小学奥数:中国剩余定理
中国剩余定理(孙子定理)
中国剩余定理(孙子定理)问题:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。
问物几何?简单点说就是,存在一个数x,除以3余2,除以5余三,除以7余二,然后求这个数。
上面给出了解法。
再明白这个解法的原理之前,需要先知道一下两个定理。
定理1:几个数相加,如果存在一个加数,不能被整数a整除,那么它们的和,就不能被整数a整除。
定理2:两数不能整除,若除数扩大(或缩小)了几倍,而被除数不变,则其商和余数也同时扩大(或缩小)相同的倍数(余数必小于除数)。
以上两个定理随便个例子即可证明!现给出求解该问题的具体步骤:1、求出最小公倍数lcm=3*5*7=1052、求各个数所对应的基础数(1)105÷3=3535÷3=11......2 //基础数35(2)105÷5=2121÷5=4 (1)定理2把1扩大3倍得到3,那么被除数也扩大3倍,得到21*3=63//基础数633、105÷7=1515÷7=2 (1)定理2把1扩大2倍得到2,那么被除数也扩大2倍,得到15*2=30//基础数30把得到的基础数加和(注意:基础数不一定就是正数)35+63+30=1284、减去最小公倍数lcm(在比最小公倍数大的情况下)x=128-105=23那么满足题意得最小的数就是23了。
一共有四个步骤。
下面详细解释每一步的原因。
(1)最小公倍数就不解释了,跳过(记住,这里讨论的都是两两互质的情况)(2)观察求每个数对应的基础数时候的步骤,比如第一个。
105÷3=35。
显然这个35是除了当前这个数不能整除以外都能够被其他数整除,就是其他数的最小公倍数。
相当于找到了最小的起始值,用它去除以3发现正好余2。
那么这个基础数就是35。
记住35的特征,可以整除其他数但是不能被3整除,并且余数是2。
体现的还不够明显,再看下5对应的基础数。
21是其他数的最小公倍数,但是不能被5整除,用21除以5得到的余数是1,而要求的数除以5应该是余1的。
(小学奥数)5-5-6 中国剩余定理及余数性质拓展.学生版
1. 系统学习中国剩余定理和新中国剩余定理2. 掌握中国剩余定理的核心思想,并灵活运用 一、中国剩余定理——中国古代趣题(1)趣题一 中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。
”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。
韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。
刘邦茫然而不知其数。
我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。
孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。
中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。
(2)趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘.五树梅花廿一枝,是说除以5所得的余数用21乘.七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数.此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减去105,最后所得的整数就是所求.也就是270321215233⨯+⨯+⨯=,233105128-=,12810523-=为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a 是一个被3除余a 而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b 是被5除余b ,被3与7整除的数;同理15c 是被7除余c ,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115a b c ++是被3除余a ,被5除余b ,被7除余c 的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.二、核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》知识点拨教学目标5-5-4.中国剩余定理及余数性质拓展中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。
小学奥数教程之-中国剩余定理 及余数性质拓展 (90) (含答案)
我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二, 五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:
“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.” 这首诗就是解答此类问题的金钥匙,它被世界各国称为 “中国剩余定理 ”(Chinese Remainder Theorem),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤: 三人同行七十稀,是说除以 3 所得的余数用 70 乘. 五树梅花廿一枝,是说除以 5 所得的余数用 21 乘. 七子团圆正月半,是说除以 7 所得的余数用 15 乘. 除百零五便得知,是说把上面乘得的 3 个积加起来,减去 105 的倍数,减得差就是所求的数. 此题的中国剩余定理的解法是:用 70 乘 3 除所得的余数,21 乘 5 除所得的余数,15 乘 7 除所得的 余数,把这 3 个结果加起来,如果它大于 105,则减去 105,所得的差如果仍比 105 大,则继续减去 105, 最后所得的整数就是所求.也就是 2 × 70 + 3× 21 + 2 ×15 =233 , 233 −105 = 128 ,128 −105 = 23 为什么 70,21,15,105 有此神奇效用?70,21,15,105 是从何而来? 先看 70,21,15,105 的性质:70 被 3 除余 1,被 5,7 整除,所以 70a 是一个被 3 除余 a 而被 5 与 7 整除的数;21 是 5 除余 1,被 3 与 7 整除的数,因此 21b 是被 5 除余 b,被 3 与 7 整除的数;同理 15c 是被 7 除余 c,被 3、5 整除的数,105 是 3,5,7 的最小公倍数.也就是说, 70a + 21b + 15c 是被 3 除余 a,被 5 除余 b,被 7 除余 c 的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍数. 了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.
