二次根式二次函数
初中数学七、八、九年级知识点及公式总结大全(人教版)
九年级数学(上)知识点第二十一章 二次根式一.知识框架二.知识概念1、二次根式的定义:式子叫做二次根式,其中a叫做被开方数。
2、最简二次根式:满足下列两个条件的二次根式是最简二次根式:(1)被开方数的因数是整数,因式是整式; (2)被开方数中不含有开得尽方的整数或整式。
3、同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。
4、二次根式的性质:(1)(2)=|a|= a (a>0)-a (a<0) 0 (a=0) (3)积的算数平方根性质:(a≥0,b≥0)(4)商的算数平方根性质:ba ba =(a≥0,b>0)5、二次根式的乘法:=(a≥0,b≥0)即两个二次根式相乘,根指数不变,被开方数相乘。
注意:法则是由积的算数平方根的性质(a≥0,b≥0)反过来即得。
6、二次根式的除法:baba =(a≥0,b>0) 注意:法则是由商的算数平方根的性质ba ba =(a≥0,b>0)反过来得到的。
7、二次根式的加减:二次根式相加减,先把各个二次根式化成最简二次根式,在合并同类二次根式,合并同类二次根式与合并同类项类似,将同类二次根式的“系数”相加减,被开方数和根指数不变。
注意:二次根式加减混合运算的实质就是合并同类二次根式,不是同类二次根式不能合并。
8、二次根式的混合运算:二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的。
在运算过程中,有理数(式)中的运算率及乘法公式在二次根式的运算中仍然适用。
9、比较两数大小的常用方法:(1)平方法:若a>0,b>0,且a²>b²,则a>b;(2)把跟号外的非负因式移到根号内,然后比较被开方数的大小。
第二十二章一元二次根式一.知识框二.知识概念1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.2.一元二次方程的解法:(1)运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.(2)配方法:将一元二次方程变形为(x+p)2 =q的形式,如果q≥0,方程的根是x=-p±√q;如果q <0,方程无实根.(3)公式法:将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,•将a、b、c代入式子x=242b b aca-±-就得到方程的根.第二十三章旋转一.知识框架二.知识概念1.旋转:在平面内,将一个图形绕一个点按某个方向转动一个角度,这样的运动叫做图形的旋转。
初中数学基础知识点全总结
初中数学基础知识点全总结初中数学是整个数学学习体系中的重要基础阶段,掌握好基础知识点对于后续的学习至关重要。
下面将对初中数学的基础知识点进行全面总结。
一、数与代数1、有理数有理数包括整数和分数。
整数又包括正整数、零和负整数;分数包括正分数和负分数。
有理数的运算包括加、减、乘、除和乘方。
加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得零。
减法法则:减去一个数,等于加上这个数的相反数。
乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘都得零。
除法法则:除以一个数等于乘以这个数的倒数;零不能作除数。
乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
2、实数实数包括有理数和无理数。
无理数是无限不循环小数,如π、√2 等。
平方根:如果一个数的平方等于 a,那么这个数叫做 a 的平方根。
正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
算术平方根:正数 a 的正的平方根叫做 a 的算术平方根,记作√a。
立方根:如果一个数的立方等于 a,那么这个数叫做 a 的立方根。
正数的立方根是正数,负数的立方根是负数,零的立方根是零。
3、代数式用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
整式:单项式和多项式统称为整式。
单项式是数或字母的积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。
整式的运算:整式的加减实质是合并同类项;整式的乘法包括单项式乘以单项式、单项式乘以多项式、多项式乘以多项式;整式的除法包括单项式除以单项式、多项式除以单项式。
分式:形如 A/B(A、B 是整式,且 B 中含有字母,B≠0)的式子叫做分式。
分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为零的整式,分式的值不变。
中考数学考点,二次函数的应用,数的开方与二次根式,精品系列
第六节二次函数的应用,精品系列课标呈现指引方向会利用二次函数解决简单的实际问题考点梳理夯实基础1.二次函数的实际应用问题(1)利用顶点坐标来求最值(2)最值不在顶点处取得(3)分段函数求最值问题2.解决二次函数的实际应用问题的关键在于:(1)理解问题;(2)分析问题中变量之间的关系;(3)建立二次函数模型,得到解析式:(4)运用二次函数的有关性质求解;(4)将所得结果结合实际情况进行检验.考点精析专项突破考点一二次函数与几何问题【例1】(2016四川内江)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.解题点拨:二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大(小)值.在此类实际问题中,最大(小)值有时会在顶点处取得,此时达到最大(小)值时的x即为顶点横坐标值,最大(小)值也就是顶点纵坐标值;有时会在端点取得.因此,对于实际问题中的最值问题要特别注意自变量的取值范围.解:(1)苗圃园与墙平行的一边长为(30-2x)米.依题意可列方程x( 30-2x)= 72,即x2-15x+36=0.解得x1 =3,x2 =12.∵当x=3时,30-2x =24>18,∴x=12.(2)依题意,得8≤30-2x≤18.解得6≤x≤11.面积S=x(30-2x)= -2(x-152)2+2252(6≤x≤11).①当x=152时,s有最大值,s最大=2252;②当x =11时,S有最小值,S最小=11x(30-22)=88.(3)令x(30-2x)= 100,得x2-15x+50=0.解得x1=5,x2=10.∴x的取值范围是5≤x≤10.考点二二次函数与利润问题【例2】(2016湖北随州)九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下:已知商品的进价为30元/件,设该商品的售价为y (单位:元/件),每天的销售量为p (单位:件),每天的销售利润为W (单位:元).(1)求出W 与x 的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润.解题点拨:(1)此题主要考查了二次函数的应用以及配方法求二次函数最值等知识,建立函数并运用函数的性质是解题的关键;(2)分段函数的分类讨论是本题的考查重点,因此本题要分段考虑.解:(1)当o ≤x ≤50时,设商品的售价y 与时间x 的函数关系式为y =kx +b (k 、b 为常数且k ≠0), ∵y =kx +b 经过点(0,40)、(50,90),405090b k b =⎧⎨+=⎩,解得:140k b =⎧⎨=⎩, ∴售价y 与时间x 的函数关系式为y =x +40;当50<x ≤90时,y =90. ∴售价y 与时间x 的函数关系式为40050905090x x y x x x +≤⎧=≤<≤⎨⎩(,且为整数)(,且为整数) ’由题意可知每天的销售量p 与时间x 成一次函数关系,设每天的销售量p 与时间x 的函数关系式为P=mx +n (m 、n 为常数,且m ≠0),∵P=mx +n 过点(60,80)、(30,140), ∴608030140m n m n +=⎧⎨+=⎩,解得:2200m n =-⎧⎨=⎩,∴P =-2x +200(0≤x ≤90,且x 为整数),当0≤x ≤50时,W =(y -30)•p=(x +40-30)(-2x +200)=-2x 2+180x +2000;当50<x ≤90时,W =(90-30)(-2x +200)=-120x +12000.综上所示,每天的销售利润W 与时间x 的函数关系式是221802000050120120005090x x x x x x w x -++≤≤-+<≤⎧⎪=⎨⎪⎩(,且为整数)(,且为整数) (2)当0≤x ≤50时,W =-2x 2+180x +2000 =-2(x -45)2+6050, ∵a =-2<0且0≤x ≤50.∴当x =45时,W 取最大值,最大值为6050元. 当50<x ≤90时,W =-120x +12000, ∵k =-120<0,W 随x 增大而减小,∴当x = 50时,W 取最大值,最大值为6000元.∵6050>6000.∴当x=45时,W最大,最大值为6050元.即销售第45天时,当天获得的销售利润最大,最大利润是6050元.课堂训练当堂检测1.函数y=x2 +2x+3的最小值为( )A.-2 B.2 C.1 D.-1【答案】B2.已知0≤x≤1,那么函数y= -2x2+8x-6的最大值是( )2A.- 10.5 B.2 C.-2.5 D.-6【答案】C3.(2016四川成都)某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树,橙子的总产量为W.则W与x的关系式为.【答案】W=-5x2+100x+600004.(2016云南)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y 与x的函教关系图象.(1)求y 与x 的函数解析式;(2)设该水果销售店试销草莓获得的利润为W 元,求W 的最大值, 解:(1)设y 与x 的函数关系式为y =kx +b . 根据题意,得:2030030280k b k b +=⎧⎨+=⎩,解得:2340k b =-⎧⎨=⎩,∴y 与x 的函数解析式为y =-2x +340,(20≤x ≤40). (2)由已知得:W =(x -20)(-2x +340) = -2x 2+380x -6800 = -2(x -95)2+11250, ∵-2<0.∴当x ≤95时,W 随x 的增大而增大, ∵20≤x ≤40.∴当x =40时,W 最大, W 最大值=-2(40-95)2+11250=5200(元) 中考达标 模拟自测A 组 基础训练一、选择题1.当x取( )时,二次函数y= -x2+1有最大值.B.0 C.1 D.2A.12【答案】B2.如果二次函数y= x2-2x+m的最小值为非负数,则m的取值范围是( ).A.m<1B.m>1C.m≤1D.m≥1【答案】D3.如图,教练对小明推铅球的录像进行技术分析,发现铅球行进高度y( m)与水平距离x(m)之间的关系为y=-1(x-4)2+3,由此可知铅12球推出的距离是()A.3mB.7mC.10mD.14m【答案】C4.