燃气燃烧技术与设备_Chap6

燃气燃烧技术与设备_Chap6
燃气燃烧技术与设备_Chap6

第六章扩散式燃烧器

第一节燃烧器的分类与技术要求

一、燃烧器的分类

(一) 按一次空气系数分类

α=。

1. 扩散式燃烧器燃气和空气不预混,一次空气系数'0

α=。

2. 大气式燃烧器燃气和一部分空气预先混合,'0.2~0.8

α≥。

3. 完全预混式燃烧器燃气和空气完全预混,'1

(二) 按空气的供给方法分类

1.引射式燃烧器空气被燃气射流吸入或者燃气被空气射流吸入。

2.鼓风式燃烧器用鼓风设备将空气送入燃烧系统。

3.自然引风式燃烧器靠炉膛中的负压将空气吸入燃烧系统。

(三) 按燃气压力分类

1.低压燃烧器燃气压力在5000Pa以下。

2.高(中)压燃烧器燃气压力在5000Pa至3?105Pa之间。

更高压力的燃烧器目前尚未使用。

第二节自然引风式扩散燃烧器

按照扩散式燃烧方法设计的燃烧器称为扩散式燃烧器。扩散式燃烧器的一次空气系数α=,燃烧所需要的空气在燃烧过程中供给。

'0

一、自然引风式扩散燃烧器的构造及工作原理Array

(三) 冲焰式扩散燃烧器

(四) 炉床式扩散燃烧器

二、自然引风式扩散燃烧器的火孔热强度

(一) 炼焦煤气

四、自然引风式扩散燃烧器的计算

(一)管式扩散燃烧器的计算

p 6

p 10l

q v H

(6-1)

式中 p v ——火孔出口速度(Nm/s);

p q ——火孔热强度(kW/mm 2);

l H ——燃气低热值(kJ/Nm 3)

p p

Q F q =

(6-2)

式中 p F ——火孔总面积(mm 2); Q ——燃烧器热负荷(kW)。

p

2

p 4

F n d π

=

(6-3)

g p 2F F ≥ (6-4)

2

p

g g 2p 12288

v T h h ρμ=?+? (6-5)

式中 h ——头部所需压力(Pa);

p μ——火孔流量系数,与火孔的结构特性有关。在管子上直接打孔时,p μ=0.65~0.70。

在管子上直接钻直径较小的孔时(p d =1~1.5mm),当

p

h

d =0.75,p μ=0.77;当

p h d =1.5,p μ=0.85(h —火孔深度)。对于管嘴,当p

h d =2~4时,p μ=0.75~0.82,对于直径小、孔深浅的火孔,p μ取较小值;

p v ——火孔出口速度(Nm/s);

g ρ——燃气密度(kg/Nm 3); g T ——火孔前燃气温度(K);

h ?——炉膛压力(Pa),当炉膛为负压时,h ?取负值。

(二)炉床式扩散燃烧器的计算

g

g g

10.0036L F v =

(6-6)

式中 g F ——燃气分配管截面积(mm 2);

g v ——分配管内燃气的流速(m/s),一般取15~20m/s ; g L ——一个燃烧器的燃气耗量(Nm 3/h) 。

a v μ=(6-7)

式中 a v ——空气流经火道最小截面的速度(m/s); h ?——炉膛负压(Pa); a ρ——空气密度(kg/Nm 3); a μ——流量系数,一般取a μ=0.7。

0g a

out g a 13600288

g V L T b d l v α=

+

(6-8)

式中 b ——火道宽度(m); α——过剩空气系数;

g l ——燃气分配管长度(m); a T ——空气温度(K); out g d ——燃气分配管外径(m)。

g g a

1288

3600l l L H l q T ?=

(6-9)

式中 l H ——燃气低热值(kJ/Nm 3);

l q ——长度热强度(kW/m),对小型采暖锅炉, l q =230~460kW/m , 对燃烧室高度小于3.0m 的小型工业锅炉, l q =1150~1750kW/m , 对燃烧室高度大于3.0m 的中型工业锅炉, l q = 2300~3560kW/m , out

1.3752

b d h -=

(6-10)

out 0.364()h b d =-

s p sin h

K d α= (6-11)

式中p d ——火孔直径(mm);

s K ——系数,按图3-10查得;

α——燃气射流与空气流的交角;

p v ——火孔出口的燃气流速(m/s);

g ρ——燃气密度(kg/m 3)。

0.75(2~5)mm s h =+

(6-12)

()'23g p p 0.0036

m /h 4

L d v π

=

(6-13)

火孔数目n 为:

g 'g

L n L

= (6-14)

()g 1

mm 2

n l s +=

? (6-15)

2

2

p

p g 2p

g 1+2F v H F ξρμ????

??=

? ?????

?

?

∑ (6-16)

式中 H ——燃气所需要的压力(Pa);

p μ——火孔流量系数,按式(6-5)取用;

ξ∑——从燃气阀门到火孔的总阻力系数,通常取

ξ

∑=2.5;

p F ——总的火孔截面积(mm 2); g F ——燃气分配管截面积(mm 2);

p v ——火孔出口速度(m/s)。

第三节 鼓风式扩散燃烧器

一、鼓风式燃烧器的构造和工作原理 (一)套管式燃烧器

(二)旋流式燃烧器

三、鼓风式燃烧器的计算

(一)蜗壳式燃烧器(图6-17)的设计计算方法:

p p

Q

F q =

(6-17)

式中 p F ——空气通道面积(m 2); Q ——燃烧器热负荷(kW);

p q ——喷头热强度,通常=(35~40)?103(kW/m 2)。

2

p ab

D =0.35时天然气蜗壳燃烧器的火焰近似长度 表6-1

蜗壳供空气时的回流区尺寸 表6-2

蜗壳结构比2p

ab D

0.6 0.45 0.35 0.2

回流区直径与喷头直径比

bf

p

D D 0.41 0.41 0.47 0.69

回流区面积与喷头面积比2

bf

p D

D ?? ? ???

0.167 0.167 0.22 0.48

① 这种燃烧器的喷头直径等于空气通道直径。

p bf

2

D D -?=

(6-18)

式中 △——环形通道宽度(cm);

bf D ——回流区直径(cm)。

0g a

a 22p bf

110.36sin 288

()4

V L T v D D απβ=

-

(6-19)

式中 a v ——空气螺旋运动的实际速度(m/s),其气流轴线与燃烧器轴线的交角为90β?-;

α——过剩空气系数;

0V ——理论空气需要量(Nm 3/Nm 3); g L ——燃气耗量(Nm 3/h);

a T ——空气温度(K);

β——空气螺旋运动的平均上升角,其值与蜗壳结构有关,按表6-3确定。

空气螺旋运动的平均上升角β 表6-3

22

a in

a a a (1)22

v v H ρξρ=+-

(6-20)

式中 a H ——燃烧器前空气所需的压力(Pa);

ξ——空气入口动压的阻力系数,对蜗壳供气,

2

p ab

D =0.35时,ξ=2.8~2.9;对切向供气,

2p

ab

D =0.35时,ξ=1.8~2.0; in v ——燃烧器入口的空气流速(m/s)。

0g a

in 10.0036288

V L T v ab α=

(6-21)

式中 a 、b ——空气入口尺寸(mm)。 2.燃气系统计算

g

'g '

g

10.0036L F v =

(6-22)

式中 '

g F ——燃气分配室截面积(mm 2);

'g v ——燃气分配室内燃气的流速(m/s),一般取'

g v =15~20m/s 。

11

22

d h d h ≈ max 0.5 1.375h h D h =+=

(6-23)

式中 m a x

h

——射流边界最大穿透深度;

h ——射流穿透深度;

D ——射流直径。

max 20.5h =?,20.5

0.361.375

h =

?=? (6-24)

max max

12220.8()0.8(1.3750.75)0.18h h D h =-=-=?