小学奥数中国剩余定理练习
练习题目的选择
01
02
03
基础题目
选择一些涉及中国剩余定 理基础概念和应用的题目, 帮助小学生理解基本原理。
难度适中
题目难度应适中,既不过 于简单也不过于复杂,适 合小学生的思维能力和理 解能力。
覆盖面广
题目应涵盖中国剩余定理 的不同应用场景,以便学 生全面了解该定理的应用 范围。
练习题目的解答过程
原理
中国剩余定理的基本思想是将同 余方程组转化为线性方程组,然 后利用线性代数的方法求解。
定理的应用范围
解决同余方程组问题
在编码理论中的应用
中国剩余定理主要用于解决同余方程 组问题,特别是当方程个数和未知数 个数相同时,它可以给出唯一解。
中国剩余定理在纠错码和编码理论中 也有广泛应用,它可以用于构造一些 特定的纠错码。
小学奥数中国剩余定理练 习
• 引言 • 中国剩余定理的基本概念 • 小学奥数中的中国剩余定理题目 • 解题技巧与策略 • 练习与巩固 • 总结与反思
01
引言
主题简介
定义
中国剩余定理是指在整数环中,给定 一组两两互质的整数,对于任意一组 不全为0的整数解,存在一个特定的 解法,使得这组解都是方程的解。
反思与总结
引导学生对解题过程进行反思和总 结,帮助他们掌握解题技巧和方法。
举一反三
通过解析一道题目,启发学生思考 类似问题的解决方法,提高他们的 思维能力和解题能力。
06
总结与反思
学习收获与体会
掌握了中国剩余定理的基本原理和应 用方法,能够解决一些复杂的数学问 题。
在学习过程中,逐渐培养了耐心和细 心,能够更好地应对挑战和困难。
通过练习,提高了自己的数学思维能 力和解题技巧,对数学有了更深入的 理解。
小学奥数-中国剩余定理
9+11=20 20÷9=2……2,不符合“除以9余4’’的条件; 20+11=31 31÷9=3……4,符合“除以9余4”的条件; 但31÷4 =7……3,不符合“除以4余1"的条件; 31+99=130,130÷4=32……2,也不符合“除以4余1”的条
件; 130+99 =229,229÷4 =57……1 符合“除以4余1”的条件。 因此这堆糖果至少有229个。
“韩信点兵”的故事
韩信阅兵时,让一队士兵5人一行排队从他面前走 过,他记下最后一行士兵的人数(1人);再让这 队士兵6人一行排队从他面前走过,他记下最后一 行士兵的人数(5人);再让这队士兵7人一行排队 从他面前走过,他记下最后一行士兵的人数(4 人),再让这队士兵11人一行排队从他面前走过, 他记下最后一行士兵的人数(10人)。
实际上70是能被5和7整除但被3除余1,21能被3和7整 除但5除余1,15能被3和5整除但被7除余1。这个系统 算法是南宋时期的数学家秦九韶研究后得到的。 这就是 著名的中国剩余定理。
例6、今有物不知其数, 三三数之剩二, 五五 数之剩三, 七七数之剩二, 问物几何?
题目中此数被3除余2,那就用70乘以2,被5 除余3。
所以这个两位数是56,70,84的公因数,答 案是14 。
例2、有一盒乒乓球,每次8个8个地数,10个 10个地数,12个12个地数,最后总是剩下3个. 这盒乒乓球至少有多少个?
因为每次都多出3个,所以拿走3个乒乓球,那么不 论是8个8个地数, 10个10个地数, 12个12个地数, 都没有剩余,这时乒乓球的个数就应该是8、10和 12的公倍数。[8,10,12]=120 。
小学奥数—中国剩余定理及余数性质拓展
.
【例 22】在 200 至 300 之间,有三个连续的自然数,其中,最小的能被 3 整除,中间的能被 7 整除,最大的 能被 13 整除,那么这样的三个连续自然数分别是多少?
5-5-4.中国剩余定理及余数性质拓展.题库
学生版
page 7 of 8
【例 23】有三个连续自然数,其中最小的能被 15 整除,中间的能被 17 整除,最大的能被 19 整除,请写出 一组这样的三个连续自然数.
