标化极坐标,要熟悉点的直角坐标与极坐标互化公式,同时还要结合点所在的象限得出极角的值,考查运算求解能力,属于中等题.。

2020高考数学(理)专项复习《坐标系与参数方程》含答案解析

2020高考数学(理)专项复习《坐标系与参数方程》含答案解析

坐标系与参数方程本专题涉及极坐标系的基础知识,参数方程的概念以及直线、圆、椭圆的参数方程.这部分内容既是解析几何的延续,也是高等数学的基础. 【知识要点】1.极坐标系的概念,极坐标系中点的表示. 在平面内取一个定点O ,O 点出发的一条射线Ox ,一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系.O 称为极点,Ox 称为极轴.设M 是平面内任意一点,极点O 与点M 的距离|OM |叫做点M 的极径,记作ρ ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记作θ ,有序数对(ρ ,θ )叫做点M 的极坐标.一般情况下,约定ρ ≥0.2.极坐标系与直角坐标系的互化.直角坐标化极坐标:x =ρ cos θ ,y =ρ sin θ ;极坐标化直角坐标:222y x +=ρ,).0(tan =/=x xy θ 3.参数方程的概念设在平面上取定一个直角坐标系xOy ,把坐标x ,y 表示为第三个变量t 的函数⎩⎨⎧==)()(t g y t f xb t a ≤≤……①,如果对于t 的每一个值(a ≤t ≤b ),①式所确定的点M (x ,y )都在一条曲线上;而这条曲线上任意一点M (x ,y ),都可由t 的某个值通过①式得到,则称①式为该曲线的参数方程,其中t 称为参数.4.参数方程与普通方程的互化把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法.常见的消参方法有:代入消元法;加减消参法;平方和(差)消参法;乘法消参法等.把曲线C 的普通方程F (x ,y )=0化为参数方程的关键:一是适当选取参数;二是确保互化前后方程的等价性.要注意方程中的参数的变化范围. 5.直线、圆、椭圆的参数方程.(1)经过一定点P 0(x 0,y 0),倾斜角为α 的直线l 的参数方程为⎩⎨⎧+=+=ααsin ,cos 00t y y t x x (t 为参数);(2)直线参数方程的一般形式为⎩⎨⎧+=+=bt y y at x x 00,(t 为参数);(3)圆的参数方程为⎩⎨⎧+=+=θθsin ,cos 00r y y r x x (θ 为参数);(4)椭圆)0(12222>>=+b a b y a x 的参数方程为⎩⎨⎧==θθsin ,cos b y a x (θ 为参数).【复习要求】1.理解坐标系的作用.2.能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.3.了解参数方程.4.能选择适当的参数写出直线、圆和圆锥曲线的参数方程,并会简单的应用. 【例题分析】例1 (1)判断点)35π,23(-是否在曲线2cos θρ=上. (2)点P 的直角坐标为)3,1(-,则点P 的极坐标为______.(限定0<θ ≤2π) (3)点P 的极坐标为)4π,3(-,则点P 的直角坐标为______.解:(1)因为2365πcos2cos-==θ,所以点)35π,23(-是在曲线2cos θρ=上. (2)根据ρ 2=x 2+y 2,)0(tan =/=x xy θ, 得ρ =2,3tan -=θ,又点P 在第四象限,2π23π≤<θ,所以35π=θ, 所以点P 的极坐标为).3π5,2( (3)根据x =ρ cos θ ,y =ρ sin θ ,得223,223-==y x , 所以点P 的直角坐标为).223,223(- 例2 (1)圆ρ =2(cos θ +sin θ )的半径为______.(2)直线)(3πR ∈=ρθ与圆ρ =2sin θ 交与A ,B 两点,则|AB |=______. 解:(1)由ρ =2(cos θ +sin θ ),得ρ 2=2ρ (cos θ +sin θ ),所以,x 2+y 2=2x +2y ,即(x -1)2+(y -1)2=2, 所以圆ρ =2(cos θ +sin θ )的半径为2.(2)将直线)(3πR ∈=ρθ与圆ρ =2sin θ 化为直角坐标方程,得 由3π=θ得xy=3πtan ,即x y 3=,由ρ =2sin θ ,变形为ρ 2=2ρ sin θ ,得x 2+y 2=2y ,即x 2+(y -1)2=1,因为圆的半径为1,圆心到直线的距离为21311=+=d , 所以.3)21(12||2=-=AB评述:(1)应熟练运用直角坐标与极坐标互化的方法解决有关极坐标的问题;(2)由直角坐标化极坐标时要注意点位于哪一个象限才能确定θ 的大小,如例1(2),否则,极坐标不唯一;(3)例2也可以用极坐标有关知识直接解决.这需要知道一些直线与圆的极坐标方程的知识.如:①过极点,倾斜角为α 的直线:θ =α (ρ ∈R )或写成θ =α 及θ =α +π. ②过A (a ,α)垂直于极轴的直线:ρ cos θ =a cos α . ③以极点O 为圆心,a 为半径的圆(a >0):ρ =a .④若O (0,0),A (2a ,0),以OA 为直径的圆:ρ =2a cos θ .⑤若O (0,0),A (2a ,2π),以OA 为直径的圆:ρ =2a sin θ . 对于例2(2),可以利用结论①⑤,作出直线与圆,通过解三角形的方法求|AB |,当然也可以用极坐标方程直接解ρ ,根据ρ 的几何意义求|AB |.例3 圆O 1和圆O 2的极坐标方程分别为ρ =4cos θ ,ρ =-4sin θ . (1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过圆O 1和圆O 2交点的直线的直角坐标方程.解:(1)由ρ =4cos θ 得ρ 2=4ρ cos θ ,根据x =ρ cos θ ,y =ρ sin θ ,所以x 2+y 2=4x .即x 2+y 2-4x =0为圆O 1的直角坐标方程,同理x 2+y 2+4y =0为圆O 2的直角坐标方程.(2)由⎪⎩⎪⎨⎧=++=-+,04,042222y y x x y x 解得⎩⎨⎧==;0,011y x ⎩⎨⎧-==.2,222y x 即圆O 1和圆O 2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y =-x .例4 (1)曲线的参数方程是⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=21,11t y t x (t 为参数,t ≠0),它的普通方程是________.(2)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧-=+=t y t x 3,3 (参数t ∈R ),圆C 的参数方程为⎩⎨⎧+==2sin 2,cos 2θθy x (参数θ ∈[0,2π]),则圆C 的圆心坐标为______,圆心到直线l 的距离为______.解:(1)由t x 11-=得x t -=11,带入y =1-t 2,得,)1()2()11(122--=--=x x x x y 注意到111=/-=t x ,所以已知参数的普通方程为⋅--=2)1()2(x x x y (2)直线l 的普通方程为x +y -6=0,圆C 的普通方程为x 2+(y -2)2=4,所以圆心坐标为(0,2),圆心到直线l 的距离.222|620|=-+=d 评述:(1)应熟练运用将参数方程化为普通方程的方法解决有关参数方程的问题; (2)在将参数方程化为普通方程的过程中应注意消参带来的范围变化问题.如例4(1),若参数方程为⎪⎪⎩⎪⎪⎨⎧-=-=21,11t y t x(t 为参数,t >0),则其普通方程为).1()1()2(2<--=x x x x y 例5 求椭圆12222=+by a x 的内接矩形的最大面积.解:设内接矩形在第一象限内的顶点为P (a cos θ ,b sin θ ),P 点在两轴上的投影分别为A 、B ,则有S 内接矩形=4S 矩形OAPB =4·a cos θ ·b sin θ =2ab sin2θ .因为)2π,0(∈θ,所以2θ ∈(0,π),S 内接矩形的最大值为2ab . 评述:圆锥曲线参数方程主要应用于利用参数方程设圆锥曲线上的点,从而讨论最值等有关问题.椭圆)0,0(12222>>=+b a b y a x 的参数方程为⎩⎨⎧==θθtan sec b y a x (θ 为参数).抛物线y 2=2px (p >0)的参数方程为⎩⎨⎧==pty pt x 222.例6 圆M 的参数方程为x 2+y 2-4Rx cos α -4Ry sin α +3R 2=0(R >0). (1)求该圆的圆心坐标以及圆M 的半径;(2)当R 固定,α 变化时,求圆心M 的轨迹,并证明此时不论α 取什么值,所有的圆M 都外切于一个定圆.解:(1)依题意得圆M 的方程为(x -2R cos α )2+(y -2R sin α )2=R 2, 故圆心的坐标为M (2R cos α ,2R sin α ),半径为R .(2)当α 变化时,圆心M 的轨迹方程为⎩⎨⎧==,sin 2,cos 2ααR y R x (α 为参数),两式平方相加得x2+y 2=4R 2,所以圆心M 的轨迹是圆心在原点,半径为2R 的圆.由于,32)sin 2()cos 2(22R R R R R -==+αα,2)sin 2()cos 2(22R R R R R +==+αα所以所有的圆M 都和定圆x 2+y 2=R 2外切,和定圆x 2+y 2=9R 2内切.例7 过P (5,-3),倾斜角为α ,且53cos -=α的直线交圆x 2+y 2=25于P 1、P 2两点.(1)求|PP 1|·|PP 2|的值;(2)求弦P 1P 2的中点M 的坐标. 解:(1)由已知53cos -=α得,54sin =α所以已知直线的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=-=,543,535t y t x …………………①(t 为参数)代入圆的方程化简,得.095542=+-t t …………………②②的两个解t 1、t 2就是P 1、P 2对应的参数,由参数的几何意义及韦达定理知 |PP 1|·|PP 2|=|t 1|·|t 2|=9.(2)设M (x ,y )为P 1P 2的中点,则点M 对应的参数527221=+=t t t ,代入参数方程, 得,2533,2544==y x 所以M PP PP ,9||||21=⋅).2533,2544(评述:根据直线的参数方程的标准式中t 的几何意义,有如下常用结论:①直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长l =|t 1-t 2|; ②定点M 0是弦M 1M 2的中点⇒t 1+t 2=0; ③设弦M 1M 2的中点为M ,则点M 对应的参数值221t t t M +=,(由此可求得|M 2M |及中点坐标).习题14一、选择题 1.极坐标)34π(2,的直角坐标为 (A)(1,3)(B)(-3,-1) (C)(-1,-3) (D)(-1,3)2.椭圆⎩⎨⎧==θθsin 5,cos 2y x (θ 为参数)的焦距等于( )(A)21 (B)221 (C)29 (D)2923.已知某条曲线的参数方程为⎪⎩⎪⎨⎧-=+=1,2322t y t x (0≤t ≤5),则该曲线是( )(A)线段 (B)圆弧 (C)双曲线的一支 (D)射线4.若)3π,2(--P 是极坐标系中的一点,则、、、)3π5,2()3π8,2()3π2,2(-M R Q )3π5π2,2(-k N)(Z ∈k 四点中与P 重合的点有( )(A)1个(B)2个(C)3个(D)4个5.在极坐标系中,若等边△ABC 的两个顶点是)4π5,2()4π,2(B A 、,那么顶点C 的坐标可能是( ) (A))4π3,4( (B))43π,32( (C))π,32((D)(3,π)二、选择题 6.过极点,倾斜角是6π的直线的极坐标方程为____________. 7.点M 的直角坐标(3,-3)化为极坐标是____________.8.直线⎩⎨⎧+-=+=t y at x 41,3(t 为参数)过定点____________.9.曲线⎩⎨⎧=+-=ty t x ,12(t 为参数)与y 轴的交点坐标是____________.10.参数方程⎩⎨⎧+==θθθcos sin ,2sin y x (θ 为参数)表示的曲线的普通方程是____________.三、解答题11.求过点)4π,3(,并且和极轴垂直的直线的极坐标方程.12.在椭圆14922=+y x 上求一点,使点M 到直线021032=-+y x 的距离最小,并求出最小距离.13.设圆C 是以C (4,0)为圆心,半径等于4的圆.(1)求圆C 的极坐标方程;(2)从极点O 作圆C 的弦ON ,求ON 的中点M 的轨迹方程.14.已知点M (2,1)和双曲线1222=-y x ,求以M 为中点的双曲线右支的弦AB 所在直线l的方程.参考答案习题14一、选择题1.C 2.B 3.A 4.C 5.B 二、填空题 6.)(6πR ∈=ρθ; 7.)47π,23(; 8.(3,-1); 9.(0,1),(0,-1); 三、解答题 11.⋅=223cos θρ12.解:由题设知椭圆参数方程为⎩⎨⎧==θθsin 2,cos 3y x (θ 为参数).设M 的坐标(3cos θ ,2sin θ )由点到直线距离,13|210)4πsin(26|13|210sin 6cos 6|-+=-+=θθθd即d 的最小值为26134,此时4π=θ.所以M 的坐标为).2,223(13.解:(1)设P (ρ ,θ )为圆C 上任意一点,圆C 交极轴于另一点A .由已知|OA |=8,在Rt △ABC 中,|OP |=|OA |cos θ ,即ρ =8cos θ ,这就是圆C 的方程.(2)连结CM ,因为M 是ON 的中点,所以CM ⊥ON ,故M 在以OC 为直径的圆上. 由r =|OC |=4,得动点M 的轨迹方程是ρ =4cos θ . 14.解:设AB 的方程为⎩⎨⎧+=+=ααsin 1,cos 2t y t x (t 为参数),代入双曲线方程,得(2cos 2α -sin 2α )t 2+(8cos α -2sin α )t +5=0,由于M 为AB 的中点,则t 1+t 2=0,则tan α =4,从而AB 的方程为:4x -y -7=0.。