10.13h =?

(6-25)

0.75sin h

D β=

(6-26)

min 0.75sin h

s β

(6-27)

max min

(2)

p D h Z s π-≤

(6-28)

2

22

0.74

d F z π= (6-29)

F g

g

L F v ε=

(6-30)

式中 F ε——压缩系数(按式(4-34)计算)

F g

g 222

0.9

L v z d ε= (6-31)

20.9s

d K =(6-32)

2

g

g g 2

H g 112

v H ρεμ= (6-33)

式中 g H ——燃气所需压力(Pa);

H ε——压缩系数(按式(4-38)计算);

g μ——燃气孔口流量系数,按式(6-5)选用。

(二)套管式燃烧器(图6-11)的设计计算方法:

g o v

或a o v =

(6-34)

式中 g o v 、a o v ——燃气、空气在出口截面的流速(m/s);

P ——燃烧器前燃气压力或空气压力(Pa);

0ρ——燃气或空气的密度(kg/m 3); T ——燃气或空气的温度(K);

ξ——燃烧器阻力系数,对图6-11所示结构形式a ξ=1.0;g ξ=1.5。

g g g

0.0036L F v =

a

a a

0.0036L F v =

式中 g F ——燃气喷口截面积(mm 2);

a F ——空气套管截面积(mm 2); g L ——燃气用量 (m 3/h);

a L ——空气量(m 3/h)。

g d =

a d =

式中 g d ——燃气喷口直径(mm);

a d ——空气套管直径(mm)。

3.计算燃气和空气在出口截面上的实际流速

g g

0o T v v T = a a

o T v v T =

d=

m

L——燃气-空气混合物流量(m3/s);

式中

m

v——燃气-空气混合物出口速度(m/s);

m

d——燃烧器出口直径(mm)

m

燃气燃烧设备

燃气燃烧设备 (浅谈燃气热水器的认识及对安全认识感想) 科目:燃气燃烧设备 姓名:冯松松学号:2013 2321 073 系别:能源工程系专业:城市热能应用技术

浅谈燃气热水器的认识对安全认识感想一.燃气热水器概述 1.热水器分为燃气热水器.电热水器.太阳能热水器三大类。目前在城市内燃气热水器占较大份额 2.燃气热水器定义: 燃气热水器又称燃气热水炉,它是指以燃气作为燃料,通过燃烧加热方式将热量传递到流经热交换器的冷水中以达到制备热水的目的的一种燃气用具。燃气热水器由于其热效率高、加热速度快、温度调节稳定、可连续使用的优点。目前市场上主要卖的是强制排烟热水器。 3.工作原理:燃气热水器的基本工作原理是冷水进入热水器,流经水气联动阀体在流动水的一定压力差值作用下,推动水气联动阀门,并同时推动直流电源微动开关将电源接通并启动脉冲点火器,与此同时打开燃气输气电磁阀门,通过脉冲点火器继续自动再次点火,直到点火成功进入正常工作状态为止。通常一台合格的燃气热水器,指各项性能指标符合GB6932-2001《家用燃气快速热水器》国家标准要求的燃气热水器,从点火状态到进入正常工作状态的整个过程是全自动控制,无需人为调整或附加设置,只要打开冷水开关或接通冷水水源,通过水量调节装置和气量调节装置调节得到合适的水量与水

温。 4. 燃气热水器的发展: 燃气热水器的发展经历了直排、烟道、强排、鼓风、平衡等阶段。根据国家规定,现阶段,国内只能生产和销售强排以上机型。二.行业概述与市场分析 1.自1979年诞生第一台燃气热水器,我国热水器行业已走过了三十年的发展历程。前期,燃气热水器独霸市场十几年,直到90年代中后期,电热水器才开始在市场走俏,并逐渐超过燃气热水器,占据市场主导地位。而燃气热水器并未坐以待毙,自1999年开始调整产业结构,强制性淘汰直排式产品,使安全问题基本得到解决。2008年又进一步提升能效标准,淘汰热效率在84%以下的产品,提升行业的技术门槛,规范现有市场。经历了这一次次的洗礼后,在国家政策引导和厂商共同努力下,2009年燃气热水器市场强力反弹。 2.强排式产品已占据燃气热水器市场87.8%的零售额份额,成为市场绝对主流。在政府的节能政策支持下,高效燃气热水器必然会得到发展,成为21世纪的主导产品之一。 3.国家通过政策引导行业结构升级:相继出台强制淘汰直排式产品、提升能效等级标准等强制升级产业结构的政策,即使是针对开拓农村市场的“热水器下乡”产品招标,也要求参与竞标的燃气热水器产品一律为强排式,且热能效率在2级以上,使得燃气热水器行业升级的压力加剧。

燃气轮机复习题(新)

电站燃气轮机课程复习思考题 1. 词语解释: (1)循环效率:当工质完成一个循环时,把外界加给工质的热能q转化成为机械功l c的百分数。 (2)装置效率(发电效率): 当工质完成一个循环时,把外界加给工质的热能q转化成为电功l s的百分数。 (3)净效率(供电效率): 当工质完成一个循环时,把外界加给工质的热能q转化成为净功l e的百分数。 (4)比功:进入燃气轮机压气机的1kg的空气,在燃气轮机中完成一个循环后所能对外输出的机械功(或电功)l s(kJ/kg),或净功l e(kJ/kg). (5)压气机的压缩比: 压气机的出口总压与进口总压之比。 (6)透平的膨胀比: 透平的进口总压与出口总压之比。 (7)压气机入口总压保持系数:压气机的入口总压与当地大气压之比。 (8)燃烧室总压保持系数:燃烧室的出口总压与入口总压之比。 (9)透平出口总压保持系数:当地大气压与透平的排气总压之比。 (10)压气机的等熵压缩效率:对于1kg同样初温度的空气来说,为了压缩达到同样大小的压缩比,等熵压缩功与所需施加的实际压缩功之比。 (11)透平的等熵膨胀效率:对于1kg同样初温度的燃气来说,为了实现同样的膨胀比,燃气对外输出的实际膨胀功与等熵膨胀功之比。 (12)温度比:循环的最高温度与最低温度之比。 (13)回热循环:在简单循环回路中加入回热器,当燃气透平排出的高温燃气流经回热器时,可以把一部分热能传递给由压气机送来的低温空气。这样,就能降低排气温度,而使进到燃烧室燃料量减少,从而提高机组的热效率。 (14)热耗率:当工质完成一个循环时,把外界加给工质的热能q,转化成机械功(或电工)

