(完整版)航海学基础知识

合集下载

航海学-第一章_航海基础知识

航海学-第一章_航海基础知识
概念:由椭圆绕
其短轴旋转形成 的几何体。
《航海学》第一章
地球椭圆体图
概念:由椭圆绕
其短轴旋转形成 的几何体。
《航海学》第一章
地球椭圆体图
概念:由椭圆绕
其短轴旋转形成 的几何体。
《航海学》第一章
地球椭圆体图
概念:由椭圆绕
其短轴旋转形成 的几何体。
《航海学》第一章
地球椭圆体图
概念:由椭圆绕
A Q
G O
W
M A' Q'
E
PS
《航海学》第一章
地理纬度
概念
PN
某点的地理 纬度是指地球椭
A G
圆子午线上该点
的法线与赤道面 Q
O
的夹角。
W
A' M
Q'
E
PS
《航海学》第一章
地理纬度
PN
概念
A
代号:
“”或“Lat”。Q
G O
W
A' M
Q'
E
PS
《航海学》第一章
地理纬度
概念 代号
二、地理坐标
地轴:过南北(N、
PN
S)两极的轴线
Q
O
Q'
PS
《航海学》第一章
二、地理坐标
地轴
PN
地 极 : PN 为 北 极、PS为南极
子午圈:过短 轴 的 子 午 圈 平Q
O
Q'
面与地球椭圆
体表面相交的
椭圆截痕
《航海学》第一章
PS
二、地理坐标
PN
地轴
地极
子午圈
子午线/ 经线:Q

航海学知识点

航海学知识点

航海学知识点第⼀篇航海学(地⽂航海)第⼀章坐标、⽅向和距离第⼀节地球形状和地理坐标⼀、地球形状1. 第⼀近似体――地球圆球体航海上为了计算上的简便,在精度要求不⾼的情况下,通常将⼤地球体当作地球圆球体。

2. 第⼆近似体――地球椭圆体在⼤地测量学、海图学和需要较为准确的航海计算中,常将⼤地球体当作两极略扁的地球椭圆体。

地球椭圆体即旋转椭圆体,它是由椭圆P N QP S Q ′绕其短轴P N P S 旋转⽽成的⼏何体(图1-1)。

表⽰地球椭圆体的参数有:长半轴a 、短半轴b 、扁率c 和偏⼼率e 。

⼆、地理坐标1. 地球上的基本点、线、圈地理坐标是建⽴在地球椭圆体表⾯上的。

要建⽴地理坐标,⾸先应在地球椭圆体表⾯上确定坐标的起算点和坐标线图⽹。

如图所⽰:椭圆短轴即地球的⾃转轴――地轴(P N P S );地轴与地表⾯的两个交点是地极,在北半球的称为北极(P N ),在南半球的称为南极(P S );通过地球球⼼且与地轴垂直的平⾯称为⾚道平⾯,⾚道平⾯与地表⾯相交的截痕称为⾚道(QQ ′),它将地球分为南、北两个半球;任何⼀个与⾚道⾯平⾏的平⾯称为纬度圈平⾯,它与地表⾯相交的截痕是个⼩圆,称为纬度圈(AA ′);通过地轴的任何⼀个平⾯是⼦午圈平⾯,它与地表⾯相交的截痕是个椭圆,称为⼦午圈(P N QP S Q ′);由北半球到南半球的半个⼦午圈,叫作⼦午线,⼜称经线(P N QP S ,P N Q ′P S );通过英国伦敦格林尼治天⽂台⼦午仪的⼦午线,叫作格林⼦午线或格林经线(P N GP S )。

2. 地理坐标地球表⾯任何⼀点的位置,可以⽤地理坐标,即地理经度和地理纬度来表⽰。

地理经度简称经度,地⾯上某点的地理经度为格林经线与该点⼦午线在⾚道上所夹的劣弧长,⽤或Long 表⽰。

某点地理经度的度量⽅法为:⾃格林⼦午线起算,向东或向西度量到该点⼦午线,由0°到180°计量。

向东度量的称为东经,⽤E标⽰;向西度量的称为西经,⽤W标⽰。

航海学-第一篇基础知识分解

航海学-第一篇基础知识分解

第一篇 基础知识第一章 坐标、方向与距离第一节 地理坐标一、地球形体船舶在海上航行时,需要确定船舶的位置、航向和航程,这就要求在地球表面建立坐标系和确定方向的基准线,因此要对地球的形状有一定的了解。

地球的自然表面是不平坦的,是一个非常复杂而又不规则的曲面。

陆地上有高山、深谷和平地;海洋里有岛屿和海沟。

因此,地球的自然表面不是数学曲面,不能直接在其上进行运算,也不能直接在其上建立坐标系。

航海上所研究的地球形状,是指由假想的大地水准面所包围的闭合几何体——大地球体。

所谓大地水准面,是指与各地铅垂线相垂直且与完全均衡状态的海平面相一致的水准面,详细地说大地水准面是与平均海面相重合且延伸至大陆底部的一个连续的、无叠痕的、无棱角的闭合曲面。

大地球体仍是一个不规则的球体,不是数学曲面,不能直接在其上进行运算,也不能直接在其上建立坐标系,怎么办呢?一般在航海上,以大地球体的近似体代替大地球体来建立坐标系进行航海计算,以地球园球体作为它的第一近似体,而以地球椭园体作为它的第二近似体。