坐标系与参数方程常考题型及解析

坐标系与参数方程常考题型及解析

坐标系与参数方程高考常考题型及解析随着高考改革的不但深入,考试内用也在不但改革,分为必修和选修两部分,选修部分又分为高考必考部分和选考部分,这是对部分学生的兴趣和爱好加上了不等式选讲及几何证明选讲坐标系与参数方程,矩阵及变换等等选讲部分,笔者以多年送高考的经验将坐标系与参数方程选讲部分高考常考题型及解析总结如下,供同行们商榷。

类型一:求直线或圆锥曲线的参数或极坐标方程问题。

例题1:(2013年高考陕西卷)以过原点的直线的倾斜角θ为参数, 则220y x x +-=的参数方程为_____解析 :222)21()21=+-⇒y x (圆的方程21=⇒r 圆的半径 θθθθθθθsin cos sin ,cos cos cos 2cos 2⋅=⋅==⋅=⇒=⋅=⇒OP y OP x r OP 。

所以圆的参数方程为R y x ∈⎩⎨⎧⋅==θθθθ,sin cos cos 2变式:(2013年高考江西卷)设曲线C 的参数方程为2x t y t=⎧⎨=⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线c 的极坐标方程为__________解析:本题考查参数方程与极坐标方程的转化。

曲线C 的普通方程为2y x =。

将cos sin x y ρθρθ=⎧⎨=⎩代入2y x =,得22sin cos ρθρθ=,即2cos sin 0ρθθ-=。

所以曲线c 的极坐标方程为2cos sin 0ρθθ-=点评:求极坐标方程与参数方程是坐标系与参数方程是高考常考的题型,记住参数方程与极坐标方程的转化结合直线与圆的方程形式,解决起来比较容易,是中档题目。

类型二;考查在极坐标系下求两点距离或者点到直线距离问题。

例题2:(2013年高考上海卷(理))在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为__________解析:联立方程组得15(1)12ρρρ±-=⇒=,又0ρ≥,故所求为152+. 变式:(2013年高考北京卷(理))在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于_________.解析:在极坐标系中,点化为直角坐标为( ,1),直线ρsinθ=2化为直角坐标方程为y=2,( ,1),到y=2的距离1,即为点到直线ρsinθ=2的距离1。

高考数学压轴专题新备战高考《坐标系与参数方程》知识点总复习含答案解析

高考数学压轴专题新备战高考《坐标系与参数方程》知识点总复习含答案解析

新《坐标系与参数方程》专题解析一、131.已知点()30A -,,()0,3B ,若点P 在曲线1cos sin x y θθ=+⎧⎨=⎩(参数[]0,2θπ∈)上运动,则PAB △面积的最小值为( ) A .92B.C.62+ D.62-【答案】D 【解析】 【分析】化简曲线1cos sin x y θθ=+⎧⎨=⎩成直角坐标,再将面积最小值转换到圆上的点到直线AB 的距离最小值求解即可. 【详解】由曲线1cos sin x y θθ=+⎧⎨=⎩(参数[]0,2θπ∈)知曲线是以()1,0为圆心,1为半径的圆.故直角坐标方程为:()2211x y -+=.又点()30A -,,()0,3B 故直线AB 的方程为30x y -+=. 故当P 到直线AB 的距离最小时有PAB △面积取最小值. 又圆心()1,0到直线AB 的距离为d ==故P 到直线AB 的距离最小值为1h =.故PAB △面积的最小值为()1116222S AB d =⋅=⨯=-. 故选:D 【点睛】 本题主要考查了参数方程化直角坐标的方法与根据直线与圆的位置关系求最值的问题.属于中等题型.2.点(,)ρθ满足223cos 2sin 6cos ρθρθθ+=,则2ρ的最大值为( ) A .72B .4C .92D .5【答案】B 【解析】 【分析】将223cos 2sin 6cos ρθρθθ+=化成直角坐标方程,则2ρ的最大值为22xy + 的最大值。

【详解】223cos 2sin 6cos ρθρθθ+=两边同时乘ρ,化为22326x y x +=,得22332y x x =-,则()2222211919369(3)22222x y x x x x x +=-+=--++=--+.由223302y x x =-…,可得02x 剟,所以当2x =时,222x y ρ=+取得最大值4. 故选B 【点睛】本题考查极坐标方程与直角坐标方程的互化以及利用二次函数求最值,属于一般题。