低热值燃气燃烧技术的应用与分析

低热值燃气燃烧技术的应用与分析 摘要:本文主要针对低热值燃气燃烧技术的应用与分析展开了探讨,详细阐述 了低热值燃气的燃烧特性,并对低热值燃气的稳燃技术和低热值燃气的低氮燃烧 技术作了系统的分析,以期能为有关方面的需要提供参考借鉴。 关键词:低热值燃气;燃烧技术;应用 所谓的低热值燃气,是指煤或焦炭等固体燃料气化所得热值较低的气体燃料。在当前节能降耗的大社会背景下,低热值燃气的应用将会具有着极佳的经济效益 和社会意义,因此,我们需要对低热值燃气的燃烧技术进行有效的分析,从而为 推广其的应用带来极大的帮助。 1 低热值燃气燃烧特性 低热值气体燃料并没有明确的概念,通常根据气体燃料自身发热量可将气体 燃料分为高热值燃料(Q>15.07MJ/m3)、中热值燃料(6.28MJ/m3<Q< 15.07MJ/m3)及低热值燃料(Q<6.28MJ/m3),工业中常见的低热值气体燃料 主要有化工过程低热值尾气、高炉煤气、石油化工行业冶炼尾气、煤矿低浓度瓦 斯气等。其中,高炉煤气、煤层气等热值介于3.0~6.28MJ/m3的低热值燃料的研究应用已逐步展开,但在工业生产中还存在一些工业废气,含有少量的可燃成分,热值非常低,甚至远低于3.0MJ/m3,这种超低热值燃气种类很多,比如某些煤层气、生物质气化气、垃圾掩埋坑气、炭黑尾气、一些工艺废气等。超低热值燃气 比低热值燃气点火、稳燃更困难,能量密度低,长距离输送不经济,在当地没有 合适的热用户时只能直接放散,既浪费能源又污染环境。 低热值燃气燃烧特性主要包括以下几个方面: (1)燃气中可燃成分少,热值低,着火温度高,火焰传播速度慢,难以点火及稳定燃烧; (2)燃气压力低且波动范围大,压力过低、速度过慢时容易回火; (3)低热值燃气多为化工生产线的尾气,需对多条生产线进行汇总综合利用,燃气的流量变化大; (4)化工工艺过程的操作对尾气的成分及热值影响较大,尾气的燃烧工艺如配风系数需及时匹配调整,否则容易熄火。 2 低热值燃气的稳燃技术 根据燃烧理论,为保证低热值燃气的稳定燃烧,主要的稳燃措施包括优化着 火条件、提高火焰温度以及优化燃烧场分布等。 (1)优化着火条件 低热值气体燃料的着火极限高,着火比较困难,燃烧温度也较低。为此,需 要提高燃气热值,降低燃料着火下限。如掺烧高热值燃料,提高混合燃气的热值,降低着火温度;燃料和空气预热提高初始温度。 (2)提高火焰温度 燃烧温度的提髙可强化炉内辐射换热并改善炉内的燃烧状况。而实际火焰温 度与装置类型、燃烧效率、燃料种类、空气/燃气预热温度等有关。如:强化燃料和空气的混合,降低不完全燃烧损失;合理设计炉膛结构,进行绝热燃烧,减少 系统散热量;降低空气过剩系数或采用纯氧/富氧燃烧。 (3)优化燃烧场分布 燃烧场的分布包括燃气、空间以及烟气在燃烧空间的分布,燃烧场特别是温 度场的优化分布来源于高温烟气对新鲜燃气、空气的加热,进而促进空气与烟气

燃气轮机结构-燃烧室

第三章燃气轮机 3.1概述 (1)燃烧室功用及重要性 1.保证燃机在各种工况下,将燃料化学能转换为热能,加 热压气机压缩的空气,用于涡轮膨胀做功。 2.燃烧室是燃机的主要部件之一,燃机的性能、可靠性、寿命 皆与它有密切关系。 (2)燃烧室的工作条件 ①燃烧室在高温、大负荷下工作 ②燃烧室在变工况下工作 ③燃烧室在具有腐蚀性的环境下工作 ④燃烧室内的燃烧过程是一个极其复杂的物理化学过程 ⑤燃烧室中的燃烧在高速气流及贫油混合气情况下进行 (“空气分股”、“减速扩压”、“反向回流”) (3)燃烧室的设计要求 ①不同工况下,燃烧室工作应稳定 ②燃烧要安全 ③燃烧室具有最小的流体阻力 ④燃烧室出口温度场应能满足涡轮的要求 ⑤在任何使用条件下,燃烧室都应该迅速、可靠地启动点火,且联 焰性好 ⑥工作寿命长 ⑦燃烧室的尺寸和质量要小 ⑧排气污染应能满足国家标准要求 ⑨检视、装拆和维修应当方便 3.2三种基本类型燃烧室 的结构概述 (1)分管燃烧室 1.结构特点 管形火焰筒的外围包有一个单独的壳体,构成一个分管,沿燃气轮机周围6-16 个这样的分管,各分管用传焰管连通,以传播火焰和均衡压力。 2.优点: ①装拆、维修、检修方便 ②因各个分管的工质流量不大,调试容易,实验结果比较接近实际 情况 3.缺点: ①装拆、维修、检修方便 ②因各个分管的工质流量不大,调试容易,实验结果比较接近实际 情况

(2)环管燃烧室 1 .结构特点: 若干个火焰筒均匀排列安装在同一个壳体内,相邻火焰燃烧区 之间用传焰管连通。 2.优点: ①适合与轴流式压气机配合,布局紧凑、尺寸小、刚性小; ②气流转弯小,流体阻力小,热散失亦小; ③调试比较容易,加工制造的工作量比分管小。 3.缺点: ①燃烧室出口温度场沿周向不够均匀; ②燃烧室的流体损失较大; ③耗费的材料、工时较多; ④质量较重。

凯勒特燃烧技术与设备(上海)有限公司_中标190925

招标投标企业报告 凯勒特燃烧技术与设备(上海)有限公司

本报告于 2019年9月25日 生成 您所看到的报告内容为截至该时间点该公司的数据快照 目录 1. 基本信息:工商信息 2. 招投标情况:中标/投标数量、中标/投标情况、中标/投标行业分布、参与投标 的甲方排名、合作甲方排名 3. 股东及出资信息 4. 风险信息:经营异常、股权出资、动产抵押、税务信息、行政处罚 5. 企业信息:工程人员、企业资质 * 敬启者:本报告内容是中国比地招标网接收您的委托,查询公开信息所得结果。中国比地招标网不对该查询结果的全面、准确、真实性负责。本报告应仅为您的决策提供参考。

一、基本信息 1. 工商信息 企业名称:凯勒特燃烧技术与设备(上海)有限公司统一社会信用代码:91310115785156485T 工商注册号:310000400455163组织机构代码:785156485 法定代表人:刘茂树成立日期:2006-01-26 企业类型:有限责任公司(外国法人独资)经营状态:存续 注册资本:335万美元 注册地址:上海市浦东新区航头镇沪南公路4880弄89号 营业期限:2006-01-26 至 2036-01-25 营业范围:生产、加工环保和燃烧设备及其相关的零部件,销售公司自产产品,提供产品售后服务、技术服务和配套安装服务;上述同类产品的批发、进出口、佣金代理(拍卖除外),并提供相关配套服务(不涉及国营贸易管理商品,涉及配额、许可证管理商品的,按国家有关规定办理申请)。【依法须经批准的项目,经相关部门批准后方可开展经营活动】 联系电话:*********** 二、招投标分析 2.1 中标/投标数量 企业中标/投标数: 个 (数据统计时间:2017年至报告生成时间) 2

