NMR二维谱
核磁共振二维实验报告
核磁共振二维实验报告实验目的:本实验旨在使用核磁共振(NMR)技术进行二维谱图的测定,探究样品的化学结构。
实验原理:核磁共振是一种利用原子核在外加磁场作用下发生的能级跃迁的现象,通过探测共振的信号来获得样品的结构信息。
二维核磁共振谱图(2D NMR)是利用两个核磁共振信号之间的相互耦合关系,提供更加详细的结构信息。
实验仪器:1. 核磁共振(NMR)仪:用于提供强大的磁场和测量核磁共振信号。
2. 样品溶液:待测的化合物的溶液。
3. 其他常规实验用具。
实验步骤:1. 样品的制备:将待测的化合物溶解在适当的溶剂中,使其浓度适当,以便于谱图的测定。
2. 样品的装填:将样品溶液倒入核磁共振仪的样品管中,确保样品装填均匀。
3. 参数设置:选择合适的核磁共振实验参数,如脉冲角度、扫描次数、采样时间等。
4. 实验测量:启动核磁共振仪,进行测量。
根据实验需要,可以选择多次测量,以增加信噪比。
5. 数据处理:将测得的核磁共振数据进行处理,包括峰位校正、噪声滤除等。
6. 图谱解析:根据测得的二维谱图,分析样品的化学结构,解释各个峰位的代表意义。
实验结果和讨论:根据实验所测得的二维核磁共振谱图,我们可以得到有关样品的结构信息。
通过观察峰位的位置、强度和耦合模式等特征,可以推断出样品的化学键、官能团等信息。
本实验中,我们成功获得了样品的二维核磁共振谱图,并对谱图进行了解析。
根据峰位的化学位移和耦合模式等数据,我们推测了样品中存在的官能团和化学键,进一步验证了样品的化学结构。
结论:本实验利用核磁共振技术成功地获得了待测样品的二维谱图,并通过对谱图的解析推测了样品的化学结构。
该实验展示了核磁共振技术在化学结构分析中的重要应用,并为进一步研究提供了基础数据。
二维NMR谱原理及解析
碳谱与氢 谱的对比
氢谱不足
不能测定不 含氢的官能 团
对于含碳较多的 有机物,烷氢的 化学环境类似, 而无法区别
碳谱补充
给出各种含碳官能团 的信息,几乎可分辨 每一个碳核,光谱简 单易辨认
2.2
2.0
1.8
1.6
1.4
1.2
ppm
1D 谱 分辨率可通过提高外磁场强 度和增加谱图的维数而提高. nD NMR (n=2,3,4)
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
一维核磁共振氢谱
1D NMR--脉冲序列和原理示意图
D1
核磁共振氢谱
1H NMR是应用最为广泛的核磁共振波谱。
JBC=7 Hz
B,C是磁不等价的核
JAB JAC
Hc C B
A
A
*C
*CH
*CH2 H2
*CH3 H3 H2 H1 C
H1 C C C
H1
由于一些核的自然丰度并非100%.顾此谱图中可能出现偶合分 裂的峰和无偶合的峰.氯仿中的氢谱是一个典型的例子.
H-12C H-13C
H-13C x100
105 Hz
B0
Be
原子核实际感受到的磁场: B = (1-s) B0 S:化学位移常数
化学位移
分子中的原子并不是孤立存在,它不仅在相互间发生作用也同周围环 境发生作用,从而导致相同的原子核却有不同的核磁共振频率.