高考数学压轴专题最新备战高考《坐标系与参数方程》真题汇编含答案解析

高考数学压轴专题最新备战高考《坐标系与参数方程》真题汇编含答案解析

新数学复习题《坐标系与参数方程》专题解析一、131.设x 、y 满足223412,x y +=则2x y +的最大值为( )A .2B .3C .4D .6【答案】C 【解析】 【分析】由223412x y +=得出22143x y +=,表示椭圆,写出椭圆的参数方程,利用三角函数求2x y +的最大值.【详解】由题可得:22143x y +=则2cos (x y θθθ=⎧⎪⎨=⎪⎩为参数),有22cos x y θθ+=+14sin 22con θθ⎛⎫=+ ⎪ ⎪⎝⎭4sin 6πθ⎛⎫=+⎪⎝⎭. 因为1sin 16πθ⎛⎫-≤+≤ ⎪⎝⎭, 则: 44sin 46πθ⎛⎫-≤+≤ ⎪⎝⎭,所以2x y +的最大值为4. 故选:C. 【点睛】本题主要考查与椭圆上动点有关的最值问题,利用椭圆的参数方程,转化为三角函数求最值.2.椭圆3cos (4sin x y θθθ=⎧⎨=⎩为参数)的离心率是( ) ABC.2D【答案】A 【解析】 【分析】先求出椭圆的普通方程,再求其离心率得解.椭圆3cos 4sin x y θθ=⎧⎨=⎩的标准方程为221916x y +=,所以.所以e . 故答案为A 【点睛】(1) 本题主要考查参数方程和普通方程的互化,考查椭圆的简单几何性质,意在考查学生对这些知识的掌握水平和分析推理计算能力. (2)在椭圆中,222,.c c a b e a=-=3.已知直线2sin 301sin 30x t y t ︒︒⎧=-⎨=-+⎩(t 为参数)与圆228x y +=相交于B 、C 两点,则||BC 的值为( )A .BC .D 【答案】B 【解析】 【分析】根据参数方程与普通方程的互化方法,然后联立方程组,通过弦长公式,即可得出结论. 【详解】曲线2sin 301sin 30x t y t ︒︒⎧=-⎨=-+⎩(t 为参数),化为普通方程1y x =-, 将1y x =-代入228x y +=,可得22270x x --=,∴BC ==,故选B . 【点睛】本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,考查直线与圆的位置关系,属于中档题.4.已知圆的参数方程2cos 2sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为3490cos sin ραρα--=,则直线与圆的位置关系是( ) A .相切 B .相离C .直线过圆心D .相交但直线不过圆心 【答案】D【分析】分别计算圆和直线的普通方程,根据圆心到直线的距离判断位置关系. 【详解】 圆的参数方程2cos 2sin x y θθ=⎧⎨=⎩(θ为参数)224x y ⇒+=直线的极坐标方程为34903490cos sin x y ραρα--=⇐--= 圆心到直线的距离为:925d r =<=相交 圆心坐标代入直线不满足,所以直线不过圆心. 故答案选D 【点睛】本题考查了参数方程,极坐标方程,直线和圆心的位置关系,综合性较强,意在考查学生的综合应用能力.5.在极坐标系中,曲线1C 的极坐标方程为2sin ρθ=,曲线2C的极坐标方程为ρθ=,若曲线1C 与2C 交于A 、B 两点,则AB 等于( )A .1 BC .2D.【答案】B 【解析】 【分析】由题意可知曲线1C 与2C 交于原点和另外一点,设点A 为原点,点B 的极坐标为()(),0,02ρθρθπ>≤<,联立两曲线的极坐标方程,解出ρ的值,可得出AB ρ=,即可得出AB 的值. 【详解】易知,曲线1C 与2C 均过原点,设点A 为原点,点B 的极坐标为()(),0,02ρθρθπ>≤<,联立曲线1C 与2C的坐标方程2sin ρθρθ=⎧⎪⎨=⎪⎩,解得3πθρ⎧=⎪⎨⎪=⎩,因此,AB ρ== 故选:B. 【点睛】本题考查两圆的相交弦长的计算,常规方法就是计算出两圆的相交弦方程,计算出弦心距,利用勾股定理进行计算,也可以联立极坐标方程,计算出两极径的值,利用两极径的差来计算,考查方程思想的应用,属于中等题.6.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴,建立极坐标系,直线l的参数方程为1cossinx ty tαα=-+⎧⎨=⎩,(t为参数),曲线C的方程为4cos02πρθθ⎛⎫= ⎪⎝⎭剟,(2,0)C直线l与曲线C相交于A B,两点,当ABC∆的面积最大时,tanα=( )A.23B.142C.7D.147【答案】D【解析】【分析】先将直线直线l与曲线C转化为普通方程,结合图形分析可得,要使ABC∆的面积最大,即要ACB∠为直角,从而求解出tanα。

坐标系与参数方程知识点总结及同步练习(附答案)

坐标系与参数方程知识点总结及同步练习(附答案)

坐标系与参数方程 知识点1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0)x xy yλλϕμμ'=>⎧⎨'=>⎩g g 的作用下,点P(x,y)对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. (2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的. 3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:点M直角坐标(,)x y极坐标(,)ρθ互化公式cos sin x y ρθρθ=⎧⎨=⎩222tan (0)x y yx xρθ=+=≠在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程 曲线图形极坐标方程圆心在极点,半径为r 的圆(02)r ρθπ=≤<圆心为(,0)r ,半径为r 的圆2cos ()22r ππρθθ=-≤<圆心为(,)2r π,半径为r 的圆2sin (0)r ρθθπ≤<过极点,倾斜角为α的直线(1)()()R R θαρθπαρ=∈=+∈或 (2)(0)(0)θαρθπαρ=≥=+≥和过点(,0)a ,与极轴垂直的直线cos ()22a ππρθθ=-<<过点(,)2a π,与极轴平行的直线sin (0)a ρθθπ=<<注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2),(,),(,),ρθρπθρπθρπθ+-+--+都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,ρθ=点(,)44M ππ可以表示为5(,2)(,2),444444ππππππππ+-或或(-)等多种形式,其中,只有(,)44ππ的极坐标满足方程ρθ=. 二、参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数()()x f t y g t =⎧⎨=⎩①,并且对于t 的每一个允许值,由方程组①所确定的点(,)M x y 都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数,x y 的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数,x y 中的一个与参数t 的关系,例如()x f t =,把它代入普通方程,求出另一个变数与参数的关系()y g t =,那么()()x f t y g t =⎧⎨=⎩就是曲线的参数方程,在参数方程与普通方程的互化中,必须使,x y 的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。

高考坐标系与参数方程知识点及习题

高考坐标系与参数方程知识点及习题

坐标系与参数方程极坐标系的相关概念1、极坐标系的建立在平面上取一个定点O ,自点O 引一条射线OX ,同时确定一个单位长度和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系。

(其中O 称为极点,射线OX 称为极轴。

)2、极坐标系内一点的极坐标的规定对于平面上任意一点M ,用ρ表示线段OM 的长度,用θ表示从OX 到OM 的角度,ρ叫做点M 的极径,θ叫做点M 的极角,有序数对(ρ,θ)就叫做M 的极坐标。

3、特别强调:(1)由极径的意义可知ρ≥0;当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)建立一一对应的关系(2)极点的极坐标是极径ρ=0,极角是任意角.4、负极径的规定:在极坐标系中,极径ρ允许取负值,极角θ也可以去任意的正角或负角;当ρ<0时,点M (ρ,θ)位于极角终边的反向延长线上,且OM=ρ;M (ρ,θ)也可以表示为))12(,()2,(πθρπθρ++-+k k 或 )(z k ∈练习:1、在极坐标系里描出下列各点A (3,0) C (3,2π) D (5,34π) E (3,65π) F (4,π) G (6,35π)2、在极坐标系中,已知两点P (5,45π),Q )4,1(π,求线段PQ 的长度;3、若ABC ∆的的三个顶点为.),67,3(),65,8(),25,5(判断三角形的形状πππC B A极坐标与直角坐标互化1、互化公式 直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且在两坐标系中取相同的长度单位。

平面内任意一点P 的直角坐标与极坐标分别为),(y x 和),(θρ,则由三角函数的定义可以得到如下两组公式:{θρθρsin cos ==y x { x yy x =+=θρtan 222说明:通常情况下,将点的直角坐标化为极坐标时,取ρ≥0,0≤θ≤π2。

2、互化公式的三个前提条件(1)极点与直角坐标系的原点重合;(2)极轴与直角坐标系的x 轴的正半轴重合;(3)两种坐标系的单位长度相同;练习:1、把下列点的极坐标化成直角坐标:(1)A(2,34π) (2)B(4,143π) (3)M(-5, 6π) (4)N(-3,- π).2、把下列个点的直角坐标化为极坐标(限定ρ>0,0≤θ<π2)(1)A(-1,1) (2)B(0,-2) (3)C(3,4) (4)D(-3,-4)3、如图是某校园的平面示意图,假设某同学在教学楼处,试以此点为极点建立坐标系,求教学楼、体育馆、图书馆、实验楼、办公楼的极坐标(A为教学楼、B为体育馆、C为图书馆、D为实验楼、E为办公楼。