1. 第一近似体——地球圆球体在解决一般航海问题时,为了计算上的简便,通常是将大地球体当做地球园球体,其半径R =6,371,110M 。

2. 第二近似体——地球椭圆体 园体,如图1-1-1所示,地球椭园体是由椭圆P N QP S Q ′轴P N P S 轴a 、短半轴b 、扁率c 和偏心率e ,它们之间的相互关系是:a b a c -=; a b a e 22-=; c e 22≈ 在不同的历史时期,依据的测量结果不同,因而所推算出的地球椭圆体的参数也不相同。

我国从1954年开始采用前苏联克拉索夫斯基椭圆体参数,现在准备逐步采用IUGGl975年推荐的地球椭圆体参数,参见表1-1-1。

二、地球上的基本点、线、圈把地球看做第二近似体即椭圆体,如图1-1-2所示,O 为地球中心:地轴(axis of the earth)—地球自转的轴(S N P P ),即通过地球中心连结南极和北极的一条假想的线。

航海学(海证完结版)

航海学(海证完结版)

航海学(海证完结版)第一章基础知识地球形状,地理坐标和大地坐标系描述地球形状不属于地球的任何模型,大地球体:由大地水准面所包围的几何体。

使用地球椭圆体为地球数学模型的场合:定义地理坐标时制作摩卡托投影海图时。

使用地球圆球体为地球数学模型的场合:计算大圆航线时制作简易摩卡托图网时。

1海里=1852m(44度14分),1nmile=l852.25—9.31co2Ψ1nmile的实际长度在赤道附近最短在两极附近最长经差的绝对值不应大于180°,否则,应加减360°。

地埋纬度:某点在地球椭圆子午线上的法线与赤道面的交角经差、纬差的定义、方向性及计算D210D180090D210D1800180纬差,经差为正值,分别表示北纬差和东经差。

负值表示南纬差和西经差。

GPS大地坐标系采用WGS-84。

方向的确定和划分(测者地面真地平上确定方向):南北线为测者真地平与测者子午圈平面的交线;东西线为测者真地平与测者卯酉圈平面的交线。

方向划分方法有三种:圆周法半圆周法罗经点法。

圆周法是航海最常用的表示方法,半圆法是天文航海中年常用的方法。

圆周法的表示,不管百位有没有,必须要有数字,哪怕是O!!!半圆周法:读法与写法的顺序完全一样。

罗经点法(重点):基点±45°=偶点±22.5°=三字点±11.25°=偏点关于偶点:读法依然按照习惯,写法相反。

关于三字点:读法与写法完全一致,4个区间每个区间2个(在偶点的前面加一个,偏向哪一方加上一个字母)北北东(NNE)东北东(ENE)东南东(ESE)南南东(SSE)等关于偏点:4个区间每个区间4个。

一个罗经点=11.25°偶数的读法只限于在基点和偶点基础上,偏向哪一方后面加四个基点之一。

三种方向之间的换算:在北东半圆NE:圆周度数=半圆度数在南东半圆SE:圆周度数=180°-半圆度数在南西半圆SW:圆周度数=180°+半圆度数在北西半圆NW:圆周度数=360°-半圆度数SSE=(S﹢SE)SSW=﹙S+SW﹚NW/W=315°-11.25°NW/N=315°+11.25°航向:船舶航行的方向。

航海学一复习总结版

航海学一复习总结版

航海学一复习总结版第一篇基础知识第一章坐标、方向和距离1) 名词解释:①经度:基准经线与某点经线在赤道上夹的小于180°的弧,或该弧所对的球心角称为该点的地理经度,简称经度。

②纬度:地球椭圆体子午线上某点的法线与赤道平面之间的夹角,称为该点的地理纬度。

经差:两地之间经度的代数差。

纬差:两地之间纬度的代数差③磁差:由于磁北极和地理北极不重合,使得真北与磁北之间有一交角称为磁差.④自差:在地磁力和船磁力的共同作用下,使罗经卡的0°不再指向磁北,而指向它们的合力方向,这个方向称为罗经北,用N C表示。

罗北与磁北的交角称为自差,用Dev 表示。

⑤罗经差:罗北与真北之间的夹角称为罗经差,用ΔC表示。

⑥陀罗经差:真北与陀罗北之间的夹角称为陀罗经差,用ΔG表示。

⑦真方位:真北线与物标方位线之间的夹角称为该物标的真方位。

以真北为0°,顺时针000°~360°范围度量到方位线,用TB表示。

⑧磁方位:以磁北为基准的物标方位。

⑨罗方位:陀螺罗经测得的方位同陀螺方位。

⑩真航向:真北线与航向线之间的夹角称为真航向。

以真北为0°,顺时针000°~360°范围度量到航向线,用TC表示。

11 磁航向:以磁北为基准的航向罗航向:以罗北或陀罗北为基准测得的航向同陀螺航向:舷角:航向线与物标方位线之间的夹角称为该物标的舷角。

用“Q”表示。

12 物标左正横:当物标舷角为270°或90°左时,叫作物标左正横。

13 物标右正横:当物标舷角为90°或90°右时,叫作物标右正横;。

14 海里:地球椭圆体子午线上纬度1分对应的弧长称为一海里15 灯光初显:晴天黑夜,当船舶驶向强光灯塔时,测者看到灯塔灯芯刚刚露出水天线的瞬间,称为灯光初显。

2) 地理坐标系采用的基本大圆(地理坐标系是建立在地球椭圆体上的坐标系)地轴和地极赤道纬度圈子午圈和经度线基准经线(格林子午线)3) 经差、纬差计算和命名方法1.经差(difference of longitude,):两地之间经度的代数差;计算公式:注意:1)运算中东经为“+”,西经为“—”。