如图,重庆某长江大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx,小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需()秒.A .12B .18C .24D .36 【答案】D 二、填空题5.已知二次函数y =-x 2+4x +5,其中-2≤x ≤1,则y 有最小值为,最大值为.【答案】-7 86.某种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(20≤x ≤30,且x 为整数)出售,可卖出(40一x )件.若使利润最大,每件的售价应为元. 【答案】307.(2016浙江丽水改编)如图,地面BD 上两根等长立柱AB ,CD 之间悬挂一根近似成抛物线y =2143105x x -++3的绳子,则绳子最低点离地面的距离为m .【答案】1.4 三、解答题8.(2016山东潍坊)旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出:当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少l辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入-管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?解:(1)由题意知,若观光车能全部租出,则0<x≤100,由50x-1100>0,解得x>22.又∵x是5的倍数,∴每辆车的日租金至少应为25元:(2)设每辆车的净收入为y元,当0<x≤100时,y1= 50x-1100,∵y随x的增大而增大,∴当x=100时,y1的最大值为50x100-1100= 3900;当x>100时.x ) x-1100y2=(50-1005=-1x2+70x-11005(x-175)x2+5025,=-15当x =175时,y 2的最大值为5025, 5025>3900.故当每辆车的日租金为175元时,每天的净收入最多是5025元. 9.课本中有一道作业题:有一块三角形余料,记作△ABC ,它的边BC = 120mm ,高AD = 80mm .要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上.问加工成的正方形零件的边长是多少mm ?小颖解得此题的答案为48mm .小颖善于反思,她又提出了如下的问题.(1)如果原题中要加T 的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm ?请你计算.(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.解:(1)设矩形的边长PN = 2ymm ,则P Q=ymm ,由条件可得△APN ∽△ABC . ∴PN AEBCAD =,即2120y =8080y -,解得y=2407,∴PN=2407×2=4807 ( mm),答:这个矩形零件的两条边长分别为2407mm ,4807mm ;(2)设PN =xmm ,由条件可得△APN ∽△ABC , ∴PN BC=AE AD,即120x=8080PQ -, 解得PQ= 8023x -.∴S=PN ·PQ=x(8023x -)=23x -2+80x=22(60)3x -- +2400,∴S 的最大值为2400mm 2,此时PN= 60mm ,PQ=802603-⨯ =40(mm).B 组 提高练习10.(2016山东青岛改编)如图,需在一面长度为l0m 的墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax 2+bx (a ≠0)表示.已知抛物线上B ,C 两点到地面的距离均为34m , 到墙边OA 的距离分别为12m ,32m .则最多可以连续绘制( )个这样的抛物线型图案? A .4 B .5 C .6 D .7第10题【答案】(提示:根据题意得:B(12,34),C(32,34),把B ,C 代入y =ax 2+bx 得311442393442a b a b ⎧=+⎪⎪⎨⎪=+⎪⎩,解得:12a b =-⎧⎨=⎩,∴抛物线的函数关系式为y=-x 2+2x ;令y=0,即-x 2+2x=0,∴x 1=0.x 2=2,∴l0÷2=5,∴最多可以连续绘制5个这样的抛物线型图案.选B )1 1.(2016浙江台州)竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔1秒依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度,第一个小球抛出后t 秒时在空中与第二个小球的离地高度相同,则t= .【答案】(提示:设各自抛出后1.1秒时到达相同的最大离地高度为h ,则小球的高度y=a (t-l.l )2+h ,由题意a (t-l.l )2+h=a (t-l-l.l )2+h ,解得t=1.6.故第一个小球抛出后1.6秒时在空中与第二个小球的离地高度相同.)12.(2015年江苏南京)某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线ABD 、线段CD 分别表示该产品每千克生产成本y 1(单元:元)、销售价 y 2(单位:元)与产量x (单位:kg )之间的函数关系.(1)请解释图中点D 的横坐标、纵坐标的实际意义. (2)求线段AB 所表示的y 1与x 之间的函数表达式.(3)当该产品产量为多少时,获得的利润最大?最大利润是多少? 【答案】解:(1)点D 的横坐标、纵坐标的实际意义:当产量为130kg 时,该产品每千克生产成本与销售价相等,都为42元. (2)设线段AB 所表示的y 1与x 之间的函数关系式为y=k 1x+b 1, ∵y 1=k 1x+b 1的图象过(0,60)与(90,42),∴111609042b k b =⎧⎨+=⎩,解得110.260k b =-⎧⎨=⎩∴线段AB 所表示的y 1与x 之间的函数表达式为y 1=- 0.2x+60(0≤x ≤90).(3)设y 2与x 之间的函数表达式为y 2 =k 2x+b 2, ∵y 2=k 2x+b 2的图象过(0,120)与(130,42),∴22212013042b k b =⎧⎨+=⎩,解得220.6120k b =-⎧⎨=⎩,第12题∴y 2与x 之间的函数表达式为y 2 =-0.6x+120(0≤x ≤130). 设产量为xkg 时,获得的利润为W 元, 当0≤x ≤90时.W=x[(-0.6x+120)-(-0.2x+60)]=-0.4(x-75)2+2250 ∴当x= 75时,W 的值最大,最大值为2250. 当90≤x ≤130时.W=x[(-0.6x+120)-42]= -0.6(x-65)2+2535,由-0.6<0知,当x>65时,W 随x 的增大而减小,因此当x= 90咐,W 的值最大,最大值为W=-0.6(90-65)2+2535= 2160. ∴90≤x ≤130时.W ≤2160.因此,当该产品产量为75kg 时获得的利润最大,最大利润是2250元.第四节数的开方与二次根式,精品系列了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算,1(a≥0)的式子叫做二次根式.其中a叫被开方数.2.二次根式的性质:(1) a≥0)具有双重非负性,一是a≥00.(2)2()0a a=≥(0)(0)a aaa a≥⎧==⎨-<⎩3.二次根式的有关概念(1)最简二次根式:满足下列两个“不含”条件的二次根式是最简二次根式.①被开方数中不含分母,分母中也不含二次根式:②被开方数中不含能开得尽方的因数或因式.(2)同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,则把这几个二次根式叫做同类二次根式.4.二次根式的运算:(1)加减运算:在二次根式加减运算中,先把二次根式化为最简二次根式,再合并同类二次根式.二次根式的加减实质是合并同类二次根式.(2)0,0)0),b,=≥≥=≥>ab b a oa b a(3)运算顺序:先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里的.实数中的运算律及乘法公式在二次根式中同样适用.考点一根式的性质【例1】(1)(2015x的取值范围在数轴上表示出来,正确的是( )【答案】C(2)已知2-+=,则x+y的值为()x y(3)0A.0 B.-1 C.1 D.5解题点拨:本题考查的知识点为:二次根式有意义则二次根式的被开方数是非负数.【答案】C考点二根式的运算【例2】(1)(2016龙岩)与()A B C D.【答案】C(2)(2016南充)下列计算正确的是 ( )A =B 2=C =D x = 【答案】A(3)下列运算中,错误的有 ( )个①5112=3=±2=1194520=+=. A .1 B .2 C .3 D .4 【答案】C(4)(2016解题点拨:先化简成最简根式,再合并,【答案】解:原式== 考点三 根式的化简【例3】(1)当l<x<4(2)a 、b 、c a b +解题点拨:利用二次根式的非负性这一性质去进行根式的化简时,注意符号运算.【答案】解:(1) ∵1<x<4,∴x-4<0,x-1>0,∴4125x x x =--+=-+.(2)由数轴可知,0<a<1,c<b<-1, ∴-a<0,a+b<0,c<0∴a a b c a b b c =--+=+-+.A 组 基础训练1.(2016白贡)若代数式x有意义,则x 的取值范围是 ( ) A .x ≥l B .x ≤1且x ≠0 C .x ≠1 D .x ≠0 【答案】A2.(2016巴中)下列二次根式中,是同类二次根式的是 ( )A.B. C D 【答案】B3.若2y =-则()yx y += .【答案】144.计算:(1)【答案】解:原式9=.(2) 2【答案】解:原式=0.(3) 2.【答案】解:原式= 30-(4)22(7(7-【答案】解:原式=2.一、选择题1.下列运算中错误的是 ( )AB C 2= D .2 (3= 【答案】A2.化简:341()(1)32a a a a -+---的结果等于 ( ) A .a-2 B .a+2 C .2 3a a -- D .32a a --【答案】B3.已知x y =,则22x xy y ++的值为( ) A .2 B .4 C .5 D .7 【答案】B4.(2015孝感)已知2x =2(7(2x x ++值是 ( )A .0B .石C .2+再D .2 -万 【答案】C 二、填空题 5.在函数y =x 的取值范围是 . 【答案】x>-26.(20153x =-,则x 的取值范围是【答案】3x ≤7.已知12x x =,则2212x x += .【答案】10 三、解答题8.计算:01-)603π°.【答案】解:原式= 412--= 4-1-3 =0.(2) 1). 【答案】解:原式=221)]1)3(21)321=-=--=-+=(3)0111)-+- 【答案】解:原式=11+=9.(2016桂林)已知任意三角形的三边长,如何求三角形面积?古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式一海伦公式s (其中a ,b ,c 是三角形的三边长,2a b cp ++=,s 为三角形的面积) 例如:在△ABC 中,a=3,b=4,c=5,那么它的面积可以这样计算: ∵a=3,b=4,c=5. ∴ 2a b cp ++==6 ∴6s ===. 如图,在△ABC 中,BC=5,AC=6,AB=9, (1)用海伦公式求△ABC 的面积; (2)求△ABC 的内切圆半径r .【答案】解:(1) ∵BC=5,AC=6,AB=9, ∴5691022BC AC AB p ++++===∴s =故△ABC 的面积:(2) ∵1()2s r AC BC AB =++,∴()15692r =++,解得:r =故△ABC 的内切圆半径r =B 组提高训练10.(2016乐山)在数轴上表示实数a 的点如图所示,2a -的结果为 ( )A .-7B .-3C .7D .3(提示:由圈可知2<a<5,原式=-(n-5)+a-2=3.) 【答案】D11.当a<1的结果是 .(提示:∵a<1, ∴a<0,原式==-)【答案】-12.观察下列运算1=-+==…,=利用上面的规律计算⋯++. 【答案】解∵1=-===∴原式(2--2-1=2013。
