数值分析 第一章 绪论
数值分析第一张,引言
模型(móxíng)设计
算法设计
上机计算
问题的解
共四十七页
结束(jiéshù)
其中算法设计是数值(shùzí)分析课程的主要内容.
数值分析课程(kèchéng)研究常见的基本数学问题的数值解法.包含了
数值代数(线性方程组的解法、非线性方程的解法、矩阵求逆、 矩阵特征值计算等)、数值逼近、数值微分与数值积分、常微分方程 及偏微分方程的数值解法等.它的基本理论和研究方法建立在数学 理论基础之上,研究对象是数学问题,因此它是数学的分支之 一.
3! 5! 7!
(2n 1)!
( 1.1)
这是一个无穷级数,我们只能(zhī nénɡ)在适当的地方“截断 ”,使计算量不太大,而精度又能满足要求.
如计算 sin 0.5,取n=3 sin 0.5 0.5 0.53 0.55 0.57 0.479625
3! 5! 7!
共四十七页
结束
据泰勒余项公式(gōngshì),它的误差应 为
• 1998年7月30-31日,美国DOE/FNS 共同联合组织召开了 关于“先进科学计算”的全国会议,会议强调科学模拟的重
要性,希望应用科学模拟来攻克复杂的科学与工程难题。
共四十七页
数值分析是计算数学的一个主要部分,方法解决科学研究或 工程技术问题,一般按如下途径进行:
实际 (shíjì)问
题
程序设计
R (1)9 9
9!
0,
4
R ( / 4)9 3.13 10 7
362880
( 1.2)
可见结果(jiē guǒ)是相当精确的.实际上结果(jiē guǒ)的六位数字都是 正确的.
2 算法常表现(biǎoxiàn)为一个连续过程的离 散化
数值分析(第一章)修正版描述
2
例:为使 x 20 的近似值 x 的相对误差不超过 问查开方表时至少要取几位有效数字? * 解:设近似值 x 取n位有效数字可满足题设要求。 对于 x
1 103 2
*
20, 有x1 4
* r
1 1 1 n 1 n e 10 10 由定理,有 2 x1 8
1 1 1 n 3 10 10 令 8 解得 2
e* x* x * ,则称 * 为x* 近似x的一个绝对 差限,简称误差限。 误 . 实际计算中所要求的绝对误差,是指估计一个 尽可能小的绝对误差限。
*
2.相对误差及相对误差限
0) 的一个近似,称 定义 设 x 是准确值 x( *
*
为 x 近似x的一个绝对误差。在不引起混淆时,简称符 * * 号 er ( x )为 er * * * * 因 e e e x x
(1)有效数字
定义 :设x的近似值 x 有如下标准形式
*
x 10 0.x1x2 xn1 xp 9且x1 0, p n 其中m为整数, xi 0,1,2 ,
*
1 mn e x x 10 如果 2
* *
, * 则称 x 为的具有n位有效数字的近似数. 或称 x* 准确到 10m n 位,其中数字 x1 x2 xn ,分别 * x 被称为 的第一,第二,…第n个有效数字.
*
n
* i *
x * * f 'i ( x1 , x2 , i 1 y
n
* i *
x )er ( x )
* n
* i
绝对误差限和相对误差限满足传播不等式:
( y ) f 'i ( x , x ,
数值分析第1章 绪论01
1
e x dx S 4 ,
2
则 R4
1 1 1 1 由留下部分 称为截断误差 4! 9 5! 11 引起 1 1 这里 R4 0 .005 由截去部分 4! 9 1 1 1 S4 1 1 0 .333 0 .1 0 .024 引起 0 .743 3 10 42
上页 下页 返回
1 1 n x 例 2 计算 I n x e dx , n 0 , 1, 2 , ...... e 0
公式一: I n 1 n I n1
记为 * 1 1 x 1 I 0 e dx 1 0 .63212056 I0 0 注意此公式精确成 e e 8 立 则初始误差 E0 I 0 I 0 0.5 10
解 :将 e 作Taylor展开后再积分 大家一起猜? 4 6 1 1
x2
0
e
x2
x x x8 dx (1 x ) dx 0 4! 12 ! 2 3!
2
e 1dx 1 1 1 1 1 1 1 11 /e 0 3 2! 5 3! 7 4! 9
0.b1b2
其中 b j ( j 2,
bt 2m
, t ) 是 1 或 0 , b1 1 ;
t
即
称为计算机的字长;
阶码
m 有固定的上、下限,
L m U
随计算机的不同而不同.
L、U 和 t
上述形式的数称为机器数.
机器数的全体记为 F (2, t , L,U ) , 称为机器数系.
上页 下页 返回
即 x 的二进制表示为:
x (11101101) 2
上页 下页 返回
数值分析课件 第一章 绪论
1 e 0 1 x n e 0 d I n x 1 e 0 1 x n e 1 d x e 1 1 ( ) I n n n 1 1
公式一:I n 1 e [ x n e x 1 0 n 0 1 x n 1 e x d x ] 1 n I n 1
I01 e 01exdx11 e0.63212 记为0I5 0* 6 此公式精确成
初始的小扰动 |E 0|0.51 0 8迅速积累,误差呈递增趋势。 造成这种情况的是不稳定的算法 /* unstable algorithm */ 我们有责任改变。
公式二: I n 1 n I n 1 I n 1 n 1 ( 1 I n )
方法:先估计一个IN ,再反推要求的In ( n << N )。 注 意在e此理(N 公论1 式上1)与等公价IN 式。一N 1 1
)
0 .0 6 6 8 7 0 2 2 0
I
12
1 (1 13
I
13
)
0 .0 7 1 7 7 9 2 1 4
I
11
1 (1 12
I
12
)
0 .0 7 7 3 5 1 7 3 2
I
10
1 11
(1
I
11
)
0 .0 8 3 8 7 7 1 1 5
I
1
1 2
(1
I
2
)
0 .3 6 7 8 7 9 4 4
0
2! 3! 4!
11/1e111 e1 x 2d1x11 1 3 2! 50 3! 7 4! 9
取 01ex2dxS4 ,
S4
R4 /* Remainder */
则 R 44 1 !1 9 由 留5 1 !下1 部1 分1 称为截断误差 /* Truncation Error */
数值分析绪论
数值分析或数值计算方法主要是研究如 何运用计算机去获得数学问题的数值解 的理论和方法. 对那些在经典数学中,用解析方法在理论 上已作出解的存在,但要求出他的解析解 又十分困难,甚至是不可能的这类数学问 题,数值解法就显得不可缺少,同时有十分 有效.