【例 7】 某个自然数除以 2 余 1,除以 3 余 2,除以 4 余 1,除以 5 也余 1,则这个数最小是
。
【例 8】 一个大于 10 的自然数,除以 5 余 3,除以 7 余 1,除以 9 余 8,那么满足条件的自然数最小为多少?
【巩固】一个大于 10 的数,除以 3 余 1,除以 5 余 2,除以 11 余 7,问满足条件的最小自然数是多少?
【例 17】如图,在一个圆圈上有几十个孔(不到 100 个),小明像玩跳棋那样,从 A 孔出发沿着逆时针方向, 每隔几孔跳一步,希望一圈以后能跳回到 A 孔.他先试着每隔 2 孔跳一步,结果只能跳到 B 孔.他 又试着每隔 4 孔跳一步,也只能跳到 B 孔.最后他每隔 6 孔跳一步,正好跳回到 A 孔,你知道这 个圆圈上共有多少个孔吗?
与 7 整除的数;21 是 5 除余 1,被 3 与 7 整除的数,因此 21b 是被 5 除余 b,被 3 与 7 整除的数;同理 15c 是被 7 除余 c,被 3、5 整除的数,105 是 3,5,7 的最小公倍数.也就是说, 70a 21b 15c 是被 3 除余 a,被 5 除余 b,被 7 除余 c 的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍 数.
5-5-4.中国剩余定理及余数性质拓展.题库
小学奥数-中国剩余定理ppt课件
❖ 这道题目同样可以用例5的方法进行计算,但是现在我们准 备采用类似于例6的方法。例6的方法之所以方便,是因为歌 诀中给出了70,21和15这三个数,那么这道题目中又该是 多少呢?
❖ 歌诀中的70正好是能被5和7整除,而被3除余1的最小数; 21正好是能被3和7整除,而被5除余1的最小数;15正好是 能被3和5整除,而被7除余1的最小数。
❖ 利用这个思路,我们来解答例7。 ❖ 因为[7,9] =63,63÷5=12……3;而63 x 2=126,
126÷5=25……1。 ❖ 所以能被7和9整除,而被5除余1的最小数是126。
11
例7 (续) 、一个数,除以5余1,除以7余2,除
以9余4。这个数最小是多少?
❖ 能被7和9整除,而被5除余1的最小数是126。 ❖ 同样的方法,我们可以找出能被5和9整除,而被7
除余1的最小数是225;能被5和7整除,而被9除余1 的最小数是280。 ❖ 1×126+2x225+4×280=696。 ❖ 这个数显然太大,接下来就要减去5、7和9的最小 公倍数315, ❖ 直到最后的结果小于315为止。 ❖ 1696 - 315×5 = 121。 ❖ 所以这个数最小是:121。
❖ 2+11=13,13÷8=1……5,不符合; ❖ 13+11=24,24÷8=3,也不符合; ❖ 24+11=35,35÷8=4……3,符合条件。 ❖ 因此这个数最小是35
6
例5、一堆糖果,4个一数多1个,9个一数多4 个,11个一数多9个。这堆糖果至少有多少个?