初三数学提高(内容:全等三角形 相似三角形 三个二次:二次根式 一元二次方程 二次函数)
内容:全等三角形 相似三角形 三个二次:二次根式 一元二次方程 二次函数 考点一、全等三角形 (3~8分) 1、全等三角形的概念能够 的两个图形叫做全等形。
能够 的两个三角形叫做全等三角形。
两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
就是三角形中相邻两角的公共边, 就是三角形中有公共端点的两边所成的角。
2、全等三角形的表示和性质全等用符号“≌”表示,读作“全等于”。
如△ABC ≌△DEF ,读作“三角形ABC 全等于三角形DEF ”。
注:记两个全等三角形时,通常把表示 写在对应的位置上。
3、三角形全等的判定(1SAS ”) (2ASA ”) (3”)。
4(1(2(3基础1. ∴AB =DE ( )2.如图, 已知AB=AC, BE ⊥AC 于E, CF ⊥AB 于F, BE 、CF 交于点D. 求证: (1)△ABE ≌△ACF; (2)点D 在∠BAC 的平分线上.3. 已知如图,E 、F 在BD 上,且AB =CD ,BF =DE ,AE =CF求证:AC 与BD 互相平分A BEO F巩固如图∠ABC=900,AB=BC ,AE 是角平分线,CD ⊥AE 于D 。
求证:CD = 21AE 提高1.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边①DFE △③DE A .①②③2.3. (1) (2)FDECB AC4.如图甲,在ABC △中,ACB ∠为锐角,点D 为射线BC 上一点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .如果AB AC =,90BAC =∠,解答下列问题:①当点D 在线段BC 上时(与点B 不重合),如图乙,线段CF BD ,之间的位置关系为 ,数量关系为 .②当点D 在线段BC 的延长线时,请画出图形,①中的结论是否仍然成立,为什么?1234512、计算: (1) 25341122÷⨯3.2(-C(三)精讲点拨在二次根式的计算、化简及求值等问题中,常运用以下几个式子:(1)22(0)(0)a a a a =≥=≥与(2)⎪⎩⎪⎨⎧<-=>==0a a 0a 00a a 2a a (30,0)0,0)a b a b =≥≥≥≥(40,0)0,0)a b a b =≥>=≥>(5)(a 12、已知1(1(2A 4-≥x B 2>x C 24≠-≥x x 且 D 24≠->x x 且(3)下列各运算,正确的是( )A 565352=⋅B 532592519==⎪⎭⎫⎝⎛-⨯- C ()12551255-⨯-=-⨯- D y x y x y x +=+=+2222(40)y >是二次根式,化为最简二次根式是( )0)y >B0)y >0)y > D .以上都不对 (5)化简2723-的结果是()33A B C D --2、计算.(1)453227+-(3)3、已知a 1(1)=a A a,b(2A35(3)把(A B CD-2、计算: (1)5426362+-- (2) (3)22(-3、归纳与猜想:观察下列各式及其验证过程:= = (1)按上述两个等式及其验证过程的基本思路,猜想1544的变化结果并进行验证.(2)针对上述各式反映的规律,写出n(n 为任意自然数,且n ≥2)表示的等式并进行验证.1.通常 数项23 例如:不解方程,判断下列方程根的情况:(1) x(5x+21)=20 (2) x 2+9=6x (3)x 2—3x = —54.设一元二次方程ax 2+bx +c =0 (a ≠0)的两个根分别为x 1,x 2 则x 1 +x 2= ;x 1 ²x 2= ____________ 例如:方程2x 2+3x —2=0的两个根分别为x 1,x 2 则x 1+x 2= ;x 1 ²x 2= _________交流提高请形成本章的知识结构。
二次根式的知识点归纳
二次根式的知识点归纳
二次根式的知识点主要有以下几点:
1、定义:二次根式是一种特殊的多项式,其定义为ax²+bx+c=0,其中a≠0。
2、判断:二次根式可以通过相应的判断条件来判断是否有解,即判断b²-4ac的值是否大于等于0,若大于等于0,则表明此二次方程有解;若小于0,则表明此二次方程无解。
3、解法:当判断出此二次方程有解时,可以使用相应的解法来求解,如利用一元二次方程的判别式求解法、利用一元二次方程的因式分解法等。
4、应用:二次根式在数学中有广泛的应用,如根据二次函数的性质,可以用来求解相关问题;又如可以利用它来求解最佳拟合方程等。
二次函数与二次根式
三角函数与二次根式1.锐角三角函数的定义=αsin ,=αcos , =αtan ,=αcot .2.同角三角函数的关系=+αα22cos sin ,=⋅ααcot tan ,ααααααsin cos cot ,cos sin tan == 3.互余两角三角函数的关系=-=αααcos ),90cos(sin 0 ,=αtan ,=αcot .4.必记特殊角三角函数值5、二次根式的性质:⑴ 通常a 表示a 的算术平方根,因此a (a ≥0)是一个 数,6、二次根式乘法计算法则a ·b = (a ≥0,b ≥0) 7、二次根式除法计算法则ba = (a ≥0,b>0)8、 最简二次根式满足条件:① 被开方数不含 ;② 被开方数中不含开得尽方的 或 。
9、二次根式加减法计算法则:① 先将二次根式化成最简二次根式(化简)① 再将被开方数相同的二次根式进行合并(合并同类二次根式)。
【课前热身】α abcC BA1.(2010四川凉山)已知在ABC △中,90C ∠=o,设sinB n =,当B ∠是最小的内角时,n 的取值范围是A.0n <<B .102n << C.0n << D.0n << 2.(2010四川眉山)如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为A .90°B .60°C .45°D .30°3.(2010 黄冈)在△ABC 中,∠C =90°,sinA =45,则tanB =( )A .43B .34C .35D .454.(2010湖南常德)在Rt △ABC 中,∠C=90°,若AC=2BC,则sin A 的值是( )A .12B .2 CD5.(2010黑龙江哈尔滨)在7,35,90,==∠=∠∆AB B C ABC Rt οο中,则BC 的长为 ( ) (A )ο35sin 7 (B )ο35cos 7(C )ο35cos 7(D ).ο35tan 76.(2010安徽芜湖)要使式子a +2a有意义,a 的取值范围是() A .a ≠0 B .a >-2且a ≠0 C .a >-2或a ≠0 D .a ≥-2且a ≠0 【答案】D7.(2010四川眉山)A .3B .3-C .3±D . 98.(2010江苏常州)下列运算错误的是=B.==D.2(2=9.(2010湖北荆门)若a 、b 为实数,且满足│a -2│+2b -=0,则b -a 的值为 A .2 B .0 C .-2D .以上都不对10.(2010湖北襄樊)下列说法错误的是( )A2B是无理数C 是有理数D .2是分数【典例讲解】例1.(2009年浙江省绍兴市)计算:()ο60sin 421122101+-+-⎪⎭⎫⎝⎛--随堂过手1.(2010辽宁丹东市)45sin 60)4︒-︒+.2.(2009年梅州市)计算:112)4cos30|3-⎛⎫++- ⎪⎝⎭°3.(2009呼和浩特)计算:220091)6sin 45(1)-+-°.4.(2009年黄石市)求值112|20093tan 303-⎛⎫+--+ ⎪⎝⎭°例2.(2010新疆乌鲁木齐)先化简,再求值:.2,11121112=-+÷+-+-+a a a a a a a 其中随堂过手1.(2010湖北黄石)先化简,再求值:⎪⎭⎫⎝⎛++a b 1b -a 1÷ba ab +.其中a =2+1, b =2.2.(2010湖北十堰)先化间,再求值:211(1)(2)11x x x -÷+-+-,其中6x =.例3.(2010甘肃兰州)(本题满分8分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB 长为4米. (1)求新传送带AC 的长度; (2)如果需要在货物着地点C 的左侧留出2米的通道,试判断距离B 点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)随堂过手1.(2010四川凉山)如图所示,城关幼儿园为加强安全管理,决定将园内的滑滑板的倾斜角由45o降为30o,已知原滑滑板AB 的长为4米,点D 、B 、C 在同一水平地面上。
二次根式-中考数学一轮复习考点专题复习大全(全国通用)
考向08 二次根式【考点梳理】1、二次根式:一般地,形如a (a ≥0)的代数式叫做二次根式。
当a >0时,a 表示a 的算术平方根,其中0=02、 理解并掌握下列结论:(1))0(≥a a 是非负数(双重非负性); (2))0()2≥=a a a (; (3)⎩⎨⎧≤->=⎩⎨⎧<-≥=⎪⎩⎪⎨⎧<-=>==)0()0()0()0()0()0(0)0(2a a a a a a a a a a a a a a a ;口诀:平方再开方,出来带“框框” 3、二次根式的乘法:)0,0(≥≥=•b a ab b a ,反之亦成立4、二次根式的除法:)0,0(>≥=b a b a ba ,反之亦成立5、满足下列两个条件的二次根式叫做最简二次根式:(1)被开方数不含分母,(2)被开方数不含开得尽方的因数或因式。
6、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式是同类二次根式。