燃气轮机合成气燃烧室燃烧稳定性的实验研究

编订:__________________ 审核:__________________ 单位:__________________ 燃气轮机合成气燃烧室燃烧稳定性的实验研究Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-1217-35 燃气轮机合成气燃烧室燃烧稳定性 的实验研究 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 燃气轮机是通过燃烧将化学能转化为机械能的装置,目前燃气轮机广泛的应用到发电、管道输送、船舶动力等领域。对于燃气轮机,燃烧室是燃气轮机最重要的部位,实现稳定安全的燃烧是十分重要的,只有保证燃烧室的稳定燃烧,才能保证燃气轮机的安全稳定的运行。本文通过理论和实验研究,对燃烧室稳定性燃烧进行分析,并且提出了相应促进燃烧稳定的方法,希望为燃气轮机的安全稳定运行提供理论参考。 由于燃气轮机具有功率大、体积小、效率高、污染低等特点,燃气轮机在多种领域具有广阔的应用前景。保证燃气轮机的稳定燃烧,就必须保证燃烧室在任何工况下的稳定燃烧。燃烧室燃烧稳定性关系到燃气轮机的寿命以及安全运行,因此对燃烧室燃烧稳定

燃气燃烧技术与设备_Chap6

第六章扩散式燃烧器 第一节燃烧器的分类与技术要求 一、燃烧器的分类 (一) 按一次空气系数分类 α=。 1. 扩散式燃烧器燃气和空气不预混,一次空气系数'0 α=。 2. 大气式燃烧器燃气和一部分空气预先混合,'0.2~0.8 α≥。 3. 完全预混式燃烧器燃气和空气完全预混,'1 (二) 按空气的供给方法分类 1.引射式燃烧器空气被燃气射流吸入或者燃气被空气射流吸入。 2.鼓风式燃烧器用鼓风设备将空气送入燃烧系统。 3.自然引风式燃烧器靠炉膛中的负压将空气吸入燃烧系统。 (三) 按燃气压力分类 1.低压燃烧器燃气压力在5000Pa以下。 2.高(中)压燃烧器燃气压力在5000Pa至3?105Pa之间。 更高压力的燃烧器目前尚未使用。 第二节自然引风式扩散燃烧器 按照扩散式燃烧方法设计的燃烧器称为扩散式燃烧器。扩散式燃烧器的一次空气系数α=,燃烧所需要的空气在燃烧过程中供给。 '0 一、自然引风式扩散燃烧器的构造及工作原理Array (三) 冲焰式扩散燃烧器

(四) 炉床式扩散燃烧器

二、自然引风式扩散燃烧器的火孔热强度 (一) 炼焦煤气 四、自然引风式扩散燃烧器的计算 (一)管式扩散燃烧器的计算 p 6 p 10l q v H (6-1) 式中 p v ——火孔出口速度(Nm/s); p q ——火孔热强度(kW/mm 2); l H ——燃气低热值(kJ/Nm 3)

p p Q F q = (6-2) 式中 p F ——火孔总面积(mm 2); Q ——燃烧器热负荷(kW)。 p 2 p 4 F n d π = (6-3) g p 2F F ≥ (6-4) 2 p g g 2p 12288 v T h h ρμ=?+? (6-5) 式中 h ——头部所需压力(Pa); p μ——火孔流量系数,与火孔的结构特性有关。在管子上直接打孔时,p μ=0.65~0.70。 在管子上直接钻直径较小的孔时(p d =1~1.5mm),当 p h d =0.75,p μ=0.77;当 p h d =1.5,p μ=0.85(h —火孔深度)。对于管嘴,当p h d =2~4时,p μ=0.75~0.82,对于直径小、孔深浅的火孔,p μ取较小值; p v ——火孔出口速度(Nm/s); g ρ——燃气密度(kg/Nm 3); g T ——火孔前燃气温度(K); h ?——炉膛压力(Pa),当炉膛为负压时,h ?取负值。

燃气燃烧器安全技术规定

1、《燃气燃烧器安全技术规定》(征求意见稿) Safety Technical Regulation for Gas Burner 中华人民共和国国家质量监督检验检疫总局颁布 2006年月日 目录 第一章总则 (1) 第二章结构与设计要求 (1) 第三章安全与控制装置要求 (3) 第四章安装与系统要求 (5) 第五章使用与维护要求 (6) 第六章技术资料与铭牌要求 (8) 第七章附则 (9) 燃气燃烧器安全技术规定(征求意见稿) 第一章总则 第一条为了保障燃气燃烧器(以下称'燃烧器')的安全运行,避免和减少燃气设备安全事故,减少财产损失,保护生命安全,为燃气设备的安全监察提供技术依据,制定本安全技术规定(以下称'规定')。 第二条本规定依据国务院《特种设备安全监察条例》中有关规定,并参考国内外相关标准编制。 关联法规: 第三条适用范围 (一)本规定适用于各类锅炉用燃气燃烧器,其它用途用燃气燃烧器可以参照本规定执行。 (二)本规定规定了燃烧器的结构与设计、安装与系统、运行与维护、安全与控制装置、技术资料与铭牌要求等。 (三)双燃料燃烧器应该同时满足本规定和TSG GB002-2006《燃油燃烧器安全技术规定》的要求。 第四条燃烧器的电气控制系统的安全性能,应该符合GB3797-89《电控设备第二部分装有电子器件的电控设备》的规定。 第二章结构与设计要求 第五条设计 (一)燃气燃烧器一般由以下主要部分组成:燃气喷嘴、燃气阀系、风机、燃气流量调节阀、空气调节装置、点火装置、燃气压力检测开关、空气压力检测开关及火焰监测装置等。(二)燃烧器的设计应该能保证燃烧器达到规定的输出功率及性能要求。燃烧器的结构应该保证不会发生不稳定、变形或开裂等危及安全的问题。 (三)燃烧器各部件结构和尺寸的设计不仅必须保证燃烧器可靠经济运行,还要保证操作人员的安全。 (四)燃烧器上应当有火焰观测孔,为防止火焰喷出或烟气外漏,观测孔配件应当具有足够强度并且被有效密封。

河南城建学院07240712燃气燃烧应用A答案

河南城建学院2009—2010学年第二学期期末考试 《燃气燃烧与应用》试题(A 卷)答案 一、填空题(每空1分,共17分) 1、降低火焰温度、减少过剩空气量 2、直流式 、容积式 3、 引射式、自然引风式 4、支链着火、热力着火 5、蓝、黄 6、面积热强度 、容积热强度 7、链引发、链终止 8、热理论、 综合理论 9、导温系数 二、名词解释(每题3分,共15分): 1、1Nm 3 燃气完全燃烧后其烟气被冷却至原始温度,而其中的水蒸气以凝结水状态排出时所放出的热量。 2、在射流轴线上存在某点的轴速度在x 方向上的分速度x v 为出口速度2v 的5%,以喷嘴平面至该点的相对法向距离d x 1 ,定义为射程。 3、燃气燃烧所需的氧气依靠扩散作用从周围大气获得,在燃烧前燃气中不含氧气。 4、由于系统中热量的积聚,使温度急剧上升而引起的着火称为热力着火。 5、指燃气热值与其相对密度平方根的比值 三、简答题(每小题5分,共20分) 1、 (1)加强气流紊动; (2)应用旋转气流改善气流混合过程; (3)预热燃气和空气; (4)烟气再循环; 2、气体从喷嘴流出后,气流本身一面旋转,一面又向静止介质中扩散前进,这就是旋转射流,简称旋流。 产生旋流的方法有: (1) 使全部气流或一部分气流沿切向进入主通道 (2) 在轴向管道中设置导向叶片,使气流旋转 (3) 采用旋转的机械装置,使通过其中的气流旋转. 3、 (1)理论燃烧温度随燃气低热值的增大而增大。 (2)应在保证完全燃烧的前提下习尽量降低过剩空气系数 (3)预热空气或燃气可以提高理论燃烧温度 4、(1)以高能量的气体引射低能量的气体,并使两者混合均匀.