化学位移
自旋-自旋偶合
Larmor
E B0
频率
e.g. B0=11.7 T,
w(1H)=500 MHz w(13C)=125 MHz 化学位移 ~ B0 » kHz 自旋-自旋偶合» Hz-kHz
二维核磁共振谱综述
3.二维谱的表达方式
(1)堆积图(stacked plot). • 堆积图的优点是直观,具有立体感.缺点是 难以确定吸收峰的频率。大峰后面可能隐 藏小峰,而且耗时较长。 • (2)等高线(Contour plot) 等高线图类似于等高线地图,这种图的优 点是容易获得频率定量数据,作图快。缺 点是低强度的峰可能漏画。目前化学位移 相关谱广泛采用等高线。
4.2 化学位移相关谱(Correlated Spectroscopy ,COSY)
• 二维化学位移相关谱包括 • 同核化学位移相关谱(Homonuclear correlation) • 1)通过化学键:COSY, TOCSY, 2DINADEQUATE。 • 2)通过空间:NOESY, ROESY。 • 异核化学位移相关谱(Heteronuclear correlation) • 强调大的偶合常数:1H-13C –COSY • 强调小的偶合常数,压制大的偶合常数: COLOC(远程1H-13C –COSY)
二维 nmr 谱 c-h 相关
二维NMR是一种通过观察分子中核磁共振现象来分析化合物结构和性质的方法,而C-H相关谱则是其中的重要分支。
通过这种谱图,我们可以更加深入地了解分子内部C-H键之间的相互关系,这对于有机化学和药物研发领域具有极大的意义。
让我们来谈谈二维NMR的基本原理。
二维NMR技术是在传统一维NMR的基础上发展起来的,它利用了两个核磁共振频率之间的耦合效应,能够在频谱上呈现出更为复杂的信息。
在C-H相关谱中,我们通过观察氢核和碳核之间的相互耦合效应,可以清晰地看到不同C-H键之间的联系,这为分析复杂的有机分子结构提供了极大的帮助。
在二维NMR谱图中,我们可以看到各种不同的交叉峰和相关峰,它们代表了不同C-H键之间的关联关系。
通过分析这些峰的位置、强度和形状,我们可以推断出分子内部的空间构型和连接方式,从而揭示分子的结构和构象信息。
这对于有机化学家来说是非常宝贵的信息,可以帮助他们解决很多结构和构象上的难题。
除了结构信息外,C-H相关谱还能提供有关分子动力学和反应机理的重要线索。
通过观察峰的变化和演化规律,我们可以了解分子内部的运动和动态过程,甚至可以揭示出化学反应中的中间态和过渡态。
这对于研究催化剂设计、反应动力学和机理研究具有非常大的意义。
二维NMR谱C-H相关技术是一种非常强大的工具,它为有机化学和药物研发领域提供了丰富的结构和反应信息。
通过深入研究和应用这一技术,我们可以更加全面、深入地了解分子的性质和行为,为新药发现和有机合成提供更为可靠的手段和方法。
结语通过对二维NMR谱C-H相关技术的讨论,我个人深深地感受到了这一技术的重要性和价值。
它不仅拓宽了我们对分子结构和反应的认识,更为有机化学和药物研发领域提供了非常实用和强大的工具。
我相信,在未来的研究和应用中,这一技术一定会发挥出更加广泛和深远的影响。
二维NMR谱C-H相关技术在化学领域中扮演着不可或缺的角色。
它的应用不仅在有机结构的确认中起到了至关重要的作用,同时也为药物研发和医学领域提供了强大的支持。
11b. NMR 基本二维谱操作介绍-2014.11
N
N
O CH2CH3
O
N
(0 %)
N
NN
得到两个产物, 产率分别为 75% 与 25%.
4
1
N
9
N
N
10 37Biblioteka 8N11 5
O
62 CH2CH3
NN
O
4
1
N
9
N
N
10 7
3
8N O
62
NN
11 CH2CH3
O
5
N
N
N
CH2CH3
O O
N NN
三种可能结构, 经 HMBC 的确定, 答案如上. 右边相关图说明: (上) 观察到 H-5 与 C-8 的相关
进階 2D 操作 特殊谱操作 杂核操作 弛豫操作 变温操作
检测步骤
调出程序
检测谱宽 投影对齐
参数设定 关键/ 选择性参数 检测时间 nt / ni
检测 (go)
二维傅立叶, 对称处理 定标, 定范围
谱图处理 调信号峰圆点大小
打印选择
movesw 后标定
强调提醒 ds / wft 差异
调二维谱, gCOSY 谱图 view 调程序
1. 各 H-C 峰对应良好; C4 和两个 H 相关 (d, e).
2. 确认 C1 为 OEt 的 CH3;C2 为双键碳上的的 CH3 3. 确认 C5, C6 为季碳, 没有 H 相关
gHMBC H-C 远程相关
(gradient Hydrogen Multiple Bond Correlation) pw = 6.4
(中) 没有观察到 5-H 与 C-8 或 C-7 的相关 (下) 若是此结构, 应该会观察到 H-5 与 C-7 的相关, 但没有得到.
