简单的三角恒等变换(一)

合集下载

简单的三角恒等变换教学设计

简单的三角恒等变换教学设计

简单的三角恒等变换教学设计(第1课时)一、教学内容与学情分析本节课教学内容是《普通高中课程标准实验教科书·数学(4)》(人教A版)中第三章的第二节“简单三角恒等变换”(第一课时).本节课主要研究如何让利用已有的三角函数公式进行简单的恒等变换,以及三角恒等变换在数学中的应用,引导学生对变换对象和变换目标进行对比、分析,促使学生形成对解题过程中如何让选择共识,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学方法的认识,从而加深理解变换思想,提高学生的推理能力。

二、教学目标1.知识和技能目标(1)掌握运用和(差)角公式、倍角公式进行三角变换的方法和思路;(2)弄清代数变换与三角变换的不同点2.过程和方法目标(1)能够利用换元、逆用公式等方法对三角函数式进行恒等变换,化简三角函数式,提高学生的推理能力;(2)弄清代数变换与三角变换的不同点,认真体会三角变换的特点,提高推理、运算能力;(3)由特殊到一般,由具体到抽象,不断提升学生的探究能力和数学思维能力,培养学生学数学地思考问题、解决问题。

3.情感和价值目标(1)认识事物之间的的区别和联系,体会事物的变化是有规律的唯物主义思想.(2)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神.三、教学重难点1.教学重点:(1)半角公式、积化和差、和差化积公式的推导训练(2)三角变换的内容、思路和方法,在与代数变换相比较中体会三角变换的特点2.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力四、教法选择1.观察学习是重要的学习方法.这节课采用的第一个方法就是“观察、比较法”;2.根据新课标的教学理念,教学中要培养学生合作共事的团队精神,这节课还采用了“合作、讨论法”,让学生共同探讨、合作学习、取长补短、形成共识.五、学法指导对于求函数的最值,高三学生已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用.六、教学过程设计本节课的教学,大致按照“创设情境,铺垫导入——合作学习,探索新知——指导应用,鼓励创新——归纳小结,反馈建构”四个环节进行组织.(一)、创设情境,铺垫导入1、复习回顾(1)三角函数的和(差)角公式(2)三角函数的倍角公式2、问题引入问题1:α与2α有什么关系? 问题2:化简:(1) = _______ (2)1 -= _________(3)= _________(二)合作学习,探索新知例题1.试cos 表示、、教师活动:引导学生联想关于余弦的二倍角公式,将公式中的 替换成 。

22第四章 三角函数、解三角形 简单的三角恒等变换 第1课时 两角和与差的正弦、余弦和正切公式

22第四章 三角函数、解三角形   简单的三角恒等变换 第1课时 两角和与差的正弦、余弦和正切公式

(2)设 α 为锐角,若 cosα+π6=54,则 sin2α+π3的值为
12 A.25
√24
B.25
C.-2245
解析 因为 α 为锐角,且 cosα+π6=54,
D.-1225
所以 sinα+π6= 1-cos2α+π6=35,
所以 sin2α+π3=sin 2α+π6 =2sinα+6πcosα+π6=2×53×54=2245,故选 B.
tan α+tan β
tan(α+β)= 1-tan
αtan
(T(α+β)) β
2.二倍角公式
sin 2α= 2sin αcos α ; cos 2α= cos2α-sin2α = 2cos2α-=1
2tan α tan 2α= 1-tan2α .
1-2sin2α ;
【概念方法微思考】 1.诱导公式与两角和差的三角函数公式有何关系? 提示 诱导公式可以看成和差公式中 β=k·π2(k∈Z)时的特殊情形. 2.怎样研究形如f(x)=asin x+bcos x函数的性质? 提示 先根据辅助角公式 asin x+bcos x= a2+b2·sin(x+φ),将 f(x)化成 f(x)
解析
cos2α2
= 121+cos α = 1+cos α =4sin α.
1234567
2
PART TWO
题型分类 深度剖析
第1课时 两角和与差的正弦、余弦和正切公式
自主演练
题型一 和差公式的直接应用
1.(2018·石家庄质检)若 sin(π-α)=13,且π2≤α≤π,则 sin 2α 的值为
A.-
2 10
B.
2 10
√C.-7102
D.7102

简单的三角恒等变换说课稿

简单的三角恒等变换说课稿

简单的三角恒等变换说课稿一、说教材(一)作用与地位本文《简单的三角恒等变换》是高中数学课程中的重要组成部分,属于三角函数章节。

它不仅承担着巩固学生对三角函数基础知识的掌握,而且肩负着培养学生逻辑思维能力和数学变换技巧的重任。

在数学教育中,三角恒等变换是联系实际应用与理论推导的桥梁,通过学习,学生能够更好地理解数学在自然科学和社会科学中的应用。

(二)主要内容本文主要围绕以下三个方面的内容展开:1. 三角恒等变换的基本概念:包括正弦、余弦、正切的和差公式、倍角公式、半角公式等。

2. 三角恒等变换的基本方法:运用上述公式进行三角函数式的化简、求值等。

3. 三角恒等变换在实际问题中的应用:结合实际案例,让学生体验三角恒等变换在解决具体问题时的作用。

二、说教学目标(一)知识与技能目标1. 理解并掌握三角恒等变换的基本概念和基本方法。

2. 能够熟练运用三角恒等变换解决实际问题。

3. 培养学生的逻辑思维能力和数学变换技巧。

(二)过程与方法目标1. 通过自主探究、合作交流,培养学生主动学习的习惯。

2. 通过问题解决,提高学生分析问题、解决问题的能力。

(三)情感态度与价值观目标1. 培养学生对数学的兴趣和热爱,提高学生的数学素养。

2. 引导学生认识到数学在现实生活中的重要作用,增强学生的应用意识。

三、说教学重难点(一)重点1. 三角恒等变换的基本概念和基本方法。

2. 三角恒等变换在实际问题中的应用。

(二)难点1. 理解并熟练运用三角恒等变换公式。

2. 解决实际问题时,能够灵活运用三角恒等变换。

四、说教法(一)启发法在教学过程中,我将以启发式教学为主,引导学生通过观察、思考、总结等环节,自主发现三角恒等变换的规律。

具体操作如下:1. 以实际问题导入,激发学生的好奇心和求知欲。

2. 引导学生回顾已学的三角函数知识,为新知识的学习做好铺垫。

3. 设计一系列具有启发性的问题,让学生在思考问题的过程中,自然地发现三角恒等变换的规律。

简单的三角恒等变换(1)

简单的三角恒等变换(1)
1.正确应用和差角公式、倍角公式进行化简、 求值和证明.
2.理解并掌握二倍角公式的变形式及其应用.
基础梳理
一、利用二倍角公式推导半角公式
(1)因为 α 是α2的二倍角,所以在二倍角公式
cos 2α=1-2sin2α 中,以 α 代替 2α,以α2代替 α,
即 cos α=1-2sin2α2,所以 sin2α2=________.
(2)在二倍角公式 cos 2α=2cos2α-1 中,
以 α 代替 2α,以α2代替 α,即 cos α=2cos2α2-1,
所以 cos2α2=______.
1-cos α 1+cos α
(1) 2
(2) 2
(3)由(1)(2)中所得两式相除得
tan2α2=11- +ccooss
α α.
综上,sinα2=________,cosα2=________,tanα2=________.
cos=cos αcos β+sin αsin β 2.理解并掌握二倍角公式的变形式及其应用.
得cos αcos β=_________________,③ 二、和差化积与积化和差公式的推导
得sins=insαincoαscoβs=β_-__c得_o_s_α_cs_ion__βs__α__c__o__s,β①=_________________,③
3.若sincoαs-2απ4=- 22,则 cos α+sin α 的值为(
)
A.-
7 2
B.-12
1 C.2
7 D. 2
解析:原式= cos2α-sin2α
22(sin α-cos α)
=- 2(cos α+sin α)=- 22, ∴cos α+sin α=12.答案选 C. 答案:C

简单的三角恒等变换

简单的三角恒等变换
3.2.1 简单的三角恒等变换(一)
一、学习目标: 1.知识与技能:
掌握半角公式的正用、逆用和变形应用,并会应用其 进行求值、化简和证明; 2.过程与方法:
小组合作探究、大胆质疑拓展,类比归纳 ; 3.情感态度价值观: 协作精神及合作共赢的意识,激发学习的热情和兴趣。 二、重点、难点:
重点:半角的正弦、余弦、正切公式以及公式的逆用、 变形应用;
难点:半角公式与以前学过的同角三角函数的基本关系 式、诱导公式、和角公式、倍角公式的综合应用 。
知识回顾:
两角和的正弦 1:sin(α +β )=sinα cosβ +cosα sinβ
两角差的正弦 2:sin(α -β )=sinα cosβ -cosα sinβ
3:倍角公式 sin2α =2sinα cosα cos2α =cos2α -sin2α
tan sin 1 cos 2 1 cos sin
注意:每一个确定的半角的三角函数值唯一 确定。应根据角的象限定符号!
2
2
2
tan2 1 cos . 2 1 cos
半角公式:
sin2 1 cos
2
2
cos2 1 cos
2
2
tan2 1 cos
2 1 cos
sin 1 cos
2
2

cos
2
1 cos
2
tan 1 cos 2 1 cos
=2cos2α -1 =1-2sin2α ;
设疑自探 问题1:由二倍角
的公式求出 sin2 , cos2 ,
问题2: 试用cos表示sin 2 , cos2 , tan2 .

