提公因式法基础知识讲解
提公因式法讲解
提公因式法讲解以提公因式法讲解为标题,本篇文章将详细介绍提公因式法的概念、步骤和应用。
提公因式法是一种用于因式分解多项式的常用方法,通过找出多项式中的公因子来简化表达式,使得分解更加简单和直观。
一、概念提公因式法是指通过寻找多项式中的公因子来进行因式分解的一种方法。
在多项式中,如果存在一个因子能够整除每一项,那么这个因子就是公因子。
通过提取出公因子,我们可以将多项式分解为更简单的形式,从而更好地理解和运算。
二、步骤提公因式法的步骤如下:1.观察多项式,找出其中的公因子。
多项式中的公因子可以是数字、字母或者字母的乘积。
2.将公因子提取出来,得到一个公因子和一个括号内的表达式。
公因子放在括号外,括号内的表达式是原多项式除以公因子的结果。
3.将原多项式除以公因子得到的括号内的表达式再次进行因式分解,直到无法继续分解为止。
4.将所有的公因子和括号内的表达式相乘,得到最终的因式分解形式。
三、应用提公因式法在数学中有着广泛的应用。
它可以用于简化多项式的表达式、求解方程、解决实际问题等。
1.简化多项式的表达式:通过提取公因子,可以将复杂的多项式表达式简化为更简单的形式,使得计算更加方便和快捷。
2.求解方程:在解方程过程中,我们常常需要将方程转化为因式的形式,从而更好地进行求解。
提公因式法可以帮助我们将方程进行因式分解,使得求解过程更加简单和直观。
3.解决实际问题:提公因式法可以应用于解决实际问题中的数学模型。
通过将实际问题转化为多项式表达式,并利用提公因式法进行因式分解,可以更好地理解和解决实际问题。
四、例题解析下面我们通过一个例题来解析提公因式法的具体步骤:例题:将多项式4x+8y的因式分解。
解析:观察多项式4x+8y,我们可以发现它的公因子是4。
将4提取出来,得到4(x+2y)。
其中,括号内的表达式x+2y是多项式除以公因子4的结果。
经过这一步骤,我们可以发现多项式4x+8y已经被成功因式分解为4(x+2y)的形式。
因式分解和提公因式法
因式分解和提公因式法因式分解是代数中的一种重要的运算方法,在解题过程中往往可以起到简化问题、求解方程、找出公因数等作用。
而提公因式法是因式分解的一种特殊形式,通过提取公因式来简化多项式的表达式。
本文将详细介绍因式分解和提公因式法的概念、原理以及应用。
一、因式分解的概念和原理1.1 因式分解的概念因式分解是将一个多项式拆解成若干个因式的乘积,其中每个因式都是多项式的一个因子。
通过因式分解,我们可以将复杂的多项式化简为简单的因子形式,便于进一步求解方程、计算和进行其他代数运算。
1.2 因式分解的原理因式分解的原理是根据多项式的特点和运算规律,将其拆解为不可再分解的因子相乘的形式。
常用的分解方法有提取公因式法、配方法、根据特殊公式和因式定理等。
二、提公因式法的概念和步骤2.1 提公因式法的概念提公因式法是一种较为常见且简便的因式分解方法,通过提取多项式中的公因式,将多项式拆解为公因式和剩余部分的乘积。
这样可以达到简化表达式的效果,从而便于求解方程或进行其他计算。
2.2 提公因式法的步骤步骤一:观察多项式中是否存在公因式;步骤二:提取出公因式,并在多项式外面加上括号,表示公因式;步骤三:将多项式中去掉公因式后的部分作为括号内的剩余部分;步骤四:将公因式和剩余部分用乘号连接起来,得到最终的因式分解式。
三、因式分解和提公因式法的应用3.1 解方程因式分解和提公因式法在解方程中经常被使用。
通过因式分解,可以将原方程化简为简单的因子形式,从而更容易求解。
例如,对于二次方程ax^2 + bx + c = 0,如果可以进行因式分解成(a'x + b')(c'x + d') = 0,那么可以根据方程因式乘积为零的性质,得到x的取值。
3.2 简化计算在进行复杂的数学计算时,因式分解和提公因式法可以起到简化计算的作用。
通过将多项式化简为因子形式,可以减少计算的复杂性。
特别是在涉及多次相同运算的情况下,将公因式提取出来可以减少重复计算。
因式分解———提公因式公式法