二维NMR谱原理及解析
CH
H JHH
七个主要特性参数
化学位移 偶合常数 谱峰强度 核Overhauser效应(NOE) 纵向驰豫时间(T1) 横向驰豫时间(T2) 线宽
化学位移
在磁场中,由于原子核外电子的运动而产生一个小的磁场Be(local field).此小 磁场与外加磁场(B0)方向相反.从而使原子核感受到一个比外加磁场小的磁
一、二维核磁共振基础与核 磁共振综合解析
内容
一、核磁共振简介 二、七个主要特性参数 三、一、二维核磁共振实验及原理 四、核磁共振综合解析
600 MHz
核磁共振 : 简介
B0 z
宏观磁化强度矢量
B0 z M
y x
y x
具有非零自旋量子数的原子核具有自旋角动量,因而也就具有磁矩. 在磁场中, 原来无规则的磁矩矢量会重新排列而平行于外加的磁场.与外磁场同向和 反向的磁矩矢量符合Boltzmann分布. 磁矩矢量沿磁场方向的进动使XY平面上的投影 相互抵消. 由于沿磁场方向能量较低, 故原子分布较多一些而造成一个沿Z-轴的非零 合磁矩矢量. 虽然在理论上经常讨论单一原子的情形, 但在实际上, 单一原子的核磁信 号非常小而无法观测.故此我们定义单位体积内原子核磁矩的矢量和为宏观磁化强度 矢量 其方向与外磁场方向相同.以此矢量来描述宏观样品的核磁特性.
JAB=JAC
Hb C
Hc
B,C
A
A
B
A
C
Ha C
JAC=10 Hz
C
JAB=4 Hz
Hb C JBC=7 Hz
Hc B
A
B,C是磁不等价的核
JAB JAC
A
*C
*CH
*CH2
*CH3 H3
nmr 二维谱 混合时间
nmr 二维谱混合时间
在核磁共振(NMR)中,二维谱是一种重要的谱图类型,它能够提供分子内部不同核之间的相互作用信息。
混合时间是二维谱中的一个重要参数,它指的是在脉冲序列中,两个连续的脉冲之间的时间间隔。
混合时间对于二维谱的分辨率和信号强度有着重要的影响。
在某些情况下,增加混合时间可以增加谱的分辨率,因为更多的自旋-自旋相互作用可以累积。
然而,增加混合时间也会增加信号的衰减,因为更多的自旋-自旋相互作用会导致信号的损失。
因此,在选择混合时间时,需要权衡分辨率和信号强度之间的平衡。
一般来说,混合时间的选择取决于所研究的分子和所使用的脉冲序列。
在某些情况下,可能需要通过实验来确定最佳的混合时间。
需要注意的是,混合时间只是二维谱中的一个参数,它并不能单独决定谱的分辨率和信号强度。
其他参数,如脉冲宽度、脉冲间隔、接收带宽等也会对谱的质量产生影响。
因此,在优化二维谱时,需要综合考虑多个参数。
二维核磁共振氢谱-解释说明
二维核磁共振氢谱-概述说明以及解释1.引言1.1 概述核磁共振(NMR)技本是一种非常重要的分析技术,广泛应用于化学、生物化学、药物研究等领域。
其通过原子核所具有的自旋和电荷产生的磁矩,与外加磁场相互作用,从而产生共振现象,通过测定不同原子核在不同化学环境中的共振频率,可以为分子结构的研究提供丰富的信息。
而二维核磁共振氢谱则是核磁共振技术的重要分支,它通过核磁共振原理和多维谱的记录方式,可以进一步提供复杂分子结构的详细信息,成为研究和分析的重要工具。
本文将深入介绍二维核磁共振氢谱的原理、应用和技术发展,以期对该领域的研究工作有所帮助。
1.2 文章结构文章结构部分应该包括对整篇文章的组织和内容安排进行介绍。
可以描述文章的逻辑顺序和各个部分的内容提要,让读者对整篇文章的架构有一个清晰的了解。
例如:文章结构部分将介绍本文的组织结构和内容安排。
首先,对于二维核磁共振氢谱的原理将进行详细的解释和讨论,包括其基本概念和相关理论知识。
其次,将探讨二维核磁共振氢谱在不同领域的应用,以及其在科学研究和医学诊断中的重要性。
最后,将阐述二维核磁共振氢谱的技术发展以及对未来可能的影响。
通过这样的结构安排,读者可以清晰了解本文的内容和重点讨论的方向。
1.3 目的本文的目的在于深入探讨二维核磁共振氢谱在化学领域中的重要性和应用价值。