简单的三角恒等变换

简单的三角恒等变换

第2课时 简单的三角恒等变换1.二倍角的正弦、余弦、正切公式(1)公式S 2α:sin 2α=2sin αcos α.(2)公式C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.(3)公式T 2α:tan 2α=2tan α1-tan 2α. 2.常用的部分三角公式(1)1-cos α=2sin 2α2,1+cos α=2cos 2α2.(升幂公式) (2)1±sin α=⎝⎛⎭⎫sin α2±cos α22.(升幂公式) (3)sin 2α=1-cos 2α2,cos 2α=1+cos 2α2,tan 2α=1-cos 2α1+cos 2α.(降幂公式) (4)a sin α+b cos α=a 2+b 2sin(α+φ),其中sin φ=b a 2+b 2,cos φ=a a 2+b 2.(辅助角公式) 微思考1.思考三角恒等变换的基本技巧.提示 (1)变换函数名称:使用诱导公式.(2)升幂、降幂:使用倍角公式.(3)常数代换:如1=sin 2α+cos 2α=tan π4. (4)变换角:使用角的代数变换、各类三角函数公式.2.进行化简求值时一般要遵循什么原则?提示 异名化同名、异次化同次、异角化同角、弦切互化等.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)(2020·全国Ⅱ改编)若α为第四象限角,则sin 2α>0.( × )(2)∀α∈R,1+sin α=⎝⎛⎭⎫sin α2+cos α22.( √ ) (3)∀α∈R,2cos 2α+cos 2α-1=0.( × )(4)∃α∈R ,tan 2α=2tan α.( √ )题组二 教材改编2.sin 15°cos 15°等于( )A .-14 B.14 C .-12 D.12答案 B解析 sin 15°cos 15°=12sin 30°=14. 3.已知sin α-cos α=15,0≤α≤π,则cos 2α等于( ) A .-2425 B.2425 C .-725 D.725答案 C解析 ∵sin α-cos α=15,sin 2α+cos 2α=1,0≤α≤π, ∴sin α=45,∴cos 2α=1-2sin 2α=1-2⎝⎛⎭⎫452=-725. 4.已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4= . 答案 16解析 方法一 cos 2⎝⎛⎭⎫α+π4=12⎣⎡⎦⎤1+cos ⎝⎛⎭⎫2α+π2=12(1-sin 2α)=16. 方法二 cos ⎝⎛⎭⎫α+π4=22cos α-22sin α, 所以cos 2⎝⎛⎭⎫α+π4=12(cos α-sin α)2 =12(1-2sin αcos α)=12(1-sin 2α)=16. 题组三 易错自纠5.计算:4tan π123tan 2π12-3等于( ) A.233 B .-233 C.239 D .-239答案 D解析 原式=-23·2tanπ121-tan 2π12=-23tan π6=-23×33=-239.6.(2020·泸州模拟)若tan α=12,则cos 2α等于( ) A .-45 B .-35 C.45 D.35答案 D解析 ∵tan α=12, ∴cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=1-141+14=35.题型一 三角函数式的化简1.(2020·全国Ⅰ)已知α∈(0,π),且3cos 2α-8cos α=5,则sin α等于( ) A.53 B.23 C.13 D.59答案 A解析 由3cos 2α-8cos α=5,得3(2cos 2α-1)-8cos α=5,即3cos 2α-4cos α-4=0,解得cos α=-23或cos α=2(舍去). 又因为α∈(0,π),所以sin α>0,所以sin α=1-cos 2α=1-⎝⎛⎭⎫-232=53. 2.(2020·江苏改编)已知sin 2⎝⎛⎭⎫π4+α=23,则sin 2α的值是( ) A .-13 B.13 C .-23 D.23答案 B解析 ∵sin 2⎝⎛⎭⎫π4+α=23, ∴1-cos ⎝⎛⎭⎫π2+2α2=23, 即1+sin 2α2=23,∴sin 2α=13. 3.(2019·全国Ⅱ)已知α∈⎝⎛⎭⎫0,π2,2sin 2α=cos 2α+1,则sin α等于( ) A.15 B.55 C.33 D.255答案 B解析 由2sin 2α=cos 2α+1,得4sin αcos α=1-2sin 2α+1,即2sin αcos α=1-sin 2α.因为α∈⎝⎛⎭⎫0,π2,所以cos α=1-sin 2α,所以2sin α1-sin 2α=1-sin 2α,解得sin α=55,故选B. 4.21+sin 4+2+2cos 4等于( )A .2cos 2B .2sin 2C .4sin 2+2cos 2D .2sin 2+4cos 2答案 B解析 21+sin 4+2+2cos 4=2sin 22+2sin 2cos 2+cos 22+2+2(2cos 22-1)=2(sin 2+cos 2)2+4cos 22=2|sin 2+cos 2|+2|cos 2|.∵π2<2<π, ∴cos 2<0, ∵sin 2+cos 2=2sin ⎝⎛⎭⎫2+π4,0<2+π4<π, ∴sin 2+cos 2>0,∴原式=2(sin 2+cos 2)-2cos 2=2sin 2.思维升华 (1)三角函数式的化简要遵循“三看”原则:一看角,二看名,三看式子结构与特征.(2)三角函数式的化简要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的联系点.题型二 三角函数的求值命题点1 给角求值例1 (1)cos 20°·cos 40°·cos 100°= .答案 -18解析 cos 20°·cos 40°·cos 100°=-cos 20°·cos 40°·cos 80°=-sin 20°·cos 20°·cos 40°·cos 80°sin 20°=-12sin 40°·cos 40°·cos 80°sin 20°=-14sin 80°·cos 80°sin 20°=-18sin 160°sin 20°=-18sin 20°sin 20°=-18. (2)cos 40°cos 25°1-sin 40°的值为( ) A .1 B. 3 C. 2 D .2答案 C解析 原式=cos 220°-sin 220°cos 25°(cos 20°-sin 20°)=cos 20°+sin 20°cos 25° =2cos 25°cos 25°= 2. 命题点2 给值求值例2 (1)已知cos ⎝⎛⎭⎫θ+π4=1010,θ∈⎝⎛⎭⎫0,π2,则sin ⎝⎛⎭⎫2θ-π3= . 答案 4-3310解析 由题意可得cos 2⎝⎛⎭⎫θ+π4=1+cos ⎝⎛⎭⎫2θ+π22=110,cos ⎝⎛⎭⎫2θ+π2=-sin 2θ=-45,即sin 2θ=45. 因为cos ⎝⎛⎭⎫θ+π4=1010>0,θ∈⎝⎛⎭⎫0,π2, 所以0<θ<π4,2θ∈⎝⎛⎭⎫0,π2, 根据同角三角函数基本关系式,可得cos 2θ=35, 由两角差的正弦公式,可得sin ⎝⎛⎭⎫2θ-π3=sin 2θcos π3-cos 2θsin π3=45×12-35×32=4-3310. (2)若tan α+1tan α=103,α∈⎝⎛⎭⎫π4,π2,则sin ⎝⎛⎭⎫2α+π4+2cos 2α的值为 . 答案 0解析 ∵tan α+1tan α=103,α∈⎝⎛⎭⎫π4,π2, ∴tan α=3或tan α=13(舍), 则sin ⎝⎛⎭⎫2α+π4+2cos 2α, =sin 2αcos π4+cos 2αsin π4+2·1+cos 2α2=22sin 2α+2cos 2α+22 =22(2sin αcos α)+2(cos 2α-sin 2α)+22 =22·2sin αcos αsin 2α+cos 2α+2·cos 2α-sin 2αsin 2α+cos 2α+22=22·2tan αtan 2α+1+2·1-tan 2αtan 2α+1+22=22×69+1+2×1-91+9+22=0.命题点3 给值求角例3 已知α,β均为锐角,cos α=277,sin β=3314,则cos 2α= ,2α-β= . 答案 17 π3解析 因为cos α=277,所以cos 2α=2cos 2α-1=17. 又因为α,β均为锐角,sin β=3314, 所以sin α=217,cos β=1314, 因此sin 2α=2sin αcos α=437, 所以sin(2α-β)=sin 2αcos β-cos 2αsin β=437×1314-17×3314=32.因为α为锐角,所以0<2α<π.又cos 2α>0,所以0<2α<π2, 又β为锐角,所以-π2<2α-β<π2, 又sin(2α-β)=32,所以2α-β=π3. 思维升华 (1)给角求值与给值求值问题的关键在“变角”,通过角之间的联系寻找转化方法.(2)给值求角问题:先求角的某一三角函数值,再根据角的范围确定角.跟踪训练1 (1)cos 275°+cos 215°+cos 75°cos 15°的值等于( ) A.62 B.32 C.54 D .1+34答案 C解析 原式=sin 215°+cos 215°+sin 15°cos 15°=1+12sin 30°=1+14=54. (2)已知α∈⎝⎛⎭⎫0,π2,且2sin 2α-sin α·cos α-3cos 2α=0,则sin ⎝⎛⎭⎫α+π4sin 2α+cos 2α+1= . 答案 268 解析 ∵α∈⎝⎛⎭⎫0,π2,且2sin 2α-sin α·cos α-3cos 2α=0, 则(2sin α-3cos α)·(sin α+cos α)=0,又∵α∈⎝⎛⎭⎫0,π2,sin α+cos α>0, ∴2sin α=3cos α,又sin 2α+cos 2α=1,∴cos α=213,sin α=313, ∴sin ⎝⎛⎭⎫α+π4sin 2α+cos 2α+1=22(sin α+cos α)(sin α+cos α)2+(cos 2α-sin 2α)=24cos α=268. (3)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为 . 答案 -3π4解析 ∵tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0, ∴0<α<π2. 又∵tan 2α=2tan α1-tan 2α=2×131-⎝⎛⎭⎫132=34>0, ∴0<2α<π2, ∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1. ∵tan β=-17<0,∴π2<β<π,-π<2α-β<0, ∴2α-β=-3π4.题型三 三角恒等变换的综合应用例4 已知函数f (x )=(2cos 2x -1)sin 2x +12cos 4x . (1)求函数f (x )的最小正周期及单调递减区间;(2)若α∈(0,π),且f ⎝⎛⎭⎫α4-π8=22,求tan ⎝⎛⎭⎫α+π3的值. 解 (1)因为f (x )=(2cos 2x -1)sin 2x +12cos 4x =cos 2x sin 2x +12cos 4x =12(sin 4x +cos 4x ) =22sin ⎝⎛⎭⎫4x +π4, 所以函数f (x )的最小正周期T =π2. 令2k π+π2≤4x +π4≤2k π+3π2,k ∈Z , 得k π2+π16≤x ≤k π2+5π16,k ∈Z . 所以函数f (x )的单调递减区间为⎣⎡⎦⎤k π2+π16,k π2+5π16,k ∈Z .(2)因为f ⎝⎛⎭⎫α4-π8=22,所以sin ⎝⎛⎭⎫α-π4=1. 又α∈(0,π),所以-π4<α-π4<3π4, 所以α-π4=π2, 故α=3π4, 因此tan ⎝⎛⎭⎫α+π3=tan 3π4+tan π31-tan 3π4tan π3=-1+31+3=2- 3. 思维升华 三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为f (x )=A sin(ωx +φ)+b 的形式再研究其性质,解题时注意观察角、函数名、结构等特征,注意利用整体思想解决相关问题. 跟踪训练2 已知函数f (x )=24sin ⎝⎛⎭⎫π4-x +64·cos ⎝⎛⎭⎫π4-x . (1)求函数f (x )在区间⎣⎡⎦⎤π4,3π2上的最值;(2)若cos θ=45,θ∈⎝⎛⎭⎫3π2,2π,求f ⎝⎛⎭⎫2θ+π3的值. 解 (1)由题意得f (x )=24·sin ⎝⎛⎭⎫π4-x +64cos ⎝⎛⎭⎫π4-x =22×⎣⎡⎦⎤12sin ⎝⎛⎭⎫π4-x +32cos ⎝⎛⎭⎫π4-x =-22·sin ⎝⎛⎭⎫x -7π12. 因为x ∈⎣⎡⎦⎤π4,3π2,所以x -7π12∈⎣⎡⎦⎤-π3,11π12, 所以sin ⎝⎛⎭⎫x -7π12∈⎣⎡⎦⎤-32,1, 所以-22sin ⎝⎛⎭⎫x -7π12∈⎣⎡⎦⎤-22,64,即函数f (x )在区间⎣⎡⎦⎤π4,3π2上的最大值为64,最小值为-22. (2)因为cos θ=45,θ∈⎝⎛⎭⎫3π2,2π, 所以sin θ=-35,所以sin 2θ=2sin θcos θ=-2425, 所以cos 2θ=cos 2θ-sin 2θ=1625-925=725,所以f ⎝⎛⎭⎫2θ+π3=-22sin ⎝⎛⎭⎫2θ+π3-7π12 =-22·sin ⎝⎛⎭⎫2θ-π4=-12(sin 2θ-cos 2θ) =12(cos 2θ-sin 2θ)=12·⎝⎛⎭⎫725+2425=3150.课时精练1.已知sin α-cos α=43,则sin 2α等于( ) A .-79 B .-29 C.29 D.79答案 A解析 ∵(sin α-cos α)2=1-2sin αcos α=1-sin 2α,∴sin 2α=1-⎝⎛⎭⎫432=-79. 2.已知α,β为锐角,tan α=43,则cos 2α等于( ) A.725 B .-725 C.2425 D .-2425答案 B解析 ∵tan α=43,tan α=sin αcos α, ∴sin α=43cos α, ∵sin 2α+cos 2α=1,∴cos 2α=925, ∴cos 2α=2cos 2α-1=-725. 3.计算:1-cos 210°cos 80°1-cos 20°等于( ) A.22 B.12 C.32 D .-22答案 A解析 1-cos 210°cos 80°1-cos 20°=sin 210°sin 10°1-(1-2sin 210°)=sin 210°2sin 210°=22. 4.若sin ⎝⎛⎭⎫π3-α=14,则cos ⎝⎛⎭⎫π3+2α 等于( )A .-78 B .-14 C.14 D.78答案 A 解析 cos ⎝⎛⎭⎫π3+2α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫2π3-2α=-cos ⎝⎛⎭⎫2π3-2α=-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫π3-α=-⎣⎡⎦⎤1-2×⎝⎛⎭⎫142=-78.5.(多选)已知函数f (x )=sin x ·sin ⎝⎛⎭⎫x +π3-14,则f (x )的值不可能是() A .-12 B.12 C .-2 D .2答案 CD解析 方法一 f (x )=sin x sin ⎝⎛⎭⎫x +π3-14 =sin x ⎝⎛⎭⎫12sin x +32cos x -14=12sin 2x +32sin x cos x -14=12·1-cos 2x 2+34sin 2x -14 =34sin 2x -14cos 2x=12⎝⎛⎭⎫32sin 2x -12cos 2x=12sin ⎝⎛⎭⎫2x -π6,∴f (x )∈⎣⎡⎦⎤-12,12.方法二 f (x )=sin x sin ⎝⎛⎭⎫x +π3-14=-12⎣⎡⎦⎤cos ⎝⎛⎭⎫x +x +π3-cos ⎝⎛⎭⎫x -x -π3-14=-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2x +π3-cos ⎝⎛⎭⎫-π3-14=-12cos ⎝⎛⎭⎫2x +π3+14-14=-12cos ⎝⎛⎭⎫2x +π3 ∴f (x )∈⎣⎡⎦⎤-12,12. 6.(多选)下列说法不正确的是( )A .存在x ∈R ,使得1-cos 3x =log 2110B .函数y =sin 2x cos 2x 的最小正周期为πC .函数y =cos 2⎝⎛⎭⎫x +π3的一个对称中心为⎝⎛⎭⎫-π3,0 D .若角α的终边经过点(cos(-3),sin(-3)),则角α是第三象限角答案 ABC解析 在A 中,因为cos x ∈[-1,1],所以1-cos 3x ≥0,因为log 2110<log 21=0, 所以不存在x ∈R ,使得1-cos 3x =log 2110,故A 错误; 在B 中,函数y =sin 2x cos 2x =12sin 4x 的最小正周期为π2,故B 错误; 在C 中,令2⎝⎛⎭⎫x +π3=π2+k π,k ∈Z , 得x =-π12+k π2,k ∈Z , 所以函数y =cos 2⎝⎛⎭⎫x +π3的对称中心为⎝⎛⎭⎫-π12+k π2,0,k ∈Z ,故C 错误; 在D 中,因为cos(-3)=cos 3<0,sin(-3)=-sin 3<0,所以角α是第三象限角,故D 正确.7.若α∈⎝⎛⎭⎫π2,π,sin α=31010,则tan 2α= . 答案 34解析 ∵α∈⎝⎛⎭⎫π2,π,sin α=31010, ∴cos α=-1-sin 2α=-1010, ∴tan α=sin αcos α=-3, ∴tan 2α=2tan α1-tan 2α=-2×31-(-3)2=34.8.已知sin α=cos 2α,α∈⎝⎛⎭⎫π2,π,则tan α= .答案 -33解析 ∵sin α=cos 2α=1-2sin 2α,α∈⎝⎛⎭⎫π2,π,∴sin α=12或sin α=-1(舍去), ∴α=5π6,则tan α=tan 5π6=-tan π6=-33. 9.(2021·淄博模拟)已知tan ⎝⎛⎭⎫π4+θ=3,则sin 2θ-2cos 2θ= .答案 -45解析 ∵tan ⎝⎛⎭⎫θ+π4=3, ∴tan θ=tan ⎣⎡⎦⎤⎝⎛⎭⎫θ+π4-π4=tan ⎝⎛⎭⎫θ+π4-tan π41+tan ⎝⎛⎭⎫θ+π4tan π4=3-11+3=12, ∴sin 2θ-2cos 2θ=2sin θcos θ-2cos 2θsin 2θ+cos 2θ=2tan θ-2tan 2θ+1=1-214+1=-45. 10.3tan 12°-3(4cos 212°-2)sin 12°= . 答案 -43解析 原式=3sin 12°cos 12°-32(2cos 212°-1)sin 12° =23⎝⎛⎭⎫12sin 12°-32cos 12°cos 12°2cos 24°sin 12°=23sin (-48°)2cos 24°sin 12°cos 12°=-23sin 48°sin 24°cos 24° =-23sin 48°12sin 48°=-4 3. 11.已知sin ⎝⎛⎭⎫α+π4=210,α∈⎝⎛⎭⎫π2,π.求: (1)cos α的值;(2)sin ⎝⎛⎭⎫2α-π4的值.解 (1)sin ⎝⎛⎭⎫α+π4=210, 即sin αcos π4+cos αsin π4=210, 化简得sin α+cos α=15,① 又sin 2α+cos 2α=1,②由①②解得cos α=-35或cos α=45, 因为α∈⎝⎛⎭⎫π2,π.所以cos α=-35. (2)因为α∈⎝⎛⎭⎫π2,π,cos α=-35, 所以sin α=45, 则cos 2α=1-2sin 2α=-725,sin 2α=2sin αcos α=-2425, 所以sin ⎝⎛⎭⎫2α-π4=sin 2αcos π4-cos 2αsin π4=-17250. 12.已知α,β为锐角,tan α2=12,cos(α+β)=-55. (1)求cos 2α的值;(2)求tan(α-β)的值.解 (1)∵tan α2=12, ∴tan α=2tan α21-tan 2α2=2×121-14=43. 又α为锐角,且sin 2α+cos 2α=1,tan α=sin αcos α, ∴sin α=45,cos α=35, ∴cos 2α=cos 2α-sin 2α=-725. (2)由(1)得,sin 2α=2sin αcos α=2425, 则tan 2α=sin 2αcos 2α=-247. ∵α,β∈⎝⎛⎭⎫0,π2,∴α+β∈(0,π).又cos(α+β)=-55, ∴sin(α+β)=1-cos 2(α+β)=255, 则tan(α+β)=sin (α+β)cos (α+β)=-2, ∴tan(α-β)=tan[2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.13.设θ∈R ,则“0<θ<π3”是“3sin θ+cos 2θ>1”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件答案 A解析 3sin θ+cos 2θ>1⇔3sin θ>1-cos 2θ=2sin 2θ⇔(2sin θ-3)sin θ<0⇔0<sin θ<32.当0<θ<π3时,0<sin θ<32;当0<sin θ<32时,2k π<θ<π3+2k π,k ∈Z 或2π3+2k π<θ<π+2k π,k ∈Z .所以0<θ<π3是3sin θ+cos 2θ>1的充分不必要条件.故选A. 14.在平面直角坐标系xOy 中,角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边交单位圆O 于点P (a ,b ),且a +b =75,则cos ⎝⎛⎭⎫2α+π2的值是 . 答案 -2425解析 由任意角的三角函数的定义得,sin α=b ,cos α=a .又a +b =75,∴sin α+cos α=75, 两边平方可得sin 2α+cos 2α+2sin αcos α=4925, 即1+sin 2α=4925,∴sin 2α=2425. ∴cos ⎝⎛⎭⎫2α+π2=-sin 2α=-2425.。