【题型探究】题型一:二次根式的概念和性质1.(2022·湖北黄石·统考中考真题)函数11y x =+-的自变量x 的取值范围是( ) A .3x ≠-且1x ≠B .3x >-且1x ≠C .3x >-D .3x ≥-且1x ≠2.(2022·广东广州·广东番禺中学校考三模)若3y =,则2022()x y +等于( ) A .1B .5C .5-D .1-3.(2022·湖北黄石·校联考模拟预测)函数y 中,自变量x 的取值范围是( ) A .5x >B .35x ≤<C .5x <D .35x ≤≤题型二:二次函数的化简4.(2022·河北·统考中考真题)下列正确的是( )A 23+B 23=⨯C D 0.75.(2023·河北·b a 的值是( ) A .6B .9C .12D .276.(2022·四川绵阳·统考三模)已知y =,则xy =( )A .3B .-6C .±6D .±3题型三:二次根式的乘除7.(2022·广东广州· )A B C D .8.(2022·天津南开·二模)计算3)的结果等于______.9.(2022·河北唐山·=a =______;b =__.题型四:二次根式的加减10.(2022·黑龙江哈尔滨·=_____. 11.(2022·黑龙江绥化·统考中考真题)设1x 与2x 为一元二次方程213202x x ++=的两根,则()212x x -的值为________.12.(2022·黑龙江哈尔滨·______.题型五:分母的有理化13.(2022·河北保定·统考一模)已知x =2y = (1)22x y +=________; (2)2()x y xy --=________.14.(2022·广东中山·统考二模)小明喜欢构建几何图形,利用“数形结合”的思想解决代数问题.在计算tan 22.5︒时,如图,在Rt ACB 中,9045C ABC ∠=︒∠=︒,,延长CB 使BD AB =,连接AD ,得22.5D ∠=︒,所以tan 22.51AC CD ︒===,类比小明的方法,计算tan15︒的值为________.15.(2020·四川成都·四川省成都列五中学校考三模)3的整数部分是m ,小数部分是n ,则mn+3=_____.题型六:二次根式的比较大小16.(2021·四川成都·766517.(2020·陕西西安·西安市铁一中学校考二模)比较大小:1013-(填“>”、“=”、“<”)18.(2021·陕西宝鸡·17﹣5(填“>”或“<”)题型七:二次根式的化简求值问题19.(2023·江西·九年级专题练习)先化简,再求值:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭,其中53x =. 20.(2022·四川广元·统考一模)先化简,再求值:222a ab b a b a b a b ab ⎛⎫---÷ ⎪--⎝⎭,其中32a =+32b = 21.(2022·辽宁抚顺·模拟预测)先化简,再求值:22124()(1)442x x x x x x x-+-÷--+-,其中x =2+tan30°.【必刷基础】一、单选题22.(2023·广西玉林·一模)下列运算正确的是( ) A 257B .22525=+C 532=D .233323.(2022·福建泉州·校考三模)在函数32y x =+中,自变量x 的取值范围是( ) A .23x ≠-B .23x >-C .23x -D .23x -24.(2022·上海松江·校考三模)下列式子属于同类二次根式的是( ) A .2与22B .3与24C .5与25D .6与1225.(2022春·河北保定·九年级保定市第十七中学校考期中)如图,把一张矩形纸片ABCD 按如图所示方法进行两次折叠后,BEF △恰好是等腰直角三角形,若2BE =,则CD 的长度为( )A .22B .22+C .222+D .224+26.(2021·广西百色·统考二模)将一组数2,2,6,22,10,…,210,按下列方式进行排列: 2,2,6,22,10; 23,14,4,32,25;…若2的位置记为()1,2,23的位置记为()2,1,则36这个数的位置记为( )A .()54,B .()44,C .()43,D .()35,27.(2022·山东青岛·统考中考真题)计算1(2712)3-⨯的结果是( ) A .33B .1C .5D .328.(2022·河北廊坊·统考二模)一次函数()32y k x k =++-的图象如图所示,则使式子()011k k ++-有意义的k 的值可能为( )A .-3B .-1C .-2D .229.(2021·北京·统考中考真题)若7x -在实数范围内有意义,则实数x 的取值范围是_______________. 30.(2018·江苏苏州·校联考中考模拟)若x 满足|2017-x|+-2018x =x , 则x-20172=________31.(2021·辽宁鞍山·统考中考真题)先化简,再求值:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭,其中62a =+. 32.(2022春·福建泉州·九年级福建省安溪第一中学校考阶段练习)已知实数a ,b ,c 在数轴上的位置如图所示,化简:222||()()a a c c a b -++--.【必刷培优】一、单选题33.(2021·广东·统考中考真题)设610-的整数部分为a ,小数部分为b ,则()210a b +的值是( ) A .6B .210C .12D .91034.(2021·湖南娄底·统考中考真题)2,5,m 是某三角形三边的长,则22(3)(7)m m -+-等于( ) A .210m -B .102m -C .10D .435.(2021·内蒙古·统考中考真题)若21x =+,则代数式222x x -+的值为( ) A .7 B .4C .3D .322-36.(2020·河北·统考中考真题)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大..的直角三角形,则选取的三块纸片的面积分别是( )A .1,4,5B .2,3,5C .3,4,5D .2,2,4二、填空题37.(2019·广西柳州·中考模拟)如图,数轴上点A 表示的数为a ,化简:a 244a a +-+=_____.38.(2021·四川眉山·统考中考真题)观察下列等式:12211311112212x =++==+⨯; 22211711123623x =++==+⨯; 3221113111341234x =++==+⨯; ……根据以上规律,计算12320202021x x x x ++++-=______.39.(2022·湖北荆州·统考中考真题)若32-的整数部分为a ,小数部分为b ,则代数式()22a b +⋅的值是______. 40.(2021·河南信阳·河南省淮滨县第一中学校考三模)已知625x =-为一元二次方程20x ax b ++=的一个根,且a ,b 为有理数,则=a ______,b =______.41.(2019·江苏·校考中考模拟)若a ,b 都是实数,b =12a -+21a -﹣2,则a b 的值为_____. 42.(2022·四川遂宁·统考中考真题)实数a ,b 在数轴上的位置如图所示,化简()()2211a b a b +--+-=______.三、解答题43.(2021·四川成都·统考中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中33=a .44.(2022·安徽·统考二模)阅读下列解题过程: 21+21(21)(21)-+-2-1; 32+32(32)(32)-+-32; 43+434343-+-()()433 …解答下列各题: (1109+= ;(2= .(3)利用这一规律计算:)×).45.(2019·福建泉州·统考中考模拟)先化简,再求值:2443(1)11m m m m m -+÷----,其中2m .46.(2013·贵州黔西·中考真题)阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:231+(,善于思考的小明进行了以下探索:设(2a m ++(其中a 、b 、m 、n 均为整数),则有2222a m n +++∴2222a m n b mn =+=,.这样小明就找到了一种把部分a + 请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若(2a m +=+,用含m 、n 的式子分别表示a 、b ,得a = ,b = ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n ,填空: + =( +2;(3)若(2a m ++,且a 、b 、m 、n 均为正整数,求a 的值.参考答案:1.B【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.【详解】解:依题意,3010 xx+>⎧⎨-≠⎩∴3x>-且1x≠故选B【点睛】此题主要考查了函数自变量的取值范围,正确掌握二次根式与分式有意义的条件是解题关键.2.A【分析】直接利用二次根式中被开方数是非负数,得出x的值,进而得出y的值,再利用有理数的乘方运算法则计算即可.【详解】解:由题意可得:20 420xx-≥⎧⎨-≥⎩,解得:x=2,故y=-3,∴20222022()(213)=x y+=-.故选:A.【点睛】此题主要考查了二次根式有意义的条件以及有理数的乘方运算,正确掌握被开方数为非负数是解题关键.3.C【分析】根据二次根式、立方根、分式的性质分析,即可得到答案.【详解】根据题意,得50x->∴5x<故选:C.【点睛】本题考查了二次根式、立方根、分式的知识;解题的关键是熟练掌握二次根式的性质,从而完成求解.4.B【分析】根据二次根式的性质判断即可.【详解】解:23+,故错误;23=⨯,故正确;=≠0.7,故错误;故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.5.D【分析】由二次根式的性质、二次根式的减法运算法则进行计算,即可得到答案.∴3a =,3b =, ∴3327=, 故选:D【点睛】本题考查了二次根式的性质、二次根式的减法运算,解题的关键是掌握运算法则,正确的进行解题. 6.B【分析】利用二次根式的被开方数具有非负性求出x 的值后,再求出y 的值,即可求解. 【详解】解:∵229090x x -+≥-≥,, ∴29x =, 又∵30x +≠, ∴3x =, ∴0012233y --==-+,∴()326xy =⨯-=-, 故选:B .【点睛】本题考查了二次根式有意义的条件以及性质,解题关键是求出x 的值与y 的值. 7.A【分析】根据二次根式的乘除运算法则进行计算,最后根据二次根式的性质化简即可.=== 故选:A .【点睛】)0,0a b ≥≥)0,0a b ≥>,熟练掌握相关运算法则是解题的关键. 8.4【分析】根据平方差公式计算即可.【详解】解:3)=223-=13-9 =4,故答案为:4.【点睛】本题考查二次式的混合运算,熟练掌握平方差公式是解题的关键. 9. 2 6化为最简二次根式,再利用二次根式的乘法法则解题.=2,6a b ∴==故答案为:2,6.【点睛】本题考查利用二次根式的性质化简计算,涉及最简二次根式、二次根式的乘法等知识,是基础考点,掌握相关知识是解题关键.10.-【分析】先把各二次根式化为最简二次根式,然后合并即可.【详解】解:原式==-故答案为:-【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 11.20【分析】利用公式法求得一元二次方程的根,再代入求值即可; 【详解】解:∵213202x x ++=△=9-4=5>0,∴13x =-23x =-,∴()212x x -=((223320-==,故答案为:20;【点睛】本题考查了一元二次方程的解,掌握公式法解一元二次方程是解题关键. 12【分析】根据二次根式的性质和二次根式的减法法则,即可求解.3==【点睛】本题主要考查二次根式的化简,掌握二次根式的性质和运算法则,是解题的关键. 