M701F燃气轮机燃烧室的特点和燃烧调整_金晓刚(1)

第23卷 第1期 2010年3月 《燃 气 轮 机 技 术》G A ST U R B I N ET E C H N O L O G Y V o l .23 N o .1 M a r .,2010 M 701F 燃气轮机燃烧室的特点和燃烧调整 金晓刚 (深圳市广前电力有限公司,广东 深圳 518052) 摘 要:本文分析了三菱M 701F 燃气轮机燃烧室的特点和燃烧调整的方法,以及这些特点对燃烧室部件的影响。 关 键 词:M 701F 燃气轮机;燃烧室特点;特点;调整 中图分类号:T K 473.2 文献标识码:B 文章编号:1009-2889(2010)01-0058-04 M 701F 燃气轮机的主要参数为:17级轴流式压气机,压比17;20个环管布置D L N 燃烧室;透平入口初温1400℃;采用4级反动式透平,单循环效率38.2%。 M 701F 型燃气轮机的燃烧室采用环管逆流布 置方式,带旁路阀。20个预混干式低N O x (D L N )燃烧器沿机组圆周向均匀地斜插入燃烧室外缸里,燃烧室之间设有联焰管传递火焰。如图1所示,每个燃烧室由燃料喷嘴、火焰筒、过渡段和旁路阀及其它 附件组成。 图1 燃烧室的主要部件 1 燃烧室的结构特点 燃料喷嘴由位于圆心的值班燃料喷嘴和围成一圆圈的8个干式预混主燃料喷嘴组成,如图2所示。干式预混喷嘴可降低燃烧温度,特别是减少局部高温区,减少了N O x 的生成。值班燃料喷嘴采用扩散燃烧方式,形成稳定的值班火焰,用以维持主火焰的稳定。燃烧室设置旁路阀是三菱公司的特有技术,旁路阀装于燃烧室尾部区域,可将压气机的出口空 气直接导入过渡段,根据不同燃烧状态,旁路一部分压气机的排气,以调节进入燃烧系统的空气流量,保证不同预混燃烧状态下的最佳空燃比,保持预混燃烧的稳定。 为满足1400℃透平初温要求,M 701F 机组火焰筒和过渡段均使用了N i 基超合金材质,并采取双层结构,如图3所示。图中a 为火焰筒壁面的空气冷却结构。火焰筒为双层壁面,冷却空气从外壁的小孔进入,并在夹层中沿壁面的沟槽流动形成对流 *收稿日期:2009-06-07 DOI :10.16120/j .cn ki .issn 1009-2889.2010.01.007

天然气燃烧特性

天然气燃烧特性 天然气最主要的成分是甲烷,基本不含硫,无色、无臭、无毒、无腐蚀性,具有安全、热值高、洁净和应用广泛等优点,目前已成为众多发达国家的城市必选燃气气源。 城市燃气应按燃气类别及其燃烧特性指数(华白数W 和燃烧势CP )分类,并应控制其波动范围。 华白数W 按式(1)计算: d Q W g = (1) 式中:W —华白数,MJ/m 3(kcal/m 3);Q g —燃气高热值,MJ/m 3/(kcal/m 3);d —燃气相对密度(空气相对密度为1)。 燃烧势CP 按式2计算: ()d CH CO H C H K CP n m 423.06.00.1+++?= (2) 220054.01O K ?+= (3) 式中:CP ——燃烧势; H 2——燃气中氢含量,%(体积); C m H n ——燃气中除甲烷以外的碳氢化合物含量,%(体积); CO ——燃气中一氧化碳含量,%(体积); CH 4——燃气中甲烷含量,%(体积); d ——燃气相对密度(空气相对密度为1); K ——燃气中氧含量修正系数; O 2——燃气中氧含量,%(体积)。 城市燃气的分类应符合表的规定。 城市燃气的分类(干,0℃,101.3kPa )表

燃气热值的单位定义及换算 燃气热值的单位有两个单位系列: 一是“焦耳”系列:J(焦耳)/ Nm3、KJ(千焦)/Nm3、MJ(兆焦)/Nm3; 换算关系是:1MJ(兆焦)=1000KJ(千焦)、1KJ(千焦)=1000J(焦耳); 二是“卡”系列:cal(卡)/ Nm3、Kcal(千卡)/Nm3;换算关系是:1Kcal (千卡)=1000cal(卡); 两个单位系列的换算关系是:1cal(卡)=4.1868 J(焦耳);1KJ(千焦)=238.85 cal(卡);1MJ(兆焦)=238.85 Kcal(千卡)。 纯天然气的组分 纯天然气的组分是CH4:98%;C2H6:0.3%;C3H8:0.3%;CmHn: 0.4%;N2:1%。

燃气轮机原理与结构解析

图说燃气涡轮发动机的原理与结构 曹连芃 摘要:文章介绍燃气涡轮发动机的工作原理;对燃气轮机的主要部件轴流式压气机、环管形燃烧室、轴流式涡轮分别进行了原理与结构介绍;对燃气涡轮发动机的整体结构也进行了介绍。 关键字:燃气涡轮发动机,燃气轮机,轴流式压气机,燃烧室,轴流式涡轮 1. 燃气涡轮发动机的工作原理 燃气涡轮机发动机(燃气轮机)的原理与中国的走马灯相同,据传走马灯在唐宋时期甚是流行。走马灯的上方有一个叶轮,就像风车一样,当灯点燃时,灯内空气被加热,热气流上升推动灯上面的叶轮旋转,带动下面的小马一同旋转。燃气轮机是靠燃烧室产生的高压高速气体推动燃气叶轮旋转,见图1。 图1-走马灯与燃气涡轮 燃气轮机属热机,空气是工作介质,空气中的氧气是助燃剂,燃料燃烧使空气膨胀做功,也就是燃料的化学能转变成机械能。图2是一台燃气轮机原理模型剖面,通过它来了解燃气轮机的工作原理。 从外观看燃气轮机模型:整个外壳是个大气缸,在前端是空气进入口;在中部有燃料入口,在后端是排气口(燃气出口)。 燃气轮机主要由压气机、燃烧室、涡轮三大部分组成,左边部分是压气机,有进气口,左边四排叶片构成压气机的四个叶轮,把进入的空气压缩为高压空气;中间部分是燃烧器段(燃烧室),内有燃烧器,把燃料与空气混合进行燃烧;右边是涡轮(透平),是空气膨胀做功的部件;右侧是燃气排出口。

图2-模型燃气轮机结构 在图3中表示了燃气轮机的简单工作过程:空气从空气入口进入燃气轮机,高速旋转的压气机把空气压缩为高压空气,其流向见浅蓝色箭头线;燃料在燃烧室燃烧,产生高温高压空气;高温高压空气膨胀推动涡轮旋转做功;做功后的气体从排气口排出,其流向见红色箭头线。 图3-燃气轮机工作过程 在燃气轮机中压气机是由涡轮带动旋转,压气机的叶轮与涡轮安装在同一根主轴上组成燃气轮机转子,如图4所示。

燃气燃烧器安全技术规定

燃气燃烧器安全技术规定第一章总则 第一条为了保障燃气燃烧器(以下称'燃烧器')的安全运行,避免和减少燃气设备安全事故,减少财产损失,保护生命安全,为燃气设备的安全监察提供技术依据,制定本安全技术规定(以下称' 规定')。 第二条本规定依据国务院《特种设备安全监察条例》中有关规定,并参考国内外相关标准编制。