简单的三角恒等变换 课件

简单的三角恒等变换 课件

B.cos2α2=1+c2os α
C.tanα2=±
1-cos α 1+cos α
D.tan 2α=1-2tatnanα2α
解析:A.tanα2=1-sincoαs α不恒成立.恒成立的条件是 sin α≠0,
C.tanα2=±
1-cos 1+cos
α不恒成立.恒成立的条件是 α
cos
α≠-1,
D.tan 2α=1-2tatnanα2α不恒成立.恒成立的条件是 tan α≠±1,
cos θ+cos =_______________,⑦ cos θ-cos =_______________,⑧
上面的公式⑤⑥⑦⑧统称为和差化积公式.
θ+φ θ-φ 2sin 2 cos 2
θ+φ θ-φ 2cos 2 sin 2
θ+φ θ-φ 2cos 2 cos 2
-2sinθ+2 φsinθ-2 φ
12[sin(α+β)+sin(α-β)] 12[sin(α+β)-sin(α-β)]
由cos=cos αcos β-sin αsin β, cos=cos αcos β+sin αsin β 得cos αcos β=_________________,③ sin αsin β=___________________,④
上面的三个式子称为半角公式.同样有 tanα2=________=________.
1-cos α
(3)±
2
1+cos α
±
2
±
1-cos α 1+cos α
1-cos sin α
α=1+sincoαs
α
思考应用
1.试应用半角公式讨论,下列各式中恒成立的是
( ),如不恒成立,请指出应补充的条件.