航海学知识点汇总

航海学知识点汇总

航海学知识点汇总一、航海基础知识1、地球形状和地理坐标11 地球的形状和大小12 地理坐标的概念和表示方法13 经纬度的度量和换算2、航向和方位21 航向的定义和表示22 方位的概念和种类(真方位、磁方位、罗方位)23 航向和方位的换算关系3、海图31 海图的种类和用途32 海图比例尺和投影方式33 海图上的符号和注记4、航海仪器41 罗盘(磁罗经和电罗经)42 测深仪43 计程仪44 定位系统(GPS、北斗等)二、航海气象1、气象要素11 气温和气压12 风13 湿度和能见度14 云2、天气系统21 气旋和反气旋22 锋面23 台风(飓风)3、海洋气象预报31 预报的来源和获取途径32 预报内容的解读和应用三、船舶运动性能1、船舶浮性和稳性11 浮性原理12 稳性的分类和影响因素2、船舶阻力和推进21 阻力的种类和计算22 推进装置的工作原理和性能3、船舶操纵性31 操纵性指标32 影响操纵性的因素33 船舶的转向和避让四、航线设计与规划1、航线设计的原则和考虑因素11 安全因素12 经济因素13 气象和海况条件2、航线的拟定方法21 利用海图和航海资料22 参考以往的航行经验3、大圆航线和恒向线航线31 大圆航线的计算和应用32 恒向线航线的特点和使用场景五、船舶定位与导航1、天文定位11 太阳定位12 恒星定位2、陆标定位21 方位定位22 距离定位23 综合定位3、电子导航31 雷达导航32 AIS 系统的应用六、航海安全与法规1、国际海上避碰规则11 各类船舶的避让责任和行动12 号灯、号型和声号的使用2、海上交通安全法规21 船舶的适航要求22 船员的职责和资格3、应急处置31 船舶遇险的信号和报告32 火灾、碰撞等紧急情况的处理措施七、航海通信1、通信设备和方式11 甚高频(VHF)通信12 卫星通信13 莫尔斯电码通信2、通信程序和规范21 遇险通信22 日常通信的礼仪和格式八、海洋环境与保护1、海洋生态系统11 海洋生物多样性12 海洋生态平衡的重要性2、海洋污染防治21 油污、垃圾等污染物的来源和危害22 防止海洋污染的措施和法规以上是航海学的主要知识点汇总,通过对这些知识点的学习和掌握,可以为航海实践提供坚实的理论基础。

航海学知识点

航海学知识点

第一篇航海学(地文航海)航海学是一门研究船舶如何安全、经济地从一个港口(地点)航行到另一港口(地点)的实用性学科。

航海学主要研究下列课题:1.拟定一条安全、经济的航线和制定一个切实可行的航行计划。

2.航迹推算,包括航迹绘算和航迹计算两种方法。

航迹推算是指根据船上最基本的航海仪器(罗经和计程仪)所指示的航向和航程,结合海区内的风流要素和船舶操纵要素,不借助外界物标或航标,从某一已知船位起,推算出具有一定精度的航迹和某一时刻的船位的方法。

它是驾驶员在任何情况下,求取任何时刻的船位的最基本的方法,也是陆标定位、天文定位和电子定位的基础。

3.测定船位(简称定位),包括陆标定位、天文定位和电子定位三种。

陆标定位是指观测海图上标有准确位置的,并可供目视或雷达观测的山头、岛屿、岬角、灯塔等显著的固定物标与本船的某一(某些)相对位置关系,如方位、距离和方位差等,从而在海图上确定本船船位的方法和过程。

陆标定位一般可分为方位定位、距离定位、方位距离定位和移线定位等。

天文定位是指在海上利用航海六分仪观测天体(太阳、月亮和部分星体)高度来确定船舶位置的一种定位方法。

电子定位是指利用船舶所装备的无线电定位系统的接收机来测定本船位置的一种定位方法。

目前,普遍使用的有GPS定位系统和罗兰C定位系统。

船舶航行中,要求航海人员尽一切可能随时确定本船的船位所在。

这样,才可能结合海图,了解船舶周围的航行条件,及时采取适当、有效的航行方法和必要的航行措施,确保船舶安全、经济地航行。

航迹推算和定位是船舶在海上确定船位的两类主要方法。

4.航行方法,研究在各种航海条件下的航行方法,如沿岸航行、狭水道航行和特殊条件下的航行等。

为了研究上述课题,航海学还必须包括航海学基础知识和航路资料等基本内容。

其中,航海学基础知识主要包括坐标、方向和距离,以及海图两大部分内容;航路资料主要包括:潮汐与潮流、航标与《航标表》和航海图书资料等内容。

第一章坐标、方向和距离第一节地球形状和地理坐标一、地球形状航海上船舶和物标的坐标、方向和距离等,都是建立在一定形状的地球表面的,要研究坐标、方向和距离等航海基本问题,必须首先对地球的形状和大小作一定的了解。