13. 14 11【分析】根据分母有理化得到2x =x 和y 分别代入(1)(2)中根据二次根式的混合运算法则计算求解.【详解】解:∵123x =+, ∴()()12323232323x ===+-+--, ∴(1)22x y +()()222323=-++ 44334433=-++++14=,故答案为:14;(2)()2x y xy -- ()()()223232323⎡⎤=--+--+⎣⎦()()22343=---121=-11=,故答案为:11.【点睛】本题主要考查了分母有理化、二次根式的混合运算法则,理解相关知识是解答关键.14.23-【分析】仿照题意构造含15度角的直角三角形进行求解即可.【详解】解:如图,在Rt ACB 中,9030C ABC ∠=︒∠=︒,,延长CB 使BD AB =,连接AD ,∴∠BAD =∠D ,2AB BD AC ==,∴cos =3BC AC ABC AC =⋅∠,∴()23CD BC BD AC =+=+,∵∠ABC =∠BAD +∠D ,∴=15D ︒∠,∴1tan =tan15===2323AC D CD ︒-+∠, 故答案为:23-.【点睛】本题主要考查了解直角三角形,三角形外角的性质,等腰三角形的性质,正确理解题意构造出含15度角的直角三角形是解题的关键.15.2m 的值,小数部分n m ,把m 、n 代入分式m n+3中,应用分母有理化的方法进行化简,即可得到答案.【详解】解:∵12,∴m =1,n 1, ∴=n+3m=2.故答案为:2.【点睛】本题主要考查二次根式的分母有理化,熟练掌握分母有理化的方法是解题的关键.16.<【分析】直接利用二次根式的性质分别变形,进而比较得出答案.==<故答案为:<.【点睛】此题主要考查了二次根式的分母有理化,正确化简二次根式是解题关键.17.> 【分析】先将这两个数分别平方,通过比较两个数的平方的大小即可得解.【详解】解:∵21(10=,211()39-=且11109<,1<,∴13>- 故答案为:>【点睛】此题主要考查了无理数的估算能力,两个二次根式比较大小可以通过平方的方法进行,两个式子平方的值大的,对应的正的式子的值就大,负的式子就小.18.>【分析】首先利用二次根式的性质可得【详解】解:∵∴>﹣故答案为:>.【点睛】本题主要考查了二次根式的大小比较,准确计算是解题的关键.19.13x x -+【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案. 【详解】解:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭ ()()()23221111x x x x x x ++-+=÷++- ()()()211313x x x x x +-+=⨯++13x x -=+.当3x =时,原式=. 【点睛】此题主要考查了分式的化简以及二次根式混合运算,正确化简分式是解题关键.20.ab ;7【分析】根据分式的混合运算法则化简,再代入3a =3b = 【详解】解:原式222a ab b a b a b ab-+-=÷- ()2a b ab ab a b a b-=⋅=--.当3a =3b =原式(33927==-=.【点睛】此题主要考查分式的化简求值,解题的关键是熟知分式、二次根式及乘法公式的运用.21.()212x -;3【分析】先根据异分母分式的加减化简括号内的,同时将除法转化为乘法,再根据分式的性质化简,最后根据特殊角的三角函数值求得x 的值,代入化简结果进行计算即可. 【详解】解:22124()(1)442x x x x x x x -+-÷--+- ()()()()()22122422x x x x x x x x x x ⎡⎤-+-=-⨯⎢⎥---⎢⎥⎣⎦()2224=42x x x x x x x --+⨯-- ()241=42x x x -⋅-- ()212x =-2tan 302x =+︒=∴原式21322==⎛⎫ ⎪⎝⎭【点睛】本题考查了分式的化简求值,特殊角的三角函数值,实数的混合运算,二次根式的混合运算,正确的计算是解题的关键.22.D【分析】利用二次根式的加减运算法则进行计算,然后作出判断.【详解】解:AB、= CD、=故选:D .【点睛】本题考查二次根式的加减运算,掌握运算法则是解题关键.23.C【分析】根据被开方数大于等于0,列式求解即可.【详解】解:根据题意得:320x +,解得23x -.【点睛】本题主要考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.24.A【分析】根据同类二次根式的概念判断即可.【详解】解:A 、2与22是同类二次根式,符合题意;B 、3与26不是同类二次根式,不符合题意;C 、5与5不是同类二次根式,不符合题意;D 、6与23不是同类二次根式,不符合题意;故选A .【点睛】本题考查了同类二次根式,掌握一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式是解题的关键.25.D【分析】根据翻折过程补全图形,然后根据矩形的性质和勾股定理即可解决问题.【详解】解:由折叠补全图形如图所示,四边形ABCD 是矩形,'90ADA B C A ∴∠=∠=∠=∠=︒,AD BC =,CD AB =,由第一次折叠得:'90DA E A ∠=∠=︒,1452ADE ADC ∠=∠=︒, 45AED ADE ∴∠=∠=︒,AE AD ∴=,在Rt ADE △中,根据勾股定理得,2DE AD =,由第二次折叠知,CD DE AB ==,222DE AE ∴=,2222()2(2)CD AB BE CD ∴=-=-,422CD ∴=+【点睛】本题考查了翻折变换,矩形的性质,等腰直角三角形,解决本题的关键是掌握翻折的性质.26.C∵36218÷=,18533÷=4行,第3个数字.故选:C .【点睛】此题考查的是数字的变化规律以及二次根式的化简,找出其中的规律是解题的关键.27.B再合并即可.【详解】解:94321 故选:B .【点睛】本题考查的是二次根式的乘法运算,掌握“二次根式的乘法运算法则”是解本题的关键.28.B【分析】通过一次函数图象可以得出:3020k k +>⎧⎨->⎩,解得:32k -<<.()01k -有意义的条件为:1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且0k ≠.将两个关于k 的解集综合,得到k 的范围是:12k -≤<且0k ≠.根据所求范围即可得出答案选B .【详解】解:由图象得:3020k k +>⎧⎨->⎩,解得:32k -<<()01k -有意义,则1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且1k ≠ ∴综上所述,k 的取值范围是:12k -≤<且0k ≠.A 、-3不在k 的取值范围内,不符合题意;B 、-1在k 的取值范围内,符合题意;C 、-2不在k 的取值范围内,不符合题意;D 、2不在k 的取值范围内,不符合题意.故选B .【点睛】本题主要考查知识点为,一次函数图象与一次函数系数的关系、使二次根式有意义的条件,零指数幂中底29.7x ≥【分析】根据二次根式有意义的条件可直接进行求解.【详解】解:由题意得:70x -≥,解得:7x ≥;故答案:为7x ≥.【点睛】本题主要考查二次根式有意义的条件,解题的关键是熟练掌握二次根式有意义的条件.30.2018【分析】根据二次根式有意义的条件列出不等式,求解得出x 的取值范围,再根据绝对值的意义化简即可得出方程=2017,将方程的两边同时平方即可解决问题.【详解】解:由条件知,x-2018≥0, 所以x≥2018,|2017-x|=x-2017.所以x-2017+ =x ,即 =2017,所以x-2018=20172 ,所以x-20172=2018,故答案为:2018.【点睛】本题主要考查了二次根式的内容,根据二次根式有意义的条件找到x 的取值范围是解题的关键.31.2a a -,1+【分析】根据分式的混合运算的运算法则把原式化简为2a a -,再代入求值. 【详解】解:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭ ()()()2132221a a a a a a ⎡⎤+=-⨯⎢⎥-+--⎣⎦()()()21221a a a a a a +-=⨯+-- 2a a =-.当2a 时,原式1==== 【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值. 32.a b -【分析】直接利用数轴判断得出:a<0,a+c<0,c-a<0,b>0,进而化简即可.【详解】由数轴,得a<0,0a c +<,0c a -<,0b >.【点睛】此题考查二次根式的性质与化简,数轴,解题关键在于利用数轴进行解答.33.Aa 的值,进而确定b 的值,然后将a 与b 的值代入计算即可得到所求代数式的值.【详解】∵34,∴263<<,∴62a =,∴小数部分624b ==∴(((22244416106a b =⨯==-=.故选:A .【点睛】本题考查了二次根式的运算,正确确定6a 与小数部分b 的值是解题关键.34.D【分析】先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.【详解】解:2,3,m 是三角形的三边,5252m ∴-<<+, 解得:37x ,374m m -+-=,故选:D .【点睛】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m 的范围,再对二次根式化简.35.C【分析】先将代数式222x x -+变形为()211x -+,再代入即可求解.【详解】解:())22222=111113x x x -+-+=-+=. 故选:C【点睛】本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.36.B【分析】根据勾股定理,222+=a b c ,则小的两个正方形的面积等于大正方形的面积,再分别进行判断,即可得到面积最大的三角形.【详解】解:根据题意,设三个正方形的边长分别为a 、b 、c ,222A 、∵1+4=5,则两直角边分别为:1和2,则面积为:112=12⨯⨯;B 、∵2+3=512 C 、∵3+4≠5,则不符合题意;D 、∵2+2=4112=;1>, 故选:B .【点睛】本题考查了正方形的性质,勾股定理的应用,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,以及正方形的性质进行解题.37.2【分析】直接利用二次根式的性质以及结合数轴得出a 的取值范围进而化简即可.【详解】解:由数轴可得:0<a <2,则a=a =a +(2﹣a )=2.故答案为:2.【点睛】本题主要考查了二次根式的性质与化简,解题的关键是正确得出a 的取值范围.38.12021-【分析】根据题意,找到第n 1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120202021⨯化为12015﹣12016,再进行分数的加减运算即可.11(1)n n =++,20201120202021x =+⨯ 12320202021x x x x ++++-=112+116+1112+…+1120202021⨯﹣2021 =2020+1﹣12+12﹣13+…+12020﹣12021﹣2021 =2020+1﹣12021﹣2021=12021-. 