通过对二维核磁共振氢谱原理、应用和技术发展的全面介绍,可以帮助读者更深入地理解这一技术在分析化学物质中的作用。
同时,也旨在对未来二维核磁共振氢谱技术的发展方向进行展望,为相关领域的研究和实践提供一定的指导和借鉴。
通过本文的阐述,读者将能够更好地把握二维核磁共振氢谱的前沿动态,从而为相关领域的研究和应用提供帮助和启发。
2.正文2.1 二维核磁共振氢谱的原理二维核磁共振氢谱(2D NMR)是一种核磁共振(NMR)技术,它通过在两个独立的核磁共振实验中收集数据,并通过两个独立的核磁共振实验之间的相互关联来提供额外的信息。
二维核磁共振
图5-15 AX体系的1H,1H COSY谱示意图
• 总结:
•
1H-1H
• •
•
•
COSY:是可以确定质子化学位移以及质子之间偶合 关系和连接顺序的相关谱。图上有两种峰,对角峰 (diagonal peak)和交叉峰(cross peak),也叫相关峰,显示了 具有相同偶合常数的不同核之间的偶合。 在实际解析中首先选择一个归属明确的峰开始,从这个峰出 发,画与F1、F2轴平行的直线。 若这两个方向的直线分别与距这个峰等距离的地方与两个峰 相遇,则应该在对角线上找到与这个峰偶合的另一组峰。 可由在对角线的左上方或右下方,由一组交叉峰与两组对角 峰组成相应的直角三角形,来判断偶合关系的存在。 应注意1H-1H COSY谱主要反映的是3J偶合关系,但有时也出 现远程偶合关系的相关峰,而当3J小时,也可能看不到相应 的交叉峰。
2D
NMR的实验过程:
• 在一个2D NMR实验中,整个时间轴按其物理意义分 割成四个区间: • 预备期(td) → 发展期(t1) → 混合期(tm) →检测期(t2)。 • 预备期(td) :预备期通常是一个较长的时期,它是为 了使实验体系回到平衡状态。 • 发展期(t1):发展期的初期用一个或几个脉冲,使体系 激发,使之处于非平衡状态。发展期时间t1是变化的。 • 混合期(tm) :在此期间建立信号检测的条件。混合期 不是必不可少,有可能不存在。 • 检测期(t2):在此期间检测作为 t2函数的各种FID信号, 它的初始相及振幅都受到 t1 函数的调制。
1H-1H
•
•
• •
•
COSY是同一个偶合体系中质子之间的偶合相关谱,是可以确定质 子化学位移以及质子之间偶合关系和连接顺序的相关谱。 图上有两种峰,对角峰(diagonal peak)和交叉峰(cross peak)。 对角峰处在坐标F1=F2的对角线上,对角峰在F1或F2上的投影得到常规的 偶合谱或去偶谱。 交叉峰不在对角线上,即坐标F1≠F2。交叉峰显示了具有相同偶合常数的 不同核之间的偶合。 交叉峰又分为两类: – 一类交叉峰紧靠对角线,是对角峰中同种核的组成部分; – 另一类远离对角线,是具有相同偶合常数的不同核的相关峰。 交叉峰有两组,分别出现在对角线两侧,并以对角线对称。 这两组对角峰和交叉峰可以组成一个正方形,并且由此来推测这两组核 之间有偶合关系。所以也叫相关峰,显示了具有相同偶合常数的不同核 之间的偶合。 如图5-15所示。
二维NMR谱基本知识及解析
在BRUKER 仪器上, 原子核的频率是通过 参数BFn (MHz)设臵. 如BF1 代表第一通道. 更精细的频率调节可 用参数On来完成. On 叫频率偏差频率或偏 臵频,所以总频率为 SFOn: SFO1=BF1+O1
2011年12月16日
3
核磁共振 : 简介
B0
B0
M
RF 脉冲
M 接收器 Receiver
JAB=JAC
Hb C
Hc
B,C
A
A
B
A
C
Ha C
JAC=10 Hz
C
JAB=4 Hz
Hb C JBC=7 Hz
Hc B
A
B,C是磁不等价的核
JAB JAC
A
*C
*CH
*CH2
*CH3 H3
H2
H1
H1
H2 H1
C
C
C
C
由于一些核的自然丰度并非100%.顾此谱图中可能出现偶合分 裂的峰和无偶合的峰.氯仿中的氢谱是一个典型的例子.