计算机解决科学计算问题时经历的几个 过程
实际问题——〉数学模型——〉数值计算方 法——〉程序设计——〉上机运行求出解 实际问题——〉数学模型:由实际问题应用 科学知识和数学理论建立数学模型的过程, 是应用数学的任务。
两个数相乘,如果有大因子,积的误差 可能严重扩大 两个数相除,如果除数很小,商的误差 可能会严重扩大
e( x1 * + x2 *) x1 * er ( x1*) x2 * er ( x2 *) er ( x1 * + x2 *) = = + x1 * + x2 * x1 * + x2 * x1 * + x2 *
则 e(π ) = 3.1416 − 3.14159265...
*
1 −5 = 0.0000734...... ≤ × 10 2
称π = 3.1416具有五位有效数字的近似数。
*
若x * 准确到小数点后第n位,
x* = ± a1a2 L am .b1b2 L bn (a1 ≠ 0), 则
| e( x*) |≤ 0.5 ×10 ,
* * 1 2 r * 1 * * 1 2 r * 2 2 * 2 * 2 * 1 * 1 * 2 2 * 2
两个数相乘,积的误差等于第一个数乘 以第二个数的相对误差加上第二个数乘 以第一个数的相对误差。(误差什么情 况下会严重扩大?) 两个数相除,商的误差等于分母乘以分 子的误差减去分子乘以分母的误差,然 后除以分母的平方。(误差什么情况下 会严重扩大?)
数值分析--绪论
有效数字
定义:设数 a 是数 x 的近似值,如果 定义: 的近似值, (1)a 的绝对误差限是它的某一位的半个单位, ) 的绝对误差限是它的某一位的半个单位, a (2)从该位到它的第一位非零数字共有 位。 )从该位到它的第一位非零数字共有n 位有效数字。 则称用 a 近似 x 时有 n 位有效数字。 注:凡是由四舍五入得来的近似值,从最末位到第一位非零数字都是 凡是由四舍五入得来的近似值, 有效数字。 有效数字。
算法 算法——规定了怎样从输入数据计算出数值问 规定了怎样从输入数据计算出数值问 题解的一个有限的基本运算序列 衡量算法优劣的标准: 衡量算法优劣的标准:
1 可靠的理论基础,正确性,收敛性,数值稳定性以 可靠的理论基础,正确性,收敛性, 及可作误差分析。 及可作误差分析。 2.良好的计算复杂性,包括时间复杂性,空间复杂性 良好的计算复杂性,包括时间复杂性, 良好的计算复杂性
17
§1.3 向量范数与矩阵范数 1.3.1 向量范数 定义:Rn空间的实值函数 || || ,对任意 x, y ∈ Rn满足下列条件 对任意
(1)非负性 非负性
|| x || ≥ 0; || x || = 0 x = 0 (2)齐次性 || k x || =| k | || x || 对任意 k∈R 齐次性
13
设计算法时遵循的原则
1.减少运算次数. 1.减少运算次数. 减少运算次数
例 计算多项式的值
Pn ( x ) = a0 + a1 x + a2 x 2 + L + an x n .
乘法计算次数 1+2+…+n
算法一 算法一:
s0 = a0 sk = ak x k , k = 1, 2,L , n P ( x) = s + s + L + s 0 1 n n
第1章 绪论
则存在常数c1 , c2 0, 使得对一切x R n有 c1 x s x t c2 x s .
k k
k k k 定理3 lim x x lim x x 0, 其中 为任意一种向量范数.
定义6:设x Rn ,A Rnn , 给出一种向量范数 x v (v 1, 2或),
解: 由定义得到 0.048746, 0.0020300, 8.0000, 2.7183
有效数字与相对误差限的关系
设近似数x* 10m a1 a2 101 al 10l 1 , 其中a1 0, m N .若x * 有n位有效数字,则相对误差限 1 r* 10 n 1. 2a1 1 若x * 的相对误差限 10 n 1 , 则x * 至少有n位有效数字. 2a1
东北林业大学理学院 10
4.简化计算步骤,减少运算次数
例6.利用ln(1 x) (1)n1
n 1
xn 计算 ln 2, 要求精确到105。 n
解:如果直接计算,这需要10万项求和,才能达到精度要求,
不仅计算量大,而且舍入误差的积累也十分严重,如果 改用级数: 1 x x3 x5 x 2 n 1 ln 2( x ) 1 x 3! 5! (2n 1)! 1 取x ,只需计算前9项,截断误差便小于1010。 3
利用计算机求解实际问题的主要步骤:
东北林业大学理学院
3
1.2 数值计算的误差
基本问题:对数学问题进行数值求解,求得的结果一般
都包含有误差,即数值计算绝大多数情况是近似计算,因 此,误差分析和估计是数值计算过程中的重要内容。
误差的来源:
东北林业大学理学院
4
1数值分析_Ch1绪论(1)讲述
有效数字的位数 n = 近似数科学记数法的幂指 数-绝对误差限科学记数法的幂指数.
当差为负整数时,表示没有效数字! 把误差限表
示为0.5×10mn, 当指数 m n 是最小的整数时,
有效数字的位数精确地是 n.
例3 下列近似值的绝对误差限都是0.005,
e x x 其中 x 为精确值,x* 为 x 的近似值。|e|的上界
记为e , 称为绝对误差限 (accuracy),工程上常记为
x = x* ± e .