高中数学高考总复习坐标系与参数方程习题及详解.doc

高中数学高考总复习坐标系与参数方程习题及详解.doc

高中数学高考总复习坐标系与参数方程习题及详解一、选择题x=一1 ~t1.极坐标方程P = g胡和参数方程(/为参数)所表示的图形分别是()3=2 + /A.直线、直线B.直线、圆C.圆、圆D.圆、直线[答案]D[解析]由p=cosO得p2=pcos<9, Ax2 +/-x=0.此方程所表示的图形是圆.X= — 1 —I消去方程中的参数/可得,x+y-l=o,此方程所表示的图形是直线.ly=2+t2.下列参数方程(f为参数)屮,与方程/ = x表示同一曲线的是(){x=t[x=taiFfB.v=tan/x=tan/2l=tarT7[答案]B[解析]将/=x代入y=r得,y=x29故A错,将tant=y代入x=tan2Z中得,x=y2,[点评]平方得y2=\x\. 限定了x的取VtanzeR,故B正确,C、D容易判断都是错的.值必须非负, /•K=x,但白于y=y[\x\9故它必须满足尹20,而y2=x中的yWR.注意C中消去(得y=y[\x\9x=1+2/ [y=}-2t (/为参数)被圆x=3cosaj^=3sina(a为参数)截得的眩长为(4. 直线)C. 4^/7D. 2[答案]A兀=l+2f[解析]将直线 宀 化为普通方程得x+y=2,[y=\-2tx=3cosa r 入 将圆 r • 化为普通方程得X 2+/ = 9.丿=3sina 圆心O到直线的距离宀眾, 所以弦长1=2,段一孑=2护.二、填空题7.在极坐标系中,过圆p = 6cos&的圆心,且垂直于极轴的直线的极坐标方程为[答案]”cos 〃=3[解析]解法一:圆p=6cos&的圆心极坐标(3,0), ・•・直线/方程为〃cos0=3.解法二:由 p 2 = 6pcos6> 得 #+夕2=&,圆心 C (3,0),・•・过圆心垂直于极轴(即x 轴)的直线方程为兀=3,其极坐标方程为〃cos 〃=3. [点评]1.在极坐标方程不熟练的情况下,化为直角坐标方程求解后,再化为极坐标形 式是基本方法,故应熟记互化公式.2.掌握常见的圆、直线、圆锥曲线的极坐标方程的形式,对提高解题速度至关重要.长度是8.x= 1 +3cos&(,为参数)被曲线J+3讪 (0为参数)所截,则截得的弦的[答案]华兀=—1 +2f[解析]直线 化为兀+2y+3=0;|x=l+3cos0圆仁l+3sin& 化为(Ll)+kl) =9,圆心C(l,l)到直线x+2y+3 = 0距离d=洋,半径r=3, 弦长为2寸/_护=弓^.x=cos611 .在平面直角坐标系xOy 中,已知曲线C 的参数方程是 .zil (加是常数,0丘(一y=sm"十加兀,兀]是参数),若曲线C 与x 轴相切,则加= ______ .[答案]±1[解析]VOC : x 2+(y~m)2=\ 与 x 轴相切, ・・加=± 1.x=3cos012.椭圆 4 .八的离心率是 ______________ ・歹=4sin&[答案]普2 2[解析]由已知可得椭圆的普通方程为等+話=1,tz =4, b=3, c =y [l , e=:= 4 •与C2的位置关系为 _______ •[答案]相离[解析]圆 Cl : (x-3)2+(y-2)2=4 的圆心 0(3,2)到直线 C 2: 4x+3y-7 = 0 的距离 d =¥>2,・・・0与C2相离.14. _______________________________________________________________ 在极坐标系中,过点(2迈,目作圆p=4sin^的切线,则切线的极坐标方程为 _________________[答案]“cos 〃=2 的直角坐标x=2迈cos 扌=2,尹=2迈sin 》=2,圆〃=4sim9化为直角坐标方程为x 2+y 2=4y 9即x 2+ (y-2)2=49则过点(2,2)的圆的切线方程显然为x=2,即pcos013.兀=3+2cos 〃已知曲线G :仁2 + 2畑(&为参数)'x=l+3/曲线C 2:4(/为参数),则Gb=i —4/[解析]=2.三、解答题15.以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,建立极坐标系(两种坐标系中取相同的单位长度),己知点/的直角坐标为(一2, 6),点3的极坐标为(4,号),直线/过点力且倾斜角为务圆C以点B为圆心,4为半径,试求直线/的参数方程和圆C的极坐标方程.JT[解析]・・•直线/过点(-2,6),倾斜角为才,r ―返X=—2+ 2 z・•・直线/的参数方程为{厂(/为参数),1円+务又圆心3的直角坐标为(0,4),半径为4,・・・圆C的直角坐标方程为,+e—4)2=16,将x=p・cos0, y=0sin0代入化简得圆C的极坐标方程为“ = 8・sin&.16.在极坐标系中,直线/的极坐标方程为以极点为原点,极轴为x轴的x=2cosa正半轴建立平而直角坐标系,曲线C的参数方程为_ c @为参数),求直线/与曲y= 1 十cos2a线C的交点P的直角坐标.[解析]因为直线/的极坐标方程为0=¥(pWR)所以直线/的普通方程为y=©c,又因为曲线C的参数方程为x=2cosa”—-(«为参数)y= 1 + cos2a所以曲线C的直角坐标方程为尸护(冃―2,2]),x=0 解箒仁。

高中数学专题31_坐标系与参数方程(有答案)

高中数学专题31_坐标系与参数方程(有答案)

专题31 坐标系与参数方程一、解答题。

1. (广东华南师大附中测试三)已知直线l 的参数方程为{x =−1+t cos αt =1+t sin α’(t 为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=ρcos θ+2.写出直线l 经过的定点的直角坐标,并求曲线C 的直角坐标方程;若α=π4,求直线l 的极坐标方程,以及直线l 与曲线C 的交点的极坐标.2. (河南适应性测试)在直角坐标系xOy 中,已知直线l 1:{x =t cos α,y =t sin α(t 为参数),l 2:{x =t cos (α+π4),y =t sin (α+π4)(t 为参数),其中α∈(0,3π4),以原点O 为极点,x 轴非负半轴为极轴,取相同长度单位建立极坐标系,曲线C 的极坐标方程为ρ−4cos θ=0. 写出直线l 1,l 2的极坐标方程和曲线C 的直角坐标方程;设直线l 1,l 2分别与曲线C 交于点A ,B (非坐标原点),求|AB|的值.3. (郑州一次质测)在平面直角坐标系xOy 中,直线l 过点(1,0),倾斜角为α,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程是ρ=8cos θ1−cos 2θ.写出直线l 的参数方程和曲线C 的直角坐标方程;若α=π4,设直线l 与曲线C 交于A ,B 两点,求△AOB 的面积.4. (河北衡水中学九模)在直角坐标系xOy 中,直线l 过M (2,0),倾斜角为α(α≠0).直线C 1:√3x +y −4=0,曲线C 2:{x =cos φ,y =1+sin φ(φ为参数),以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系. 求C 1,C 2的极坐标方程;若曲线C 3的极坐标方程为θ=α(ρ>0,0<α<π2),且曲线C 3分别交C 1,C 2于点A ,B 两点,求|OB||OA|的最大值.5. (福建厦门一次质检)在直角坐标系xOy 中,直线l 的参数方程为{x =−2√3+t cos α,t =−1+t sin α(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2(1+sin 2θ)=8.若曲线C 上一点Q 的极坐标为(ρ0,π2),且l 过点Q ,求l 的普通方程和C 的直角坐标方程;设点P(−2√3,−1),l 与C 的交点为A ,B ,求1|PA|+1|PB|的最大值.6. (合肥二次质检)已知过点P (0,−1)的直线l 的参数方程为{x =12t,y =−1+√32t(t 为参数),在以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的方程为2a sin θ−ρcos 2θ=0(a >0). 求曲线C 的直角坐标方程;若直线l 与曲线C 分别交于点M ,N ,且|PM|,|MN|,|PN|成等比数列,求a 的值.7. (长春质测二)已知曲线C 1的参数方程为{x =√2cos θ,y =sin θ(θ为参数),以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρsin 2θ=4cos θ.求曲线C 1的普通方程和曲线C 2的直角坐标方程;若过点F (1,0)的直线l 与曲线C 1交于A ,B 两点,与曲线C 2交于M ,N 两点,求|FA||FB||FM||FN|的取值范围.8. (甘肃二诊)在平面直角坐标系中,曲线C 1:{x =2cos α,y =2sin α(α为参数)经伸缩变换{x ′=x,y ′=y 2后得到曲线C 2,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系. 求曲线C 2的参数方程;若A ,B 是直线l:θ=π4与曲线C 1的两个交点,P 为曲线C 2上一点,且PA ⊥PB ,求点P 的坐标.参考答案与试题解析专题31 坐标系与参数方程一、解答题。

高考数学专项复习坐标系与参数方程答题技巧及思路.doc

高考数学专项复习坐标系与参数方程答题技巧及思路.doc

4.在直角坐标系xOy 中,直线1的参数方程为< 中档解答题特训之一一专题篇专题十坐标系与参数方程(二)类型一:圆的参数方程的应用 1. 以坐标系原点。

为极点,X 轴正半轴为极轴,且两个坐标系取相等长度单位.已知直线1的参数方程为Jx=tco 舛 (t 为参数,OWcpV 兀),曲线C 的极坐标方[y=2+tsin 。