故答案为:12021-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算. 39.2【分析】先由12<得到132<<,进而得出a 和b ,代入()2b ⋅求解即可.【详解】解:∵ 12<,∴132<<,∵ 3的整数部分为a ,小数部分为b ,∴1a =,312b ==∴()((222242b ⋅=⨯=-=,故答案为:2.【点睛】本题主要考查无理数及代数式化简求值,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.40. 2; 4-;【分析】将x =1x =,则20x ax b ++=)()260a b a -+-+=,根据a ,b 为有理数,可得2a -,6b a -+)()260a b a -+-+=时候,只有20a -=,60b a -+=,据此求解即可.【详解】解:∵x ====1∴20x ax b ++=∴))2110a b ++= ∴60a b --+=60a b -++=)()260a b a -+-+=∵a ,b 为有理数,∴2a -,6b a -+也为有理数,∴2a =,4b =-,故答案是:2,4-;【点睛】本题考查了二次根式的化简,利用完全平方公式因式分解,一元二次方程的解,有理数,无理数的概念的理解,熟悉相关性质是解题的关键.41.4【分析】直接利用二次根式有意义的条件得出a 的值,进而利用负指数幂的性质得出答案.【详解】解:∵b 2,∴120210a a -≥⎧⎨-≥⎩∴1-2a=0,解得:a=12,则b=-2, 故ab=(12)-2=4. 故答案为4.【点睛】此题主要考查了二次根式有意义的条件,以及负指数幂的性质,正确得出a 的值是解题关键. 42.2【分析】利用数轴可得出102a b -<<<<,1,进而化简求出答案.【详解】解:由数轴可得:102a b -<<<<,1,则10,10,0a b a b +>->-<∴1a +=|1||1|||a b a b +--+-=1(1)()a b a b +----=11a b a b +-+-+=2.故答案为:2.【点睛】此题主要考查了二次根式的性质与化简,正确得出a ,b 的取值范围是解题关键.43.13a +【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭2311(3)a a a a ++=⋅++ 13a =+,当3=a 时,原式= 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.44.(13;(2(3)2020【分析】(1,然后利用平方差公式和二次根式的性质计算,即可得到答案;(2(3)根据(1)和(2)的结论,先分母有理化,经加减运算后,再利用平方差公式计算,即可得到答案.【详解】(133;(2==(3)×)1+)×)1)×) =20211-=2020.【点睛】本题考查了二次根式和数字规律的知识:解题的关键是熟练掌握二次根式混合运算、数字规律、平方差公式的性质,从而完成求解.45.22m m-+ 1. 【详解】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --) =221m m --()÷241m m -- =221m m --()•122m m m --+-()() =﹣22m m -+ =22m m-+当m 2时,原式===﹣=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 46.(1)223m n +,2mn ;(2)13,4,2,1(答案不唯一);(3)7或13.【分析】根据题意进行探索即可.【详解】(1)∵2(a m +=+,∴2232a m n +=++∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13.【点睛】本题考查二次根式的运算.根据题意找出规律是解决本题的关键.。
二次根式的有关概念和性质
专题01二次根式的概念和性质(知识点考点串编)【思维导图】◎考点1:二次根式的值例.(2022·浙江·九年级专题练习)当0x =的值等于( )A .4B .2CD .0【答案】B【解析】【分析】把0x =解题即可【详解】◉知识点一:二次根式的定义知识点技巧:二次根式概念:一般地,我们把形如(a ≥0)的式子叫做二次根式,“”称为二次根号。
【注意】1.二次根式,被开方数a 可以是一个具体的数,也可以是代数式。
2.二次根式是一个非负数。
3.二次根式与算术平方根有着内在联系,(a ≥0)就表示a 的算术平方根。
解:把0x =2=故选:B .【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.练习1.(2021·全国·八年级专题练习)当a 为实数时,下列各式中是二次根式的是( )个A .3个B .4个C .5个D .6个【答案】B 【解析】【分析】0)a >的代数进行分析得出答案.【详解】共4个.故选:B .【点睛】0)a >的代数式,正确把握定义是解题关键.练习2.(2021·河北·结果相同的是( ).A .321-+B .321+-C .321++D .321--【答案】A【解析】【分析】根据有理数运算和二次根式的性质计算,即可得到答案.【详解】2==∵3212-+=,且选项B 、C 、D 的运算结果分别为:4、6、0【点睛】本题考查了二次根式、有理数运算的知识;解题的关键是熟练掌握二次根式、含乘方的有理数混合运算的性质,即可得到答案.练习3.(2021·河南林州·八年级期末)已知当12a <<a -的值是( )A .3-B .12a -C .32a -D .23a -【答案】C【解析】【分析】由题意直接根据二次根式的性质以及去绝对值的方法,进行分析运算即可.【详解】解:∵12a <<,212132a a a a a a -=---=-+-=-.故选:C.【点睛】本题考查二次根式和去绝对值,熟练掌握二次根式的性质以及去绝对值的方法是解题的关键.◎考点2:求二次根式中的参数例.(2021·n 的最小值是( )A .2B .4C .6D .8【答案】C【解析】【分析】=,则6n 是完全平方数,满足条件的最小正整数n 为6.【详解】解:=∴6n 是完全平方数;∴n 的最小正整数值为6.【点睛】本题主要考查了二次根式的定义,关键是根据乘除法则和二次根式有意义的条件,二次根式有意义的条件时被开方数是非负数进行解答练习1.(2020·甘肃·酒泉市第二中学八年级期中)若x 、y 为实数,且0x +=,则2019x y æöç÷èø的值( )A .-2B .1C .2D .-1【答案】D【解析】【分析】根据非负数的性质可求出x 、y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵0x +=,∴x +2=0,y -2=0,∴x =﹣2,y =2,∴220190192=12x y -æöæöç÷è=-ç÷èøø.故选:D .【点睛】本题主要考查了非负数的性质,明确实数绝对值和二次根式的非负性以及﹣1的奇次幂的性质是解题关键.练习2.(2020·江苏·丰县欢口镇欢口初级中学八年级阶段练习)如果3y ,则2x y -的平方根是( )A .-7B .1C .7D .±1【答案】D【解析】【分析】根据二次根式的性质求出x 、y 的值,再代入求解即可.解:由题意可得:24020x x -+¹=,,解得:2x =,故3y =,则21x y -=,故2x y -的平方根是:±1.故选:D .【点睛】本题考查了关于二次根式的运算问题,掌握二次根式的性质、平方根的性质是解题的关键.练习3.(2021·全国·n 的值是( )A .0B .1C .2D .5【答案】D【解析】【分析】首先化简二次根式进而得出n 的最小值.【详解】=∴最小正整数n 的值是5.故选D .【点睛】本题考查了二次根式的定义,正确化简二次根式得出是解题的关键.例.(2022·全国·九年级专题练习)在函数1y =中,自变量x 的取值范围是( )A .x <2B .x ≥2C .x >2D .x ≠2【答案】C 【解析】◉知识点二:二次根式有意义的条件知识点技巧:二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
沪科版八年级数学下册教学设计《第16章二次函数16.2二次根式的运算(第2课时)》
沪科版八年级数学下册教学设计《第16章二次函数16.2二次根式的运算(第2课时)》一. 教材分析《第16章二次函数16.2二次根式的运算(第2课时)》这一节的内容,主要是对二次根式的运算进行深入的讲解和练习。
在前一课时,学生已经了解了二次根式的定义和性质,本课时将在此基础上,进一步学习二次根式的加减乘除运算,以及混合运算的法则。
教材通过具体的例题和练习题,使学生掌握二次根式的运算方法,提高他们的数学运算能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对二次根式的概念和性质有一定的了解。
但学生在进行二次根式运算时,容易出错,对混合运算的法则理解不够深入。
因此,在教学过程中,教师需要引导学生通过观察、思考、交流,发现二次根式运算的规律,提高他们的数学思维能力。
三. 说教学目标1.知识与技能:学生会运用二次根式的加减乘除法则进行计算,解决一些简单的实际问题。
2.过程与方法:学生通过观察、思考、交流,发现二次根式运算的规律,提高他们的数学思维能力。
3.情感态度与价值观:学生能够感受到数学与生活的联系,增强他们对数学的兴趣和自信心。
四. 说教学重难点1.教学重点:学生能够掌握二次根式的加减乘除运算方法,解决一些简单的实际问题。
2.教学难点:学生对混合运算的法则的理解和运用。
五. 说教学方法与手段在本节课的教学过程中,我将采用引导发现法、讨论法、练习法等教学方法。
通过引导学生观察、思考、交流,发现二次根式运算的规律,提高他们的数学思维能力。
同时,我将运用多媒体教学手段,展示二次根式的运算过程,使学生更加直观地理解二次根式的运算方法。
六. 说教学过程1.导入:通过复习上一课时所学的内容,引导学生回顾二次根式的定义和性质,为新课的学习做好铺垫。
2.教学新课:讲解二次根式的加减乘除运算方法,通过具体的例题,使学生掌握二次根式的运算规律。
3.巩固练习:学生进行一些相关的练习题,巩固新学的知识。
4.课堂小结:教师引导学生总结本节课所学的内容,使学生对二次根式的运算有一个清晰的认识。
初中数学十三章知识点总结
初中数学十三章知识点总结第一章:二次根式1. 二次根式的定义二次根式是指被平方数开平方的根式,形如√a的表达式,其中a称为被开方数。
2. 二次根式的化简化简二次根式时,可以利用数的乘法性质和开方的运算规律,将根号内的数分解为互质因子的积,然后提出成对的因子,得到化简后的根式。
3. 二次根式的运算二次根式的加减乘除运算,都可以转化为化简和合并同类项的过程。
在运算中,注意分子分母的二次根式要合并为同一型式,才能进行加减乘除的运算。
4. 二次根式的应用二次根式在解决数学问题和物理问题时经常出现。
例如在几何中计算长度、面积等,或者在物理中计算速度、加速度等。
第二章:一元二次方程1. 一元二次方程的概念一元二次方程是指形如ax²+bx+c=0的方程,其中a、b、c是已知的常数,且a≠0。