例如: 1 ex2 dx 0.743 0.006 0
注:理论上讲,e 是唯一确定的, 可能取正, 也可能取负.
e > 0 不唯一,当然 e 越小越具有参考价值。
§1.2 误差知识与算法知识
1.2.1 误差的来源与分类
在工程技术的计算中,估计计算结 果的精确度是十分重要的工作,而影响 精确度的是各种各样的误差。误差的来 源是复杂的,但主要有以下四种:
➢ 从实际问题中抽象出数学模型
—— 模型误差 ( Modeling Error )
➢ 通过测量得到模型中参数的值
例:近似计算 1 ex2 dx = 0.747… … 0
解法之01一e大:x2 d家将x 一1e1/起x0e12(作1猜13T?axy212l!or01展215xe4!开x312后!dx3!6x再71积x4!48分1!119
)
dx
取
1
e
x
2
dx
0
S4
,
S4
R4 ( Remainder )
x * f (x*) f (x*)
er (x)
| er (x) |
数值分析第一章 绪论
1 (e1 1 ) 0.0684 2 10 10
,递推可得:
I9 0.0684 I7 0.1121 I5 0.1455 I3 0.2073 I1 0.3679
I8 0.1035 I6 0.1268 I4 0.1709 I2 0.2642 I0 0.6321
可见,I0已精确到小数点后四位。
y
er (x)
y x y
er ( y)
可见,当x与y很接近时,z的相对误差有可能很大。
在数值计算中,如果遇到两个相近的数相减运算,可
考虑改变一下算法以避免两数相减。例如:
当x1
x2时,有 log
x1
log
x2
log
x1 x2
当x 0时,有1cosx 2sin 2 x 2
当x 1时,有
ln
2
1
1 2
1 3
1 41 5ln2
1
1 2
1 3
1 4
1 5
这里产生误差(记作R5)
R5
1 6
1 7
1 8
1 9
1 10
...
4.舍入误差 由于计算机只能对有限位数进行运算,
在运算中象 e、
2
、1 等都要按舍入原则保留有限位,这 3
时产生的误差称为舍入误差或计算误差。
e x
x* x
x
r =/|x|称为近似值x的相对误差限。|er|≤r.
例1 设x=1.24是由精确值x*经过四舍五入得到的近似 值,求x的绝对误差限和相对误差限。
第1章数值分析-绪论
实际运算 Er (a) (x a) / a
r / a
例5 a=3.14是π的近似值。
E(a) 3.14 0.002
Er
(a)
0.002
0.002 3.14
6.36942104
三、有效数字 例如 3.14159265...
取3位,a=3.14,δ≤0.002 取5位,a=3.1416,δ≤0.000008
a 10m 0.a1a2...an
a1是1到9中的一个整数, a2,…,an为0到9中的任
意整数。m为整数,
且
E(a) x a 1 10mn 2
成立,
ห้องสมุดไป่ตู้
则称a近似 x 有n位有效数字。
【注】 近似数的有效数字不但给出了近似值的大小, 而且还指出了它的绝对误差限。
数值分析——绪论
例6 设 x 0.002567, a 0.00256 102 0.256 则 x a 0.00005 1 104
2
因为m=-2,所以n=2, 即a有2位有效数字。
若 a 0.00257 102 0.257
则
x a 0.000003 0.000005 1 105 2
因为m=-2,所以n=3, 即a有3位有效数字。
例7 设x =8.00001,则a=8.0000具有5位有效数字。
例如,用毫米刻度的米尺测量一长度 x , 读出和该长度接近的刻度 a, a 是 x
的近似值,它的误差限是0.5mm.如读出的长度 是765mm,则
x 765 0.5 764.5 x 765.5
数值分析——绪论
对于一般情形 x a 即
a x a ,有时记为 x=a
例4 绝对误差的局限性例子。
数值分析原理课件第一章
第一章 绪 论本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题.§1.1 引 言计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。
由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括(1)非线性方程的近似求解方法;(2)线性代数方程组的求解方法;(3)函数的插值近似和数据的拟合近似;(4)积分和微分的近似计算方法;(5)常微分方程初值问题的数值解法;(6)优化问题的近似解法;等等从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关.计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差.我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断,从而产生截断误差. 如的计算是无穷过程,当用作为的 +++=!21!111e !1!21!111n e n ++++= e 近似时,则需要进行有限过程的计算,但产生了截断误差.e e n - 当用计算机计算时,因为舍入误差的存在,我们也只能得到的近似值,也就是n e n e *e 说最终用近似,该近似值既包含有舍入误差,也包含有截断误差.*e e 当参与计算的原始数据是从仪器中观测得来时,也不可避免得有观测误差.由于这些误差的大量存在,我们得到的只能是近似结果,进而对这些结果的“可靠性”进行分析就是必须的,它成为计算方法的第二个显著特点. 可靠性分析包括原问题的适定性和算法的收敛性、稳定性.所谓适定性问题是指解存在、惟一,且解对原始数据具有连续依赖性的问题. 对于非适定问题的求解,通常需要作特殊的预处理,然后才能做数值计算. 在这里,如无特殊说明,都是对适定的问题进行求解.对于给定的算法,若有限步内得不到精确解,则需研究其收敛性. 收敛性是研究当允许计算时间越来越长时,是否能够得到越来越可靠的结果,也就是研究截断误差是否能够趋于零.对于给定的算法,稳定性分析是指随着计算过程的逐步向前推进,研究观测误差、舍入对于同一类模型问题的求解算法可能不止一种,常希望从中选出高效可靠的求解算法. 如我国南宋时期著名的数学家秦九韶就提出求n 次多项式值0111a x a x a x a n n nn ++++-- 的如下快速算法;n a s =; k n a t -=t sx s +=),,2,1(n k =它通过n 次乘法和n 次加法就计算出了任意n 次多项式的值. 再如幂函数可以通过如下64x 快速算法计算出其值;x s =;循环6次s s s ⋅=如上算法仅用了6次乘法运算,就得到运算结果.