程为 pcos 20=8sin0.(1) 求直线1的普通方程和曲线C 的直角坐标方程;(2) 设直线1与曲线C 相交于A, B 两点,当cp 变化时,求|AB|的最小值. 类型二:抛物线参数方程的应用f_ 22. 已知AB 和CD 是曲线C : x=4t J 为参数)的两条相交于点P (2, 2)的.y=4t弦,若 ABLCD,且 PA • PB = PC • PD .(1) 将曲线C 的参数方程化为普通方程,并说明它表示什么曲线;(2) 试求直线AB 的方程.类型三:椭圆极坐标方程的应用 3. 已知椭圆C 的极坐标方程为p2= - —12——,点F I ,F2为其左右焦点.以3cos 2 0 +4si n 2 0极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,直线1的参数方程为 x=2+乎"t< (t 为参数,tGR). V2(1) 求直线1的普通方程和椭圆C 的直角坐标方程;(2) 求点Fi, F2到直线1的距离之和.类型四:图像变换点为极点,x 轴正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为p=4cos0.(1)求曲线C 的直角坐标方程及直线1的普通方程;(2)将曲线C 上各点的横坐标缩短为原来的再将所得曲线向左平移1个单 2 位,得到曲线Ci,求曲线Ci 上的点到直线1的距离的最小值.(t 为参数)若以O64sirj2 巾 * 64 = 8cos"中 cos^ 0 cos^ e专题九 坐标系与参数方程(二)参考答案与解析1. (2017-海口模拟)以坐标系原点。

高中数学极坐标与参数方程大题(详解)

高中数学极坐标与参数方程大题(详解)