航海学知识点详细总结

航海学知识点详细总结

航海学知识点详细总结一、航行的基本概念航行,即船只或飞机在海洋、空中进行的航行活动。

航行的基本概念包括航向、航线、航迹和航速等。

1.航向:航向是船只或飞机相对于地面的方向。

船只或飞机在进行航行时,需要保持一个特定的航向来达到预定的目的地。

2.航线:航线是船只或飞机在航行中规定的具体的航行路线。

航线通常是由航行图上规定的特定航线点构成的。

3.航迹:航迹是船只或飞机实际航行时在海洋或空中留下的实际轨迹。

航迹可以反映船只或飞机的航行情况和航行路线。

4.航速:航速是船只或飞机在航行中单位时间内航行的距离。

航速通常以节(nautical mile per hour)为单位来表示。

二、航海工具航海工具是指用来测定航行方向、航行位置和航行距离等信息的工具和设备。

航海工具包括罗盘、测距仪、星历表、雷达等。

1.罗盘:罗盘是用来测定船只或飞机的航向的仪器。

罗盘可以根据地球的磁场指示出船只或飞机相对于地面的方向。

2.测距仪:测距仪是用来测量船只或飞机与地面或目标的距离。

测距仪可以帮助船只或飞机确定自己的位置和距离目标的距离。

3.星历表:星历表是用来根据星象和时间来确定船只或飞机的位置的表格。

星历表可以根据星象计算出船只或飞机的纬度和经度。

4.雷达:雷达是利用无线电波来探测目标和测定目标位置的仪器。

雷达可以在船只或飞机上实时监测周围环境和判断目标位置。

三、航海技术航海技术是指用来确定船只或飞机的位置和航向的技术和方法。

航海技术包括天文导航、无线电导航、卫星导航等。

1.天文导航:天文导航是利用天体的位置来确定船只或飞机的位置和航向的技术。

天文导航需要根据星象和时间来计算出船只或飞机的位置和航向。

2.无线电导航:无线电导航是利用无线电信号来确定船只或飞机的位置和航向的技术。

无线电导航需要使用无线电设备和信标来确定位置和航向。

3.卫星导航:卫星导航是利用卫星信号来确定船只或飞机的位置和航向的技术。

卫星导航需要使用卫星导航系统和接收设备来确定位置和航向。

航海学第一篇基础知识

航海学第一篇基础知识
航海学-第一篇基础知识
———————————————————————————————— 作者: ———————————————————————————————— 日期:
‫ﻩ‬
第一篇 基础知识
第一章 坐标、方形体 船舶在海上航行时,需要确定船舶的位置、航向和航程,这就要求在地球表面建立坐标系和 确定方向的基准线,因此要对地球的形状有一定的了解。 地球的自然表面是不平坦的,是一个非常复杂而又不规则的曲面。陆地上有高山、深谷和平 地;海洋里有岛屿和海沟。因此,地球的自然表面不是数学曲面,不能直接在其上进行运算,也不能 直接在其上建立坐标系。 航海上所研究的地球形状,是指由假想的大地水准面所包围的闭合几何体——大地球体。所 谓大地水准面,是指与各地铅垂线相垂直且与完全均衡状态的海平面相一致的水准面,详细地说大 地水准面是与平均海面相重合且延伸至大陆底部的一个连续的、无叠痕的、无棱角的闭合曲面。 大地球体仍是一个不规则的球体,不是数学曲面,不能直接在其上进行运算,也不能直接在其上建 立坐标系,怎么办呢?一般在航海上,以大地球体的近似体代替大地球体来建立坐标系进行航海 计算,以地球园球体作为它的第一近似体,而以地球椭园体作为它的第二近似体。 1. 第一近似体——地球圆球体
为地球中心: 地 轴 ( axis o f t h e e arth) — 地 球 自 转 的 轴
图 1-1-1 地球椭圆体示意 图
( PN PS ),即通过地球中心连结南极和北极的一条假想的线。
图 1-1-2 地球椭圆体示意图
地极(terrestrial poles) —地轴与地球表面相交的两点。从地极上空府视,以极为
格林经线(Greenwich meridian)——通过英国伦敦格林尼治天文台原址的经线(PNGP s),又称本初子午线或零度经线。

航海学(一)复习要点

航海学(一)复习要点

第一篇基础知识第一章坐标、方向和距离1. 名词解释:经度、纬度、经差、纬差、磁差、自差、罗经差、陀罗经差、真方位、磁方位、罗方位、陀螺方位、真航向、磁航向、罗航向、陀螺航向、舷角、海里、灯光初显2. 地理坐标系采用的基本大圆(地理坐标系是建立在地球椭圆体上的坐标系3. 经差、纬差计算和命名方法4. 表示地球椭圆体形状和大小的参数有哪一些5. 航海中为了简化计算对地球的形状采用圆球体、精确计算时采用椭圆体。

6. 航海中目前使用的划分方向的方法有哪一些7. 圆周法、半圆法、罗经点法换算8. 磁差变化与哪一些因素有关9. 自差变化与哪一些因素有关10. 磁差资料的查取11. 向位换算12. 1海里的长度计算公式13. 求地理能见距和初现距离14. 中、英版图注射程15. 求计程仪航程、计程仪改正率和到达点计程仪读数的计算16. 相对计程仪“计风不计流”的概念17. 航速校验线必备的条件18. 不同水流条件下测定船速和计程仪改正率的方法第二章海图1. 名词解释:恒向线、纬度渐长率、基准比例尺2. 墨卡托海图采用的投影方法3. 墨卡托海图的特点4. 大圆海图的特点和投影方法5. 重要海图图式6. 中、英版海图上山高、灯高、比高、净空高度、水深采用的基本面7. 英版海图上PA、PD、ED的含义8. 如何判定海图的可靠程度第二篇船舶定位第一章航迹绘算1. 名词解释:东西距2. 风压差的大小与哪一些因素有关3. 风压差确定正负号的方法4. 风压差计算公式5. 压差角的测定(重点是最小距离方位和正横方位法)6. 中分纬度航法的计算7. 海图作业试行规则中对航迹推算的规定(连续不间断,只有通过狭水道、渔区可中断。