算法最终需要在计算机上运行相应程序,才能得到结果,这样就要关注算法的时间复杂度(计算机运行程序所需时间的度量)、空间复杂度(程序、数据对存储空间需求的度量)和逻辑复杂度(关联程序的开发周期、可维护性以及可扩展性). 事实上,每一种算法都有自己的局限性和优点,仅仅理论分析是很不够的,大量的实际计算也非常重要,结合理论分析以及相当的数值算例结果才有可能选择出适合自己关心问题的有效求解算法. 也正因如此,只有理论分析结合实际计算才能真正把握准算法.§1.2 误差的度量与传播一、误差的度量误差的度量方式有绝对误差、相对误差和有效数字.定义1.1 用作为量的近似,则称为近似值的绝对误差.*x x )(:**x e x x =-*x 由于量x 的真值通常未知,所以绝对误差不能依据定义求得,但根据测量工具或计算情况,可以估计出绝对误差绝对值的一个较小上界,即有ε (1.1)ε≤-=x x x e **)(称正数为近似值的绝对误差限,简称误差. 这样得到不等式ε*x εε+≤≤-**x x x 工程中常用ε±=*x x 表示近似值的精度或真值x 所在的范围.*x 误差是有量纲的,所以仅误差数值的大小不足以刻划近似的准确程度. 如量 (1.2)m m cm s μ50001230000005.023.15.0123±=±=±=为此,我们需要引入相对误差定义1.2 用作为量的近似,称为近似值的相对误差. 当0*≠x x )(:**x e xxx r =-*x 是x 的较好近似时,也可以用如下公式计算相对误差*x (1.3)***)(xx x x e r -= 显然,相对误差是一个无量纲量,它不随使用单位变化. 如式(1.2)中的量s 的近似,无论使用何种单位,它的相对误差都是同一个值.同样地,因为量x 的真值未知,我们需要引入近似值的相对误差限,它是相*x )(*x r ε对误差绝对值的较小上界. 结合式(1.1)和(1.3),相对误差限可通过绝对误差限除以近似*x 值的绝对值得到,即(1.4)***)()(xx x r εε=为给出近似数的一种表示法,使之既能表示其大小,又能体现其精确程度,需引入有效数字以及有效数的概念.定义1.3 设量的近似值有如下标准形式x *x p n ma a a a x 21*.010⨯±= (1.5)()pm p n m n m m a a a a ----⨯++⨯++⨯+⨯±101010102211 =其中且,m 为近似值的量级. 如果使不等式}9,,1,0{}{1 ⊂=pi i a 01≠a (1.6)n m x x -⨯≤-1021*成立的最大整数为n ,则称近似值具有n 位有效数字,它们分别是、、… 和 . *x 1a 2a n a 特别地,如果有,即最后一位数字也是有效数字,则称是有效数.p n =*x 从定义可以看出,近似数是有效数的充分必要条件是末位数字所在位置的单位一半是绝对误差限. 利用该定义也可以证明,对真值进行“四舍五入”得到的是有效数. 对于有效数,有效数字的位数等于从第一位非零数字开始算起,该近似数具有的位数. 注意,不能给有效数的末位之后随意添加零,否则就改变了它的精度.例1.1 设量,其近似值,,. 试回答这三个近π=x 141.3*1=x 142.3*2=x 722*3=x 似值分别有几位有效数字,它们是有效数吗?解 这三个近似值的量级,因为有1=m 312*110211021005.000059.0--⨯=⨯=≤=- x x 413*2102110210005.00004.0--⨯=⨯=≤=- x x571428571428.3*3=x 312*310211021005.0001.0--⨯=⨯=≤=- x x 所以和都有3位有效数字,但不是有效数. 具有4位有效数字,是有效数.*1x *3x *2x 二、误差的传播这里仅介绍初值误差传播,即假设自变量带有误差,函数值的计算不引入新的误差. 对于函数有近似值,利用在点处),,,(21n x x x f y =),,,(**2*1*n x x x f y =),,,(**2*1n x x x 的泰勒公式(Taylor Formula),可以得到 )(),,,()(*1**2*1**i i ni n i x x x x xf y y y e -≈-=∑=(1.7))(),,,(*1**2*1i ni n i x e x x xf ∑== 其中,是的近似值,是的绝对误差. 式(1.7)表明函ii x f f ∂∂=:*i x i x )(*i x e *i x ),,2,1(n i =数值的绝对误差近似等于自变量绝对误差的线性组合,组合系数为相应的偏导数值. 从式(1.7)也可以推得如下函数值的相对误差传播近似计算公式 (1.8))(),,,()(***1**2*1*i r i ni ni r x e yx x x x f y e ∑=≈对于一元函数,从式(1.7)和(1.8)可得到如下初值误差传播近似计算公式)(x f y = (1.9))()()(***x e x f y e '≈ (1.10))()()(*****x e yx x f y e r r '≈式(1.9)表明,当导数值的绝对值很大时,即使自变量的绝对误差比较小,函数值的绝对误差也可能很大.例1.2 试建立函数的绝对误差(限)、相对误差n n x x x x x x f y +++== 2121),,,(的近似传播公式,以及时的相对误差限传播公式.{}ni i x 1*0=> 解 由公式(1.7)和(1.8)可分别推得和的绝对误差、相对误差传播公式如下(1.11)∑∑==≈ni i ini nix e x e x x xf y e 1**1**2*1*)()(),,,()(= (1.12)∑∑==≈ni i r i i r i ni ni r x e yx x e y x x x x f y e 1******1**2*1*)()(),,,()(= 进而有∑∑∑===≤≤≈ni i n i ini ix x e xe y e 1*1*1**)()()()(ε于是有和的绝对误差限近似传播公式 ∑=≈ni ixy 1**)()(εε当时,由式(1.3)推得相对误差限的近似传播公式{}ni i x 1*=>)(max )(max )(max )()()(*11***11***11****1**i r ni ni i ir n i ni i i r n i ni i r i ni ir x yx x yx x x y x yxy εεεεεε≤≤=≤≤=≤≤====≤=≈∑∑∑∑ 例1.3使用足够长且最小刻度为1mm 的尺子,量得某桌面长的近似值3.1304*=a mm ,宽的近似值mm (数据的最后一位均为估计值). 试求桌子面积近似值的绝8.704*=b 对误差限和相对误差限.