4.6简单的三角恒等变换

4.6简单的三角恒等变换

1.公式的常见变形(1)1+cos α=2cos 2α2; 1-cos α=2sin 2α2. (2)1+sin α=(sin α2+cos α2)2; 1-sin α=(sin α2-cos α2)2. (3)tan α2=sin α1+cos α=1-cos αsin α. 2.辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ),其中sin φ=b a 2+b 2,cos φ=a a 2+b 2. 3.arcsin y 、arccos y 、arctan y 的意义arcsin y (|y |≤1)表示⎣⎡⎦⎤-π2,π2上正弦值等于y 的角;arccos y (|y |≤1)表示[0,π]上余弦值等于y 的角;arctan y 表示⎝⎛⎭⎫-π2,π2内正切值等于y 的角. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)y =3sin x +4cos x 的最大值是7.( × )(2)设α∈(π,2π),则 1-cos (π+α)2=sin α2.( × ) (3)在非直角三角形中有:tan A +tan B +tan C =tan A tan B tan C .( √ )(4)设5π2<θ<3π,且|cos θ|=15,那么sin θ2的值为155.( × )(5)公式a sin x +b cos x =a 2+b 2sin(x +φ)中φ的取值与a ,b 的值无关.( × ) (6)arcsin 13表示正弦值等于13的角.( × )1.已知cos α=13,α∈(π,2π),则cos α2等于( ) A.63 B.-63 C.33 D.-33答案 B解析 ∵α2∈(π2,π), ∴cos α2=- 1+cos α2=-23=-63. 2.2sin 235°-1cos 10°-3sin 10°的值为( ) A.1B.-1C.12D.-12答案 D解析 原式=2sin 235°-12⎝⎛⎭⎫12cos 10°-32sin 10° =-cos 70°2sin 20°=-12. 3.arccos ⎝⎛⎭⎫-32= ; arcsin ⎝⎛⎭⎫-22= . 答案 56π -π44.若f (x )=2tan x -2sin 2 x 2-1sin x 2cos x 2,则f ⎝⎛⎭⎫π12的值为 . 答案 8解析 ∵f (x )=2tan x +1-2sin 2 x 212sin x=2tan x +2cos x sin x =2sin x cos x =4sin 2x, ∴f ⎝⎛⎭⎫π12=4sin π6=8. 5.若锐角α、β满足(1+3tan α)(1+3tan β)=4,则α+β= .答案 π3解析 由(1+3tan α)(1+3tan β)=4,可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3. 又α+β∈(0,π),∴α+β=π3.题型一 三角函数式的化简与求值例1 (1)化简:2cos 4x -2cos 2x +122tan ⎝⎛⎭⎫π4-x sin 2⎝⎛⎭⎫π4+x = . (2)已知α∈⎝⎛⎭⎫0,π2,且2sin 2α-sin α·cos α-3cos 2α=0,则sin ⎝⎛⎭⎫α+π4sin 2α+cos 2α+1= .答案 (1)12cos 2x (2)268解析 (1)原式=12(4cos 4x -4cos 2x +1)2×sin ⎝⎛⎭⎫π4-x cos ⎝⎛⎭⎫π4-x ·cos 2⎝⎛⎭⎫π4-x =(2cos 2x -1)24sin ⎝⎛⎭⎫π4-x cos ⎝⎛⎭⎫π4-x =cos 22x 2sin ⎝⎛⎭⎫π2-2x =cos 22x 2cos 2x =12cos 2x . (2)∵α∈⎝⎛⎭⎫0,π2,且2sin 2α-sin α·cos α-3cos 2α=0,则(2sin α-3cos α)·(sin α+cos α)=0,∴2sin α=3cos α,又sin 2α+cos 2α=1,∴cos α=213,sin α=313, ∴sin ⎝⎛⎭⎫α+π4sin 2α+cos 2α+1 =22(sin α+cos α)(sin α+cos α)2+(cos 2α-sin 2α)=268. 思维升华 (1)三角函数式的化简要遵循“三看”原则,一看角,二看名,三看式子结构与特征.(2)三角函数式化简要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点.(1)cos π9·cos 2π9·cos ⎝⎛⎭⎫-23π9等于( ) A.-18B.-116C.116D.18 (2)若1+cos 2αsin 2α=12,则tan 2α等于( ) A.54 B.-54C.43D.-43 答案 (1)A (2)D 解析 (1)原式=cos π9·cos 29π·cos(-3π+49π) =-cos π9·cos 29π·cos 49π·sin π9sin π9=-12sin 29π·cos 29π·cos 49πsin π9=-18sin 89πsin π9=-18. (2)1+cos 2αsin 2α=2cos 2α2sin αcos α=cos αsin α=12,∴tan α=2,∴tan 2α=2tan α1-tan 2α=41-4=-43. 题型二 三角函数的求角问题例2 (1)已知锐角α,β满足sin α=55,cos β=31010,则α+β等于( ) A.3π4 B.π4或3π4 C.π4 D.2k π+π4(k ∈Z ) (2)已知方程x 2+3ax +3a +1=0(a >1)的两根分别为tan α、tan β,且α、β∈⎝⎛⎭⎫-π2,π2,则α+β等于( ) A.π8B.-3π4C.π8或-3π8D.π4或-3π4答案 (1)C (2)B解析 (1)由sin α=55,cos β=31010且α,β为锐角, 可知cos α=255,sin β=1010, 故cos(α+β)=cos αcos β-sin αsin β =255×31010-55×1010=22, 又0<α+β<π,故α+β=π4. (2)依题意有⎩⎪⎨⎪⎧tan α+tan β=-3a ,tan α·tan β=3a +1, ∴tan(α+β)=tan α+tan β1-tan α·tan β=-3a 1-(3a +1)=1. 又⎩⎪⎨⎪⎧tan α+tan β<0,tan α·tan β>0, ∴tan α<0且tan β<0.∴-π2<α<0且-π2<β<0, 即-π<α+β<0,结合tan(α+β)=1,得α+β=-3π4. 思维升华 通过求角的某种三角函数值来求角,在选取函数时,有以下原则:(1)已知正切函数值,则选正切函数.(2)已知正弦、余弦函数值,则选正弦或余弦函数.若角的范围是⎝⎛⎭⎫0,π2,则选正弦、余弦皆可;若角的范围是(0,π),则选余弦较好;若角的范围为⎝⎛⎭⎫-π2,π2,则选正弦较好. (1)已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( ) A.5π12B.π3C.π4D.π6(2)在△ABC 中,tan A +tan B +3=3tan A ·tan B ,则C 等于( )A.π3B.2π3C.π6D.π4 答案 (1)C (2)A解析 (1)∵α、β均为锐角,∴-π2<α-β<π2. 又sin(α-β)=-1010,∴cos(α-β)=31010. 又sin α=55,∴cos α=255, ∴sin β=sin [α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=55×31010-255×(-1010)=22. ∴β=π4. (2)由已知可得tan A +tan B =3(tan A ·tan B -1),∴tan(A +B )=tan A +tan B 1-tan A tan B=-3, 又0<A +B <π,∴A +B =23π,∴C =π3. 题型三 三角恒等变换的应用例3 已知函数f (x )=sin(x +θ)+a cos(x +2θ),其中a ∈R ,θ∈⎝⎛⎭⎫-π2,π2. (1)当a =2,θ=π4时,求f (x )在区间[0,π]上的最大值与最小值; (2)若f ⎝⎛⎭⎫π2=0,f (π)=1,求a ,θ的值.解 (1)f (x )=sin ⎝⎛⎭⎫x +π4+2cos ⎝⎛⎭⎫x +π2 =22(sin x +cos x )-2sin x=22cos x -22sin x =sin ⎝⎛⎭⎫π4-x ,因为x ∈[0,π],从而π4-x ∈⎣⎡⎦⎤-3π4,π4, 故f (x )在[0,π]上的最大值为22,最小值为-1. (2)由⎩⎪⎨⎪⎧ f ⎝⎛⎭⎫π2=0,f (π)=1. 得⎩⎪⎨⎪⎧cos θ(1-2a sin θ)=0,2a sin 2θ-sin θ-a =1, 由θ∈⎝⎛⎭⎫-π2,π2知cos θ≠0, 解得⎩⎪⎨⎪⎧ a =-1,θ=-π6. 思维升华 三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y =A sin(ωx +φ)+k 的形式再研究性质,解题时注意观察角、函数名、结构等特征.(1)(2014·课标全国Ⅱ)函数f (x )=sin(x +φ)-2sin φcos x 的最大值为 .(2)函数f (x )=sin(2x -π4)-22sin 2x 的最小正周期是 . 答案 (1)1 (2)π 解析 (1)因为f (x )=sin(x +φ)-2sin φcos x=sin x cos φ-cos x sin φ=sin(x -φ),-1≤sin(x -φ)≤1,所以f (x )的最大值为1.(2)f (x )=22sin 2x -22cos 2x -2(1-cos 2x ) =22sin 2x +22cos 2x -2=sin(2x +π4)-2, ∴T =2π2=π.8.化归思想和整体代换思想在三角函数中的应用典例 (12分)(2015·重庆)已知函数f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x .(1)求f (x )的最小正周期和最大值;(2)讨论f (x )在⎣⎡⎦⎤π6,2π3上的单调性.思维点拨 (1)讨论形如y =a sin ωx +b cos ωx 型函数的性质,一律化成y =a 2+b 2sin(ωx +φ)型的函数. (2)研究y =A sin(ωx +φ)型函数的最值、单调性,可将ωx +φ视为一个整体,换元后结合y =sin x 的图象解决.规范解答解 (1)f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x )=12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32,[4分] 因此f (x )的最小正周期为π,最大值为2-32.[6分] (2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π,[7分] 从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增,[9分] 当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减.[11分] 综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增;在⎣⎡⎦⎤5π12,2π3上单调递减.[12分] 温馨提醒 (1)讨论三角函数的性质,要先利用三角变换化成y =A sin(ωx +φ),φ的确定一定要准确.(2)将ωx +φ视为一个整体,设ωx +φ=t ,可以借助y =sin t 的图象讨论函数的单调性、最值等.[方法与技巧]1.三角函数的求值与化简要注意观察角、函数名称、式子结构之间的联系,然后进行变换.2.利用三角函数值求角要考虑角的范围.3.与三角函数的图象与性质相结合的综合问题.借助三角恒等变换将已知条件中的函数解析式整理为f (x )=A sin(ωx +φ)的形式,然后借助三角函数图象解决.[失误与防范]1.利用辅助角公式,a sin x +b cos x 转化时一定要严格对照和差公式,防止搞错辅助角.2.计算形如y =sin(ωx +φ), x ∈[a ,b ]形式的函数最值时,不要将ωx +φ的范围和x 的范围混淆.A 组 专项基础训练(时间:35分钟)1.(2015·陕西)“sin α=cos α”是“cos 2α=0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析 sin α=cos α⇒cos 2α=cos 2α-sin 2α=0; cos 2α=0⇔cos α=±sin αsin α=cos α,故选A.2.已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4等于( )A.16B.13C.12D.23答案 A解析 因为cos 2⎝⎛⎭⎫α+π4=1+cos 2⎝⎛⎭⎫α+π42=1+cos ⎝⎛⎭⎫2α+π22=1-sin 2α2,所以cos 2⎝⎛⎭⎫α+π4=1-sin 2α2=1-232=16,故选A.3.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( )A.118B.-118C.1718D.-1718答案 D解析 cos 2α=sin ⎝⎛⎭⎫π2-2α=sin ⎣⎡⎦⎤2⎝⎛⎭⎫π4-α=2sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α,代入原式,得6sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4-α,∵α∈⎝⎛⎭⎫π2,π,∴cos ⎝⎛⎭⎫π4-α=16,∴sin 2α=cos ⎝⎛⎭⎫π2-2α=2cos 2⎝⎛⎭⎫π4-α-1=-1718.4.若sin 2α=55,sin(β-α)=1010,且α∈⎣⎡⎦⎤π4,π,β∈⎣⎡⎦⎤π,3π2,则α+β的值是() A.7π4 B.9π4 C.5π4或7π4 D.5π4或9π4答案 A解析 ∵α∈⎣⎡⎦⎤π4,π,∴2α∈⎣⎡⎦⎤π2,2π.∵sin 2α=55,∴2α∈⎣⎡⎦⎤π2,π,∴α∈⎣⎡⎦⎤π4,π2,cos 2α=-255.∵β∈⎣⎡⎦⎤π,3π2,∴β-α∈⎣⎡⎦⎤π2,5π4,∴cos(β-α)=-31010,∴cos(α+β)=cos [2α+(β-α)]=cos 2αcos(β-α)-sin 2αsin(β-α) =⎝⎛⎭⎫-255×⎝⎛⎭⎫-31010-55×1010=22.又∵α+β∈⎣⎡⎦⎤5π4,2π,∴α+β=7π4.5.函数f (x )=sin(2x +θ)+3cos(2x +θ)⎝⎛⎭⎫|θ|<π2的图象关于点⎝⎛⎭⎫π6,0对称,则f (x )的单调递增区间为() A.⎣⎡⎦⎤π3+k π,5π6+k π,k ∈Z B.⎣⎡⎦⎤-π6+k π,π3+k π,k ∈Z C.⎣⎡⎦⎤-7π12+k π,-π12+k π,k ∈Z D.⎣⎡⎦⎤-π12+k π,5π12+k π,k ∈Z答案 C解析 ∵f (x )=sin(2x +θ)+3cos(2x +θ) =2sin ⎝⎛⎭⎫2x +θ+π3,由题意知2×π6+θ+π3=k π(k ∈Z ), ∴θ=k π-23π(k ∈Z ).∵|θ|<π2,∴θ=π3.∴f (x )=2sin ⎝⎛⎭⎫2x +23π.由2k π-π2≤2x +23π≤2k π+π2(k ∈Z ),得k π-712π≤x ≤k π-π12(k ∈Z ).故选C.6.已知tan(π4+θ)=3,则sin 2θ-2cos 2θ的值为 . 答案 -45解析 ∵tan(π4+θ)=3, ∴1+tan θ1-tan θ=3,解得tan θ=12. ∵sin 2θ-2cos 2θ=sin 2θ-cos 2θ-1=2sin θcos θsin 2θ+cos 2θ-cos 2θ-sin 2θsin 2θ+cos 2θ-1 =2tan θ1+tan 2θ-1-tan 2θ1+tan 2θ-1 =45-35-1=-45. 7.若tan α+1tan α=103,α∈(π4,π2),则sin(2α+π4)的值为 . 答案 -210解析 由tan α+1tan α=103得sin αcos α+cos αsin α=103, ∴1sin αcos α=103,∴sin 2α=35. ∵α∈(π4,π2),∴2α∈(π2,π), ∴cos 2α=-45. ∴sin(2α+π4)=sin 2αcos π4+cos 2αsin π4=22×(35-45)=-210. 8.若α、β是锐角,且sin α-sin β=-12,cos α-cos β=12,则tan(α-β)= . 答案 -73解析 ∵sin α-sin β=-12,cos α-cos β=12, 两式平方相加得:2-2cos αcos β-2sin αsin β=12, 即2-2cos(α-β)=12,∴cos(α-β)=34. ∵α、β是锐角,且sin α-sin β=-12<0,∴0<α<β<π2,∴-π2<α-β<0. ∴sin(α-β)=-1-cos 2(α-β)=-74. ∴tan(α-β)=sin (α-β)cos (α-β)=-73. 9.已知函数f (x )=2cos x (sin x +cos x ).(1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.解 (1)f ⎝⎛⎭⎫5π4=2cos 5π4⎝⎛⎭⎫sin 5π4+cos 5π4 =-2cos π4⎝⎛⎭⎫-sin π4-cos π4=2. (2)因为f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1=2sin ⎝⎛⎭⎫2x +π4+1, 所以T =2π2=π,故函数f (x )的最小正周期为π. 由2k π-π2≤2x +π4≤2k π+π2,k ∈Z , 得k π-3π8≤x ≤k π+π8,k ∈Z . 所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z . 10.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π6+sin ⎝⎛⎭⎫ωx -π6-2cos 2 ωx 2,x ∈R (其中ω>0). (1)求函数f (x )的值域;(2)若函数f (x )的图象与直线y =-1的两个相邻交点间的距离为π2,求函数f (x )的单调递增区间. 解 (1)f (x )=32sin ωx +12cos ωx +32sin ωx -12cos ωx -(cos ωx +1) =2⎝⎛⎭⎫32sin ωx -12cos ωx -1 =2sin ⎝⎛⎭⎫ωx -π6-1. 由-1≤sin ⎝⎛⎭⎫ωx -π6≤1, 得-3≤2sin ⎝⎛⎭⎫ωx -π6-1≤1, 所以函数f (x )的值域为[-3,1].(2)由题设条件及三角函数的图象和性质可知,f (x )的周期为π,所以2πω=π,即ω=2.所以f (x )=2sin ⎝⎛⎭⎫2x -π6-1,再由2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ).所以函数f (x )的单调递增区间为⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z ).B 组 专项能力提升(时间:25分钟)11.设α∈(0,π2),β∈(0,π2),且tan α=1+sin βcos β,则( )A.3α-β=π2B.2α-β=π2C.3α+β=π2D.2α+β=π2答案 B解析 由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β,∴sin(α-β)=cos α=sin(π2-α).∵α∈(0,π2),β∈(0,π2),∴α-β∈(-π2,π2),π2-α∈(0,π2),由sin(α-β)=sin(π2-α),得α-β=π2-α,∴2α-β=π2.12.定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β等于() A.π12 B.π6C.π4 D.π3答案 D解析 依题意有sin αcos β-cos αsin β=sin(α-β)=3314,又0<β<α<π2,∴0<α-β<π2, 故cos(α-β)=1-sin 2(α-β)=1314, 而cos α=17,∴sin α=437, 于是sin β=sin [α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =437×1314-17×3314=32, 故β=π3,故选D. 13.若f (x )=3sin x -4cos x 的一条对称轴方程是x =a ,则a 的取值范围可以是( )A.⎝⎛⎭⎫0,π4 B.⎝⎛⎭⎫π4,π2 C.⎝⎛⎭⎫π2,3π4D.⎝⎛⎭⎫3π4,π答案 D解析 因为f (x )=3sin x -4cos x =5sin(x -φ)⎝⎛⎭⎫其中tan φ=43且0<φ<π2,则sin(a -φ)=±1, 所以a -φ=k π+π2,k ∈Z ,即a =k π+π2+φ,k ∈Z ,而tan φ=43且0<φ<π2,所以π4<φ<π2,所以k π+3π4<a <k π+π,k ∈Z ,取k =0,此时a ∈⎝⎛⎭⎫3π4,π,故选D.14.设x ∈⎝⎛⎭⎫0,π2,则函数y =2sin 2x +1sin 2x的最小值为 . 答案 3 解析 方法一 因为y =2sin 2x +1sin 2x =2-cos 2x sin 2x, 所以令k =2-cos 2x sin 2x.又x ∈⎝⎛⎭⎫0,π2, 所以k 就是单位圆x 2+y 2=1的左半圆上的动点P (-sin 2x ,cos 2x )与定点Q (0,2)所成直线的斜率.又k min =tan 60°=3,所以函数y =2sin 2x +1sin 2x的最小值为 3. 方法二 y =2sin 2x +1sin 2x =3sin 2x +cos 2x 2sin x cos x=3tan 2x +12tan x =32tan x +12tan x. 因为x ∈(0,π2),所以tan x >0.所以32tan x +12tan x≥232tan x ·12tan x = 3. (当tan x =33,即x =π6时取等号) 即函数的最小值为 3.15.已知函数f (x )=2cos 2ωx -1+23cos ωx sin ωx (0<ω<1),直线x =π3是f (x )图象的一条对称轴. (1)试求ω的值;(2)已知函数y =g (x )的图象是由y =f (x )图象上各点的横坐标伸长到原来的2倍,然后再向左平移2π3个单位长度得到的,若g ⎝⎛⎭⎫2α+π3=65,α∈⎝⎛⎭⎫0,π2,求sin α的值. 解 f (x )=2cos 2ωx -1+23cos ωx sin ωx=cos 2ωx +3sin 2ωx=2sin ⎝⎛⎭⎫2ωx +π6. (1)由于直线x =π3是函数f (x )=2sin ⎝⎛⎭⎫2ωx +π6图象的一条对称轴, ∴sin ⎝⎛⎭⎫2π3ω+π6=±1. ∴2π3ω+π6=k π+π2(k ∈Z ), ∴ω=32k +12(k ∈Z ). 又0<ω<1,∴-13<k <13. 又∵k ∈Z ,从而k =0,∴ω=12. (2)由(1)知f (x )=2sin ⎝⎛⎭⎫x +π6, 由题意可得g (x )=2sin ⎣⎡⎦⎤12⎝⎛⎭⎫x +2π3+π6, 即g (x )=2cos 12x . ∵g ⎝⎛⎭⎫2α+π3=2cos ⎝⎛⎭⎫α+π6=65, ∴cos ⎝⎛⎭⎫α+π6=35. 又α∈⎝⎛⎭⎫0,π2, ∴π6<α+π6<2π3,∴sin ⎝⎛⎭⎫α+π6=45. ∴sin α=sin ⎣⎡⎦⎤⎝⎛⎭⎫α+π6-π6 =sin ⎝⎛⎭⎫α+π6cos π6-cos ⎝⎛⎭⎫α+π6sin π6 =45×32-35×12=43-310.。