水流显著的海区一小时一个船位,其他海区2-4小时一个船位8. 无风流情况下,推算船位的误差产生的原因有哪一些?正常情况下,航向误差和航程误差各为多少?概率园的半径是多少?第二章陆标定位1. 名词解释:船位差2. 航海中常用的船位线有哪几种3. 说出3种距离定位时判定双值性的方法4. 距离定位时观测物标的顺序5. 方位定位时观测物标的顺序和选择物标的原则6. 三标方位定位时产生误差三角形的原因及处理方法7. 倍角法、四点方位法、特殊角法定位的条件8. 方位移线定位注意事项第三篇航行方法第一章大洋航行1. 航线有哪几种类型2. 大圆航线分段的原则3. 选择大圆航线时应避开哪一些航行受限制的区域4. 选择大圆航线时应考虑哪一些因素5. 空白定位图有哪一些特点第二章沿岸航行1. 选择沿岸航线时应考虑哪一些因素2. 选择沿岸航线时,确定航线离岸距离时应考虑哪一些因素(一般数据)3. 选择沿岸航线时,确定航线离危险物距离时应考虑哪一些因素第三章狭水道航行1. 确定富裕水深大小时应考虑哪一些因素2. 通过浅滩的有利时机高潮前一小时3. 判定前方浮标是否有碰撞危险的方法4. 狭水道航行可以采用的导航方法、转向方法、避险方法有哪一些5. 试述白天判定浅水礁盘存在的方法6. 试述平行方位转向法7. 利用叠标导航修正航向的方法8. 利用导标导航修正航向的方法第四章特殊条件下的航行1. 雾中航行逐点航法的优缺点2. 雾中航行注意事项3. 冰区航行注意事项4. 利用雾号回声判定船与海岸距离的方法。

航海学

航海学

④ 十六个偏点:N/E、NE/N、NE/E、E/N、E/S、SE/E、SE/S、S/E

S/W、SW/S、SW/W、W/S、W/N、NW/W、NW/N、N/W。
这样,将360o圆周等分成32个罗经点,每个罗经点为11o.25.
3.三种方向划分系统之间的换算
(1)半圆→圆周法
NE半圆,圆周度数 = 半圆度数;
航海学教案
第一篇 基础知识 第一章 坐标、方向和距离
§1—2 航向与方位 ⒉ 磁罗经差
是船上磁罗经的磁针在受到地磁和船磁合力的影响下指示的罗北(NC)偏开 真北 (NT)的角度。 (如图1-1-10所示) NC偏在NT的东面时为正(+);
NC偏在NT的西面时为负(-); △C = Var. + Dev. ⑴ 磁差(Variation, Var.)
陀螺罗经刻度盘0o所指的方向称为陀罗北(compass north, NG)。 (2)罗经差:罗经差分为:陀螺罗经差(gyro-compass error, △G);简称 陀罗差。 磁罗经差(compass error, △C)。简称罗经差。
航海学教案
第一篇 基础知识 第一章 坐标、方向和距离
§1—2 航向与方位 ⒈ 陀罗差
第二近似体 两极略扁的旋转椭圆体(航海上为了更准确地计算)。
(earth ellipsoid) 二、地理坐标(geographic coordinate) 地理坐标是建立在地球椭圆体表面上,用来表示地面上
的位置。 地球上的基本点、线、圈。
航海学教案
第一篇 基础知识
第一章 坐标、方向和距离§1—1 地球形状、地理坐标与大地坐 标系
经差与纬差(difference of longitude & latitude)分别用符号“Dλ”和“Dφ”表示。

航海学基础知识.doc

航海学基础知识.doc

第一章航海学基础知识第一节地球形状与地理坐标一、大地球体船舶在海面上航行,实际是在地球表面的海面里航行,为了研究诸多航海问题,应该对地球的形状和大小有个基本的了解。

地球的自然表面有高山、深海,形状非常复杂。

在地球表面的3/4 被大洋所覆盖,大陆的高低起伏与地球的半径相比,又显得微不足道。

所以,航海上讨论的地球形状,并不是指其自然形状,而是指由大地水准面所包围的几何体的形状。

地球上任意一点的水准面是指通过该点且与该点的铅垂线垂直的平面。

液体的静止表面就是水准面。

设想一个与平均海面相吻合的水准面,并将它延伸到陆地内部,在延伸中始终保持此面处处与当地的铅垂线正交,这样形成的一个连续不断的、光滑的闭合曲面,叫做大地水准面。

被大地水准面所围成的球体叫做大地球体。

二、大地球体的近似体大地球体是一个不规则的几何体。

为了应用的方便,在不同的应用场合会使用到大地球体的近似体:1.第一近似体,地球圆球体(terrestrial sphere)在一般的航海计算中,例如在天文计算、构建简易墨卡托海图图网时,为了便于计算,通常将地球近似看作圆球体。

根据地球圆球面上大圆弧1′的弧长等于1 n mile 即1852m的规定,可推算出地球圆球体的半径R E :60 360×R = nmile = 3437.7468nmile = 6366707m2π2.第二近似体,地球椭圆体(earth ellipsoid)地球椭圆体也叫旋转椭圆体,在大地测量学、地图学和需要精确的航海计算中,应该将大地球体近似为两极略扁的地球椭圆体。

航海中,地理坐标的建立、墨卡托海图的绘制都是建立在地球椭圆体的基础上的。

地球椭圆体是由椭圆P N QP S Q′绕其短轴P N P S 旋转而成的几何体(图1-1-1)。

椭圆短轴P N P S(即地球的地轴earth ′s axis )的两个端点是地理北极P N 和地理南极P S;椭圆长轴QQ′绕短轴旋转所成的平面是赤道平面,它在地球椭圆体面上的截痕是赤道,赤道是一个大圆。