关联法规: 第三条适用范围 (一)本规定适用于各类锅炉用燃气燃烧器,其它用途用燃气燃烧器可以参照本规定执行。 (二)本规定规定了燃烧器的结构与设计、安装与系统、运行与维护、安全与控制装置、技术资料与铭牌要求等。 (三)双燃料燃烧器应该同时满足本规定和TSG GB002-2006《燃油燃烧器安全技术规定》的要求。

第四条燃烧器的电气控制系统的安全性能,应该符合GB3797-89 电控设备第二部分装有电子器件的电控设备》的规定。 第二章结构与设计要求 第五条设计 (一)燃气燃烧器一般由以下主要部分组成:燃气喷嘴、燃气阀系、风机、燃气流量调节阀、空气调节装置、点火装置、燃气压力检测开关、空气压力检测开关及火焰监测装置等。 (二)燃烧器的设计应该能保证燃烧器达到规定的输出功率及性能要求。燃烧器的结构应该保证不会发生不稳定、变形或开裂等危及安全的问题。

(三)燃烧器各部件结构和尺寸的设计不仅必须保证燃烧器可靠经济运行,还要保证操作人员的安全。 (四)燃烧器上应当有火焰观测孔,为防止火焰喷出或烟气外漏,观测孔配件应当具有足够强度并且被有效密封。 (五)对于燃烧器的运动部件(皮带传动、风机)必须设计防护装置。 (六)为防止异物吸入,影响设备正常安全运行,燃烧器风机入口应该装有金属防护网罩。 (七)设计额定输出功率大于等于350kW的燃烧器,需配置燃气流量调节装置,使其输出功率在规定的范围内可调。连续调节燃烧器的燃气流量调节装置应该有清晰的指示。 (八)燃烧器应该设置空气流量调节装置。设置调节挡板的,空气挡板的位置应该有清晰的指示。 (九)对多级调节或连续调节的燃烧器,空气和燃气调节装置应该通过

燃气燃烧与应用-知识点

第一章燃气的燃烧计算 燃烧:气体燃料中的可燃成分(H2、 C m H n、CO 、 H2S 等)在一定条件下与氧发生激烈的氧化作用,并产生大量的热和光的物理化学反应过程称为燃烧。 燃烧必须具备的条件:比例混合、具备一定的能量、具备反应时间 热值:1Nm3燃气完全燃烧所放出的热量称为该燃气的热值,单位是kJ/Nm3。对于液化石油气也可用kJ/kg。 高热值是指1m3燃气完全燃烧后其烟气被冷却至原 始温度,而其中的水蒸气以凝结水状态排出时所放出 的热量。 低热值是指1m3燃气完全燃烧后其烟气被冷却至原始 温度,但烟气中的水蒸气仍为蒸汽状态时所放出的热 量。 一般焦炉煤气的低热值大约为16000—17000KJ/m3 天然气的低热值是36000—46000 KJ/m3 液化石油气的低热值是88000—120000KJ/m3 按1KCAL=4.1868KJ 计算: 焦炉煤气的低热值约为3800—4060KCal/m3 天然气的低热值是8600—11000KCal/m3 液化石油气的低热值是21000—286000KCal/m3 热值的计算 热值可以直接用热量计测定,也可以由各单一气体的 热值根据混合法则按下式进行计算: 理论空气需要量 每立方米(或公斤)燃气按燃烧反应计量方程式完全 燃烧所需的空气量,单位为m3/m3或m3/kg。它是燃气 完全燃烧所需的最小空气量。 过剩空气系数:实际供给的空气量v与理论空气需要量 v0之比称为过剩空气系数。 α值的确定 α值的大小取决于燃气燃烧方法及燃烧设备的运 行工况。 工业设备α——1.05-1.20 民用燃具α——1.30-1.80 α值对热效率的影响 α过大,炉膛温度降低,排烟热损失增加, 热效率降低; α过小,燃料的化学热不能够充分发挥, 热效率降低。 应该保证完全燃烧的条件下α接近于1. 烟气量含有1m3干燃气的湿燃气完全燃烧后的产物 运行时过剩空气系数的确定 计算目的: 在控制燃烧过程中,需要检测燃烧过程中的过剩空气 系数,防止过剩空气变化而引起的燃烧效率与热效率 的降低。 在检测燃气燃烧设备的烟气中的有害物质时,需要根 据烟气样中氧含量或二氧化碳含量确定过剩空气系 数,从而折算成过剩空气系数为1的有害物含量。 根据烟气中O2含量计算过剩空气系数 O2′---烟气样中的氧的容积成分 (2)根据烟气中CO2含量计算过剩空气系数 2 ' 2 m CO a CO = CO2m——当=1时,干燃烧产物中CO2含量,%; CO2′——实际干燃烧产物中CO2含量,%。 1.4个燃烧温度定义及计算公式 热量计温度:一定比例的燃气和空气进入炉内燃烧, 它们带入的热量包括两部分:其一是由燃气、空气带 入的物理热量(燃气和空气的热焓);其二是燃气的化 学热量(热值)。如果燃烧过程在绝热条件下进行,这 两部分热量全部用于加热烟气本身,则烟气所能达到 的温度称为热量计温度。 燃烧热量温度:如果不计参加燃烧反应的燃气和空气 的物理热,即t a=t g=o,并假设a=1.则所得的烟气 温度称为燃烧热量温度。 理论燃烧温度:将由CO2HO2在高温下分解的热损失和发 生不完全燃烧损失的热量考虑在内,则所求得的烟气 温度称为理论燃烧温度t th 实际燃烧温度: 2.影响燃烧温度的因素 热值:一般说来,理论燃烧温度随燃气低热值 H l的增 大而增大. 过剩空气系数:燃烧区的过剩空气系数太小时,由于 燃烧不完全,不完全燃烧热损失增大,使理论燃 烧温度降低。若过剩空气系数太大,则增加了燃烧产 物的数量,使燃烧温度也降低 燃气和空气的初始温度:预热空气或燃气可加大空气 和燃气的焓值,从而使理论燃烧温度提高。 3.烟气的焓与空气的焓 烟气的焓:每标准立方米干燃气燃烧所生成的烟气在 等压下从0℃加热到t℃所需的热量,单位为千焦每标 准立方米。 空气的焓:每标准立方米干燃气燃烧所需的理论空气 在等压下从0℃加热到t(℃)所需的热量,单位为千焦 每标准立方米。 第一章思考题 第一章课后例题必须会做。 燃气的热值、理论空气量、烟气量与燃气组分的关 系,三类常用气体热值、理论空气量、烟气量的取值 范围。 在工业与民用燃烧器设计时如何使用高低热值进行计 算 在燃烧器设计与燃烧设备运行管理中如何选择过剩空 气系数 运行中烟气中CO含量和过剩空气系数对设计与运行管 理的指导作用 燃烧温度的影响因素及其提高措施。 第二章燃气燃烧反应动力学 ' 2 20.9 20.9 a O = -