因式分解———提公因式公式法因式分解是数学中的一个重要的方法,它可以将一个多项式拆分成更简单的乘积形式。
常用的因式分解方法有提公因式法和公式法。
一、提公因式法提公因式法是一种常用的因式分解方法,它的基本思想是找出多项式中的公因式,并将其提取出来。
下面以一个具体的例子来说明:例题:将多项式3x^2+9x分解因式。
解题步骤:1.观察多项式中的每个项,找出它们的公因式。
在这个例子中,3和9都是3的倍数,所以可以提取出公因式3来,即3x^2+9x=3(x^2+3x)。
2.检查提取出的公因式是否是多项式的最大公因子。
这一步其实是用求最大公因子的方法来验证的。
在这个例子中,公因式3是最大公因子,因为3x^2和3x都可以被3整除,而且没有其他的公因子。
3.将提取出来的公因式和剩下的部分组合在一起。
在这个例子中,可以将公因式3和剩下的部分(x^2+3x)组合在一起,即3(x^2+3x)。
综上所述,多项式3x^2+9x可以分解因式为3(x^2+3x)。
二、公式法公式法是因式分解中的另一种常用方法,它适用于具有特定形式的多项式。
下面以一个具体的例子来说明:例题:将多项式x^2+4x+4分解因式。
解题步骤:1.观察多项式的各个项的系数。
在这个例子中,x^2的系数为1,4x的系数为4,4的系数为42.检查多项式是否具有特定形式。
在这个例子中,多项式的形式为x^2+4x+4,它的形式和公式(a+b)^2非常相似。
3.根据公式(a+b)^2,将多项式进行分解。
根据公式(a+b)^2 = a^2 + 2ab + b^2,可以将多项式x^2 + 4x + 4分解为(x+2)^2综上所述,多项式x^2+4x+4可以分解因式为(x+2)^2综合练习:1.将多项式6x^2+9x+3分解因式。
解:可以观察到,多项式的各个项的系数都是3的倍数,所以可以提取公因式3,即6x^2+9x+3=3(2x^2+3x+1)。
2.将多项式x^3-8分解因式。
《提公因式法》 讲义
《提公因式法》讲义一、什么是提公因式法在数学运算中,提公因式法是一种非常重要的因式分解方法。
简单来说,提公因式法就是把多项式各项中的公因式提取出来,将多项式化成几个整式乘积的形式。
那什么是公因式呢?公因式就是多项式各项都含有的相同因式。
比如说,对于多项式 6x + 9 , 3 就是它们的公因式,因为 6x 可以写成 3×2x , 9 可以写成 3×3 ,所以 6x + 9 可以分解为 3(2x + 3) ,这就是运用提公因式法进行因式分解。
二、如何确定公因式要熟练运用提公因式法,首先得学会准确地确定公因式。
确定公因式需要考虑以下几个方面:1、系数公因式的系数是多项式各项系数的最大公约数。
例如,对于多项式12x + 18 , 12 和 18 的最大公约数是 6 ,所以公因式的系数就是 6 。
2、字母公因式中的字母应是多项式各项中都含有的字母。
比如多项式 5x²y + 10xy²,其中都含有字母 x 和 y 。
3、字母的指数公因式中字母的指数取各项中该字母的最低次幂。
在上面的例子5x²y + 10xy²中, x 的最低次幂是 1 , y 的最低次幂也是 1 ,所以公因式是 5xy 。
再举个例子,对于多项式 8a³b² 12a²b³,系数的最大公约数是 4 ,都含有的字母是 a 和 b , a 的最低次幂是 2 , b 的最低次幂是 2 ,所以公因式是 4a²b²。
三、提公因式法的步骤1、确定公因式按照前面讲的方法,先确定多项式各项的公因式。
2、提出公因式将公因式提取出来,放在括号外面。
3、写出剩余的因式用原多项式除以公因式,得到剩余的因式,写在括号里面。
例如,对于多项式 15x³ 25x²,首先确定公因式为 5x²,然后将其提出,得到 5x²(3x 5) 。
因式分解-提公因式法
提公因式法的应用场景
• 可提取公因式简化 多项式
• 需要进一步分解剩 余部分
配方法
• 适用于二次方程式 • 通过转化为平方完
成因式分解 • 适用范围有限
根式法
• 适用于含有平方根 的多项式