(完整版)航海学知识点

(完整版)航海学知识点

(完整版)航海学知识点第⼀篇航海学(地⽂航海)第⼀章坐标、⽅向和距离第⼀节地球形状和地理坐标⼀、地球形状1. 第⼀近似体――地球圆球体航海上为了计算上的简便,在精度要求不⾼的情况下,通常将⼤地球体当作地球圆球体。

2. 第⼆近似体――地球椭圆体在⼤地测量学、海图学和需要较为准确的航海计算中,常将⼤地球体当作两极略扁的地球椭圆体。

地球椭圆体即旋转椭圆体,它是由椭圆P N QP S Q′绕其短轴P N P S旋转⽽成的⼏何体(图1-1)。

表⽰地球椭圆体的参数有:长半轴a、短半轴b、扁率c和偏⼼率e。

⼆、地理坐标1. 地球上的基本点、线、圈地理坐标是建⽴在地球椭圆体表⾯上的。

要建⽴地理坐标,⾸先应在地球椭圆体表⾯上确定坐标的起算点和坐标线图⽹。

如图所⽰:椭圆短轴即地球的⾃转轴――地轴(P N P S);地轴与地表⾯的两个交点是地极,在北半球的称为北极(P N),在南半球的称为南极(P S);通过地球球⼼且与地轴垂直的平⾯称为⾚道平⾯,⾚道平⾯与地表⾯相交的截痕称为⾚道(QQ′),它将地球分为南、北两个半球;任何⼀个与⾚道⾯平⾏的平⾯称为纬度圈平⾯,它与地表⾯相交的截痕是个⼩圆,称为纬度圈(AA′);通过地轴的任何⼀个平⾯是⼦午圈平⾯,它与地表⾯相交的截痕是个椭圆,称为⼦午圈(P N QP S Q′);由北半球到南半球的半个⼦午圈,叫作⼦午线,⼜称经线(P N QP S,P N Q′P S);通过英国伦敦格林尼治天⽂台⼦午仪的⼦午线,叫作格林⼦午线或格林经线(P N GP S)。

2. 地理坐标地球表⾯任何⼀点的位置,可以⽤地理坐标,即地理经度和地理纬度来表⽰。

地理经度简称经度,地⾯上某点的地理经度为格林经线与该点⼦午线在⾚道上所夹的劣弧长,⽤λ或Long表⽰。

某Array点地理经度的度量⽅法为:⾃格林⼦午线起算,向东或向西度量到该点⼦午线,由0°到180°计量。

向东度量的称为东经,⽤E标⽰;向西度量的称为西经,⽤W标⽰。

航海学-第一篇基础知识

航海学-第一篇基础知识

第一篇 基础知识第一章 坐标、方向与距离第一节 地理坐标一、地球形体船舶在海上航行时,需要确定船舶的位置、航向和航程,这就要求在地球表面建立坐标系和确定方向的基准线,因此要对地球的形状有一定的了解。

地球的自然表面是不平坦的,是一个非常复杂而又不规则的曲面。

陆地上有高山、深谷和平地;海洋里有岛屿和海沟。

因此,地球的自然表面不是数学曲面,不能直接在其上进行运算,也不能直接在其上建立坐标系。

航海上所研究的地球形状,是指由假想的大地水准面所包围的闭合几何体——大地球体。

所谓大地水准面,是指与各地铅垂线相垂直且与完全均衡状态的海平面相一致的水准面,详细地说大地水准面是与平均海面相重合且延伸至大陆底部的一个连续的、无叠痕的、无棱角的闭合曲面。

大地球体仍是一个不规则的球体,不是数学曲面,不能直接在其上进行运算,也不能直接在其上建立坐标系,怎么办呢?一般在航海上,以大地球体的近似体代替大地球体来建立坐标系进行航海计算,以地球园球体作为它的第一近似体,而以地球椭园体作为它的第二近似体。

1. 第一近似体——地球圆球体在解决一般航海问题时,为了计算上的简便,通常是将大地球体当做地球园球体,其半径R =6,371,110M 。

2. 第二近似体——地球椭圆体 园体,如图1-1-1所示,地球椭园体是由椭圆P N QP S Q ′P N P S 旋转一周而形成的几何体。

地球椭园体的参数有:长半轴a 短半轴b 、扁率c 和偏心率e ,它们之间的相互关系是:a b a c -=; a b a e 22-=; c e 22≈ 在不同的历史时期,依据的测量结果不同,因而所推算出的地球椭圆体的参数也不相同。

我国从1954年开始采用前苏联克拉索夫斯基椭圆体参数,现在准备逐步采用IUGGl975年推荐的地球椭圆体参数,参见表1-1-1。

二、地球上的基本点、线、圈把地球看做第二近似体即椭圆体,如图1-1-2所示,O 为地球中心:地轴(axis of the earth)—地球自转的轴(S N P P ),即通过地球中心连结南极和北极的一条假想的线。

(完整版)航海学基础知识

(完整版)航海学基础知识

第三章 航向、方位和距离第一节 航海上常用的度量单位一、长度单位1.海里(nautical mile, n mile)1)定义海里等于地球椭圆子午线上纬度一分所对应的弧长简写为1n mile 或1'。

数学公式:1(1852.259.31cos 2)nmile m ϕ=-赤道最短,1842.9m ,两极最长,1861.6m ;两地最大差值是18.7m 。

2)标准海里英国为1853.18m(6080英尺);我国采用1929年国际水文地理学会议通过的海里标准,1n mile=1852m 。

约在纬度44º14'处1n mile 的长度才等于1852m3)航海实践中产生的误差例:某轮沿着赤道向正东航行,每小时25n mile ,航行一天后航程是2524=600n mile ⨯(按1n mile 等于1852m 计算),如果按赤道1 n mile 的实际长度1842.94m 计算,则船舶一天航行的距离是:1852600603n mile 1842.94⨯≈ 由此可以看出,将1n mile 确定为1852m 后,所产生的误差只有航行距离的0.5%。