解 长和宽的近似值的最后一位都是估计位,尺子的最小刻度是毫米,故有误差限 mm ,mm 5.0)(*=a ε5.0)(*=b ε面积,由式(1.7)得到近似值的绝对误差近似为ab S =***b a S = )()()(*****b e a a e b S e +≈进而有绝对误差限 mm 255.10045.03.13045.08.704)()()(*****=⨯+⨯=+≈b a a b S εεε相对误差限 %11.00011.08.7043.130455.1004)()(***=≈⨯=≈S S S r εε§1.3 数值实验与算法性能比较本节通过几个简单算例说明解决同一个问题可以有不同的算法,但算法的性能并不完全相同,他们各自有自己的适用范围,并进而指出算法设计时应该注意的事项. 算例1.1 表达式,在计算过程中保留7位有效数字,研究对不同)1(1111+=+-x x x x 的x ,两种计算公式的计算精度的差异.说明1:Matlab 软件采用IEEE 规定的双精度浮点系统,即64位浮点系统,其中尾数占52位,阶码占10位,尾数以及阶码的符号各占1位. 机器数的相对误差限(机器精度)eps=2-52≈2.220446×10-16,能够表示的数的绝对值在区间(2.2250739×10-308,1.797693×10308)内,该区间内的数能够近似表达,但有舍入误差,能够保留至少15位有效数字. 其原理可参阅参考文献[2, 4].分析算法1: 和算法2: 的误差时,精确解用双精111)(1+-=x x x y )1(1)(2+=x x x y 度的计算结果代替. 我们选取点集中的点作为x ,比较两种方法误差的差异.301}{=i i π 从图1.1可以看出,当x 不是很大时,两种算法的精度相当,但当x 很大时算法2的精度明显高于算法1. 这是因为,当x 很大时,和是相近数,用算法1进行计算时出x 111+x 现相近数相减,相同的有效数字相减后变成零,于是有效数字位数急剧减少,自然相对误差增大. 这一事实也可以从误差传播公式(1.12)分析出. 鉴于此,算法设计时,应该避免相近数相减.在图1.2中我们给出了当x 接近时,两种算法的精度比较,其中变量x 依次取为1-. 从图中可以看出两种方法的相对误差基本上都为,因而二者的精度相当.{}3011=--i iπ710-图1.1 算例1.1中两种算法的相对误差图()+∞→x图1.2 算例1.1中两种算法的精度比较)1(-→x 算例1.2 试用不同位数的浮点数系统求解如下线性方程组⎩⎨⎧=+=+2321200001.02121x x x x 说明2:浮点数系统中的加减法在运算时,首先按较大的阶对齐,其次对尾数实施相应的加减法运算,最后规范化存入计算机.算法1 首先用第一个方程乘以适当的系数加至第二个方程,使得第二个方程的的系1x 数为零,这时可解出;其次将带入第一个方程,进而求得(在第三章中称该方法为高2x 2x 1x 斯消元法). 当用4位和7位尾数的浮点运算实现该算法,分别记之为算法1a 和算法1b . 算法 2 首先交换两个方程的位置,其次按算法1计算未知数 (第三章中称其为选主元的高斯消元法). 当用4位和7位尾数的浮点运算实现该算法,分别记之为算法2a 和算法2b .方程组的精确解为, ,用不同的算法计算出的...25000187.01=x ...49999874.02=x 结果见表1.1.表1.1 对算例1.2用不同算法的计算结果比较算例1.2*1x )(*1x r ε*2x )(*2x r ε算法1a 0.00000.10×1010.50000.25×10-7算法2a 0.25000.75×10-70.50000.25×10-7算法1b 0.26000000.40×10-10.49999870.10×10-6算法2b0.25000200.50×10-80.50000000.25×10-7对于算例1.2,表中的数据表明,当用4位尾数计算时,算法1给出错误的结果,算法2则给出解很好的近似. 这是因为在实现算法1时,需要给第一个方程乘以加00001.0/2-至第二个方程,从而削去第二个方程中的系数,但在计算的系数时需做如下运算1x 2x(1.13)661610000003.0104.0103.0104.03200001.02⨯⨯⨯⨯=+⨯+=-+--对上式用4位尾数进行计算,其结果为. 因为舍入误差,给相对较大的数加以6104.0⨯-相对较小的数时,出现大数“吃掉”小数的现象. 计算右端项时,需做如下运算(1.14)661610000002.0102.0102.0102.02100001.02⨯⨯⨯⨯=+⨯+=-+--同样出现了大数吃小数现象,其结果为. 这样,得到的变形方程组6102.0⨯-⎩⎨⎧⨯-=⨯-⨯=⨯+⨯62612114102.0104.0101.0102.0101.0x x x 中没有原方程组中第二个方程的信息,因而其解远偏离于原方程组的解. 该算法中之所以出现较大数的原因是因为运算,因而算法设计中尽可能避免用绝对值较大的数00001.0/2-除以绝对值较小的数. 其实当分子的量级远远大于分母的量级时,除法运算还会导致溢出,计算机终止运行.虽从单纯的一步计算来看,大数吃掉小数,只是精度有所损失,但多次的大数吃小数,累计起来可能带来巨大的误差,甚至导致错误. 例如在算法1a 中出现了两次大数吃小数现象,带来严重的后果. 因而尽可能避免大数吃小数的出现在算法设计中也是非常必要的. 当用较多的尾数位数进行计算,舍入误差减小,算法1和2的结果都有所改善,算法1的改进幅度更大些.算例1.3 计算积分有递推公式,已知⎰+=1055dx x x I n ),2,1(511 =-=-n I nI n n . 采用IEEE 双精度浮点数,分别用如下两种算法计算的近似值.56ln 0=I 30I算法1 取的近似值为,按递推公式计算0I 6793950.18232155*0=I *1*51--=n n I nI *30I 算法2 因为,取的近似值为)139(5156)139(611039103939+⨯=<<=+⨯⎰⎰dx x I dx x 39I ,按递推公式计算3333330.004583332001240121*39≈⎪⎭⎫ ⎝⎛+=I ⎪⎭⎫ ⎝⎛-=-**1151n n I n I *30I 算法1和算法2 的计算结果见表1.2. 误差绝对值的对数图见图1.3.