❖ 这个问题可以概括为:一个数,除以4余1,除以9余4,除以 11余9。
件; ❖ 130+99 =229,229÷4 =57……1 符合“除以4余1”的条件。 ❖ 因此这堆糖果至少有229个。
小学四年级数学奥数题:中国剩余定理
三一文库()/小学四年级〔小学四年级数学奥数题:中国剩余定理〕这篇关于小学四年级数学奥数题:中国剩余定理,是特地为大家整理的,供大家学习参考!【问题】有1个数,除以7余2.除以8余4,除以9余3,这个数至少是多少?这种问题称为“中国剩余定理”问题。
我一般用两种方法解决这类问题。
第一种是逐步满足法,方法麻烦一点,但适合所有这类题目。
第二种是最小共倍法,方法简单,但只适合特殊类型的题目。
还有“中国剩余定理”的方法,但它不完善且解法较为复杂,普及应用有一定难度,还不稳定。
所以一般不用。
下面分别介绍一下常用的两种方法。
通用的方法:逐步满足法【问题】一个数,除以5余1,除以3余2。
问这个数最小是多少?把除以5余1的数从小到大排列:1,6,11,16,21,26,……然后从小到大找除以3余2的,发现最小的是11.所以11就是所求的数。
先满足一个条件,再满足另一个条件,所以称之为“逐步满足法”。
好多数学题目都可以用逐步满足的思想解决。
特殊的方法:最小公倍法情况一【问题】一个数除以5余1,除以3也余1。
问这个数最小是多少?(1除外)除以5余1:说明这个数减去1后是5的倍数。
除以3余1:说明这个数减去1后也是3的倍数。
所以,这个数减去1后是3和5的公倍数。
要求最小,所以这个数减去1后就是3和5的最小公倍数。
即这个数减去1后是15,所以这个数是15+1=16.情况二【问题】一个数除以5余4,除以3余2。
问这个数最小是多少?这种情况也可以用特殊法。
数除以5余4,说明这个数加上1后是5的倍数。
数除以3余2,说明这个数加上1后也是3的倍数。
所以,这个数加上1后是3和5的公倍数。
要求最小,所以这个数加上1后就是3和5的最小公倍数。
即这个数加上1后是15,所以这个数是15-1=14.多个数的,比如3个数的,有时候其中两个可以用特殊法,那就先用特殊法,用特殊法求出满足两个条件的数后再用通用的方法求满足最后一个条件的数。
所以有时候特殊法和通用法混合使用。
小学奥数教程之-中国剩余定理 及余数性质拓展 (含答案)
1. 系统学习中国剩余定理和新中国剩余定理2. 掌握中国剩余定理的核心思想,并灵活运用 一、中国剩余定理——中国古代趣题(1)趣题一 中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。
”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。
韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。
刘邦茫然而不知其数。
我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。
孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。
中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。
(2)趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘.五树梅花廿一枝,是说除以5所得的余数用21乘.七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数.此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减去105,最后所得的整数就是所求.也就是270321215233⨯+⨯+⨯=,233105128-=,12810523-=为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a 是一个被3除余a 而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b 是被5除余b ,被3与7整除的数;同理15c 是被7除余c ,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115a b c ++是被3除余a ,被5除余b ,被7除余c 的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.二、核心思想和方法知识点拨教学目标5-5-4.中国剩余定理及余数性质拓展对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。
小学奥数剩余定理及余数性质拓展
1. 系统学习中国剩余定理和新中国剩余定理2. 掌握中国剩余定理的核心思想,并灵活运用一、中国剩余定理——中国古代趣题(1)趣题一 中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。
”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。
韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。
刘邦茫然而不知其数。
我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。
孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。
中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。
(2)趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘.五树梅花廿一枝,是说除以5所得的余数用21乘.七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数.此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减去105,最后所得的整数就是所求.也就是270321215233⨯+⨯+⨯=,233105128-=,12810523-=为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a 是一个被3除余a 而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b 是被5除余b ,被3与7整除的数;同理15c 是被7除余c ,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115a b c ++是被3除余a ,被5除余b ,被7除余c 的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.知识点拨教学目标5-5-4.中国剩余定理及余数性质拓展二、核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。
小学奥数教程:中国剩余定理 及余数性质拓展_全国通用(含答案)
1. 系统学习中国剩余定理和新中国剩余定理2. 掌握中国剩余定理的核心思想,并灵活运用一、中国剩余定理——中国古代趣题(1)趣题一 中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。
”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。
韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。
刘邦茫然而不知其数。
我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。
孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。
中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。
(2)趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘.五树梅花廿一枝,是说除以5所得的余数用21乘.七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数.此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减去105,最后所得的整数就是所求.也就是270321215233⨯+⨯+⨯=,233105128-=,12810523-=为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a 是一个被3除余a 而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b 是被5除余b ,被3与7整除的数;同理15c 是被7除余c ,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115a b c ++是被3除余a ,被5除余b ,被7除余c 的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.二、核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》知识点拨教学目标5-5-4.中国剩余定理及余数性质拓展中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。
小学奥数中国剩余定理 ppt课件
❖ 2+11=13,13÷8=1……5,不符合; ❖ 13+11=24,24÷8=3,也不符合; ❖ 24+11=35,35÷8=4……3,符合条件。 ❖ 因此这个数最小是35
小学奥数中国剩余定理
➢ 然后韩信就凭这些数,可以求得这队士兵的总人数 (2111,4421,……)。
《孙子算经》中的题目
我国古代数学名著《孙子算经》中有“物不知数” 的题目:
今有物不知其数, 三三数之剩二, 五五数之剩三, 七七数之剩二, 问物几何?