核磁共振氢谱--各类1H的化学位移
0
核磁共振氢谱--各类1H的化学位移
核磁共振氢谱--耦合作用的一般规则
核的等价性 • 化学等价:化学位移等价。 • 磁等价核:δ值相同,而且组内任一核对组外某一
磁性核的偶合常数也相同。 • 磁不等价核:化学等价,但对组外磁性核的偶合常
数不同。
核磁共振氢谱解析
核磁共振 : 简介
Larmor 频率
nucleus
symbol
proton (hydrogen) 1H
deuterium
2H
phosphorous
31P
carbon
二维核磁共振波谱名词解释
二维核磁共振波谱名词解释
二维核磁共振(2D NMR)波谱是一种用于研究分子结构和动态过程的强大工具。
它通过测量和分析原子核在磁场中的自旋状态,可以提供关于分子内部结构、化学环境以及分子之间的相互作用的详细信息。
核磁共振是原子核在磁场中的行为。
当原子核吸收或发射能量时,其自旋状态会发生改变,这种改变可以通过磁场检测到。
在核磁共振波谱中,我们主要关注的是1H核(即氢原子核),因为它在许多化合物中都存在,且其信号容易检测。
二维核磁共振波谱是在一维核磁共振波谱的基础上发展起来的。
一维核磁共振波谱只能提供关于分子中不同种类的氢原子的信息,而二维核磁共振波谱则可以提供更多的信息。
它通过将一维实验进行多次,每次改变一个参数(如脉冲宽度、延迟时间等),然后将得到的数据进行关联和解析,可以得到关于分子结构的更多信息。
二维核磁共振波谱的主要类型有HSQC(异核单量子相干)和HMBC(异核多量子相干)。
HSQC是通过比较同一时间点上不同氢原子的信号来实现的,因此它可以提供关于这些氢原子之间化学键的信息。
HMBC则是通过比较不同时间点上相同氢原子的信号来实现的,因此它可以提供关于这些氢原子之间空间关系的信息。
除了HSQC和HMBC之外,还有许多其他的二维核磁共振
技术,如COSY(相干光谱)、TOCSY(全相关光谱)和ROESY (远程相关光谱)等,它们各有各的特点和应用领域。
二维核磁共振波谱是一种非常强大的工具,它可以提供关于分子结构和动态过程的详细信息。
然而,由于它的复杂性,需要专门的知识和技能才能正确解释和应用它。
二维核磁共振谱
4.检测期:在此期间检测作为t2函数的各种横向矢 量的FID的变化,它的初始相及幅度受到t1函数 的调制。
与t2轴对应的ω2(F2轴),通常是化学位移, 与t1轴对应的ω1(F1 轴)是什么,取决于二维谱 的类型。
的不同核之间的偶合(交叉)。
交叉峰有两组, 分别出 现在对角线两侧, 并以
1
2
34
5
对角线对称。这两组对
角峰和交叉峰可以组成
一个正方形, 并且由此
F1
来推测这两组核A和X
有偶合关系。
O
CH3 CH2
CH2 CH2 C
CH3
5432
1
F2
12
四、二维谱的分类
二维谱可分为三类: 1)J 分解谱
J 分解谱亦称J谱或者δ-J谱。它把化学位移和自 旋偶合的作用分辨开来,分别用F2.F1表示,包括 异核和同核J谱。 2)化学位移相关谱
化学位移相关谱也称δ-δ谱,它把不同自旋核的 共振信号相互关联起来,是二维谱的核心。包括同 核化学位移相关谱,异核化学位移相关谱, NOESY和化学交换谱。 3)多量子谱 用脉冲序列可以检测出多量子跃迁,得到多量子 二维谱 。
13
第二节 二维J分解谱
二维J分解谱是将不同的NMR信号分解在两 个不同的轴上, 使重叠在一起的一维谱的化学位 移δ和偶合常数J分解在平面两个坐标上, 提供了 精确的偶合裂分关系, 便于解析。二维J分解谱 分为同核和异核J分解谱。
2
一、1D-NMR到2D-NMR的技术变化 (一)一维核磁共振谱及脉冲序列 基本脉冲序列:
第4章 碳核磁共振波谱和二维NMR谱(3)
各种脉冲序列的应用。
2
3) 2D-NMR谱的表示方法
a) 堆积图——绘制费时,少 b) 等高线图——应用广泛
4) 2D-NMR的分类