高三数学人教版A版数学(理)高考一轮复习教案简单的三角恒等变换 简单的三角恒等变换1

高三数学人教版A版数学(理)高考一轮复习教案简单的三角恒等变换 简单的三角恒等变换1

第六节 简单的三角恒等变换 简单的三角恒等变换能运用公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).知识点一 半角公式1.用cos α表示sin 2 α2,cos 2 α2,tan 2 α2.sin 2α2=1-cos α2;cos 2 α2=1+cos α2; tan 2 α2=1-cos α1+cos α.2.用cos α表示sin α2,cos α2,tan α2.sin α2=±1-cos α2;cos α2=± 1+cos α2; tan α2=±1-cos α1+cos α.3.用sin α,cos α表示tan α2.tan α2=sin α1+cos α=1-cos αsin α.易误提醒 应用“sin α2=±1-cos α2”或“cos α2=± 1+cos α2”求值时,可由α2所在象限确定该三角函数值的符号.易混淆由α决定.必记结论 用tan α表示sin 2α与cos 2αsin 2α=2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[自测练习]1.已知cos θ=-15,5π2<θ<3π,那么sin θ2=( )A.105 B .-105 C.155D .-155解析:∵5π2<θ<3π,∴5π4<θ2<3π2.∴sin θ2=-1-cos θ2=-1+152=-155. 答案:D知识点二 辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ)⎝⎛⎭⎫其中tan φ=ba . 易误提醒 在使用辅助角公式易忽视φ的取值,应由点(a ,b )所在象限决定,当φ在第一、二象限时,一般取最小正角,当φ在第三、四象限时,一般取负角.[自测练习]2.函数f (x )=sin 2x +cos 2x 的最小正周期为( ) A .π B.π2 C .2πD.π4解析:f (x )=sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4, ∴T =π. 答案:A3.函数f (x )=sin x -cos ⎝⎛⎭⎫x +π6的值域为( ) A .[-2,2] B .[-3,3] C .[-1,1]D.⎣⎡⎦⎤-32,32 解析:∵f (x )=sin x -cos ⎝⎛⎭⎫x +π6=sin x -cos x cos π6+sin x sin π6=sin x -32cos x +12sin x =3⎝⎛⎭⎫32sin x -12cos x =3sin ⎝⎛⎭⎫x -π6(x ∈R ), ∴f (x )的值域为[-3,3]. 答案:B考点一 三角函数式的化简|化简:(1)sin 50°(1+3tan 10°);(2)2cos 4x -2cos 2x +122tan ⎝⎛⎭⎫π4-x sin 2⎝⎛⎭⎫x +π4.解:(1)sin 50°(1+3tan 10°) =sin 50°(1+tan 60°tan 10°)=sin 50°·cos 60°cos 10°+sin 60°sin 10°cos 60°cos 10°=sin 50°·cos (60°-10°)cos 60°cos 10°=2sin 50°cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.(2)原式=2cos 2x (cos 2x -1)+122tan ⎝⎛⎭⎫π4-x ·cos 2⎝⎛⎭⎫π4-x=-4cos 2x sin 2x +14cos ⎝⎛⎭⎫π4-x sin ⎝⎛⎭⎫π4-x =1-sin 22x2sin ⎝⎛⎭⎫π2-2x=cos 22x 2cos 2x =12cos 2x . 考点二 辅助角公式的应用|(1)函数y =sin 2x +2 3sin 2x 的最小正周期T 为________.[解析] y =sin 2x +23sin 2x =sin 2x -3cos 2x +3=2sin(2x -π3)+3,所以该函数的最小正周期T =2π2=π.[答案] π(2)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=________. [解析] f (x )=sin x -2cos x =5⎝⎛⎭⎫55sin x -255cos x =5sin(x -φ),其中sin φ=255,cos φ=55,当x -φ=2k π+π2(k ∈Z )时函数f (x )取到最大值,即θ=2k π+π2+φ时函数f (x )取到最大值,所以cos θ=-sin φ=-255.[答案] -255(1)利用a sin x +b cos x =a 2+b 2sin(x +φ)把形如y =a sin x +b cos x +k 的函数化为一个角的一种函数的一次式,可以求三角函数的周期、单调区间、值域、最值和对称轴等.(2)化a sin x +b cos x =a 2+b 2sin(x +φ)时φ的求法:①tan φ=ba ;②φ所在象限由(a ,b )点确定.已知函数f (x )=2sin x sin ⎝⎛⎭⎫x +π6. 求函数f (x )的最小正周期和单调递增区间. 解:f (x )=2sin x ⎝⎛⎭⎫32sin x +12cos x =3×1-cos 2x 2+12sin 2x=sin ⎝⎛⎭⎫2x -π3+32. 函数f (x )的最小正周期为T =π. 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,解得-π12+k π≤x ≤5π12+k π,k ∈Z ,所以函数f (x )的单调递增区间是⎣⎡⎦⎤-π12+k π,5π12+k π,k ∈Z .考点三 三角恒等变换的综合应用|三角恒等变换是高考必考内容,考查时多与三角函数的图象与性质、解三角形及平面向量交汇综合考查,归纳起来常见的命题探究角度有:1.三角恒等变换与三角函数性质的综合. 2.三角恒等变换与三角形的综合.3.三角恒等变换与向量的综合.探究一 三角恒等变换与三角函数性质的综合1.已知函数f (x )=3sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值; (2)若f ⎝⎛⎭⎫α2=34⎝⎛⎭⎫π6<α<2π3, 求cos ⎝⎛⎭⎫α+3π2的值. 解:(1)因为f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又f (x )的图象关于直线x =π3对称,所以2×π3+φ=k π+π2,k =0,±1,±2,…. 因为-π2≤φ<π2,所以k =0,所以φ=π2-2π3=-π6.(2)由(1)得f ⎝⎛⎭⎫α2=3sin ⎝⎛⎭⎫2·α2-π6=34, 所以sin ⎝⎛⎭⎫α-π6=14.由π6<α<2π3,得0<α-π6<π2, 所以cos ⎝⎛⎭⎫α-π6=1-sin 2⎝⎛⎭⎫α-π6=1-⎝⎛⎭⎫142=154. 因此cos ⎝⎛⎭⎫α+3π2=sin α=sin ⎣⎡⎦⎤⎝⎛⎭⎫α-π6+π6=sin ⎝⎛⎭⎫α-π6cos π6+cos ⎝⎛⎭⎫α-π6sin π6=14×32+154×12=3+158. 探究二 三角恒等变换与三角形的结合2.(2016·台州模拟)已知实数x 0,x 0+π2是函数f (x )=2cos 2ωx +sin ⎝⎛⎭⎫2ωx -π6(ω>0)的相邻的两个零点.(1)求ω的值;(2)设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若f (A )=32且b tan B +c tan C =2atan A,试判断△ABC 的形状,并说明理由.解:(1)f (x )=1+cos 2ωx +32sin 2ωx -12cos 2ωx =32sin 2ωx +12cos 2ωx +1 =sin ⎝⎛⎭⎫2ωx +π6+1, 由题意得T =π,∴2π2ω=π.∴ω=1.(2)由(1)得f (x )=sin ⎝⎛⎭⎫2x +π6+1, ∴f (A )=sin ⎝⎛⎭⎫2A +π6+1=32, 即sin ⎝⎛⎭⎫2A +π6=12. ∵0<A <π,∴π6<2A +π6<13π6,∴2A +π6=5π6,即A =π3.由b tan B +c tan C =2a tan A 得b cos B sin B +c cos C sin C =2a cos A sin A,所以cos B +cos C =2cos A =1, 又因为B +C =2π3,所以cos B +cos ⎝⎛⎭⎫2π3-B =1, 即sin ⎝⎛⎭⎫B +π6=1,所以B =C =π3. 综上,△ABC 是等边三角形. 探究三 三角恒等变换与向量的综合3.(2015·合肥模拟)已知向量a =⎝⎛⎭⎫cos ⎝⎛⎭⎫θ-π4,1,b =(3,0),其中θ∈⎝⎛⎭⎫π2,5π4,若a·b =1.(1)求sin θ的值; (2)求tan 2θ的值.解:(1)由已知得:cos ⎝⎛⎭⎫θ-π4=13,sin ⎝⎛⎭⎫θ-π4=223,sin θ=sin ⎣⎡⎦⎤⎝⎛⎭⎫θ-π4+π4=sin ⎝⎛⎭⎫θ-π4cos π4+cos ⎝⎛⎭⎫θ-π4·sin π4=4+26.(2)由cos ⎝⎛⎭⎫θ-π4=13得sin θ+cos θ=23,两边平方得:1+2sin θcos θ=29,即sin 2θ=-79,而cos 2θ=1-2sin 2θ=-429,∴tan 2θ=728. 三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y =A sin(ωx +φ)的形式再研究其性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.5.三角恒等变换与解三角形的综合的答题模板【典例】 (12分)(2015·高考山东卷)设f (x )=sin x cos x -cos 2⎝⎛⎭⎫x +π4. (1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝⎛⎭⎫A 2=0,a =1,求△ABC 面积的最大值.[思路点拨] (1)首先利用二倍角公式及诱导公式将f (x )的解析式化为“一角一函数”的形式,然后求解函数f (x )的单调区间.(2)首先求出角A 的三角函数值,然后根据余弦定理及基本不等式求出bc 的最大值,最后代入三角形的面积公式即可求出△ABC 面积的最大值.[规范解答] (1)由题意知f (x )=sin 2x2-1+cos ⎝⎛⎭⎫2x +π22=sin 2x 2-1-sin 2x2=sin 2x -12.(3分)由-π2+2k π≤2x ≤π2+2k π,k ∈Z ,可得-π4+k π≤x ≤π4+k π, k ∈Z ;(4分)由π2+2k π≤2x ≤3π2+2k π,k ∈Z ,可得π4+k π≤x ≤3π4+k π,k ∈Z , 所以f (x )的单调递增区间是⎣⎡⎦⎤-π4+k π,π4+k π(k ∈Z );(5分)单调递减区间是⎣⎡⎦⎤π4+k π,3π4+k π(k ∈Z ).(6分) (2)由f ⎝⎛⎭⎫A 2=sin A -12=0,得sin A =12,由题意知A 为锐角,所以cos A =32.(8分) 由余弦定理a 2=b 2+c 2-2bc cos A ,(9分) 可得1+3bc =b 2+c 2≥2bc ,(10分) 即bc ≤2+3,且当b =c 时等号成立. 因此12bc sin A ≤2+34.(11分)所以△ABC 面积的最大值为2+34.(12分) [模板形成][跟踪练习] 已知函数f (x )=23sin x cos x +2cos 2x -1(x ∈R ). (1)求函数f (x )的最小正周期及在区间⎣⎡⎦⎤0,π2上的最大值和最小值; (2)已知△ABC 为锐角三角形,A =π3,且f (B )=65,求cos 2B 的值.解:(1)由f (x )=23sin x cos x +2cos 2x -1得 f (x )=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6. 所以函数f (x )的最小正周期为π.