表1.2 算例1.3的计算结果算法1算法2n *nI n n I I -*n *nI nn I I -*18.8392e-002 1.9429e-01639 4.5833e-0033.9959e-0042 5.8039e-0029.8532e-016384.2115e-0037.9919e-0053 4.3139e-002 4.9197e-01537 4.4209e-003 1.5984e-0054 3.4306e-002 2.4605e-01436 4.5212e-003 3.1967e-0065 2.8468e-002 1.2304e-01335 4.6513e-003 6.3935e-0076 2.4325e-002 6.1520e-01334 4.7840e-003 1.2787e-007………33 4.9255e-003 2.5574e-00825 1.1740e+001 1.1734e+00132 5.0755e-003 5.1148e-00926-5.8664e+001 5.8670e+00131 5.2349e-003 1.0230e-00927 2.9336e+002 2.9335e+002 305.4046e-003 2.0459e-01028-1.4667e+003 1.4668e+003 297.3338e+0037.3338e+003 30-3.6669e+004 3.6669e+004图1.3 算例1.3用不同算法计算结果的误差绝对值的对数图从表1.2中的计算结果可以看出,算法1随着计算过程的推进,绝对误差几乎不断地以5的倍数增长,即有0*02*221*1*555I I I I I I I I n n n n n n n -≈≈-≈-≈----- 成立. 对于逐步向前推进的算法,若随着过程的进行,相对误差在不断增长,导致产生不可靠的结果,这种算法称之为数值不稳定的算法. 对于算法1绝对误差按5的幂次增长,但真值的绝对值却在不断变小且小于1,相对误差增长的速度快于5的幂次,导致产生错误的结果,因而算法1数值不稳定,不能使用. 而算法2随着计算过程的推进,绝对误差几乎不断地缩小为上一步的1/5,即有m m n m n n n n n n n I I I I I I I I 5/5/5/*22*21*1*++++++-≈≈-≈-≈- 成立. 绝对误差不断变小,真值的绝对值随着过程向前推进却在变大,这样相对误差也越来越小,这样的方法称之为数值稳定的算法. 算法1和算法2的误差对数示意图见图1.3. 这个算例告诉我们应该选用数值稳定的算法.知识结构图⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧算法设计要点数值方法的稳定性数值方法的收敛性算法多元函数一元函数传播有效数字相对误差(限)绝对误差(限)度量截断误差舍入误差误差的产生误差误差与算法习题一1 已知有效数,,. 试给出各个近似值的绝对误105.3*1-=x 4*210125.0⨯=x 010.0*3=x 差限和相对误差限,并指出它们各有几位有效数字.2 证明当近似值是x 的较好近似时,计算相对误差的计算公式和相差一个*x x x x -***xxx -和同阶的无穷小量.2*⎪⎪⎭⎫⎝⎛-x x x 3 设x 的近似值具有如式(1.5)的表示形式,试证明*x 1)若具有n 位有效数字,则相对误差;*x n r a x e -⨯≤11*1021)(2)若相对误差,则至少具有n 位有效数字.n r a x e -⨯+≤11*10)1(21)(*x 4 试建立二元算术运算的绝对误差限传播近似计算公式.5 试建立如下表达式的相对误差限近似传播公式,并针对第1题中数据,求下列各近似值的相对误差限.1) ; 2) ; 3) *3*2*1*1x x x y +=3*2*2x y =*3*2*3/x x y =6若例题1.3中使用的尺子长度是80mm ,最小刻度为1mm ,量得某桌面长的近似值mm ,宽的近似值mm . 试估计桌子长度、宽度的绝对误差限,并3.1304*=a 8.704*=b 求用该近似数据计算出的桌子面积的绝对误差限和相对误差限.7 改变如下计算公式,使其计算结果更为精确.1) 且0,cos 1≠-x xx1<<x 2)1,1ln )1ln()1(ln 1>>--++=⎰+N N N N N xdx N N3) 1,133>>-+x x x 8 (数值试验)试通过分析和数值试验两种手段,比较如下三种计算近似值算法的可靠性.1-e 算法1 ;∑=--≈mn nn e 01!)1( 算法2 ;101!1-=-⎪⎭⎫ ⎝⎛≈∑m n n e算法3 ;101)!(1-=-⎪⎪⎭⎫ ⎝⎛-≈∑m n n m e9 (数值试验)设某应用问题归结为如下递推计算公式 ,,72.280=y 251-=-n n y y,2,1=n 在计算时取为具有5位有效数字的有效数. 试分析近似计算公式的2*c **1*5c y y n n -=-绝对误差传播以及相对误差传播情况,并通过数值实验验证 (准确值可以用IEEE 双精度浮点运算结果代替),该算法可靠可用吗?。
数值分析第1章绪论
THANKS
感谢您的观看
算法创新
在数值分析中,创新算法的提出是推 动学科发展的重要动力。新的算法可 以解决传统算法难以处理的问题,提 高计算效率和精度。
Part
05
Байду номын сангаас
数值分析的展望与启示
数值分析与其他学科的交叉研究
数值分析与物理学的交叉
数值分析在解决物理问题中扮演着重要角色,如流体动力学、电磁学和量子力学等领域。 通过数值模拟和计算,可以更深入地理解物理现象和预测新现象。
Part
04
数值分析的挑战与未来发展
数值稳定性的挑战
数值稳定性问题
在数值分析中,算法的数值稳定性是一个重要的问题。不稳定的算法可能会导致计算结果的误差累积,从而影响 结果的精度。
解决方法
为了提高数值稳定性,可以采用多种方法,如改进算法、增加迭代次数、使用稳定的数据类型等。
高性能计算的需求
高性能计算的重要性
或最小化线性目标函数问 题,如单纯形法等。
微分法
数值微分
利用已知函数值估计函数在某点 的导数值。
偏微分方程数值解
通过有限差分法、有限元法等求 解偏微分方程的数值解。
数值积分
利用已知函数值计算函数在某个 区间的积分值。
常微分方程数值解
通过离散化方法求解常微分方程 的数值解,如欧拉法、龙格-库塔 法等。
逼近法
最佳平方逼近
利用已知的离散数据点构造一个多项式,使得该 多项式在最小二乘意义下逼近目标函数。
傅里叶逼近
利用傅里叶级数的性质进行逼近,适用于周期函 数的逼近。
ABCD
切比雪夫逼近
利用切比雪夫多项式的性质进行逼近,具有最佳 逼近和一致逼近的特点。
数值分析 第1章
3.计算复杂性尽可能小 从实际需要出发,我们还需要考虑计算量的大小, 即所谓计算复杂性问题。它由以下两个因素决定的: 使用中央处理器 CPU)的时间,主要由四则运算 使用中央处理器( 的时间 主要由四则运算 的次数决定; 占用内存储器的空间,主要由使用的数据量来决 定。
4.要有数值化结果 数值计算的许多方法是建立在离散化的基础上进 行的, 其解决问题的最终结果不是解析解而是数值近似 解。对于给定的数学模型,采用不同的离散手段可以导 致不同的数值方法,应该通过计算机进行数值试验,进 行分析、比较来选定算法。 对新提出的算法,有的在理论上虽然还未证明其 收敛性,但可以从具体试验中发现其规律,为理论证明 提供线索。
x2 =
−b − b 2 − 4ac 2c = 2a −b + b 2 − 4ac
9
来严重影响 应尽量避免 来严重影响,应尽量避免。 例3
,
在 4 位浮点十进制数下,用消去法解线性方程