a) 2D-J分解谱(δ-J谱),把δ和J值在两个频率轴展开,包括同核J-分解 谱和异核J-分解谱
b) 二维相关谱,包括同核(1H-1H)和异核(1H-13C)化学位移相关谱, 在此基础上又发展了二维NOE谱、总相关谱等;应用最普遍。
19
Brucine的HSQC(高场部分)
20
f) 1H检测的异核多键化学位移相关谱(HMBC)
➢与COLCO相应 ➢不是用13C检测,而是用1H检测C-H COSY谱 ➢一键相关性显示其大的1JCH值,给出两个交叉峰 ➢充分利用1H较高的灵敏性,样品量少,灵敏度高 ➢水平方向为1H的化学位移,垂直方向为13C的化学位移,垂 直方向的分辨率较低 ➢分为两种,一种包括所有nJCH(n=1, 2, 3),另一种压制了 1JCH信号,突显2JCH和3JCH信息。
7
CHO
1
6
2
5 4
3 OCH3
OH
18
香草醛的COLOC谱(圆圈内为1JCH耦合)
e) 1H检测的异核多(单)量子相关谱(HMQC/HSQC)
➢与C-H COSY相应 ➢不是用13C检测,而是用1H检测C-H COSY谱 ➢充分利用1H较高的灵敏性,灵敏度高 ➢水平方向为1H的化学位移,垂直方向为13C的化学位移,垂 直方向的分辨率较低
28
δ-VE 的 2D-INADEQUATE谱
29
甾族C30H54碳骨架结构
30
4.4.5 2D NMR实例
31
化合物C5H8O5,根据如下谱图确定结构,并说明依据。
二维核磁共振谱解读
核磁共振谱(NMR)是一种非常强大的分析技术,用于确定物质的结构和确认分子的组成。
二维核磁共振谱(2D NMR)是一种在峰区分辨率和化学位移上比传统核磁共振谱更高的技术。
二维核磁共振谱提供了更多的信息,具有两个独立的谱图轴。
下面是对二维核磁共振谱解读常见的一些方面:化学位移轴(x轴):二维核磁共振谱通常有两个化学位移轴。
一个位移轴表示一个维度上的化学位移值,通常以ppm(部分百万)为单位。
这个轴上的峰表示不同化学环境中的核的吸收。
耦合常数轴(y轴):二维核磁共振谱的第二个轴通常是相邻核之间的耦合常数。
这个轴上的峰表示不同氢原子之间的相互作用。
化学位移交叉峰(cross-peaks):二维核磁共振谱中最重要的信息是化学位移交叉峰。
这些交叉峰出现在两个化学位移轴的交叉点上,表示两个核之间的相互作用。
通过分析交叉峰的位置和强度,可以推断出化学结构的一些重要特征。
耦合常数交叉峰(coupling cross-peaks):除了化学位移交叉峰,二维核磁共振谱还可以显示耦合常数交叉峰。
这些峰出现在耦合常数轴上,表示不同核之间的耦合常数。
通过分析这些交叉峰,可以确定分子中不同核之间的耦合关系。
脉冲序列(pulse sequences):为了获得二维核磁共振谱,使用了特定的脉冲序列。
这些序列涉及一系列的脉冲和延迟,用于激发和检测核自旋的信号。
不同的脉冲序列可以提供不同的信息。
通过解读二维核磁共振谱,可以确定分子的结构、化学环境和相互作用。
这对于有机化学、药物研发、材料科学等领域非常重要。
但是需要指出的是,对于具体的二维核磁共振谱解读,需要具备相关的化学知识和实践经验。
核磁二维谱
基本原理
一维核磁谱的信号是一个频率的函数,共振峰分 布在一个频率轴(或磁场)上,可记为S(ω)。
二维谱信号是二个独立频率(或磁场)变量的函 数,记为S(ω1,ω2),共振信号分布在两个频率轴组 成的平面上。也就是说2D NMR将化学位移、偶合常 数等NMR参数在二维平面上展开。
3
二维谱共振峰的名称
对角峰:它们处在坐标F1=F2的对角线上。对角峰在 F1或F2上的投影得到常规的一维偶合谱或去偶谱。
交叉峰:交叉峰也称为 2 1
34
5
相关峰(F1≠F2),在 对角线两侧并对称,和
对角峰可以组成一个正
F1
方形,由此可推测这两
组核存在偶合关系。
O
CH3 CH2
54
CH2 CH2
32