❖ 还有专门用来解决同一个数除以3,5和7的问题的歌诀 : “三人同行七十稀,五树梅花廿一枝,七子团圆正半月, 除百零五便得知”
❖ 所以这个两位数是56,70,84的公因数,答 案是14 。
小学奥数中国剩余定理
❖ 因为每次都多出3个,所以拿走3个乒乓球,那么不 论是8个8个地数, 10个10个地数, 12个12个地数, 都没有剩余,这时乒乓球的个数就应该是8、10和 12的公倍数。[8,10,12]=120 。
❖ 120+3=123 ❖ 所以这盒乒乓球至少有123个。
小学奥数中国剩余定理
➢ 韩信阅兵时,让一队士兵5人一行排队从他面前走 过,他记下最后一行士兵的人数(1人);再让这 队士兵6人一行排队从他面前走过,他记下最后一 行士兵的人数(5人);再让这队士兵7人一行排队 从他面前走过,他记下最后一行士兵的人数(4 人),再让这队士兵11人一行排队从他面前走过, 他记下最后一行士兵的人数(10人)。
小学奥数中国剩余定理
2015.08.22
小学奥数中国剩余定理
小升初奥数数论剩余定理要点及解题技巧
小升初奥数数论剩余定理要点及解题技巧【篇一】中国剩余定理的由来韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。
刘邦茫然而不知其数。
我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。
中国有一本数学古书「孙子算经」也有类似的问题:「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?」答曰:「二十三」术曰:「三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。
凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。
」孙子算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。
【篇二】中国剩余定理在数论中的地位中国剩余定理是数论四大定理(威尔逊定理、欧拉定理、费马小定理、中国剩余定理)之一,在初等数论中有着非常广泛和重要的应用。
中国剩余定理问题的解题技巧【问题】有1个数,除以7余2.除以8余4,除以9余3,这个数至少是多少?这种问题称为“中国剩余定理”问题。
我一般用两种方法解决这类问题。
第一种是逐步满足法,方法麻烦一点,但适合所有这类题目。
第二种是最小公倍法,方法简单,但只适合特殊类型的题目。
还有“中国剩余定理”的方法,但它不完善且解法较为复杂,普及应用有一定难度,还不稳定。
所以一般不用。
下面分别介绍一下常用的两种方法。
通用的方法:逐步满足法【问题】一个数,除以5余1,除以3余2。
中国剩余定理的原理
中国剩余定理的原理
中国剩余定理(Chinese Remainder Theorem)是中国古代求解一次同余式组问题的方法,也是数论中一个重要定理。
简单来说,中国剩余定理就是找出这样一个正整数,它分别能被给定的多个正整数整除,并且是其中最小的。
具体来说,设有m个线性方程,每个方程有n个未知数,形式为:x ≡ a_i (mod p_i),其中i=1,2,...,m。
假设p_i 两两互质,那么存在一个解x,使得x ≡ a_i (mod p_i)对i=1,2,...,m都成立。
中国剩余定理的原理可以简述为:几个数相加,如果存在一个加数不能被数a整除,那么它们的和就不能被整数a 整除。
这个定理的证明可以通过数学归纳法和欧几里得算法得出。
在应用方面,中国剩余定理被广泛应用于密码学、数论等领域。
例如,在RSA加密算法中,中国剩余定理被用于快速求解大数的模幂运算。
(完整)小学奥数:剩余定理
在一千多年前的《孙子算经》中,有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以3余2,除以5余3,除以7余2,求这个数。
这样的问题,也有人称为“韩信点兵”.它形成了一类问题,也就是初等数论中的解同余式。
①有一个数,除以3余2,除以4余1,问这个数除以12余几? 解:除以3余2的数有:2, 5, 8, 11,14, 17, 20, 23… 它们除以12的余数是:2,5,8,11,2,5,8,11… 除以4余1的数有:1, 5, 9, 13, 17, 21, 25, 29… 它们除以12的余数是:1, 5, 9, 1, 5, 9,…. 一个数除以12的余数是唯一的.上面两行余数中,只有5是共同的,因此这个数除以12的余数是5。
如果我们把①的问题改变一下,不求被12除的余数,而是求这个数.很明显,满足条件的数是很多的,它是5+12×整数,整数可以取0,1,2,…,无穷无尽.事实上,我们首先找出5后,注意到12是3与4的最小公倍数,再加上12的整数倍,就都是满足条件的数.这样就是把“除以3余2,除以4余1”两个条件合并成“除以12余5”一个条件.《孙子算经》提出的问题有三个条件,我们可以先把两个条件合并成一个.然后再与第三个条件合并,就可找到答案. ②一个数除以3余2,除以5余3,除以7余2,求符合条件的最小数。