若在中纬度海区航行,则所产生的误差将更小。

2.链(cable,cab)1n mile 的十分之一为1链。

链是用来测量较近距离的单位。

1链=185.2m3.米(meter,m)国际上通用的长度度量单位。

航海上用来表示海图里的山高和水深,有时也用来度量距离。

4.拓(fathom)、英尺(foot,ft)和码(yard,yd)旧英版海图上用英尺和拓表示水深;山高以英尺表示。

用海里、码和英尺来度量距离。

1拓=1.829m 或6 ft 、1yd=0.9144m 或3 ft 、1 ft=0.3048m 。

目前英版的拓制海图正被米制海图(metric chart)所代替5.公里(kilometer,km)用于海图上表示两个陆标间较远的距离单位。

1km=1000m。

二、速度单位节(knot,kn):航海上计算航速的单位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 航向、方位和距离第一节 航海上常用的度量单位一、长度单位1.海里(nautical mile, n mile)1)定义海里等于地球椭圆子午线上纬度一分所对应的弧长简写为1n mile 或1'。

数学公式:1(1852.259.31cos 2)nmile m ϕ=-赤道最短,1842.9m ,两极最长,1861.6m ;两地最大差值是18.7m 。

2)标准海里英国为1853.18m(6080英尺);我国采用1929年国际水文地理学会议通过的海里标准,1n mile=1852m 。

约在纬度44º14'处1n mile 的长度才等于1852m3)航海实践中产生的误差例:某轮沿着赤道向正东航行,每小时25n mile ,航行一天后航程是2524=600n mile ⨯(按1n mile 等于1852m 计算),如果按赤道1 n mile 的实际长度1842.94m 计算,则船舶一天航行的距离是:1852600603n mile 1842.94⨯≈ 由此可以看出,将1n mile 确定为1852m 后,所产生的误差只有航行距离的0.5%。

若在中纬度海区航行,则所产生的误差将更小。

2.链(cable,cab)1n mile 的十分之一为1链。

链是用来测量较近距离的单位。

1链=185.2m3.米(meter,m)国际上通用的长度度量单位。

航海上用来表示海图里的山高和水深,有时也用来度量距离。

4.拓(fathom)、英尺(foot,ft)和码(yard,yd)旧英版海图上用英尺和拓表示水深;山高以英尺表示。

用海里、码和英尺来度量距离。

1拓=1.829m 或6 ft 、1yd=0.9144m 或3 ft 、1 ft=0.3048m 。

目前英版的拓制海图正被米制海图(metric chart)所代替5.公里(kilometer,km)用于海图上表示两个陆标间较远的距离单位。

1km=1000m。

二、速度单位节(knot,kn):航海上计算航速的单位。

1节等于1n mile/h。

航海上流速也用节来表示。

三、角度单位航海上常用的角度单位为六十等分制。

一圆周分为360º,1=60',1'=60〃。

第二节能见地平距离与物标能见距离一、几个概念1.地平面(horizon):凡与测者铅垂线相垂直的平面。

2.铅垂线,是指通过测者眼睛,并与测者重力方向相重合的直线。

3.测者真地平平面(true horizon)或天文地平平面(celestial horizon):凡与测者铅垂线相垂直,并通过地心的地平平面。

4.测者地面真地平平面(sensible horizon):通过测者眼睛的地平平面。

5.水天线:在大海上,具有一定眼高的测者e,所能看到周围大海的最远处,水天交界线所围成的圆圈,这个圆圈称为测者能见地平或视地平。

6.测者能见地平平面或视地平平面(visible horizon):水天线所在的地平平面。

在研究测者能见地平距离与物标能见距离时,通常把地球看成圆球体。

二、测者能见地平距离(distance to the horizon from height of eye)定义:视距,在海上观测者至他所看到的水天线的距离,用De表示。

D nmile=公式:()e三、物标能见地平距离(distance to the horizon from object)定义:在能见度良好的情况下,当测者眼高为零时,即测者眼晴位于海平面上,物标顶点能被看到的最大距离;或假设测者眼睛放在物标的顶端,所能看到的测者能见距离称为物标能见地平距离,用Dh表示。

D nmile=公式:()h四、物标地理能见距离(geographical range of an object)定义:当能见度良好时,仅由于地面曲率和地面光线的折射率的影响,具有一定眼高的测者,理论上能够看到物标的最大距离。

用 D o表示。

D nmile=公式:()o例1、某轮眼高e=16m,山高H=64m,求该山地理能见距离。

五、灯标射程1.几个概念1)灯塔灯光初显:在灯塔灯芯初露测者水天线那一瞬间,才是测者最初能够直接看到灯塔灯光的时刻,这时叫。

灯塔灯光初显时,测者与灯塔之间的距离等于灯塔的地理能见距离Do。

2)灯塔灯光初隐:当船舶驶离灯塔时,测者看到灯塔灯芯刚刚没于水天线的那一瞬间。

并不是所有的灯塔都有初显(隐)现象的,要根据灯塔的光力强度和射程来判断是否有初显(隐)现象。

2.中版航海资料中的灯标射程1)定义:睛天黑夜,当测者眼高为5m时,能够看到灯塔灯光的最大距离。

它等于光力能见距离(或称光力射程)与5m眼高的灯塔地理能见距离(或称地理射程)中较小者。

光力能见距离(光力射程):指晴天黑夜灯塔灯光所能照射的最大距离。

2)强光灯塔:指灯塔射程等于或大于(一般不超过1 n mile)测者5m眼高时的灯塔地理能见距离(地理射程)。

即:灯塔射程≥强光灯塔有初显(隐)现象,初显(隐)距离等于灯塔的地理能见距离:初显(隐)距离=或初显(隐)距离=射程+例1:我国的花鸟山灯塔高83.2 m,射程24n mile,判断该灯塔有无初显(隐)发生的可能?3)弱光灯塔:灯塔的射程小于测者眼高5m时的灯塔地理能见距离(地理射程)。