因为f (x )=2sin ⎝⎛⎭⎫2x +π6在区间⎣⎡⎦⎤0,π6上为增函数,在区间⎣⎡⎦⎤π6,π2上为减函数, 又f (0)=1,f ⎝⎛⎭⎫π6=2,f ⎝⎛⎭⎫π2=-1, 所以f (x )在区间⎣⎡⎦⎤0,π2上的最大值为2,最小值为-1. (2)因为△ABC 为锐角三角形,且A =60°,所以⎩⎨⎧0<B <π2,0<C =2π3-B <π2,即B ∈⎝⎛⎭⎫π6,π2,所以2B +π6∈⎝⎛⎭⎫π2,7π6. 由(1)可知f (B )=2sin ⎝⎛⎭⎫2B +π6=65, 即sin ⎝⎛⎭⎫2B +π6=35,cos ⎝⎛⎭⎫2B +π6=-45, 所以cos 2B =cos ⎝⎛⎭⎫2B +π6-π6 =cos ⎝⎛⎭⎫2B +π6cos π6+sin ⎝⎛⎭⎫2B +π6sin π6 =3-4310.A 组 考点能力演练1.(2015·洛阳统考)已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B .-23C.13D.23解析:∵cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22=1+sin 2α2,∴cos 2⎝⎛⎭⎫α-π4=23. 答案:D2.已知2sin θ+3cos θ=0,则tan 2θ=( ) A.59 B.125 C.95D.512解析:∵2sin θ+3cos θ=0,∴tan θ=-32,∴tan 2θ=2tan θ1-tan 2θ=2×⎝⎛⎭⎫-321-94=125.答案:B3.sin 2α=2425,0<α<π2,则2cos ⎝⎛⎭⎫π4-α的值为( )A.15 B .-15C.75D .±15解析:因为sin 2α=cos ⎝⎛⎭⎫π2-2α=2cos 2⎝⎛⎭⎫π4-α-1,所以2cos ⎝⎛⎭⎫π4-α=±1+sin 2α,因为sin 2α=2425,所以2cos ⎝⎛⎭⎫π4-α=±75,因为0<α<π2,所以-π4<π4-α<π4,所以2cos ⎝⎛⎭⎫π4-α=75. 答案:C4.(2015·太原一模)设△ABC 的三个内角分别为A ,B ,C ,且tan A ,tan B ,tan C,2tan B 成等差数列,则cos(B -A )=( )A .-31010B .-1010C.1010D.31010解析:由题意得tan C =32tan B ,tan A =12tan B ,所以△ABC 为锐角三角形.又tan A =-tan(C +B )=-tan C +tan B 1-tan C tan B =-52tan B 1-32tan 2B =12tan B ,所以tan B =2,tan A =1,所以tan(B -A )=tanB -tan A 1+tan B tan A =2-11+2×1=13.因为B >A ,所以cos(B -A )=31010,故选D.答案:D5.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A.118 B .-118C.1718D .-1718解析:依题意得3(cos 2α-sin 2α)=22(cos α-sin α),cos α+sin α=26,(cos α+sin α)2=⎝⎛⎭⎫262=118,即1+sin 2α=118,sin 2α=-1718,故选D.答案:D6.计算sin 250°1+sin 10°=________.解析:sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos (90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12. 答案:127.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:法一:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α =1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α=1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 法二:令α=0,则原式=14+14=12. 答案:128.设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________.解析:∵sin 2α=2sin αcos α=-sin α,∴cos α=-12, 又α∈⎝⎛⎭⎫π2,π,∴sin α=32,tan α=-3, ∴tan 2α=2tan α1-tan 2α=-231-(-3)2= 3. 答案: 39.设函数f (x )=sin ωx +sin ⎝⎛⎭⎫ωx -π2,x ∈R . (1)若ω=12,求f (x )的最大值及相应x 的集合; (2)若x =π8是f (x )的一个零点,且0<ω<10,求ω的值和f (x )的最小正周期. 解:由已知:f (x )=sin ωx -cos ωx =2sin ⎝⎛⎭⎫ωx -π4. (1)若ω=12,则f (x )=2sin ⎝⎛⎭⎫12x -π4.又x ∈R ,则2sin ⎝⎛⎭⎫12x -π4≤2,∴f (x )max =2,此时12x -π4=2k π+π2,k ∈Z , 即x ∈⎩⎨⎧⎭⎬⎫x ⎪⎪x =4k π+3π2,k ∈Z . (2)∵x =π8是函数f (x )的一个零点, ∴2sin ⎝⎛⎭⎫π8ω-π4=0,∴π8ω-π4=k π,k ∈Z , 又0<ω<10,∴ω=2,∴f (x )=2sin ⎝⎛⎭⎫2x -π4,此时其最小正周期为π. 10.(2016·沈阳模拟)已知函数f (x )=sin x -3cos x +2,记函数f (x )的最小正周期为β,向量a =(2,cos α),b =⎝⎛⎭⎫1,tan ⎝⎛⎭⎫α+β2⎝⎛⎭⎫0<α<π4,且a·b =73. (1)求f (x )在区间⎣⎡⎦⎤2π3,4π3上的最值;(2)求2cos 2α-sin 2(α+β)cos α-sin α的值. 解:(1)f (x )=sin x -3cos x +2=2sin ⎝⎛⎭⎫x -π3+2, ∵x ∈⎣⎡⎦⎤2π3,4π3,∴x -π3∈⎣⎡⎦⎤π3,π, ∴f (x )的最大值是4,最小值是2.(2)∵β=2π,∴a·b =2+cos αtan(α+π)=2+sin α=73, ∴sin α=13, ∴2cos 2α-sin 2(α+β)cos α-sin α=2cos 2α-sin 2αcos α-sin α=2cos α =21-sin 2α=423. B 组 高考题型专练1.(2015·高考北京卷)已知函数f (x )=2sin x 2cos x 2-2sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值.解:(1)因为f (x )=22sin x -22(1-cos x ) =sin ⎝⎛⎭⎫x +π4-22,所以f (x )的最小正周期为2π. (2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4. 当x +π4=-π2,即x =-3π4时,f (x )取得最小值. 所以f (x )在区间[-π,0]上的最小值为f ⎝⎛⎭⎫-3π4=-1-22. 2.(2013·高考陕西卷)已知向量a =⎝⎛⎭⎫cos x ,-12,b =(3sin x ,cos 2x ),x ∈R ,设函数f (x )=a·b .(1)求f (x )的最小正周期;(2)求f (x )在⎣⎡⎦⎤0,π2上的最大值和最小值. 解:f (x )=⎝⎛⎭⎫cos x ,-12·(3sin x ,cos 2x ) =3cos x sin x -12cos 2x =32sin 2x -12cos 2x =cos π6sin 2x -sin π6cos 2x =sin ⎝⎛⎭⎫2x -π6. (1)f (x )的最小正周期T =2πω=2π2=π, 即函数f (x )的最小正周期为π.(2)∵0≤x ≤π2,∴-π6≤2x -π6≤5π6. 当2x -π6=π2,即x =π3时,f (x )取得最大值1. 当2x -π6=-π6,即x =0时,f (0)=-12, 当2x -π6=56π,即x =π2时,f ⎝⎛⎭⎫π2=12, ∴f (x )的最小值为-12.因此,f (x )在⎣⎡⎦⎤0,π2上的最大值是1,最小值是-12. 3.(2014·高考天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a -c =66b .sin B =6sin C .(1)求cos A 的值;(2)求cos ⎝⎛⎭⎫2A -π6的值. 解:(1)在△ABC 中,由b sin B =c sin C ,及sin B =6sin C ,可得b =6c .又由a -c =66b ,有a =2c .所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c 2=64. (2)在△ABC 中,由cos A =64,可得sin A =104. 于是,cos 2A =2cos 2A -1=-14, sin 2A =2sin A ·cos A =154. 所以cos ⎝⎛⎭⎫2A -π6=cos 2A ·cos π6+sin 2A ·sin π6=15-38.。

三角恒等变换所有公式

三角恒等变换所有公式

三角恒等变换所有公式三角恒等变换,又称三角恒等式,是指数学中关于三角函数的一类等式。

它们具有很重要的作用,可以用来化简、证明以及推导其他数学公式。

本文将从基本的三角恒等变换开始,逐步展开,总结了一些常用的三角恒等变换公式。

1.余弦函数的基本恒等变换:(1)余弦函数的定义:cosθ = x / r(2)余弦函数的平方:cos^2θ + sin^2θ = 1(3)余弦函数的倒数:1 + tan^2θ = sec^2θ(4)余弦函数的和差化积:cos(α + β) = cosα cosβ - sinα sinβcos(α - β) = cosα cosβ + sinα sinβ(5)余弦函数的倍角化积:cos2θ = 2cos^2θ - 1cos2θ = 1 - 2sin^2θ(6)余弦函数的半角化和:cos(θ/2) = ±√[(1 + cosθ) / 2]2.正弦函数的基本恒等变换:(1)正弦函数的定义:sinθ = y / r(2)正弦函数的平方:sin^2θ + cos^2θ = 1(3)正弦函数的倒数:1 + cot^2θ = csc^2θ(4)正弦函数的和差化积:sin(α + β) = sinα cosβ + cosα sinβsin(α - β) = sinα cosβ - cosα sinβ(5)正弦函数的倍角化积:sin2θ = 2sinθ cosθ(6)正弦函数的半角化和:sin(θ/2) = ±√[(1 - cosθ) / 2]3.正切函数的基本恒等变换:(1)正切函数的定义:tanθ = sinθ / cosθ(2)正切函数的平方:tan^2θ + 1 = sec^2θ(3)正切函数的倒数:1 + tan^2θ = csc^2θ(4)正切函数的和差化积:tan(α + β) = (tanα + tanβ) / (1 - tanα tanβ) tan(α - β) = (tanα - tanβ) / (1 + tanα tanβ)(5)正切函数的倍角化积:tan2θ = (2tanθ) / (1 - tan^2θ)(6)正切函数的半角化和:tan(θ/2) = ±√[(1 - cosθ) / (1 + cosθ)]4.余割、正割和余切函数的基本恒等变换:(1)余割函数的定义:cscθ = 1 / sinθ(2)倍角化积:csc2θ = cscθ cotθcsc2θ = 1 + 2 cot^2θ(3)非倍角化积:csc^2θ - cot^2θ = 1(4)正割函数的定义:secθ = 1 / cosθ(5)倍角化积:sec2θ = secθ tanθsec2θ = 1 + 2 tan^2θ(6)非倍角化积:sec^2θ - tan^2θ = 1(7)余切函数的定义:cotθ = 1 / tanθ(8)正割与余切的乘积:cotθ = 1 / tanθcotθ = cosθ / sinθ这些三角恒等变换公式是数学中非常基础且常用的,掌握它们可以更加灵活地运用三角函数进行计算操作。