:+=1,直线l :(t 为参数)为参数)(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程.的普通方程.(Ⅱ)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A|的最大值与最小值.的最大值与最小值.考点:参数方程化成普通方程;直线与圆锥曲线的关系. 专题: 坐标系和参数方程.坐标系和参数方程.分析: (Ⅰ)联想三角函数的平方关系可取x=2cos θ、y=3sin θ得曲线C 的参数方程,直接消掉参数t 得直线l 的普通方程;方程;(Ⅱ)设曲线C 上任意一点P (2cos θ,3sin θ).由点到直线的距离公式得到P 到直线l 的距离,除以的距离,除以 sin30°进一步得到|P A|,化积后由三角函数的范围求得|P A|的最大值与最小值.的最大值与最小值.解答:解:(Ⅰ)对于曲线C :+=1,可令x=2cos θ、y=3sin θ,故曲线C 的参数方程为,(θ为参数).对于直线l :,由①得:t=x ﹣2,代入②并整理得:2x+y ﹣6=0; (Ⅱ)设曲线C 上任意一点P (2cos θ,3sin θ). P 到直线l 的距离为.则,其中α为锐角.为锐角.当sin (θ+α)=﹣1时,|P A|取得最大值,最大值为. 当sin (θ+α)=1时,|P A|取得最小值,最小值为.点评: 本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.2.已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴的正半轴重合,直线l 的极坐标方程为:,曲线C 的参数方程为:(α为参数).(I )写出直线l 的直角坐标方程;的直角坐标方程;(Ⅱ)求曲线C 上的点到直线l 的距离的最大值.的距离的最大值.考点: 参数方程化成普通方程. 专题: 坐标系和参数方程.坐标系和参数方程.分析: (1)首先,将直线的极坐标方程中消去参数,化为直角坐标方程即可;)首先,将直线的极坐标方程中消去参数,化为直角坐标方程即可;(2)首先,化简曲线C 的参数方程,然后,根据直线与圆的位置关系进行转化求解.的参数方程,然后,根据直线与圆的位置关系进行转化求解.解答:解:(1)∵直线l 的极坐标方程为:,∴ρ(sin θ﹣cos θ)=,参数方程极坐标系 解答题 1.已知曲线C∴,∴x ﹣y+1=0(α为参数).得(x ﹣2)2+y 2=4,它表示一个以(2,0)为圆心,以2为半径的圆,为半径的圆, 圆心到直线的距离为:圆心到直线的距离为: d=,∴曲线C 上的点到直线l 的距离的最大值最小值.最小值.考点: 圆的参数方程;点到直线的距离公式;直线的参数方程. 专题: 计算题;压轴题;转化思想.计算题;压轴题;转化思想.分析: (1)分别消去两曲线参数方程中的参数得到两曲线的普通方程,即可得到曲线C 1表示一个圆;曲线C 2表示一个椭圆;一个椭圆;(2)把t 的值代入曲线C 1的参数方程得点P 的坐标,然后把直线的参数方程化为普通方程,根据曲线C 2的参数方程设出Q 的坐标,利用中点坐标公式表示出M 的坐标,利用点到直线的距离公式表示出M 到已知直线的距离,利用两角差的正弦函数公式化简后,利用正弦函数的值域即可得到距离的最小值.的距离,利用两角差的正弦函数公式化简后,利用正弦函数的值域即可得到距离的最小值.解答:解:(1)把曲线C 1:(t 为参数)化为普通方程得:(x+4)2+(y ﹣3)2=1,所以此曲线表示的曲线为圆心(﹣4,3),半径1的圆;的圆; 把C 2:(θ为参数)化为普通方程得:+=1,所以此曲线方程表述的曲线为中心是坐标原点,焦点在x 轴上,长半轴为8,短半轴为3的椭圆;的椭圆; (2)把t=代入到曲线C 1的参数方程得:P (﹣4,4),把直线C 3:(t 为参数)化为普通方程得:x ﹣2y ﹣7=0,设Q 的坐标为Q (8cos θ,3sin θ),故M (﹣2+4cos θ,2+sin θ) 所以M 到直线的距离d==,(其中sin α=,cos α=)从而当cos θ=,sin θ=﹣时,d 取得最小值..(2)根据曲线C 的参数方程为:=.点评: 本题重点考查了直线的本题重点考查了直线的极坐标极坐标方程、曲线的参数方程、及其之间的互化等知识,属于中档题.方程、曲线的参数方程、及其之间的互化等知识,属于中档题.3.已知曲线C 1:(t 为参数),C 2:(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 1上的点P 对应的参数为t=,Q 为C 2上的动点,求PQ 中点M 到直线C 3:(t 为参数)距离的考点:参数方程化成普通方程;简单曲线的极坐标方程. 专题: 坐标系和参数方程.坐标系和参数方程. 分析:(Ⅰ)由圆C 的极坐标方程为,化为ρ2=,把代入即可得出.代入即可得出.(II )把直线的参数方程化为普通方程,利用点到直线的距离公式可得圆心到直线的距离d ,再利用弦长公式可得|AB|=2,利用三角形的面积计算公式即可得出.,利用三角形的面积计算公式即可得出.解答:解:(Ⅰ)由圆C 的极坐标方程为,化为ρ2=,把代入可得:圆C 的普通方程为x 2+y 2﹣2x+2y=0,即(x ﹣1)2+(y+1)2=2.∴圆心坐标为(1,﹣1), ∴圆心极坐标为;(Ⅱ)由直线l 的参数方程(t 为参数),把t=x 代入y=﹣1+2t 可得直线l 的普通方程:,∴圆心到直线l 的距离,∴|AB|=2==,点P 直线AB 距离的最大值为,.点评: 本题考查了把直线的参数方程化为普通方程、极坐标化为直角坐标方程、点到直线的距离公式、弦长公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.角形的面积计算公式,考查了推理能力与计算能力,属于中档题.5.在平面直角坐标系xoy 中,椭圆的参数方程为为参数).以o 为极点,x 轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值..求椭圆上点到直线距离的最大值和最小值.考点: 椭圆的参数方程;椭圆的应用. 专题: 计算题;压轴题.计算题;压轴题.点评: 此题考查学生理解并运用直线和圆的此题考查学生理解并运用直线和圆的参数方程参数方程解决数学问题,灵活运用点到直线的距离公式及中点坐标公式化简求值,是一道综合题.简求值,是一道综合题.4.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立直角坐标系,圆C 的极坐标方程为,直线l 的参数方程为(t 为参数),直线l 和圆C 交于A ,B 两点,P 是圆C上不同于A ,B 的任意一点.的任意一点. (Ⅰ)求圆心的极坐标;(Ⅰ)求圆心的极坐标;(Ⅱ)求△P AB 面积的最大值.面积的最大值.圆和直线先化为一般方程坐标,然后再计算椭圆上点到直线距离的最大值和最小值.圆和直线先化为一般方程坐标,然后再计算椭圆上点到直线距离的最大值和最小值.解答:解:将化为普通方程为(4分)分)点到直线的距离(6分)分)所以椭圆上点到直线距离的最大值为,最小值为.(10分)分)点评: 此题考查参数方程、极坐标方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.进行求解,这也是每年高考必考的热点问题.6.在直角坐标系xoy 中,直线I 的参数方程为(t 为参数),若以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=cos (θ+).(1)求直线I 被曲线C 所截得的弦长;所截得的弦长;(2)若M (x ,y )是曲线C 上的动点,求x+y 的最大值.的最大值.考点: 参数方程化成普通方程.专题: 计算题;直线与圆;坐标系和参数方程.计算题;直线与圆;坐标系和参数方程.分析: (1)将曲线C 化为普通方程,将直线的参数方程化为标准形式,利用弦心距半径半弦长满足的勾股定理,即可求弦长.可求弦长. (2)运用圆的参数方程,设出M ,再由两角和的正弦公式化简,运用正弦函数的值域即可得到最大值.,再由两角和的正弦公式化简,运用正弦函数的值域即可得到最大值. 解答:解:(1)直线I 的参数方程为(t 为参数),消去t ,可得,3x+4y+1=0; 由于ρ=cos (θ+)=(),即有ρ2=ρcos θ﹣ρsin θ,则有x 2+y 2﹣x+y=0,其圆心为(,﹣),半径为r=,圆心到直线的距离d==, 故弦长为2=2=;(2)可设圆的参数方程为:(θ为参数),则设M (,), 则x+y==sin (),由于θ∈R ,则x+y 的最大值为1.分析:由题意椭圆的由题意椭圆的参数方程参数方程为为参数),直线的直线的极坐标极坐标方程为.将椭7.选修4﹣4:参数方程选讲:参数方程选讲 已知平面直角坐标系xOy ,以O 为极点,x 轴的非负半轴为极轴建立极坐标系,P 点的极坐标为,曲线C 的极坐标方程为.(Ⅰ)写出点P 的直角坐标及曲线C 的普通方程;的普通方程; (Ⅱ)若Q 为C 上的动点,求PQ 中点M 到直线l :(t 为参数)距离的最小值.为参数)距离的最小值.考点:参数方程化成普通方程;简单曲线的极坐标方程. 专题:坐标系和参数方程.坐标系和参数方程. 分析: (1)利用x=ρcos θ,y=ρsin θ即可得出;即可得出; (2)利用中点坐标公式、点到直线的距离公式及三角函数的单调性即可得出,)利用中点坐标公式、点到直线的距离公式及三角函数的单调性即可得出, 解答:解 (1)∵P 点的极坐标为,∴=3,=.∴点P 的直角坐标把ρ2=x 2+y 2,y=ρsin θ代入可得,即∴曲线C 的直角坐标方程为.(2)曲线C 的参数方程为(θ为参数),直线l 的普通方程为x ﹣2y ﹣7=0 设,则线段PQ 的中点.那么点M 到直线l 的距离.,∴点M 到直线l 的最小距离为.点评: 本题考查了极坐标与直角坐标的互化、中点坐标公式、点到直线的距离公式、两角和差的正弦公式、三角函数的单调性等基础知识与基本技能方法,考查了计算能力,属于中档题.单调性等基础知识与基本技能方法,考查了计算能力,属于中档题.8.在直角坐标系xOy 中,圆C 的参数方程(φ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.标系.(Ⅰ)求圆C 的极坐标方程;的极坐标方程; (Ⅱ)直线l 的极坐标方程是ρ(sin θ+)=3,射线OM :θ=与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.的长.点评: 本题考查参数方程化为标准方程,本题考查参数方程化为标准方程,极坐标极坐标方程化为直角坐标方程,考查参数的几何意义及运用,考查学生的计算能力,属于中档题.专题: 直线与圆.直线与圆. 分析: )圆C 的参数方程(φ为参数).消去参数可得:(x ﹣1)2+y 2=1.把x=ρcos θ,y=ρsin θ代入化简得:ρ=2cos θ,即为此圆的极坐标方程.,即为此圆的极坐标方程. (II )如图所示,由直线l 的极坐标方程是ρ(sin θ+)=3,射线OM :θ=.可得普通方程:直线l,射线OM.联立,解得,即Q .联立,解得或.∴P .∴|PQ|==2.点评: 本题考查了极坐标化为普通方程、本题考查了极坐标化为普通方程、曲线交点与方程联立得到的方程组的解的关系、曲线交点与方程联立得到的方程组的解的关系、曲线交点与方程联立得到的方程组的解的关系、两点间的距离公式等基础知两点间的距离公式等基础知识与基本方法,属于中档题.识与基本方法,属于中档题.9.在直角坐标系xoy 中,曲线C 1的参数方程为(α为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin (θ+)=4.(1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;的直角坐标方程;(2)设P 为曲线C 1上的动点,求点P 到C 2上点的距离的最小值,并求此时点P 的坐标.的坐标.考点: 简单曲线的极坐标方程. 专题: 坐标系和参数方程.坐标系和参数方程.分析: (1)由条件利用同角三角函数的基本关系把参数方程化为直角坐标方程,利用直角坐标和极坐标的互化公式考点: 简单曲线的简单曲线的极坐标极坐标方程;直线与圆的位置关系.(I )圆C 的参数方程(φ为参数).消去参数可得:(x ﹣1)2+y 2=1.把x=ρcos θ,y=ρsin θ代入化简即可得到此圆的极坐标方程.化简即可得到此圆的极坐标方程. (II )由直线l 的极坐标方程是ρ(sin θ+)=3,射线OM :θ=.可得普通方程:直线l,射线OM.分别与圆的方程联立解得交点,再利用两点间的距离公式即可得出..分别与圆的方程联立解得交点,再利用两点间的距离公式即可得出.解答:解:(Ix=ρcos θ、y=ρ的距离为,可得d 的最小值,以及此时的α的值,从而求得点P的坐标.的坐标.解答:解:(1)由曲线C 1:,可得,两式两边平方相加得:,即曲线C 1的普通方程为:. 由曲线C 2:得:,即ρsin θ+ρcos θ=8,所以x+y ﹣8=0,即曲线C 2的直角坐标方程为:x+y ﹣8=0.(2)由(1)知椭圆C 1与直线C 2无公共点,椭圆上的点到直线x+y ﹣8=0的距离为,∴当时,d 的最小值为,此时点P 的坐标为.10.已知直线l 的参数方程是(t 为参数),圆C 的极坐标方程为ρ=2cos (θ+).(Ⅰ)求圆心C 的直角坐标;的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值.引切线,求切线长的最小值.考点: 简单曲线的极坐标方程. 专题: 计算题.计算题.分析: (I )先利用三角函数的和角公式展开圆C 的极坐标方程的右式,再利用直角坐标与极坐标间的关系,即利用ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,进行代换即得圆C 的直角坐标方程,从而得到圆心C 的直角坐标.的直角坐标.(II )欲求切线长的最小值,转化为求直线l 上的点到圆心的距离的最小值,故先在直角坐标系中算出直线l 上的点到圆心的距离的最小值,再利用直角三角形中边的关系求出切线长的最小值即可.上的点到圆心的距离的最小值,再利用直角三角形中边的关系求出切线长的最小值即可.解答:解:(I )∵,∴,∴圆C 的直角坐标方程为,即,∴圆心直角坐标为.(5分)分)(II )∵直线l 的普通方程为, 圆心C 到直线l 距离是,∴直线l 上的点向圆C 引的切线长的最小值是(10分)分)点评: 本题考查点的极坐标和直角坐标的互化,本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,能在极坐标系中用极坐标刻画点的位置,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角体会在极坐标系和平面直角sin θ,把,把极坐标极坐标方程化为直角坐标方程.方程化为直角坐标方程. (2)求得椭圆上的点到直线x+y ﹣8=0点评: 本题主要考查把本题主要考查把参数方程参数方程、极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,正弦函数的值域,属于基础题.2的直角坐标方程;的直角坐标方程;(2)直线l 与直线C 2交于A ,B 两点,若|AB|≥2,求实数a 的取值范围.的取值范围.考点: 简单曲线的极坐标方程;参数方程化成普通方程. 专题: 坐标系和参数方程.坐标系和参数方程.分析: (1)首先,将曲线C 1化为直角坐标方程,然后,根据中点坐标公式,建立关系,从而确定点Q 的轨迹C 2的直角坐标方程;直角坐标方程; (2)首先,将直线方程化为普通方程,然后,根据距离关系,确定取值范围.)首先,将直线方程化为普通方程,然后,根据距离关系,确定取值范围.解答: 解:(1)根据题意,得)根据题意,得曲线C 1的直角坐标方程为:x 2+y 2﹣4y=12, 设点P (x ʹ,y ʹ),Q (x ,y ), 根据中点坐标公式,得根据中点坐标公式,得,代入x 2+y 2﹣4y=12,得点Q 的轨迹C 2的直角坐标方程为:(x ﹣3)2+(y ﹣1)2=4, (2)直线l 的普通方程为:y=ax ,根据题意,得,根据题意,得,解得实数a 的取值范围为:[0,].点评: 本题重点考查了圆的极坐标方程、直线的参数方程,直线与圆的位置关系等知识,考查比较综合,属于中档题,解题关键是准确运用直线和圆的特定方程求解.解题关键是准确运用直线和圆的特定方程求解.12.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ()=2.(Ⅰ)求C 1与C 2交点的极坐标;交点的极坐标;坐标系中刻画点的位置的区别,能进行坐标系中刻画点的位置的区别,能进行极坐标极坐标和直角坐标的互化.和直角坐标的互化.11.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立坐标系,直线l 的参数方程为,(t 为参数),曲线C 1的方程为ρ(ρ﹣4sin θ)=12,定点A (6,0),点P 是曲线C 1上的动点,Q 为AP 的中点.的中点.(1)求点Q 的轨迹C(Ⅱ)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点,已知直线PQ 0,2),(1,3),从而直线PQ 的直角坐标方程为x ﹣y+2=0,由参数方程可得y=x ﹣+1,从而构造关于a ,b 的方程组,解得a ,b 的值.的值.解答: 解:(I )圆C 1,直线C 2的直角坐标方程分别为的直角坐标方程分别为x 2+(y ﹣2)2=4,x+y ﹣4=0,解得或,∴C 1与C 2交点的极坐标为(4,).(2,).(II )由(I )得,P 与Q 点的坐标分别为(0,2),(1,3), 故直线PQ 的直角坐标方程为x ﹣y+2=0, 由参数方程可得y=x ﹣+1,∴,解得a=﹣1,b=2.点评: 本题主要考查把极坐标方程化为直角坐标方程、把参数方程化为普通方程的方法,方程思想的应用,属于基础题.题.13.在直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线;在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为ρ=4cos θ (Ⅰ)写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程;的方程化为直角坐标方程;(Ⅱ)若曲线C 与直线相交于不同的两点M 、N ,求|PM|+|PN|的取值范围.的取值范围.解答:解:(I )直线l 的参数方程为(t 为参数).曲线C 的极坐标方程ρ=4cos θ可化为ρ2=4ρcos θ.把x=ρcos θ,y=ρsin θ代入曲线C 的极坐标方程可得x 2+y 2=4x ,即(x ﹣2)2+y 2=4. (II )把直线l 的参数方程为(t 为参数)代入圆的方程可得:t 2+4(sin α+cos α)t+4=0.∵曲线C 与直线相交于不同的两点M 、N ,∴△=16(sin α+cos α)2﹣16>0, ∴sin αcos α>0,又α∈[0,π), ∴.又t 1+t 2=﹣4(sin α+cos α),t 1t 2=4. ∴|PM|+|PN|=|t 1|+|t 2|=|t 1+t 2|=4|sin α+cos α|=,∵,∴,的参数方程为(t ∈R 为参数),求a ,b 的值.的值.考点: 点的点的极坐标极坐标和直角坐标的互化;直线与圆的位置关系;参数方程化成普通方程. 专题: 压轴题;直线与圆.压轴题;直线与圆.分析: (I )先将圆C 1,直线C 2化成直角坐标方程,再联立方程组解出它们交点的直角坐标,最后化成极坐标即可;(II )由(I )得,P 与Q 点的坐标分别为(∴.∴|PM|+|PN|的取值范围是.点评:考点: 点的极坐标和直角坐标的互化. 专题: 坐标系和参数方程.坐标系和参数方程. 分析:(I )由⊙C 的极坐标方程为ρ=2sin θ.化为ρ2=2,把代入即可得出;.(II )设P ,又C .利用两点之间的距离公式可得|PC|=,再利用二次函数的性质即可得出.函数的性质即可得出.解答: 解:(I )由⊙C 的极坐标方程为ρ=2sin θ. ∴ρ2=2,化为x 2+y 2=,配方为=3.(II )设P ,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P (3,0).点评: 本题考查了极坐标化为直角坐标方程、参数方程的应用、两点之间的距离公式、二次函数的性质,考查了推理能力与计算能力,属于中档题.能力与计算能力,属于中档题.15.已知曲线C 1的极坐标方程为ρ=6cos θ,曲线C 2的极坐标方程为θ=(p ∈R ),曲线C 1,C 2相交于A ,B 两点.两点.(Ⅰ)把曲线C 1,C 2的极坐标方程转化为直角坐标方程;的极坐标方程转化为直角坐标方程; (Ⅱ)求弦AB 的长度.的长度.考点: 简单曲线的极坐标方程. 专题: 计算题.计算题.分析: (Ⅰ)利用直角坐标与极坐标间的关系,即利用ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,进行代换即得曲线C 2及曲线C 1的直角坐标方程.的直角坐标方程.(Ⅱ)利用直角坐标方程的形式,先求出圆心(3,0)到直线的距离,最后结合点到直线的距离公式弦AB 的长度.长度.解答:解:(Ⅰ)曲线C 2:(p ∈R )表示直线y=x ,曲线C 1:ρ=6cos θ,即ρ2=6ρcos θ 所以x 2+y 2=6x 即(x ﹣3)2+y 2=9 本题考查了直线的参数方程、圆的本题考查了直线的参数方程、圆的极坐标极坐标方程、直线与圆相交弦长问题,属于中档题.方程、直线与圆相交弦长问题,属于中档题.14.在直角坐标系xOy 中,直线l 的参数方程为(t 为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=2sin θ.(Ⅰ)写出⊙C 的直角坐标方程;的直角坐标方程;(Ⅱ)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.的直角坐标.(Ⅱ)∵圆心(3,0)到直线的距离,r=3所以弦长AB==. ∴弦AB 的长度.考点: 简单曲线的极坐标方程;直线与圆的位置关系.专题: 计算题.计算题.分析: (1)利用两角差的余弦公式及极坐标与直角坐标的互化公式可得直线l 的普通方程;利用同角三角函数的基本关系,本关系,消去θ可得曲线C 的普通方程,得出圆心的直角坐标后再化面极坐标即可.的普通方程,得出圆心的直角坐标后再化面极坐标即可.(2)由点到直线的距离公式、两角和的正弦公式,及正弦函数的有界性求得点P 到直线l 的距离的最大值,最后列出关于r 的方程即可求出r 值.值.解答: 解:(1)由)由 ρsin (θ+)=,得,得 ρ(cos θ+sin θ)=1,∴直线l :x+y ﹣1=0.由 得C :圆心(﹣,﹣).∴圆心C 的极坐标(1,).(2)在圆C :的圆心到直线l 的距离为:的距离为:∵圆C 上的点到直线l 的最大距离为3,∴. r=2﹣∴当r=2﹣时,圆C 上的点到直线l 的最大距离为3. 点评: 本小题主要考查坐标系与参数方程的相关知识,具体涉及到极坐标方程、参数方程与普通方程的互化,点到直线距离公式、三角变换等内容.线距离公式、三角变换等内容.17.选修4﹣4:坐标系与参数方程:坐标系与参数方程 点评: 本小题主要考查圆和直线的本小题主要考查圆和直线的极坐标极坐标方程与直角坐标方程的互化,以及利用圆的几何性质计算圆心到直线的距等基本方法,属于基础题.基本方法,属于基础题.16.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立坐标系,直线l 的极坐标方程为ρsin (θ+)=,圆C 的参数方程为,(θ为参数,r >0)(Ⅰ)求圆心C 的极坐标;的极坐标;(Ⅱ)当r 为何值时,圆C 上的点到直线l 的最大距离为3.考点:简单曲线的极坐标方程;直线的参数方程.计算题;压轴题.专题:计算题;压轴题.分析:(I)利用,以及x2+y2=ρ2,直接写出圆C1,C2的极坐标方程,求出圆C1,C2的交点极坐标,然后求出直角坐标(用坐标表示);(II)解法一:求出两个圆的直角坐标,直接写出圆C1与C2的公共弦的参数方程.的公共弦的参数方程.的公共弦的参数方程. 解法二利用直角坐标与极坐标的关系求出,然后求出圆C1与C2的公共弦的参数方程.解答:解:(I)由,x2+y2=ρ2,可知圆,的极坐标方程为ρ=2,圆,即的极坐标方程为ρ=4cosθ,解得:ρ=2,,故圆C1,C2的交点坐标(2,),(2,).(II)解法一:由得圆C1,C2的交点的直角坐标(1,),(1,).故圆C1,C2的公共弦的参数方程为(或圆C1,C2的公共弦的参数方程为)(解法二)将x=1代入得ρcosθ=1 从而于是圆C1,C2的公共弦的参数方程为.点评:本题考查简单曲线的极坐标方程,直线的参数方程的求法,极坐标与直角坐标的互化,考查计算能力.。