解:先列出除以3余2的数:2, 5, 8, 11, 14, 17, 20,23, 26… 再列出除以5余3的数:3, 8, 13, 18, 23, 28… 这两列数中,首先出现的公共数是8.3与5的最小公倍数是15.两个条件合并成一个就是8+15×整数,列出这一串数是8, 23, 38,…,再列出除以7余2的数 2, 9, 16, 23, 30… 就得出符合题目条件的最小数是23. 事实上,我们已把题目中三个条件合并成一个:被105除余23.那么韩信点的兵在1000-1500之间,可能是105×10+23=1073人问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三”术曰:三三数剩一置几何?答曰:五乘七乘二得之七十。
奥数数论:中国剩余定理要点及解题技巧
奥数数论:中国剩余定理要点及解题技巧中国剩余定理(ChineseRemainderTheorem)在近代抽象代数学中占有⼀席⾮常重要的地位。
下⾯给⼤家讲解中国剩余定理的由来、知识点及解题技巧,帮助⼤家学好中国剩余定理。
◆ 中国剩余定理的由来
韩信点兵⼜称为中国剩余定理,相传汉⾼祖刘邦问⼤将军韩信统御兵⼠多少,韩信答说,每3⼈⼀列余1⼈、5⼈⼀列余2⼈、7⼈⼀列余4⼈、13⼈⼀列余6⼈……。
刘邦茫然⽽不知其数。
我们先考虑下列的问题:假设兵不满⼀万,每5⼈⼀列、9⼈⼀列、13⼈⼀列、17⼈⼀列都剩3⼈,则兵有多少?
⾸先我们先求5、9、13、17之最⼩公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最⼩公倍数为这些数的积),然后再加3,得9948(⼈)。
中国有⼀本数学古书「孙⼦算经」也有类似的问题:
「今有物,不知其数,三三数之,剩⼆,五五数之,剩三,七七数之,剩⼆,问物⼏何?」答⽈:「⼆⼗三」术⽈:「三三数之剩⼆,置⼀百四⼗,五五数之剩三,置六⼗三,七七数之
剩⼆,置三⼗,并之,得⼆百三⼗三,以⼆百⼀⼗减之,即得。
凡三三数之剩⼀,则置七⼗,
五五数之剩⼀,则置⼆⼗⼀,七七数之剩⼀,则置⼗五,即得。
」
孙⼦算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之后,以这个考证来说上⾯这种问题的解法,中国⼈发现得⽐西⽅早,所以这个问题的推⼴及其解法,被
称为中国剩余定理。
◆ 中国剩余定理要点及解题技巧。
小学奥数:中国剩余定理
在一千多年前的《孙子算经》中,有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以3余2,除以5余3,除以7余2,求这个数。
这样的问题,也有人称为“韩信点兵”.它形成了一类问题,也就是初等数论中的解同余式。
① 有一个数,除以3余2,除以4余1,问这个数除以12余几?解:除以3余2的数有:2, 5, 8, 11,14, 17, 20,23…它们除以12的余数是:2,5,8,11,2,5,8,11…除以4余1的数有:1, 5, 9, 13, 17, 21, 25,29…它们除以12的余数是:1, 5, 9, 1, 5, 9,….一个数除以12的余数是唯一的.上面两行余数中,只有5是共同的,因此这个数除以12的余数是5。
如果我们把①的问题改变一下,不求被12除的余数,而是求这个数.很明显,满足条件的数是很多的,它是5+12×整数,整数可以取0,1,2,…,无穷无尽.事实上,我们首先找出5后,注意到12是3与4的最小公倍数,再加上12的整数倍,就都是满足条件的数.这样就是把“除以3余2,除以4余1”两个条件合并成“除以12余5”一个条件.《孙子算经》提出的问题有三个条件,我们可以先把两个条件合并成一个.然后再与第三个条件合并,就可找到答案.②一个数除以3余2,除以5余3,除以7余2,求符合条件的最小数。
解:先列出除以3余2的数:2, 5, 8, 11, 14, 17, 20, 23,26…再列出除以5余3的数:3, 8, 13, 18, 23,28…这两列数中,首先出现的公共数是8.3与5的最小公倍数是15.两个条件合并成一个就是8+15×整数,列出这一串数是8, 23, 38,…,再列出除以7余2的数 2, 9, 16, 23,30…就得出符合题目条件的最小数是23.事实上,我们已把题目中三个条件合并成一个:被105除余23.那么韩信点的兵在1000-1500之间,可能是105×10+23=1073人问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三”术曰:三三数剩一置几何?答曰:五乘七乘二得之七十。
小学奥数:中国剩余定理及余数性质拓展.专项练习及答案解析
1. 系统学习中国剩余定理和新中国剩余定理2. 掌握中国剩余定理的核心思想,并灵活运用一、中国剩余定理——中国古代趣题(1)趣题一中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。
”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。
韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。
刘邦茫然而不知其数。
我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。
孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。
中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。
(2)趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘.五树梅花廿一枝,是说除以5所得的余数用21乘.七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数.此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减去105,最后所得的整数就是所求.也就是270321215233⨯+⨯+⨯=,233105128-=,12810523-=为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?知识点拨 教学目标5-5-4.中国剩余定理及余数性质拓展先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a是一个被3除余a而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b是被5除余b,被3与7整除的数;同理15c是被7除余c,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115++是被3除余a,被5除余b,被7除余c的数,这个数可能是解答,a b c但不一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.二、核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在一千多年前的《孙子算经》中,有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以3余2,除以5余3,除以7余2,求这个数。
这样的问题,也有人称为“韩信点兵”.它形成了一类问题,也就是初等数论中的解同余式。
① 有一个数,除以3余2,除以4余1,问这个数除以12余几?
解:除以3余2的数有:2, 5, 8, 11,14, 17, 20,23…
它们除以12的余数是:2,5,8,11,2,5,8,11…
除以4余1的数有:1, 5, 9, 13, 17, 21, 25,29…
它们除以12的余数是:1, 5, 9, 1, 5, 9,….
一个数除以12的余数是唯一的.上面两行余数中,只有5是共同的,因此这个数除以12的余数是5。
如果我们把①的问题改变一下,不求被12除的余数,而是求这个数.很明显,满足条件的数是很多的,它是5+12×整数,整数可以取0,1,2,…,无穷无尽.事实上,我们首先找出5后,注意到12是3与4的最小公倍数,再加上12的整数倍,就都是满足条件的数.这样就是把“除以3余2,除以4余1”两个条件合并成“除以12余5”一个条件.《孙子算经》提出的问题有三个条件,我们可以先把两个条件合并成一个.然后再与第三个条件合并,就可找到答案.
②一个数除以3余2,除以5余3,除以7余2,求符合条件的最小数。
解:先列出除以3余2的数:2, 5, 8, 11, 14, 17, 20, 23,26…
再列出除以5余3的数:3, 8, 13, 18, 23,28…
这两列数中,首先出现的公共数是8.3与5的最小公倍数是15.两个条件合并成一个就是8+15×整数,列出这一串数是8, 23, 38,…,再列出除以7余2的数 2, 9, 16, 23,30…
就得出符合题目条件的最小数是23.
事实上,我们已把题目中三个条件合并成一个:被105除余23.
那么韩信点的兵在1000-1500之间,可能是105×10+23=1073人
问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三”术曰:
三三数剩一置几何?答曰:五乘七乘二得之七十。
五五数剩一复置几何?答曰,三乘七得之二十一是也。
七七数剩一又置几何?答曰,三乘五得之十五是也。
三乘五乘七,又得一百零五。
则可知已,又三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。
凡三三数之剩一,则置七十,五五数
之剩一,则置二十一,七七数之剩一,则置十五,即得。
孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。
步骤如下:
1.算两两数之间的能整除数
2.算三个数的能整除数
3.用1中的三个整除数之和减去2中的整除数之差(有时候是倍数)
4.计算结果即可,如多一人,即可凑整。
幸存人数应在1000~1100人之间,即得出: 3乘5乘7乘10减1=1049(人)
到了明代,数学家程大位用诗歌概括了这一算法,他写道:
三人同行七十稀,五树梅花廿一枝,
七子团圆月正半,除百零五便得知。
这首诗的意思是:用3除所得的余数乘上70,加上用5除所得余数乘以21,再加上用7除所得的余数乘上15,结果大于105就减去105的倍数,这样就知道所求的数了。