数学课前引导简单的三角恒等变换(一)

数学课前引导简单的三角恒等变换(一)

3.2 简单的三角恒等变换(一)课前导引问题导入如右图所示,△ABC 中,AD⊥BC 于D ,AD=3,BD=m,DC=n ,BC=m+n ,且m ,n 满足3log 13log 1n m +<2.判定△ABC 的形状.思路分析:解答本题的关键是计算∠BAC.由已知得log 3m+log 3n <2⇒mn <9,设∠BAD=α,∠DAC=β,则tanα=3m ,tanβ=3n ,∴tan (α+β)=mn n m mn n m -+=-+=-+9)(39133tan tan 1tan tan βαβα>0.∴0<α+β<2π。

又∠B,∠C 为锐角,∴△ABC 是锐角三角形.温馨提示本题是几何、代数综合题,充分运用了m 、n 表示a 、β的正切是关键.知识预览1。

二倍角正弦公式S 2α的变形:由sin2α=2sinαcosα得出:sinα=ααcos 22sin ,cosα=ααsin 22sin . 2。

二倍角余弦公式的变形:cos2α=cos 2α—sin 2α=2cos 2α—1=1—2sin 2α可以得出1+cos2α=2cos 2α,1—cos2α=2sin 2α,cos 2α=22cos 1α+,sin 2α=22cos 1α-,tan 2α=αα2cos 12cos 1+-. 3.若用cosα表示sin 22α、cos 22α、tan 22α,得:sin 22α=2cos 1α-,cos 22α=2cos 1α+,tan 22α=ααcos 1cos 1+-。

还可以表示为sin 2α=±2cos 1α-,cos 2α=±2cos 1α+,tan 2α=±ααcos 1cos 1+-,根号前面的符号由2α所在的象限来确定,这组公式称为半角公式.。

高二数学简单的三角恒等变换教案(通用11篇)

高二数学简单的三角恒等变换教案(通用11篇)

高二数学简单的三角恒等变换教案(通用11篇)高二数学简单的三角恒等变换教案 1教学目标1、理解并掌握基本的三角恒等式,如和差化积、积化和差公式。

2、能够运用三角恒等式进行简单的三角恒等变换。

3、培养学生的逻辑推理能力和数学运算能力。

教学重点1、三角恒等式的理解和记忆。

2、三角恒等变换的方法和步骤。

教学难点三角恒等式的灵活运用和复杂三角表达式的化简。

教学准备1、多媒体课件,包含三角恒等式、例题和练习题。

2、黑板和粉笔。

教学过程一、导入新课复习上节课内容,回顾三角函数的定义和性质。

提出问题:如何利用已知的三角函数公式推导出新的三角恒等式?二、新课讲解1、讲解三角恒等式的基本概念,介绍和差化积、积化和差等公式。

2、通过实例演示如何使用三角恒等式进行三角恒等变换。

3、引导学生总结三角恒等变换的.一般方法和步骤。

三、课堂练习布置一些简单的三角恒等变换练习题,让学生尝试运用所学知识解决问题。

教师巡视指导,及时纠正学生的错误,并给予适当的提示和帮助。

四、巩固提升分析一些较复杂的三角恒等变换问题,引导学生思考如何灵活运用三角恒等式进行化简。

鼓励学生相互讨论,分享解题思路和方法。

五、课堂小结总结本节课的重点内容,强调三角恒等变换的重要性和应用价值。

布置课后作业,要求学生完成一些三角恒等变换的练习题,以巩固所学知识。

教学反思本节课通过实例演示和课堂练习,使学生初步掌握了三角恒等变换的基本方法和步骤。

但在处理较复杂问题时,部分学生仍显得不够熟练,需要进一步加强练习和指导。

在今后的教学中,可以设计更多具有针对性的练习题,帮助学生巩固和提高三角恒等变换的能力。

同时,也要注重培养学生的逻辑思维能力和数学运算能力,为后续的数学学习打下坚实的基础。

高二数学简单的三角恒等变换教案 2理解并掌握三角恒等变换的基本公式,包括正弦、余弦、正切的和差公式,二倍角公式,半角公式等。

能够运用三角恒等变换解决一些简单的三角函数化简、求值及证明问题,培养学生的逻辑推理能力和数学运算能力。

简单的三角恒等变换

简单的三角恒等变换

简单的三角恒等变换一、选择题1.已知x ∈(-π20),cos x =45,则tan2x =( ) A .-247 B .-724 C.724 D.2472.已知450°<α<540°,则12+1212+12cos2α的值是( ) A .-sin α2 B .cos α2 C .sin α2 D .-cos α23.已知θ是第三象限的角,且sin 4θ+cos 4θ=59,那么sin2θ的值为( ) A.223 B .-223 C.23 D .-234.若cos2αsin (α-π4)=-22,则sin α+cos α的值为( ) A .-72 B .-12 C.12 D.72 5.已知函数 f (x )=cos x sin x (x ∈R ),给出下列四个命题: ①若f (x 1)=-f (x 2),则x 1=-x 2;② f (x )的最小正周期是2π;③ f (x )在区间[-π4,π4]上是增函数;④ f (x )的图象关于直线x =3π4对称,其中为真命题的是( ) A .①②④ B .①③ C .②③ D .③④6. 设函数f (x )=sin ⎝⎛⎭⎫2x +π4+cos ⎝⎛⎭⎫2x +π4,则( ) A .y =f (x )在⎝⎛⎭⎫0,π2单调递增,其图像关于直线x =π4对称 B .y =f (x )在⎝⎛⎭⎫0,π2单调递增,其图像关于直线x =π2对称 C .y =f (x )在⎝⎛⎭⎫0,π2单调递减,其图像关于直线x =π4对称 D .y =f (x )在⎝⎛⎭⎫0,π2单调递减,其图像关于直线x =π2对称 7.若0<α<π2,-π2<β<0,cos (π4+α)=13,cos π4-β2)=33,则cos (α+β2)=( ) A.33 B .-33 C.539 D .-69二、填空题 8.设α是第二象限的角,tan α=-43,且sin α2<cos α2,则cos α2________. 9.已知1-cos 2αsin αcos α=1,tan(β-α)=-13,则tan(β-2α)等于________. 10.设α为第四象限的角,若sin3αsin α=135,则tan2α=__________. 三 解答题11.设函数 f (x )=sin(πx 4-π6)-2cos 2πx 8+1,求f (x )的最小正周期.12.已知函数f (x )=4cos 4x -2cos2x -1tan (π4+x )sin 2(π4-x ).(1)求f (-1712π)的值;(2)当x ∈[0,π2]时,求g (x )=12f (x )+sin2x 的最大值和最小值.13.(1)已知tan θ2=12,求cos2θ的值.(2)已知sin θ+cos θ=-15,θ∈(0,π),求cos θ2.14.已知0<α<π2,π2<β<π且tan α2=12sin(α+β)=513.(1)分别求cos α与cos β的值;(2)求tan α-β2的值.15.已知角A 、B 、C 为△ABC 的三个内角,OM →=(sin B +cos B ,cos C ),ON →=(sin C ,sin B -cos B ),OM →·ON →=-15.(1)求tan2A 的值;(2)求2cos 2A 2-3sin A -12sin (A +π4)的值.简单的三角恒等变换活页作业一、选择题1.(2011·湖北八校)已知x ∈(-π2,0),cos x =45tan2x =( ) A .-247 B .-724 C.724 D.247答案: A解析:方法一 因为x ∈(-π2,0),∴sin x <0,∴sin x =-35,∴sin2x =2sin x cos x =-2425,cos2x =2cos 2x -1=725,∴tan2x =sin2x cos2x =-247. 方法二 由方法一知:sin x =-35,∴tan x =-34, ∴tan2x =2tan x 1-tan 2x =-2472.已知450°<α<540°,则12+1212+12cos2α的值是( ) A .-sin α2 B .cos α2 C .sin α2 D .-cos α2答案:A解析: 原式=12+121+cos2α2 =12-12cos α=|sin α2|. ∵450°<α<540°,∴225°<α2<270°. ∴原式=-sin α2. 3.已知θ是第三象限的角,且sin 4θ+cos 4θ=59,那么sin2θ的值为( ) A.223 B .-223 C.23 D .-23答案:A解析: ∵sin 2θ+cos 2θ=1∴(sin 2θ+cos 2θ)2=sin 4θ+2sin 2θcos 2θ+cos 4θ=1∴2sin 2θcos 2θ=49,∴(sin2θ)2=89∵2k π+π<θ<2k π+3π2,∴4k π+2π<2θ<4k π+3π∴sin2θ>0,∴sin2θ=223. 4.若cos2αsin (α-π4)=-22,则sin α+cos α的值为( ) A .-72 B .-12 C.12 D.72 答案:C解析: cos2αsin (α-π4)=sin (π2-2α)sin (α-π4) =2sin (π4-α)cos (π4-α)sin (α-π4)=-2cos(π4-α) =-2(22sin α+22cos α)=-2(sin α+cos α)=-22. 所以sin α+cos α=12. 5.已知函数 f (x )=cos x sin x (x ∈R ),给出下列四个命题:①若f (x 1)=-f (x 2),则x 1=-x 2;② f (x )的最小正周期是2π;③ f (x )在区间[-π4,π4上是增函数;④ f (x )的图象关于直线x =3π4对称,其中为真命题的是( ) A .①②④ B .①③ C .②③ D .③④解析: f (x )=12sin2x ,由 f (x )的周期性知,①不正确.又 f (x )的周期T =2π2=π,∴②不正确.当x ∈[-π4,π4]时,2x ∈[-π2,π2], f (x )为增函数. ∴③正确.当x =34π时, f (x )=-12,为最小值. ∴x =34π是 f (x )的对称轴,④正确. 答案:D6.(2011·课标全国卷) 设函数f (x )=sin ⎝⎛⎭⎫2x +π4+cos ⎝⎛⎭⎫2x +π4,则( ) A .y =f (x )在⎝⎛⎭⎫0,π2单调递增,其图像关于直线x =π4对称 B .y =f (x )在⎝⎛⎭⎫0,π2单调递增,其图像关于直线x =π2对称C .y =f (x )在⎝⎛⎭⎫0,π2单调递减,其图像关于直线x =π4对称 D .y =f (x )在⎝⎛⎭⎫0,π2单调递减,其图像关于直线x =π2对称 解析:f (x )=2sin ⎝⎛⎭⎫2x +π4+π4=2sin ⎝⎛⎭⎫2x +π2=2cos2x , 所以y =f (x )在⎝⎛⎭⎫0,π2内单调递减,又f ⎝⎛⎭⎫π2=2cosπ=-2,是最小值. 所以函数y =f (x )的图像关于直线x =π2答案:D7.(2011·浙江卷)若0<α<π2,-π2<β<0,cos (π4α)=13,cos π4-β2)=33,则cos (α+β2)=( )A.33 B .-33 C.539 D .-69解析: ∵cos ⎝⎛⎭⎫π4+α=13,0<α<π2,∴sin ⎝⎛⎭⎫π4α=233.又∵cos ⎝⎛⎭⎫π4-β2=33,-π2<β<0, ∴sin ⎝⎛⎭⎫π4-β2=63,∴cos ⎝⎛⎭⎫α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫π4+α-⎝⎛⎭⎫π4-β2 =cos ⎝⎛⎭⎫π4αcos ⎝⎛⎭⎫π4-β2+sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-β2=13×33+223×63=539. 答案:C二、填空题8.设α是第二象限的角,tan α=-43,且sin α2<cos α2,则cos α2________. 解析:∵α是第二象限的角,∴α2可能在第一或第三象限,又sin α2<cos α2,∴α2为第三象限的角,∴cos α2<0.∵tan α=-43, ∴cos α=-35,∴cos α2=-1+cos α2=-55. 答案:-55 9.(2010·南通调研)已知1-cos 2αsin αcos α=1,tan(β-α)=-13,则tan(β-2α)等于________. 解析:由1-cos 2αsin αcos α=1得2sin 2αsin αcos α=1,∴tan α=12,从而tan(β-2α)=tan(β-α-α) =tan(β-α)-tan α1+tan(β-α)tan α=-13-121+⎝⎛⎭⎫-13×12=-1.答案:-110.(2011·杭州)设α为第四象限的角,若sin3αsin α=135,则tan2α=__________.解析 sin3αsin α=sin (2α+α)sin α=sin2αcos α+cos2αsin αsin α=135.∴2cos 2α+cos2α=135,2cos 2α-1+cos2α=85.∴cos2α=45.∵2kπ-π2<α<2kπ,∴4kπ-π<2α<4kπ,又∵cos2α=45>0,∴2α为第四象限的角。