2. 二次函数与一元二次方程的关系二次函数的一般形式为y=ax²+bx+c,而一元二次方程的一般形式也是ax²+bx+c=0,二次函数的图象与一元二次方程的解的关系是密切的,研究二次函数有助于解决一元二次方程。
3. 一元二次方程的求解求解一元二次方程常使用解关于x的公式:x=(-b±√(b²-4ac))/(2a),通过代入求解可以得到一元二次方程的解。
4. 一元二次方程的应用一元二次方程在几何、经济、生活等方面都有广泛的应用,如图像的绘制、物体的遗失、数学题的解答等等。
第三章:一元二次不等式1. 一元二次不等式的定义一元二次不等式是指形如ax²+bx+c>0或ax²+bx+c<0的不等式,其中a、b、c是已知的常数,且a≠0。
2. 一元二次不等式的求解和一元二次方程相似,一元二次不等式的求解也可以使用把不等式转化为等式求解,先求出方程的解,再根据解的性质判断不等式的解。
3. 一元二次不等式的应用一元二次不等式在数学问题和实际问题中都有很多应用,如求函数的值域、解决生活中的问题等。
浙教版数学八年级下册1.1《二次根式》说课稿
浙教版数学八年级下册1.1《二次根式》说课稿一. 教材分析浙教版数学八年级下册1.1《二次根式》是初中数学的重要内容,它为学生提供了研究函数、几何等高级数学的基础。
这一节内容主要介绍二次根式的定义、性质和运算方法,使学生能够理解和运用二次根式。
教材通过引入实际问题,激发学生的学习兴趣,引导学生探究二次根式的相关性质,培养学生的抽象思维能力。
二. 学情分析在学习本节内容之前,学生已经掌握了实数、有理数、无理数等基础知识,具备了一定的逻辑思维和运算能力。
但二次根式较为抽象,学生可能难以理解其本质,因此需要教师在教学中引导学生通过实际问题去探究和理解二次根式。
三. 说教学目标1.知识与技能:使学生理解二次根式的定义,掌握二次根式的性质和运算方法,能运用二次根式解决实际问题。
2.过程与方法:通过探究二次根式的性质,培养学生抽象思维能力和运算能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 说教学重难点1.重点:二次根式的定义、性质和运算方法。
2.难点:二次根式的性质探究和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、探究法、合作学习法等,引导学生主动参与课堂,提高学生的学习兴趣和积极性。
2.教学手段:利用多媒体课件、黑板、教学卡片等辅助教学,使抽象的二次根式形象化、具体化。
六. 说教学过程1.引入新课:通过实际问题引入二次根式,激发学生的学习兴趣。
2.讲解概念:讲解二次根式的定义,使学生理解并掌握二次根式的基本概念。
3.性质探究:引导学生分组讨论,探究二次根式的性质,如:单调性、奇偶性等。
4.运算方法:讲解二次根式的运算方法,让学生通过实际例题掌握加减乘除等运算。
5.应用拓展:布置一些实际问题,让学生运用二次根式解决,提高学生的应用能力。
七. 说板书设计板书设计要清晰、简洁,突出二次根式的定义、性质和运算方法。
主要包括以下几个部分:1.二次根式的定义2.二次根式的性质3.二次根式的运算方法八. 说教学评价通过课堂问答、练习题、课后作业等方式对学生的学习情况进行评价,关注学生在知识与技能、过程与方法、情感态度与价值观等方面的全面发展。
数学二级公式
数学二级公式
数学二级公式是指在数学中的二级方程、二次函数、二次根式等涉及二次项的公式。
二级公式在数学中具有重要的地位和应用价值,它们广泛应用于数学、物理、工程学等领域。
二级方程是指含有二次项的代数方程,一般形式为ax^2+bx+c=0,其中a、b、c为已知常数,且a≠0。
解二级方程的常用方法有因式分解法、配方法、求根公式法等。
二级方程的解可以是实数或复数,这取决于方程的判别式D=b^2-4ac的正负性。
二次函数是指形式为f(x)=ax^2+bx+c的函数,其中a、b、c为已知常数,且a≠0。
二次函数的图像是一个开口朝上或朝下的抛物线,其顶点坐标为(-b/2a,f(-b/2a))。
二次函数的性质包括对称性、单调性、最值、零点等,这些性质在实际问题中具有重要的意义。
二次根式是指含有平方根的根式,形式为√(a+b√c),其中a、b、c 为有理数。
二次根式的化简可以利用共轭、分离平方根、合并同类项等方法进行。
二次根式在几何学、三角学、复数等领域的计算中经常出现,特别是在勾股定理、复数的模等概念中有广泛的应用。
除了上述提到的二级公式,还有一些其他的二级公式,如二次方差、二次平均值不等式、二次剩余等,它们在数学的不同分支中有各自的
应用。
掌握和理解数学二级公式的概念和性质,有助于提高数学解题能力和理解数学的本质。
第十六章 二次根式 教材分析:二次根式教材分析
第十六章 二次根式教材分析:二次根式教材分析(一)课程学习目标1. 理解二次根式的概念,了解被开方数必须是非负数的理由;2.了解最简二次根式的概念;3.理解二次根式的性质:(1))0(≥a a 是非负数;(2)())0(2≥=a a a ;(3))0(2≥=a a a ; 4.掌握二次根式的加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算(不要求分母有理化);5.了解代数式的概念,进一步体会代数式在表示数量关系方面的作用。
(二)知识结构框图本章知识结构框图如下:注意:有关a 的取值及讨论.(三)课时安排本章教学时间约需10课时,具体分配如下(仅供参考):16.1 二次根式 约3课时 16.2 二次根式的乘除 约5课时 16.3 二次根式的加减 约4课时 小结 约2课时(四)内容安排本章是在第10章的基础上,进一步研究二次根式的概念、性质和运算。
本章重点是二次根式的化简和运算,难点是正确理解二次根式的性质和运算法则的合理性,学习本章的关键是理解二次根式的概念和性质,它们是学习二次根式的化简与运算的依据。
第10章“实数”中,我们学习了平方根、算术平方根的概念,以及利用平方运算与开平方运算的互逆关系求非负数的平方根和算术平方根的方法。
全章分为三节,第一节研究了二次根式的概念和性质。
教科书首先给出四个实际问题,要求学生根据已学的平方根和算术平方根的知识写出这四个问题的答案,并分析所得结果在表达式上的特点,由此引出二次根式的概念。
在二次根式的概念中,重要的一点是理解被开方数是非负数的要求,教科书结合例题对此进行了较详细的分析。
接下去,教科书采用由特殊到一般的方法,归纳给出了二次根式的性质())0(2≥=a a a ,并根据算术平方根的定义对这条性质进行了分析,对于二次根式的性质)0(2≥=a a a ,教科书同样采用了让学生通过具体计算,分析运算过程和运算结果,最后归纳得出一般结论的方法进行研究。
二次函数二次根式(含答案)
二次函数21、(2010年浙江省东阳县)如图,足球场上守门员在处开O 出一高球,球从离地面1米的处飞A 出(A 在y 轴上),运动员乙在距点6米的O B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半. (1)求足球开始飞出到第一次落地时,该抛物线的表达式. (2)足球第一次落地点距守C 门员多少米?(取734≈)(3)运动员乙要抢到第二个落点D ,他应再向前跑多少米?(取562≈) 【关键词】二次函数的应用 【答案】(1)y=-4)6(1212+-x (2)y=0, x=6+43︽13 (3)设y=2)(1212+-m x m=13+26︽ y=0, x=18±26︽23 ∴ 再向前跑10米1、(2010年宁波市)如图,已知二次函数c bx x y ++-=221的图象经过A (2,0)、B (0,-6)两点。
(1)求这个二次函数的解析式 (2)设该二次函数的对称轴与轴交于点x C , 连结BA 、BC ,求△ABC 的面积。
【关键词】二次函数【答案】解:(1)把A (2,0)、B (0,-6)代入c bx x y ++-=221得:⎩⎨⎧-==++-6022c c b解得⎩⎨⎧-==64c b∴这个二次函数的解析式为64212-+-=x x y (2)∵该抛物线对称轴为直线4)21(24=-⨯-=x∴点C 的坐标为(4,0) ∴224=-=-=OA OC AC第20题∴6622121=⨯⨯=⨯⨯=∆OB AC S ABC10.(2010年安徽省芜湖市)二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y = ax与正比例函数y =(b +c )x 在同一坐标系中的大致图象可能是() A . B . C . D .【关键词】二次函数、一次函数、反比例函数图像的性质 【答案】B20.(2010年安徽省芜湖市)(本小题满分8分)用长度为20m 的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m .当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积. 解:【关键词】二次函数的应用【解】根据题意可得:等腰直角三角形的直角边为x 2cm ,矩形的一边长为x 2cm .其相邻边长为x x)22(102)224(20+-=+-.........2分该金属框围成的面积[]x x x x S 2221)22(102∙⨯++-∙==x x 20)223(2++- (25100-<<x )【此处未注明x 的取值范围不扣分】............4分 当2203022310-=+=x 时, 金属框围成的面积最大,此时矩形的一边是220602-=x (m ),相邻边长为10210)223(10)22(10-=-⨯+-(m) ...............7分 ∴)22-(3100=最大S (2m )...........................8分 答:(略)8(2010年浙江省金华). 已知抛物线c bx ax y ++=2的开口向下,顶点坐标为(2,-3) ,那么该抛物线有( ) A . 最小值 -3B . 最大值-3C . 最小值2D . 最大值2【关键词】二次函数、最大值问题 【答案】B15. (2010年浙江省金华)若二次函数k x x y ++-=22的部分图象如图所示,则关于x 的一元二次方程022=++-k x x 的一个解31=x ,另一个解=2x ;【关键词】二次函数、对称轴、交点坐标 【答案】-120(2010年浙江省金华).(本题8分)已知二次函数y =ax 2+bx -3的图象经过点A (2,-3),B (-1,0). (1)求二次函数的解析式;(2)填空:要使该二次函数的图象与x 轴只有一个交点,应把图象沿y 轴向上平移 ▲个单位.【关键词】二次函数、二元一次方程组、根的判别式【答案】(1)由已知,有⎩⎨⎧=---=-+033324b a b a ,即⎩⎨⎧=-=+3024b a b a ,解得⎩⎨⎧-==21b a∴所求的二次函数的解析式为322--=x x y . (2) 4(第15题图)10.(2010年浙江台州市)如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线的顶n m x a y +-=2)(点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标最大值为(▲)A .-3【答案】D24.(2010江西)向右平移m (m >0) (1)求点A 的坐标(2)在x 轴上是否用含m 的式子表示)(3)△CDP 的面积为【关键词】二次函数、图形的平移、等腰三角形、面积等【答案】解:(1)令-2x 2+4x=0得x 1=0,x 2=2 ∴点A 的坐标是(2,0), △PCA 是等腰三角形, (2)存在。