高考数学压轴专题人教版备战高考《坐标系与参数方程》知识点总复习附解析

高考数学压轴专题人教版备战高考《坐标系与参数方程》知识点总复习附解析

高考数学《坐标系与参数方程》课后练习一、131.已知点()30A -,,()0,3B ,若点P 在曲线1cos sin x y θθ=+⎧⎨=⎩(参数[]0,2θπ∈)上运动,则PAB △面积的最小值为( ) A .92B.C.62+ D.62-【答案】D 【解析】 【分析】化简曲线1cos sin x y θθ=+⎧⎨=⎩成直角坐标,再将面积最小值转换到圆上的点到直线AB 的距离最小值求解即可. 【详解】由曲线1cos sin x y θθ=+⎧⎨=⎩(参数[]0,2θπ∈)知曲线是以()1,0为圆心,1为半径的圆.故直角坐标方程为:()2211x y -+=.又点()30A -,,()0,3B 故直线AB 的方程为30x y -+=. 故当P 到直线AB 的距离最小时有PAB △面积取最小值. 又圆心()1,0到直线AB 的距离为d ==故P 到直线AB 的距离最小值为1h =.故PAB △面积的最小值为()1116222S AB d =⋅=⨯=-. 故选:D 【点睛】 本题主要考查了参数方程化直角坐标的方法与根据直线与圆的位置关系求最值的问题.属于中等题型.2.极坐标cos ρθ=和参数方程12x ty t =--⎧⎨=+⎩(t 为参数)所表示的图形分别是A .直线、直线B .直线、圆C .圆、圆D .圆、直线【答案】D 【解析】由ρ=cos θ得ρ2=ρcos θ,∴x 2+y 2=x ,即12x ⎛⎫- ⎪⎝⎭ 2+y 2=14. 它表示以1,02骣琪琪桫为圆心,以12为半径的圆. 由x =-1-t 得t =-1-x ,代入y =2+t 中,得y =1-x 表示直线.3.已知点是曲线:(为参数,)上一点,点,则的取值范围是 A . B .C .D .【答案】D 【解析】 【分析】将曲线的参数方程化为普通方程,可知曲线是圆的上半圆,再利用数形结合思想求出的最大值和最小值。