弱光灯塔标的是光力射程;无初显(隐)现象,灯光只能在标记的射程内才有可能看到。

即灯塔射程<+例2:长江口某灯塔高84.4m,射程20n mile,判断该灯塔有无初显(隐)发生的可能?3.英版海图和英版《灯标雾号表》中提供的灯塔射程定义:灯光的光力能见距离(或称光达射程),即光力射程或额定光力射程。

光力射程(luminous range):是指在某一气象能见度条件下,该灯塔灯光所能照射的最大距离。

额定光力射程(nominal range):是指在气象能见度为10n mile 条件下,该灯塔灯光的光力射程。

采用额定光力射程的国家和地区在英版《灯标雾号表》的特殊说明(Special Remark)中注明。

灯塔射程,只与灯光强度和气象能见度有关,与灯高、眼高、地面曲率等均无关。

例题。

第三节向位与舷角一、方向的确定与划分1.方向的确定1)测者地平平面,测者地面真地平平面是通过测者并垂直于测者铅垂线的平面;2)测者子午圈平面;3)测者东西圈(primevertical)平面,测者卯酉圈平面,包含测者铅垂线并与测者子午圈平面垂直的平面;4)南北线:测者子午圈平面与测者地面真地平平面的交线;5)东西线:测者东西圈平面与测者地面真地平平面的交线。

不同地点的测者地面真地平平面,南北线和东西线是不同的;两极的测者无法确定北、东、南、西四个基本方向,北极测者无真北方向任意方向都是真南方向,南极测者任意方向都是真北方向。

2.方向的划分1)圆周法(three-figure method)以正北000°为基准,按顺时针方向计算,由000°~360°;表示方法:用三位数字表示,航海上最常用的表示方。

2)半圆法(semicircular method)以正北或正南为基准,向东或向西分别计算,各从0°~180°计算到正南或正北;表示方法:除度数外,还要标出起算点和计算方向。

如80°SW。

度数后缀的方向,前者表示起算方向,后者则表示计算方向主要用在航海天文计算中,表示天体方位。

3)罗经点法(compass point method)以正北为基准,将地面真地平划分为32等分,得出32个方向点,每一个方向点称为一个罗经点;四个基点(cardinal point):北(N)、东(E)、南(S)、西(W)为;四个隅点(intercardinal point):北东(NE)、南东(SE)、南西(SW)和北西(NW) 八个三字点(intermedicate point false point):即北北东(NNE)、东北东(ENE) ……西北西(WNW)和北北西(NNW);十六个偏点(by point):北偏东(N/E)、北东偏北(NE/N)、北东偏东(NE/E)、东偏北(E/N)……北西偏北(NW/N)、北偏西(N/W)。

由于罗经点划分得不够精确,目前仅用它来表示风、流的方向。

3.三种方向划分系统之间的换算1)半圆法换算成圆周法的法则①在北东(NE)半圆,圆周度数等于半圆周度数,②在南东(SE)半圆,圆周度数等于180°减半圆周度数;③在南西(SW)半圆,圆周度数等于180°加半圆周度数;③在北西(NW)半圆,圆周度数等于360°减半圆周度数;2)罗经点法换算成圆周法的法则1点=11.25°=11 =11°15'二、相位与舷角1.航向线(course line,CL):船首尾线向船首方向的延长线,称为航向线,代号为CL。

船首尾线(fore and aft line):当船正平时,船舶的首尾面与船舶地面真地平平面相交的直线。

2.真航向(true course,TC)定义:船舶航行时,在船上测者的真地平平面上,真北线与航向线之间的夹角,代号为TC。

度量:从真北线开始顺时针计量到航向线。

用圆周法表示,从0000~3600。

3.船首向(heading,Hdg):指在任何情况下,船舶某一瞬间的船首方向。

代号为Hdg;常于船舶在港内操纵或锚泊时用。

4.方位线(bearing line):在测者地面真地平平面上,由测者向物标的连线。

5.真方位(true bearing,TB)定义:在测者地面真地平平面上,真北线与方位线之间的夹角,代号为TB。

度量:从真北线开始,顺时针计量到方位线,用圆周法表示,从000º~360º。

6.舷角(relative bearing)定义:相对方位,在测者地面真地平平面上,以航向线为基准,从航向线到方位线之间的夹角,代号为Q。

计量方法:1)圆周法:从航向线开始顺时针计量到物标方位线。

由000º~360º。

2)半圆法:从航向线开始,向右或向左由0º~180º计量到物标方位线,它们分别称为物标的右舷角Q右或左舷角Q左。

船首线与物标方位线垂直时称为正横(abeam)。

代号为D。

当物标舷角Q=90º或Q右=90º时,称为物标的右正横;而当物标舷角Q=270º或Q左=90º时,则称为物标的左正横。

7.真航向、真方位与舷角之间的关系真方位(TB)=真航向(TC)+舷角(Q)或真方位(TB)=真航向(TC)±舷角(Q)( Q右Q左) 在运算中,当被减数小于减数,则在被减数中加上360º;当相加结果大于360时,则减去360º,对结果并无影响。

相关文档
最新文档