初中数学代数公式归纳
初中数学代数公式归纳〔1〕实数实数的性质:①实数a的相反数是—a,实数a的倒数是〔a≠0〕;②实数a的绝对值:③正数大于0,负数小于0,两个负实数,绝对值大的反而小。
二次根式:①积与商的方根的运算性质:〔a≥0,b≥0〕;〔a≥0,b>0〕;②二次根式的性质:〔2〕整式与分式①同底数幂的乘法法那么:同底数幂相乘,底数不变,指数相加,即〔m、n为正整数〕;②同底数幂的除法法那么:同底数幂相除,底数不变,指数相减,即〔a≠0,m、n为正整数,mn〕;③幂的乘方法那么:幂的乘方,底数不变,指数相乘,即〔n为正整数〕;④零指数:〔a≠0〕;⑤负整数指数:〔a≠0,n为正整数〕;⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即;⑦完全平方公式:两数和〔或差〕的平方,等于它们的平方和,加上〔或减去〕它们的积的2倍,即;分式①分式的基本性质:分式的分子和分母都乘以〔或除以〕同一个不等于零的整式,分式的值不变,即;,其中m是不等于零的代数式;②分式的乘法法那么:;③分式的除法法那么:;④分式的乘方法那么:〔n为正整数〕;⑤同分母分式加减法那么:;⑥异分母分式加减法那么:;2.方程与不等式①一元二次方程(a≠0〕的求根公式:②一元二次方程根的.判别式:叫做一元二次方程〔a≠0〕的根的判别式:方程有两个不相等的实数根;方程有两个相等的实数根;方程没有实数根;③一元二次方程根与系数的关系:设、是方程〔a≠0〕的两个根,那么+=,=;不等式的基本性质:①不等式两边都加上〔或减去〕同一个数或同一个整式,不等号的方向不变;②不等式两边都乘以〔或除以〕同一个正数,不等号的方向不变;③不等式两边都乘以〔或除以〕同一个负数,不等号的方向转变;3.函数一次函数的图象:函数y=k*+b(k、b是常数,k≠0)的图象是过点〔0,b〕且与直线y=k*平行的一条直线;一次函数的性质:设y=k*+b〔k≠0〕,那么当k0时,y 随*的增大而增大;当k0,y随*的增大而减小;正比例函数的图象:函数的图象是过原点及点〔1,k〕的一条直线。
二次根式与二次方程的解法与因式分解
二次根式与二次方程的解法与因式分解一、二次根式的定义及性质二次根式是指形如√a的表达式,其中a是一个非负实数。
二次根式与二次方程有着密切的联系,因为在解二次方程的过程中,我们经常会遇到涉及到二次根式的计算和化简。
对于形如√a的二次根式,可以通过以下性质进行化简或计算:1. 二次根式的乘法性质:√a * √b = √(a * b)(其中a和b为非负实数)。
2. 二次根式的除法性质:√a / √b = √(a / b)(其中a和b为非负实数,且b不为0)。
3. 二次根式的加法与减法性质:√a ± √b 无法进行简化,但可以根据需要合并或分开。
二、二次方程的解法二次方程是指形如ax² + bx + c = 0(其中a、b、c为实数,且a≠0)的方程。
求解二次方程的一般步骤如下:1. 将方程移项,将其转化为标准形式:ax² + bx + c = 0。
2. 利用求根公式:x = (-b ± √(b² - 4ac)) / 2a,计算方程的解。
3. 根据判别式Δ = b² - 4ac的取值情况,可以得到方程的解的个数与性质:a) 当Δ > 0时,方程有两个不相等的实数解。
b) 当Δ = 0时,方程有两个相等的实数解。
c) 当Δ < 0时,方程没有实数解,但可能有复数解。
三、二次方程的因式分解在解二次方程时,有时我们需要进行因式分解,以便更好地理解和计算方程的解。
当方程为完全平方时,即存在实数k使得(ax + k)² = 0,可以通过因式分解求解得到方程的解。
例如,对于方程x² - 4x + 4 = 0,可以进行因式分解得到(x - 2)² = 0,进而得到x = 2为方程的唯一解。
此外,在某些情况下,我们可以通过对方程进行配方法式进行因式分解。
具体的配方法式可根据具体问题而定,不同的问题可能采用不同的配方法。
二次根式与一元二次方程与二次函数
二次根式知识点归纳定义:一般的,式子a ( a ≥ 0 ) 叫做二次根式。
其中“”叫做二次根号,二次根号下的a 叫做被开方数。
性质:2、a b=ab(a ≥0,b >0) 数的平方根与二次根式的区别:①4的平方根为±2,算术平方根为2;②4=2,二次根式即是算术平方根一元二次方程和二次函数知识点汇总2.二次函数2ax y =的性质(1)抛物线2ax y =)(0≠a 的顶点是原点,对称轴是y 轴.(2)函数2ax y =的图像与a 的符号关系:①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5.抛物线c bx ax y ++=2的三要素:开口方向、对称轴、顶点. ①a 决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 越小,抛物线的开口越大,a 越大,抛物线的开口越小。
②对称轴为平行于y 轴(或重合)的直线,记作h x =.特别地,y 轴记作直线0=x . ③定点是抛物线的最值点[最大值(0<a 时)或最小值(0>a 时)],坐标为(h ,k )。
6.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.(2)配方法:运用配方法将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线上纵坐标相等的两个点连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. ★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★ 7.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线ab x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab 时,对称轴在y 轴左侧;③0<ab 时,对称轴在y 轴右侧.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ① 0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab .8. 二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.图像特征如下:函数解析式开口方向对称轴顶点坐标 2ax y = 当0>a 时 开口向上 当0<a 时 开口向下0=x (y 轴)(0,0) k ax y +=20=x (y 轴) (0, k ) ()2h x a y -=h x = (h ,0) ()k h x a y +-=2h x = (h ,k )c bx ax y ++=2ab x 2-=(ab ac a b 4422--,)9.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 10.直线与抛物线的交点(或称二次函数与一次函数关系) (1)y 轴与抛物线c bx ax y ++=2得交点为(c ,0)(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2). (3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.而根的存在情况仍如(3)一样由根的判别式判定。
2023苏州中考数学考点
2023苏州中考数学考点苏州中考数学考点二次根式、勾股定理、四边形、一次函数和数据的分析。
(1)二次根式(2)勾股定理:解直角三角形,解直角三角形的知识是近几年各地中考命题的热点之一,考察题型为选择题,填空题,应用题为主,分值一般8-12分,难易度为难。
【考察内容】①常见锐角的三角函数值的计算②根据图形计算距离,高度,角度的应用题③根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题。
(3)四边形:初中数学中考中的重点内容之一,分值一般为10-14分,题型以选择,填空,解答证明或融合在综合题目中为主,难易度为中。
【考察内容】①多边形的内角和,外角和等问题②图形的镶嵌问题③平行四边形,矩形,菱形,正方形,等腰梯形的性质和判定。
(4)一次函数:一次函数图像与性质是中考必考的内容之一。
中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。
甚至有存在探究题目出现。
【考察内容】①会画一次函数的图像,并掌握其性质。
②会根据已知条件,利用待定系数法确定一次函数的解析式。
③能用一次函数解决实际问题。
④考察一次函数与二元一次方程组,一元一次不等式的关系。
(5)数据的分析二次函数、一元二次方程、旋转、圆和概率初步。
(1)二次函数:二次函数的图像和性质是中考数学命题的热点,难点。
试题难度一般为难。
常见选择,填空题分值为3-5分,综合题分值为10-12分。
【考察内容】①能通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。
②能用数形结合,归纳等熟悉思想,根据二次函数的表达式(图像)确定二次的开口方向,对称轴和顶点的坐标,并获得更多信息。
③综合运用方程,几何图形,函数等知识点解决问题。
(2)一元二次方程:中考分值约为3-5分,题型主要以选择,填空为主,极少出现简答,难易度为易。
【考察内容】①方程及方程解的概念②根据题意列一元一次方程③解一元一次方程。
(3)旋转:图形的平移,旋转是中考题的新题型,热点题型,在试题比重,逐年上升。
初三上册数学公式
九年级数学(上)知识点第二十一章:二次根式一.知识框架:二.知识概念:二次根式:一般地,形如√ā(a≥0)的代数式叫做二次根式。
当a>0时,√a表示a的算数平方根,其中√0=0对于本章内容,教学中应达到以下几方面要求:1. 理解二次根式的概念,了解被开方数必须是非负数的理由;2. 了解最简二次根式的概念;3. 理解并掌握下列结论:1)是非负数;(2);(3);4. 掌握二次根式的加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;5. 了解代数式的概念,进一步体会代数式在表示数量关系方面的作用。
第二十二章:一元二次根式一.知识框架:二.知识概念:一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a 是二次项系数;bx是一次项,b是一次项系数;c是常数项.本章内容主要要求学生在理解一元二次方程的前提下,通过解方程来解决一些实际问题。
(1)运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.(2)配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q <0,方程无实根.介绍配方法时,首先通过实际问题引出形如的方程。
这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。
进而举例说明如何解形如的方程。
然后举例说明一元二次方程可以化为形如的方程,引出配方法。
最后安排运用配方法解一元二次方程的例题。