C
CH3
1
F2
4
同核化学位移相关谱
1H检测的异核化学位移相关谱:两个不同核的频率 通过标量偶合建立起来的相关谱。应用最广泛的是1H13C COSY。
11
13C-1H COSY
12
1H检测的异核多量子相关谱(HMQC)
常规的13C检测的异核直接相关谱,灵敏度低,样品的 用量较大,测定时间较长;
HMQC(异核多量子相关谱)技术很好地克服了上述缺 点,HMQC实验是通过多量子相干,检测1H信号而达到间 接检测13C的一种方法;
有机波谱分析
二维核磁谱(2D-NMR)
二维核磁共振波谱法
➢ 二维核磁共振(2D-NMR)是Jeener于1971年提出, 是一维谱衍生出来的新实验方法;
➢ 可将化学位移、偶合常数等参数展开在二维平面 上,减少了谱线的拥挤和重叠;
➢ 提供的HH、CH、CC之间的偶合及空间的相互作用, 确定它们之间的连接关系和空间构型。
核磁一维谱和二维谱
核磁一维谱和二维谱
核磁共振(NMR)谱是一种用于研究分子结构和动态的强大工具。
一维谱和二维谱都是NMR谱的不同类型。
一维NMR谱
一维NMR谱主要提供关于被测物质中氢原子或重氢原子的信息。
这种谱通常用于确定原子种类(如氢、碳、氮等),原子之间的连接关系,以及它们所处的化学环境。
二维NMR谱
二维NMR谱则提供了更丰富的信息,它可以揭示原子之间的相互作用和连接关系。
这种谱通常用于解析复杂分子的结构和动态行为。
在二维NMR谱中,通过调整磁场强度、频率和相位等参数,可以得到关于分子内部结构的详细信息。
例如,通过观察不同原子核之间的耦合和裂分,可以推断出它们之间的距离和相对取向。
这有助于理解分子的三维结构,以及分子在不同环境中的动态行为。
总之,核磁共振谱是一种强大的工具,可以提供关于分子结构和动态行为的详细信息。
一维谱主要关注氢原子或重氢原子的信息,而二维谱则更深入地揭示了原子之间的相互作用和连接关系。
二维核磁谱的定量研究
二维核磁谱的定量研究
二维核磁共振谱(2D NMR)是一种常用的表征化合物结构的方法,它可以通过对样品在不同化学位移范围内的吸收进行分析,获得化合物中不同类型的氢原子的化学环境信息。
在进行2D NMR谱图的定量研究时,可以采用以下几种方法:
1. 归一化法:将谱图中各个峰的强度除以一个标准物质的峰强度,使得不同样品的强度可以进行比较。
这种方法简单易行,但对于样品中含有多种不同类型的氢原子的情况,需要对每种类型的氢原子都进行归一化处理。
2. 内标法:将一种已知结构的内标物质加入样品中,并对样品和内标进行2D NMR谱图分析,可以通过比较样品和内标的谱图,计算出样品中各类型氢原子的含量。
3. 外标法:将多个已知结构的外标物质加入样品中,并对样品和外标进行2D NMR谱图分析,可以通过比较样品和外标的谱图,计算出样品中各类型氢原子的含量。
4. 多元线性回归法:将多个已知类型氢原子的含量作为自变量,样品中各类型氢原子的含量作为因变量,建立多元线性回归模型,可以通过模型预测样品中各类型氢原子的含量。
需要注意的是,在进行2D NMR谱图的定量研究时,需
要对样品进行适当的处理,以消除不同样品之间的差异。
此外,对于复杂的样品,可能需要采用多种方法进行分析,以提高定量分析的准确性和精度。
核磁二维碳谱
核磁二维碳谱
核磁二维碳谱(NMR 2D Carbon Spectrum)是一种核磁共振(Nuclear Magnetic Resonance, NMR)技术,在化学分析中用
于研究和识别分子结构。
与传统的一维核磁谱相比,二维碳谱提供了更丰富的化学信息和分辨率,能够提供更准确和详细的分析结果。
在核磁二维碳谱中,研究者通常先利用一维质子谱(1H NMR)对样品进行初步的分析,确定样品的组成和结构。
然后,利用碳谱探针对样品进行进一步的分析。
核磁二维碳谱使用两个核磁共振射频脉冲,一个作用在碳核上,另一个作用在质子核上。