9E 型燃气轮机燃烧事故分析及预防

28 2008年第3期 9E 型燃气轮机燃烧事故分析及预防 A n al y si s a n d P r ev e n t i on M e a s u r e s f o r C o m b u s t i on E v e n t o f 9E G a s T ur bi n e 摘要:针对一起9E 燃气轮机组的燃烧事故,详细分析了事故的起因与过程,对9E 机组的火焰监测保护存在的问题进行了探讨,并提出防止燃烧事故的技术措施,对运行与维护提出了建议。关键词:燃气轮机;分散度;燃烧;监测中图分类号:TK 477 文献标识码:B 文章编号:1007-1881(2008) 03-0026-03叶仁杰 (台州电厂龙湾发电,浙江 台州318016) 图18号火焰筒烧灼情况 温州300M W 燃气—蒸汽联合循环发电工 程有3台100M W 联合循环机组。在一次运行巡检中发现1号燃气轮机冒黑烟,即手动停 机。经检查, 2只火焰筒、1只过渡段完全烧毁,其余4只火焰筒和7只过渡段经修复后可以使用。事故造成直接经济损失约150万元,抢修时间3天,企业损失电量约900万k W h 。虽然燃烧部件局部已严重损坏,但G E 燃烧监测保护并未动作切断燃料,围绕该起事故进行深入分析,探讨事故发生的原因,可为今后的运行提供借鉴。 1 事故经过 事故发生在当日23时45分,因电气原因,1号燃机满负荷跳机。在其后重新启动过程中,因机务、控制等各方面原因历经了4次高速清吹、点火,直至次日3时28分并列。3时52分机组负荷80M W ,排气分散度 (通常默认是第一分散度) 26.7℃。22时54分负荷100M W ,排气分散度升至38. 3℃,约1h 后升至50℃,减负荷至90M W ,第2日0时54分分散度升至59℃,运行人员再次减负荷至85M W ,排气分散度降至40℃,此后机组一直维持该负荷运行,排气分散度基本 稳定在40. 5℃。凌晨6时20分运行人员巡回检查时发现烟囱冒黑烟,立即停运机组。 经检查,设备损坏情况如下: (1) 7-8和8-9联焰管严重损坏,其中阳联焰管烧穿,管身因高温严重变形,靠7号、9号火焰筒一侧的联焰管头部烧灼情况稍轻,其余燃烧单元的联焰管正常。 (2) 8号火焰筒严重损坏,筒体尾部全部溶化,密封裙环全部丧失,筒体除顶部颜色基本正常外,其余大部分颜色变黑,筒身部分冷却气孔被溶化的金属重新凝固后堵塞,见图1。 (3) 2号、7号、12号过渡段正常,3号、4号、6号过渡段内部表面(气流转弯处)有不同程度的斑坑,但未穿透。其余7只过渡段内有大小和范围不同的穿孔,未穿透的斑坑内部及其他部位有明显结垢。8号过渡段严重溶化、烧穿,见图2。 (4) 8号过渡段对应的3片静叶凹弧表面浙江电力 ZH E J I AN G ELECT R I C P O W E R

低氮燃气燃烧技术及燃烧器设计进展

低氮燃气燃烧技术及燃烧器设计进展 摘要:在高温燃烧过程中,氮氧化物的排放污染一直是业界关注的焦点。这部 分气体不仅稳定性较差,而且大多能够在湿热环境中转变为NO与NO?,从而给 人们的生命财产带来威胁。随着技术的成熟,低氮燃烧技术开始以其环保效益高、清洁无污染受到了一致好评。在本文中,笔者分析了高温燃烧中氮氧化物的生成 原理以及影响因素,并在此基础上探讨了如何控制氮氧化物的排放,以供参考。 关键词:低氮燃烧;燃烧器设计;技术进展 引言 近些年我国的化工行业得到了长足的发展,高温燃烧在各生产领域均有着突 出的贡献。尤其是天然气等能源的普及推广,虽然很大程度上改善以往的三废排 放问题,但氮污染的问题仍未有效缓解。究其原因,主要是以往的燃烧技术存在 一刀切的问题,没有针对不同介质来调整燃烧方案。由此可见,在低氮燃烧技术 中分层燃烧的个性化方案是重要突破口,同时兼顾燃尽的火焰长度,才能真正实 现减小高温燃烧的氮污染。 一、氮氧化物的控制原理 (一)气体燃料的特点 气体的高温燃烧基本不会发生相态变化,因此其主要包括混合、升温以及燃 烧3个阶段。从燃烧温度来看,气体燃烧的过程温度普遍较高。业界常见的氢气 与液化气燃烧的问题均不低于2000℃,而目前对环境最友好的天然气在燃烧的过 程中温度也高达1700℃。除此之外,气体燃烧的反映速率也较其他模式快,往往 就存在回火的现象。一旦气体的排放速度小于反应速率,那么火焰就会影响到火 孔内的环境,严重的可能会造成气源爆炸。 (二)氮氧化物的影响因素 关于气体燃烧的氮氧化物研究已有十数年的努力,根据学术成果表明氮氧化 物可按照生产方式的不同归类为热力型、快速型两个大类。其中热力型所产生的 氮氧化物含量更多,但快速型氮氧化物的生产也不容忽视。而在以往的燃烧器设 计中,技术人员往往顾此失彼导致技术应用达不到预期的效果。热力型顾名思义 就是在火焰区域生产的氮氧化物,因此很容易受到温度的影响。从业界实践的经 验来看,当火焰温度超过1800℃时氮氧化物的生成量会出现井喷式的增长。可见,在气体燃烧中氮氧化物的排放量并非是单调递增的趋势,而会受到燃烧工况的左右。而快速型是指在部分预混情况下所表现出较快的反应速率,抑或是在扩散燃 烧中与侧面空气燃烧所生产。在这种燃烧条件下,空气与燃气的比例对氮氧化物 的生成量有着显著的影响,因此也将是燃烧器设计的关注要点。 二、燃烧器对氮氧化物的影响 (一)预热温度 考虑到工业生产的实际需求,燃烧器的设计必须提高燃烧反应的速率。因此 大部分产品在运行前都需要对空气预热,从而给升温着火做好准备工作。但是这 种设计方案使问题进一步升高,从而导致氮氧化物的生成量直线上升。不仅如此,传统燃烧器扩散现象严重,使得空气剩余系数超出额定值。在这种反应条件下, 会令大量的热能被浪费,经济性能差强人意。因此,要想在满足使用需求的前提 下改善氮氧化物排放,就应该积极应用完全预混技术。预先将空气与燃料按照合 理的比例混合,其燃烧过程更加充分产生的化合物相对也会较少。而且热力型与 快速型氮氧化物的排放均与温度呈正相关的趋势,降低预热问题也是设计中需要

燃气燃烧课程设计

《燃气燃烧》课程设计 题目:燃气燃烧课程设计 学院:建筑工程学院 专业:建筑环境与能源应用工程 姓名:张冷 学号: 20130130370 指导教师:王伟 2016年 12 月 26 日 目录

1设计概述 (1) 2设计依据 (1) 2.1原始数据 (1) 2.2燃气基本参数的计算 (1) 2.2.1热值的计算 (1) 2.2.2燃气密度计算 (2) 2.2.3燃气相对密度计算 (2) 2.2.4理论空气需要量的计算 (2) 2.3头部计算 (3) 2.3.1计算火孔总面积 (3) 2.3.2计算火孔数目 (3) 2.3.3计算火孔间距 (4) 2.3.4计算火孔深度 (4) 2.3.5计算头部截面 (4) 2.3.6计算头部截面直径 (4) 2.3.7计算火孔阻力系数 (5) 2.3.8计算头部能量损失系数 (5) 2.4引射器计算 (5) 2.4.1计算引射器系数 (5) 2.4.2计算引射器形式 (5) 2.4.3计算燃气流量 (6) 2.4.4计算喷嘴直径 (6) 2.4.5计算喷嘴截面积 (6) 2.4.6计算最佳燃烧器参数 (6) 2.4.7计算A值 (7) 2.4.8计算X值 (7) 2.4.9计算引射器喉部面积 (7) 2.4.10计算引射器喉部直径 (8) 2.4.11引射器其他尺寸计算方式如附图1: (8)