⎧0.00003 x1 − 3 x 2 = 0.6 ⎨ x1 + 2 x 2 = 1 . ⎩
组
2 ×10 =1 . 109 + 109
§1.1
预备知识
一、集合
把一些确定的彼此不相同的事物汇集在一起成为一 个整体,称为集合。 表示方法:描述法;列举法。 分类:有限集;无限集(可列集,不可列集) 。
9
10
可列集(可数集) : 设 A 是无限集,若 A 中的一切元素可以用自然数 编号(即 A 与自然数集 N 一一对应) ,使 A 写成 A={ A { a1 , a2 , a3 ,L an ,L },则称 A 为可列集 (或可数集) 。 否则,称为不可列集。 如:有理数集是可列集,数列构成的集合是可列 集;无理数集、[0,1]中的全体实数构成的集合是不 可列集。
数值分析-1绪论
数值分析刘立新西安电子科技大学推荐教材及参考资料•李庆扬,王能超,易大义编,《数值分析》(第四版武汉华中科技大学出版社年四版),武汉:华中科技大学出版社,2006•沈剑华主编,《数值计算基础》(第二版),同济大学出版社,2004年济大学出版社其值教材•其他数值分析教材2课程要求先修课程和后续课程:修先修课程:高等数学,线性代数,计算机语言等。
后继课程:数值代数,数值逼近,最优化方法等。
课程评分方法:•平时成绩(20%)考•考试(80%)3建立各种数学问题的数值计算算法的方法和理论通俗地本课程的任务•建立各种数学问题的数值计算算法的方法和理论。
通俗地讲,就是为各种实际问题提供有效的数值近似解方法。
提供在的理论的计算•计算机上实际可行的、理论可靠的、计算复杂性好的各种常用算法。
学习的目的、要求•会套用、修改、创建公式•编制程序完成计算4课程内容•第一章绪论第章•第二章插值与逼近•第四章数值积分与数值微分•第五章常微分方程数值解法•第六章方程求根•第七章线性方程组的解法51第1 章绪论6本章内容111.1 光波的特性1.1 数值分析的对象与特点1.2 光波在介质界面上的反射和折射1.2 误差来源与误差分析的重要性1.3 误差的基本概念1.3 光波在金属表面上的反射和折射1.4数值运算中误差分析的方法与原则7本章要求•主要内容:算法的基本概念,误差的基本概念。
主容•基本要求–(1) 了解数值计算的研究对象与基本特点以及科学计算的重要性;的要性;–(2) 理解绝对误差、相对误差和有效数字的概念;(3)了解数值计算中应注意的些问题。
–了解数值计算中应注意的一些问题•重点、难点–重点:数值计算方法的含义;重点数值计算方法的含义–难点:误差的理解。
81.1 数值分析的对象与特点11什么是数值分析?什么是数值分析•“数值分析”就是研究在计算机上解决数学问题的数值方法及其理论;数值算构计算公式算步•数值算法的构造:计算公式和算法步骤;算法的理论分析误差分析、收敛性、稳定性等•算法的理论分析:误差分析、收敛性、稳定性等。
数值分析(李庆杨第四版)Cht1 绪论
一、病态问题与条件数
考虑计算函数值问题,
f (x*) f (x) f (x)
x x
xf ( x) f (x)
Cp,
C p称为计算函数值问题的条件数. 例如f (x) x10,C p 10, f (1) 1, f (1.02) 1.24,自变量相对 误差为2%,函数值相对误差为24%.
1、面向计算机
x x2 x3 , 23
ln1 x 1 x
1 (x x3 ), 23
2、可靠的理论分析,保证收敛性、稳定性
3、良好的计算复杂性
4、数值实验
四、如何学好数值分析
1、注意掌握基本原理、处理技巧,误差分析 2、注重实际问题,练习、作业 3、积极动手上机实践
§2 数值计算的误差
一、误差来源、分类
一般Cp 10认为是病态. 其他计算问题也要考虑条件数, 考虑是否病态.
二、算法的数值稳定性
考虑初始数据误差在计算中的传播问题.
例5 计算In e101 xnexdx, n 0,1,, 并估计误差.
In 1 nIn1, n 1,2,, I0 1 e1.
( A)II0n
0.6321, 1 nIn1,
(2.2)
2
例1 42.195, 0.0375551, 8.00033, 2.71828,按四舍五
入写出上述各数具有四位有效数字的近似数.
例2 考察三位有效数字重力加速度g,
若以m/s2为单位, g≈9.80m/s2,
按(2.1),m
g 9.80 0, n
3.
1 102, 2
绝对误差限1*
(x1* x2* ) (x1*) (x2* ),
(x1*x2* ) | x1* | (x2* ) | x2* | (x1*),
数值分析--第1章绪论
第一章绪论上世纪中叶诞生的计算机给科学、工程技术和人类的社会生活带来一场新的革命。
它使科学计算平行于理论分析和实验研究,成为人类探索未知科学领域和进行大型工程设计的第三种方法和手段。
在独创性工作的先行性研究中,科学计算更有突出的作用。
在今天,熟练地运用电子计算机进行科学计算,已成为科学工作者的一项基本技能。
然而,科学计算并不是计算机本身的自然产物,而是数学与计算机结合的结果,它的核心内容是以现代化的计算机及数学软件为工具,以数学模型为基础进行模拟研究。
近年来,它同时也成为数学科学本身发展的源泉和途径之一。
1 数值分析的研究对象与特点数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。
一般地说,用计算机解决科学计算问题,首先需要针对实际问题提炼出相应的数学模型,然后为解决数学模型设计出数值计算方法,经过程序设计之后上机计算,求出数值结果,再由实验来检验。
概括为由实际问题的提出到上机求得问题的解答的整个过程都可看作是应用数学的任务。
如果细分的话,由实际问题应用有关科学知识和数学理论建立数学模型这一过程,通常作为应用数学的任务,而根据数学模型提出求解的数值计算方法直到编出程序上机计算出结果,这一过程则是计算数学的任务,即数值分析研究的对象。
因此,数值分析是寻求数学问题近似解的方法、过程及其理论的一个数学分支。
它以纯数学作为基础,但却不完全像纯数学那样只研究数学本身的理论,而是着重研究数学问题求解的数值方法及与此有关的理论,包括方法的收敛性,稳定性及误差分析;还要根据计算机的特点研究计算时间最省(或计算费用最省)的计算方法。
有的方法在理论上虽然还不够完善与严密,但通过对比分析,实际计算和实践检验等手段,被证明是行之有效的方法也可采用。
因此数值分析既有纯数学高度抽象性与严密科学性的特点,又有应用的广泛性与实际试验的高度技术性的特点,是一门与使用计算机密切结合的实用性很强的数学课程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用算法
In 1
1 In n
则算法为稳定的。
In 1 nIn1
精确值
I n1
1 In n
0
0.6321
0.63212…
0.6321
1
0.3679
0.36787…
0.3679
2
0.2642