简单的三角恒等变换(一)

简单的三角恒等变换(一)

x 2
1+cos x = sin x
=右边.所以原等式成立.
1.证明绝对恒等式要根据等式两边的特征,化繁为简、左右归一. 2.条件恒等式的证明要认真观察,比较已知条件与求证等式之间的联系,选择适当 途径化简证明.
【加固训练】
1+sin θ-cos θ 求证:
1+sin θ+cos θ
1+sin θ+cos θ +
1.下列各式与 tan α 相等的是( )
A.
1-cos 2α 1+cos 2α
B.1+sincoαs α
C.1-sicnosα2α
1-cos 2α D. sin 2α
1-cos 2α 【解析】选 D. sin 2α
=2si2nsαinc2oαs α
=csoins
α α
=tan α.
2.若 sin (π-α)=-
=14

3 2
sin 100°+
3 2
sin 100°=14
.
化简问题中的“三变” (1)变角:三角变换时通常先寻找式子中各角之间的联系,通过拆、凑等手段消除角 之间的差异,合理选择联系它们的公式; (2)变名:观察三角函数种类的差异,尽量统一函数的名称,如统一为弦或统一为切; (3)变式:观察式子的结构形式的差异,选择适当的变形途径.如升幂、降幂、配方、 开方等.
2+2cos 8 +2 1-sin 8 的化简结果是( ) A.4cos 4-2sin 4 B.2sin 4 C.2sin 4-4cos 4 D.-2sin 4 【解析】选 D.原式= 4cos24 +2 (sin4-cos 4)2 =|2cos 4|+2|sin 4-cos 4|=-2sin 4.
(3)选公式:涉及半角公式的正切值时,常用

三角恒等变换和解三角形公式

三角恒等变换和解三角形公式

三角恒等变换和解三角形公式三角恒等变换是指一类等式或恒等式,可以通过它们来简化或转换三角函数表达式。

这些变换可以帮助我们解决三角函数问题,并简化复杂的三角表达式。

解三角形公式是用来计算三角形各个角度和边长的公式。

下面将详细介绍三角恒等变换和解三角形公式。

一、三角恒等变换1.正弦、余弦和正切的基本恒等变换:(1) $\sin^2 \theta + \cos^2 \theta = 1$,这个等式被称为三角恒等式的基本等式,它适用于所有角度。

(2) $1 + \tan^2 \theta = \sec^2 \theta$,也是三角函数的基本恒等变换。

2.余弦、正切和余切的基本恒等变换:(1) $1 + \cot^2 \theta = \csc^2 \theta$,也是三角函数的基本恒等变换。

3.正弦和余弦的互补恒等变换:(1) $\sin(\frac{\pi}{2} - \theta) = \cos \theta$(2) $\cos(\frac{\pi}{2} - \theta) = \sin \theta$这两个恒等变换表明,两个角度的正弦和余弦互为相反数。

4.正切和余切的互补恒等变换:(1) $\tan(\frac{\pi}{2} - \theta) = \cot \theta$(2) $\cot(\frac{\pi}{2} - \theta) = \tan \theta$这两个恒等变换表明,两个角度的正切和余切互为倒数。

5.其他常用的三角恒等变换:(1) $\sin(-\theta) = -\sin \theta$(2) $\cos(-\theta) = \cos \theta$(3) $\tan(-\theta) = -\tan \theta$这些变换表明,正弦、余弦和正切函数在角度取相反数时会发生改变。

1.解直角三角形:(1)已知两个直角三角形的边长求第三边:- 斜边长:$c = \sqrt{a^2 + b^2}$- 一边长和斜边长:$b = \sqrt{c^2 - a^2}$或$a = \sqrt{c^2 -b^2}$(2)已知一个直角三角形的边长和一个角度,求其他边长和角度:- 正弦定理:$\frac{a}{\sin A} = \frac{b}{\sin B} =\frac{c}{\sin C}$- 余弦定理:$c^2 = a^2 + b^2 - 2ab \cos C$2.解一般三角形:(1)已知三个角度的和为180度- 内角和公式:$A + B + C = 180^\circ$(2)已知一个三角形的边长和一个角度,求其他边长和角度:- 正弦定理:$\frac{a}{\sin A} = \frac{b}{\sin B} =\frac{c}{\sin C}$- 余弦定理:$a^2 = b^2 + c^2 - 2bc \cos A$总结:三角恒等变换是一类等式或恒等式,可以用来简化或转换三角函数表达式,包括正弦、余弦和正切的基本恒等变换、余弦、正切和余切的基本恒等变换、正弦和余弦的互补恒等变换、正切和余切的互补恒等变换,以及其他常用的变换。

简单的三角恒等变换(课件)-高一数学(人教A版2019必修第一册)

简单的三角恒等变换(课件)-高一数学(人教A版2019必修第一册)

解:f(x)=sin x+
3cos
x=212sin
x+
3 2 cos
x
=2sin
xcos
π3+cos
xsin
π 3
=2sinx+π3.
∵-π2≤x≤π2,∴-π6≤x+π3≤56π,
∴-12≤sinx+π3≤1,即-1≤f(x)≤2.
经典例题
题型三 辅助角公式的应用
例 3-3 已知函数 f(x)=4cosxsin (x+ )-1.2来自223 2
cos
x
sin
x
3
3.
y
cos
2x
3
2 sin 2
x
1 2
cos
2x
3 sin 2x 1 cos 2x 1 cos 2x
2
2
3 sin 2x 1 2
1
sin
2x
6
4.
y
4
sin
x
cos
x
π 3
3
4
sin
1 2
cos
x
3 2
sin
x
3 2 sin x cos x 2
所以 cos α-2 β=
1+cos2α-β=
1+23635=7
65 65 .
经典例题
题型二 三角函数化简与证明
例 2 已知 π<α<32π,化简:
1+sin α

1+cos α- 1-cos α
1-sin α
1+cos α+
1-cos
. α
2
解:原式=
2csoisnα2α2+-cos2α2sinα2+
跟踪训练1
已知 α 为钝角,β 为锐角,且 sin α=45,sin β=1132,求 cos α-2 β的值.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


D.
1 cos tan 1 cos 2
2.已知2sin 1 cos , 则 tan A.2 1 B. 2

2
等于( C ). D.不存在
解: 当1+ cos 0时, tan 不存在;
2 当1 cos 0时, tan
1 C. 或不存在 2
(2)由(1)得:
sin sin 2sin cos
设 , 那么

2 ,

2
把 , 的值代入上式中得
sin sin 2 sin

2
cos

2
.
三角变换,应注意三角函数种类和式子结构特点

2 2

2

sin cos
sin

2
cos

2

2 sin 1 . 1 cos 2 2 cos cos 2 2 2
2sin

cos

cos cos 2 2
3.化简
1 cos 2 x . 1 x tan x 2 tan 2
2 cos 2 x 解:原式 2 x 2 x cos sin 2 2 x x sin cos 2 2
4 例2 已知sin , 且 ,试求 sin ,cos , tan 的值. 5 2 2 2 2
分析:先求 cos 的值,再利用倍角公式的变形公式 求半角的三角函数值.
4 解: sin , , 5 2 3 cos 1 sin 2 . 5
3.2 简单的三角恒等变换(一)
1.巩固两角和与差的正弦、余弦、正切公式,二倍角正 弦、余弦、正切公式; 2.能运用上述公式进行简单的三角恒等变换; 3.通过三角恒等变换的训练,培养转化与化归的数学思想.
复习巩固
1.两角和差的正弦、余弦、正切公式
2.二倍角正弦、余弦、正切公式
sin 2 2sin cos
2

2
, tan
2

2
吗?
二倍角公式的变形
例1
试以 cos 表示 sin
解: 是
2

2
, cos
2

2
, tan
2

2
.

2
的二倍,
cos 1 2 sin 2 即 sin
2

2
. .
1 cos2
2 = 2
由 cos 2 cos
2

2 1 cos 2 cos 2 . 2 1 cos2 2 即 tan = . 2 1 cos 2
cos 2 cos 2 sin 2 2 cos 2 1 1 2 sin 2
tan 2 2 tan 1 tan 2
与 有什么关系?那么cos 能用 的三角函数 2 2 表示出来吗?
反之,能用cos 表示 sin
2
Байду номын сангаас
2
, cos

4


2


2
.
sin 2 sin

2 2
2

1 cos 2 4 . 2 5 2 5 . 5

1 cos 2 1 cos . 2 2 5 5 cos . 2 5 sin 2 tan 2. 2
cos 2


和角公式的变形
例3 求证: 1 (1) sin cos sin sin ; 2 (2) sin sin 2 sin cos . 2 2
1 ,得
公式说明:
sin
2
1 cos2
2 = 2

1 cos 2 cos . 2
2
也称为降幂公式. 从左到右降幂扩角, 从右到左升幂缩角.
例1的结果还可以表示为:
sin cos tan

2

1 cos 2 , 2 1 cos 2 , 2 1 cos 2 , 1 cos 2
这两个式子的左右两边结构形式上有什么不同?
证明:(1) sin sin cos cos sin , sin sin cos cos sin .
将以上两式的左右两边分别相加,得
sin sin =2sin cos . 即sin cos 1 sin sin . 2
的变化,分析透彻.找到它们之间的联系,即学会“三
看”——看角、看函数名称、看式子结构.
1. 在例2证明过程中,如果不用(1)的结果, 如何证明(2)?
令 =
+
+
2 2 2 2 利用和差角公式展开,仿照(1)求解.
, =
+

.
2.在例2的证明中,用到哪种数学思想?

2

2
并称之为半角公式.符号由 所在象限决定. 2
思考:代数式变换与三角变换有什么不同? 代数式变换往往着眼于式子结构形式的变换. 对于三角变换,由于不同的三角函数式不仅会 有结构形式方面的差异,而且还会有所包含的角, 以及这些角的三角函数种类方面的差异,因此三角 恒等变换常常首先寻找式子所包含的各个角之间的 联系,这是三角式恒等变换的重要特点.
换元的思想,如把 + 看作,把 看作, 从而把含有,的三角函数式变换成,的 三角函数式.
1.下列各式恒成立的是( B ). 1 cos 1 cos 2 A.tan = B. cos 2 2 sin 2 2 tan C. 2 1 tan 2 2 tan
2cos 2 x sin x 1 sin 2 x. 2cos x 2
1.降幂公式;
2 1 cos 2 2 cos . 2 2.公式的灵活应用:正用、逆用、变形应用;
3.三角变换要三看:看角、看函数名称、看式子结构. 4.换元思想.
sin 2
1 cos2
2 =

不会宽容别人的人,是不配受到别人的宽 容的。 ——贝尔奈
相关文档
最新文档