2.5火焰高度计算 (8) 2.5.1火焰内锥高度 (8) 2.5.2火焰外锥高度 (8) 2.6火孔排列 (9) 2.6.1确定火孔个数 (9) 2.6.2火孔分布直径的计算 (9) 3设计方案计算 (9) 3.1已知计算参数 (9) 3.2详细计算步骤 (10) 3.2.1头部计算 (10) 3.2.2引射器计算 (11) 3.2.3火焰高度计算及加热对象的设置高度 (12) 总结 (12) 参考文献 (13)

低氮燃烧方法及低氮燃烧设备的制作流程

图片简介: 本技术涉及一种低氮燃烧方法及低氮燃烧设备,用于提高脱硝效率。其中,低氮燃烧方法包括:将温度在600℃~1250℃之间,含氧量不大于10%的高温低氧气体与含氮还原剂混合喷入炉膛内。本技术通过高温低氧气体携带含氮还原剂进入炉膛,高温低氧气体的温度控制在600℃~1250℃之间,含氧量不大于10%,能够为还原剂和氮氧化物的反应提供合适的温度范围,且能够通过气流扰动强化含氮还原剂与烟气的混合程度,提高含氮还原剂的脱硝效率,降低氮氧化物的排放。 技术要求 1.一种低氮燃烧方法,其特征在于,将温度在600℃~1250℃之间,含氧量不大于10%的高温低氧气体与含氮还原剂混合喷入炉膛(1)内。 2.如权利要求1所述的低氮燃烧方法,其特征在于,将高温低氧气体通过第一管道(21)喷入炉膛(1)内,将含氮还原剂喷入第一管道(21)内,以使高温低氧气体裹携含氮还原剂进入炉膛(1)内。 3.如权利要求1所述的低氮燃烧方法,其特征在于,炉膛(1)包括主燃区(11),将高温低氧气体和含 氮还原剂混合喷入主燃区(11)的下游。

4.如权利要求1所述的低氮燃烧方法,其特征在于,炉膛(1)还包括位于主燃区(11)下游的再燃区和/或燃尽区,将高温低氧气体和含氮还原剂混合喷入再燃区和/或燃尽区。 5.如权利要求1所述的低氮燃烧方法,其特征在于,高温低氧气体包括燃气、烟气,或者,煤或生物质的气化产物。 6.如权利要求1所述的低氮燃烧方法,其特征在于,含氮还原剂包括氨、氨水、尿素、氰尿酸或铵盐,含氮还原剂的形态包括液态、气态或固态颗粒。 7.一种低氮燃烧设备,其特征在于,用于实现如权利要求1至6任一项所述的低氮燃烧方法,其中,所述低氮燃烧设备包括: 炉膛(1); 第一供给装置(2),被配置为通过第一管道(21)向所述炉膛(1)提供温度在600℃~1250℃之间,含氧量不大于10%的高温低氧气体;以及 第二供给装置(3),被配置为通过第二管道(31)向所述炉膛(1)提供含氮还原剂。 8.如权利要求7所述的低氮燃烧设备,其特征在于,所述第二管道(31)与所述第一管道(21)连通,所述第一管道(21)与所述炉膛(1)连通。 9.如权利要求7所述的低氮燃烧设备,其特征在于,所述炉膛(1)包括主燃区(11),所述第一管道(21)连通所述主燃区(11)的下游。 10.如权利要求9所述的低氮燃烧设备,其特征在于,所述炉膛(1)包括位于所述主燃区(11)下游的再燃区和/或燃尽区,所述第一管道(21)连通所述再燃区和/或燃尽区。 11.如权利要求7所述的低氮燃烧设备,其特征在于,所述低氮燃烧设备包括煤粉燃烧炉、燃气锅炉、循环流化床锅炉或窑炉。 技术说明书 低氮燃烧方法及低氮燃烧设备 技术领域 本技术涉及锅炉燃烧技术领域,尤其涉及一种低氮燃烧方法及低氮燃烧设备。 背景技术

燃气燃烧与应用题库

2012最新试题 1、燃烧热量温度:在热平衡方程是中,令ta=tg=0,且ɑ=1,则在绝热条件下烟 气所能达到的温度,成为燃烧热量温度。 2、低热值:1Nm3燃气完全燃烧后其烟气被冷却至原始温度,但烟气中的水蒸气认为蒸汽状态时所放出的热量称为该燃气的低热值。 3、熄火距离:在电极间距从大往小减小过程中,当该间距小到无论多大的火花放电能量都不能使可燃混合物点燃时,这时的间距就叫熄火距离。 4、射程:在射流轴线上定出一点,使该点的轴速度在x方向的分速度vx为射流出口速度v2的5%,该点至喷嘴出口平面的相对垂直距离x1/d,定义为射程。 5、火焰传播浓度极限:火焰传播浓度上、下限范围,称“火焰传播极限”,又称着火爆炸极限。 6、大气式燃烧燃气在从管口喷出之前,首先混合一部分燃烧用氧化剂(即0<α’<1),燃烧所需的剩余氧气依靠扩散作用从周围大气获得,这种燃烧方式称为“部分预混式燃烧”。 7、脱火:当燃烧强度不断加大,气流速度v↑,使得v=S的点更加靠近管口,点火环变窄,最后使之消失,火焰脱离燃烧器出口,在一定距离以外燃烧,若气流速度再增大,火焰被吹熄,称为脱火 8、燃气互换性:设某一燃具以a燃气为基准进行设计和调整,由于某种原因要以s燃气置换a燃气,如果燃烧器此时不加任何调整而能保证燃具正常工作,则表示s燃气可以置换a燃气,或称s燃气对a燃气而言具有“互换性” 燃烧:气体燃料中的可燃成分在一定条件下与氧发生激烈的氧化作用,并产生大量的和光的物理化学反应过程称为燃烧 热量计温度:如果燃烧过程在绝热环境下进行,由燃气、空气带入的物理热量和燃气的化学热量全部用于加热烟气本身,则烟气所能达到的温度称为** 理论燃烧温度:如果热平衡方程式中将由于化学不完全燃烧而损失的热量考虑在内,则所求得的烟气温度称为** 支链反应,直链反应:如果每一链环中有两个或者多个活化中心可以引出新链环的反应,这种称为支链反应,如果每一链环只产生一个新的活化中心,那么这种链反应称为** 着火:由稳定的氧化反应转变为不稳定的氧化反应而引起燃烧的一瞬间称为着火支链着火:在一定条件下,由于活化中心浓度迅速增加而引起反应加速从而使反应由稳定的氧化反应转变为不稳定氧化反应的过程,称为** 热力着火:由于系统中热量的积聚,使温度急剧上升而引起的,称为** 点火:当一微小热源放入可燃混合物时,则贴近热源周围的一层混合物被迅速加热,并开始燃烧产生火焰,然后向其他部分传播,使可燃混合物逐步着火,这种现象称为** 最小点火能:要形成初始火焰中心,放电能量必须具有一最小极值,即** 熄火距离:当点燃可燃混合物所需的能量与电极间距d小到无论多大的火花能量都不能使可燃混合物点燃时,d就是** 流体动力参数 绝对穿透深度相对穿透深度射程法向火焰传播速度小尺度紊流 火焰大尺度紊流火焰

相关文档
最新文档