【详解】 曲线表示半圆:,所以.取,结合图象可得.故选:D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学坐标系与参数方程习题及详解一、选择题1.(2010·湖南文,4)极坐标方程ρ=cos θ和参数方程⎩⎪⎨⎪⎧x =-1-t y =2+t(t 为参数)所表示的图形分别是( )A .直线、直线B .直线、圆C .圆、圆D .圆、直线 [答案] D[解析] 由ρ=cos θ得ρ2=ρcos θ,∴x 2+y 2-x =0.此方程所表示的图形是圆.消去方程⎩⎪⎨⎪⎧x =-1-ty =2+t 中的参数t 可得,x +y -1=0,此方程所表示的图形是直线.2.(2010·北京市延庆县模考)下列参数方程(t 为参数)中,与方程y 2=x 表示同一曲线的是( ) [答案] B[解析] 将t =x 代入y =t 2得,y =x 2,故A 错,将tan t =y 代入x =tan 2t 中得,x =y 2,∵tan t ∈R ,故B 正确,C 、D 容易判断都是错的.[点评] 注意C 中⎩⎨⎧x =ty =|t |,消去t 得y =|x |,平方得y 2=|x |,∵y 2≥0限定了x 的取值必须非负,∴y 2=x ,但由于y =|x |,故它必须满足y ≥0,而y 2=x 中的y ∈R .3.将曲线y =12sin3x 变为y =sin x 的伸缩变换是( )[答案] D5.(2010·安徽合肥六中)已知圆C 的参数方程为⎩⎪⎨⎪⎧x =-1+cos αy =1+sin α(α为参数),当圆心C 到直线kx +y +4=0的距离最大时,k 的值为( ) C .-13 D .-15[答案] D[解析] ⊙O 的直角坐标方程为(x +1)2+(y -1)2=1,∴圆心C (-1,1),又直线kx +y +4=0过定点A (0,-4),故当CA 与直线kx +y +4=0垂直时,圆心C 到直线距离最大,∵k CA =-5,∴-k =15,∴k =-15.6.(2010·重庆一中)曲线x 2+y 2=4与曲线⎩⎪⎨⎪⎧x =-2+2cos θy =2+2sin θ(θ∈[0,2π))关于直线l 对称,则l 的方程为( )A .y =x -2B .y =xC .y =-x +2D .y =x +2 [答案] D[解析] 圆x 2+y 2=4的圆心C (0,0),圆⎩⎪⎨⎪⎧x =-2+2cos θy =2+2sin θ,θ∈[0,2π)的圆心O (-2,2),∵⊙O 与⊙C 关于直线l 对称,∴l 为线段OC 的中垂线, ∵k OC =-1,∴k l =1,∴l 方程为:y -1=x -(-1),即y =x +2. 二、填空题7.(2010·广东罗湖区调研、中山市、惠州一中模拟)在极坐标系中,过圆ρ=6cos θ的圆心,且垂直于极轴的直线的极坐标方程为________.[答案] ρcos θ=3[解析] 解法一:圆ρ=6cos θ的圆心极坐标(3,0),∴直线l 方程为ρcos θ=3.解法二:由ρ2=6ρcos θ得x 2+y 2=6x ,圆心C (3,0),∴过圆心垂直于极轴(即x 轴)的直线方程为x =3,其极坐标方程为ρcos θ=3.[点评] 1.在极坐标方程不熟练的情况下,化为直角坐标方程求解后,再化为极坐标形式是基本方法,故应熟记互化公式.2.掌握常见的圆、直线、圆锥曲线的极坐标方程的形式,对提高解题速度至关重要. 8.(2010·广东佛山顺德区质检)若直线⎩⎪⎨⎪⎧x =-1+2t y =-1-t(t 为参数)被曲线⎩⎪⎨⎪⎧x =1+3cos θy =1+3sin θ(θ为参数)所截,则截得的弦的长度是________.[答案]655[解析] 直线⎩⎪⎨⎪⎧x =-1+2ty =-1-t 化为x +2y +3=0;圆⎩⎪⎨⎪⎧x =1+3cos θy =1+3sin θ化为(x -1)2+(y -1)2=9,圆心C (1,1)到直线x +2y +3=0距离d =655,半径r =3,∴弦长为2r 2-d 2=655.9.以椭圆x 225+y 216=1的焦点为焦点,以直线⎩⎨⎧x =2ty =4t为渐近线的双曲线的参数方程为________________.[答案] ⎩⎨⎧x =sec θy =22tan θ(θ≠k π+π2)[解析] ∵椭圆的焦点(±3,0),∴双曲线中c =3, 又直线⎩⎨⎧x =2t y =4t化为y =22x ,它是双曲线的渐近线,∴b a=22,∴a 2=1,b 2=8,∴a =1,b =22,∴双曲线的参数方程为⎩⎨⎧x =sec θy =22tan θ(θ≠k π+π2).10.(2010·惠州质检)直线⎩⎪⎨⎪⎧x =3+t cos230°y =-1+t sin230°(t 为参数)的倾斜角是________.[答案] 50°[解析] 解法一:当x ≠3时,⎩⎪⎨⎪⎧x -3=t cos230°y +1=t sin230°⇒y +1x -3=tan230°=tan(180°+50°)=tan50°, ∴直线倾斜角是50°.解法二:方程化为⎩⎪⎨⎪⎧x =3-t cos50°y =-1-t sin50°,∴倾斜角为50°.11.(2010·江门市质检)在平面直角坐标系xOy 中,已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =cos θy =sin θ+m (m 是常数,θ∈(-π,π]是参数),若曲线C 与x 轴相切,则m =________.[答案] ±112.(2010·广东玉湖中学)椭圆⎩⎪⎨⎪⎧x =3cos θy =4sin θ的离心率是________.[答案]7414.(2010·惠州质检)在极坐标系中,过点⎝ ⎛⎭⎪⎫22,π4作圆ρ=4sin θ的切线,则切线的极坐标方程为______.[答案] ρcos θ=2 三、解答题15.(2010·江苏盐城调研)以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴,建立极坐标系(两种坐标系中取相同的单位长度),已知点A 的直角坐标为(-2,6),点B 的极坐标为⎝⎛⎭⎪⎫4,π2,直线l 过点A 且倾斜角为π4,圆C 以点B 为圆心,4为半径,试求直线l 的参数方程和圆C 的极坐标方程.[解析] ∵直线l 过点(-2,6),倾斜角为π4,∴直线l 的参数方程为⎩⎪⎨⎪⎧x =-2+22t y =6+22t (t 为参数),又圆心B 的直角坐标为(0,4),半径为4, ∴圆C 的直角坐标方程为x 2+(y -4)2=16,将x =ρ·cos θ,y =ρ·sin θ代入化简得圆C 的极坐标方程为ρ=8·sin θ.16.(2010·苏北四市模考)在极坐标系中,直线l 的极坐标方程为θ=π3(ρ∈R ),以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos αy =1+cos2α(α为参数),求直线l 与曲线C 的交点P 的直角坐标.[解析] 因为直线l 的极坐标方程为θ=π3(ρ∈R )所以直线l 的普通方程为y =3x ,又因为曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos αy =1+cos2α(α为参数)所以曲线C 的直角坐标方程为y =12x 2(x ∈[-2,2]),由⎩⎪⎨⎪⎧y =3x y =12x 2解得,⎩⎪⎨⎪⎧x =0y =0,或⎩⎨⎧x =23y =6,∵-2≤x ≤2,∴⎩⎨⎧x =23y =6应舍去,故P 点的直角坐标为(0,0).17.(2010·哈师大附中)在直角坐标系xOy 中,直线l 的参数方程为:⎩⎪⎨⎪⎧x =1+45t y =-1-35t (t 为参数),若以O 为极点,x 轴正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为ρ=2cos(θ+π4),求直线l 被曲线C 所截的弦长.[解析] 将方程⎩⎪⎨⎪⎧x =1+45ty =-1-35t (t 为参数)化为普通方程得,3x +4y +1=0,将方程ρ=2cos ⎝ ⎛⎭⎪⎫θ+π4化为普通方程得,x 2+y 2-x +y =0,它表示圆心为⎝ ⎛⎭⎪⎫12,12,半径为22的圆,则圆心到直线的距离d=110,弦长为2r2-d2=212-1100=75.。

相关文档
最新文档