通过改变两个脉冲之间的时间间隔和脉冲的频率,可以收集大量的数据点,构建二维谱图。
核磁二维碳谱可以提供关于样品中各个碳原子的化学位移(chemical shift)和耦合常数(coupling constant)的信息。
通
过分析谱图中的峰形和位置,可以确定各个碳原子之间的关系和结构。
核磁二维碳谱在有机化学和药物研究中广泛应用,可以用于确认化合物的结构、研究反应机理、鉴定杂质和副产物等。
它是一种非破坏性的分析方法,可以对样品进行无损分析,而且具有高度的准确性和灵敏度。
二维核磁共振信号采集方法
二维核磁共振信号采集方法二维核磁共振(NMR)是一种应用广泛的分析技术,它可用于研究物质的结构、动力学和相互作用。
在二维NMR中,采集的数据包含两个维度的信息,通常被用于解决分辨率不足或者重叠峰的问题。
本文将讨论二维NMR信号的采集方法,包括一维联合二维、二维相移采样和多重量子核的二维NMR。
一维联合二维是一种经典的二维NMR采集方法,它将一维谱和另一个维度上的时间域数据联合在一起。
在一维联合二维中,首先采集一维核磁共振谱,然后将所需的待测信号通过另一个维度上的域均衡技术(例如,T1加权或T2加权)扩展到一个频谱。
实际中,一维联合二维方法通常用于对样品进行多频段和动力学研究。
二维相移采样是一种通过改变梯度频率和相位来收集NMR信号的方法。
在二维相移采样中,首先在一个维度上采集一系列的核磁共振信号,然后转换为频谱数据。
接着,对于另一个维度的采样点进行相移,然后重复上述过程。
通过反复调整相位和梯度频率,可以获得二维NMR谱。
二维相移采样方法在实践中被广泛应用于高分辨率和复杂峰的分析。
多重量子核的二维NMR是一种通过激发和探测多个量子态之间的相互作用来收集信号的方法。
在这种方法中,通过选择适当的脉冲序列,可以激发和探测不同的多重量子态。
通过改变多重量子态之间的相互作用,可以获取更多信息,例如溶液体系中的离子扩散系数和溶剂效应等。
多重量子核的二维NMR方法在化学动力学和反应机理研究中得到了广泛应用。
总的来说,二维核磁共振信号的采集方法是一种强大的工具,能够提供更多的信息和解决分辨率不足等问题。
通过不同的采集方法,可以获得不同的信号特征和更加详细的结构信息。
在NMR研究中,选择合适的采集方法对于获得准确和可靠的数据是非常重要的。
希望本文能够为二维核磁共振信号采集方法的应用和研究提供一些参考和帮助。
二维NMR谱原理及解析
(3)1H NMR谱图解析时的注意事项
杂质峰和溶剂峰 活泼氢 不符合一级谱图的情况
核磁共振碳谱
核磁矩:1H=2.79 270β; 13C=0.70 216β;
磁旋比γ为质子的1/4;
相对灵敏度为质子的1/5 600;
E
H splitting
I=
1 2
13C谱特点: (1)研究C骨架,结构信息丰富; (2)化学位移范围大;0~250;
2. 等价组合具有相同的共振频率.其强度与等价组合数有关.
3. 磁等价的核之间偶合作用不出现在谱图中.
4. 偶合具有相加性.
例如:
Ha
C
Hb C
observed spin
A
B
coupled spin
B B A A
intensity
1 1 1 1
HB
HB
பைடு நூலகம்
JAB
a
HA
HA
JAB
b
B,C是磁等价的核
令t=0,Mz=-M0 Mz Mo (1 2et /T1 )
横向驰豫时间(T2)
横向驰豫时间,又称自旋-自旋驰豫,指的是宏观磁化矢 量M在x,y平面(横向)的分量Mx,My。由于核自旋之间的相互 作用而消失过程。
可点击图片观看动画 Alt-F4退出动画
dMxy Mxy
dt
T2
脉冲前宏观磁化矢量的位置 (b)90ox后宏观磁化矢量的位置
给出各种含碳官能团 的信息,几乎可分辨 每一个碳核,光谱简 单易辨认
碳谱不足 氢谱补充
去耦谱峰高
常不与碳数成 比例
氢谱峰面积的积分 高度与氢数成比例
核磁共振碳谱的解析