0.26424…
0.2642
3
0.2074
0.20727…
0.2073
4
0.1704
0.17089…
0.1709
17
5. 注意简化计算步骤,减少运算次数。
例如:计算多项式 Pn (x) an xn an1xn1 a0 的值。
若直接计算,共需乘法
1 2
n(n
1)
次,加法
n
次才能得到
Pn (x)
的值;若采用秦九韶算法:
Pn ( x) x( x ( x( xan an1) an2 ) ) a0
Sn an
In
e1
1 xnex dx ,n
0
0,1, 2,,9
。
解:直接积分可得到
I 0
e1
1 e xdx
0
1 e1
0.6321 : I0
In 1 nIn1 精确值
0
0.6321
0.63212…
1
0.3679
0.36787…
2
利用分部积分可得到递推式 ,
3
In 1 nIn1,
4
5
In 1 nIn 1
对阶时 0.0001 0.000000001105 ,计算机表示为0,计算 结果为 0.12345 105 ,结果不可靠。
10000
改变算法:先计算 i =1 ,再与第一项相加得到12346。 i 1
16
4. 绝对值较小的数不宜做分母。 用绝对值很小的数做除数,会使误差增大;还有可能因计
算溢出而停机。
5
0.1480
0.14553…
0.1455
6
0.1120
0.12680…
0.1268
7
0.2180
0.11238…
0.1125
8
-0.7280
0.10093…
0.1000
9
7.5520
0.09161…
0.1000
14
2. 避免两相近数相减。
例如:
x1 x2 时,变换
ln x1- ln x2
ln x1 x2
6
0.2642 0.2074 0.1704 0.1480 0.1120
0.26424… 0.20727… 0.17089… 0.14553… 0.12680…
7
0.2180
0.1123ห้องสมุดไป่ตู้…
8
-0.7280
0.10093…
9
7.5520
0.09161…
13
稳定的算法:
0
In
1 n 1
0,
取 I10 0,
3
误差的来源和基本概念
实际问题 理论数学模型 实际数学模型 数值计算方法 计算机求解
模型误差 由实际问题转化为数学模型时产生的误差。
观测误差 由观测产生的误差。
方法误差 利用数值方法得到的近似解与精确解的误差。
舍入误差 由于计算机在计算过程中只能进行有限位运 算,所以在计算过程中会不断按某种规则进 行舍入,这样会产生舍入误差。
例如: x 0 时,变换 1- cos x sin x sin x 1 cos x
例如:
x 1 时,变换
x1 dt x 1 t2
1 arctan 1 x x2
15
3. 防止大数吃掉小数。 例如:在八位十进制机上计算
10000
12345+ i , i 0.0001, i 1, 2, ,10000. i 1
4
1. 误差
误差的基本概念
设 x 为精确值, x*为 x 的一个近似。 绝对误差(或误差):即误差本身的大小,记作 e = x - x*。
绝对误差限(或误差限): |e| = |x - x* | ≤ ɛ,称 ɛ 为绝对误差限,记为 x = x* ± ɛ 。
相对误差:即绝对误差与真值之比,记作 er
x x* x
10
一般地,多元函数情形 A f (x1,, xn ) 设 x1,, xn 的近似值为 x1*,, xn* ,则 A 的近似值为
A* f (x1*,, xn* ),
误差限:
( A*)
n k 1
f xk
*
(xk* );
相对误差限:
* r
r
( A*)
( A*) A*
n k 1
f xk
*
二元函数情形 z f (x, y)
| z z* || f (x, y) f (x*, y*) || f x (x*, y* )(x x* ) f y (x*, y* )( y y* ) | | fx (x*, y*) | (x*) | f y ( x*, y* ) | ( y* )
故 (z*) | fx (x*, y* ) | (x* ) | f y (x*, y*) | ( y* )
数值分析
参考资料:
1.《数值分析》(第5版) 李庆扬、王能超、易大义编 清华大学出版社 2.《数值分析》(第3版) D. Kincaid, W. Cheney, 王国荣等译 机械工业出版社 3.《数值分析》(第2版) Timothy Sauer, 裴玉茹、马赓宇译 机械工业出版社
1
实际问题
第一章 绪论
若 x* 具有n 位有效数字,则其相对误差限为 r
1 10(n1) 21
;
若 x* 的相对误差限 r
1
10 ( n 1)
2(1 1)
,则 x* 至少具有n 位
有效数字。
8
例:要使 20 的近似值的相对误差限小于0.1%,要取几位有效 数字?
9
4. 函数的误差估计
一元函数情形 y f (x) | y y* || f (x) f (x* ) || f ' (x*)(x x* ) || f '(x*) | (x*) 故 ( y* ) | f ' (x* ) | (x* )
数学模型 (数学问题)
数值解法
计算机求解
解析解的性态
数值分析:主要研究用计算机求解数学问题的数值方法和理论。
2
数值代数:
非线性方程求解、线性方程组求解、特征值/向量问题 数 值 数值逼近:
分 多项式插值、曲线拟合与函数逼近、数值积分和数值微分 析
微分方程数值解:
常微分方程数值解、偏微分方程数值解
注:四舍五入的近似数,从其最后一位数字开始到前面第一位 非零数字为止的所有数字,均是有效数字。
7
3. 有效数字与误差限的关系
有效数的浮点表示:具有 n 位有效数字的近似数 x*可以写成标
准形式: x* 0.12 n 10m (1 0) 其绝对误差限: 1 10mn
2
定理:(有效数字和相对误差的关系)
。
由于精确值是不知道的,所以通常取 er 相对误差。
x x* x*
作为 x* 的
相对误差限:记作 r
|
x*
|
。
5
6
1
2. 有效数字 有效数字:若近似值 x* 的误差限是其某一位的半个单位,该位 到 x* 的左边第一个非零数字共有 n 位,则称 x* 具有 n 位有效 数字。
例:取 π=3.141592653…的近似值为3.14, 3.141, 3.142, 3.14159, 3.141592 分别有几位有效数字?
Sk
xSk 1
ak
Pn
(
x)
S0
(k n 1, n 2,,1,0)
则只需n 次乘法, n 次加法即可得到 Pn (x) 的值。
18
3
(xk* ). A*
11
例:已测得某场地长 l 的值为 l* 110m ,宽 d 的值为 d* 80m ,已知 l l * 0.2m, d d * 0.1m ,试求 面积 s ld 的绝对误差限与相对误差限.
2
,
。
数值计算的若干原则
1. 使用稳定的计算公式。
例如:在四位十进制机上计算