• 通过提取平方根进 行因式分解
• 限制较多
提公因式法的优点
简单易用
提公因式法是一种较为简单的因式分解方法,易于掌握和应用。
通用性强
因式分解-提公因式法
因式分解是一种重要的数学概念,提公因式法是常用的因式分解方法之一。
提公因式法的定义
提公因式法是一种通过找出多项式中的公因式,将其进行提取,从而达到进 行因式分解的目的的方法。
提公因式法的步骤
1. 找出多项式中的公因式 2. 提取公因式 3. 将剩余部分进行因式分解
示例:使用提公因式法进行因式分解
提公因减少计算量
通过提取公因式,可以简化多项式,减少计算的复杂度。
结论
提公因式法是一种重要的因式分解方法,能够帮助我们简化复杂的代数表达 式,解决方程,以及进行数学建模。
1 简化表达式
提公因式法可以帮助我们简化复杂的代数表达式,使计算更加简便。
2 解方程
提公因式法可以用于解决一些复杂方程,帮助我们找到方程的根。
3 数学建模
提公因式法是数学建模中常用的一种方法,可以帮助我们更好地理解和描述实际问题。
因式分解之提公因式和公式法
因式分解之提公因式和公式法因式分解是数学中的一种常见的运算方法,它可以把一个复杂的多项式表达式分解成更简单的因式乘积,从而更好地理解和运算。
一、因式分解的概念因式分解是指把一个多项式表达式写成因式的乘积形式的过程。
因式分解有两种主要的方法,一种是提公因式法,另一种是公式法。
1.1提公因式法提公因式法是指将多项式中的一个或多个公因式提取出来,使得多项式能够写成一个公因式乘以另外一个因式的形式。
提公因式法有以下几个步骤:步骤一:将多项式中的每一项按照公共因子进行分组。
步骤二:分别对每一组内的项进行因式分解,将其写成一个公因子乘以一个因式的形式。
步骤三:将每一组内的公因子提取出来,然后将每一组的因式相乘。
步骤四:将每一组的结果再相乘,得到最终的结果。
例子1:将多项式4x^2-5x+2进行因式分解。
首先,我们观察多项式,发现每一项的系数都是正整数,所以可以将多项式因式分解为最简整数.步骤一:将多项式中的每一项按照公共因子进行分组。
4x^2-5x+2=(4x^2)+(-5x)+2步骤二:分别对每一组内的项进行因式分解,将其写成一个公因子乘以一个因式的形式。
=4x(x)+(-5x)+2步骤三:将每一组内的公因子提取出来,然后将每一组的因式相乘。
=4x(x-5)+2步骤四:将每一组的结果再相乘,得到最终的结果。
=4x^2-20x+2例子2:将多项式2x^3+3x^2-4x-6进行因式分解。
步骤一:将多项式中的每一项按照公共因子进行分组。
2x^3+3x^2-4x-6=(2x^3)+(3x^2)+(-4x)+(-6)步骤二:分别对每一组内的项进行因式分解,将其写成一个公因子乘以一个因式的形式。
=2x(x^2)+3x(x)+(-4x)+(-6)步骤三:将每一组内的公因子提取出来,然后将每一组的因式相乘。
=2x(x^2+1.5x-2-3)步骤四:将每一组的结果再相乘,得到最终的结果。
=2x^3+3x^2-4x-6通过这个例子我们可以看出,当多项式中存在公因子时,提公因式法能够帮助我们简化运算过程,从而更方便地处理多项式。
初中数学知识点精讲精析 提公因式法
第二节 提公因式法要点精讲一、提公因式法概念各项都含有的公共的因式叫做这个多项式各项的公因式.如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.二、具体方法:1.当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.当各项的系数有分数时,公因式系数的分母为各分数分母的最小公倍数,分子为各分数分子的最大公约数(最大公因数)2.如果多项式的第一项是负的,一般要提出“一”号,使括号内的第一项的系数成为正数.提出“一”号时,多项式的各项都要变号.相关链接提公因式法口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.典型解析1. 分解因式:2x 2﹣10x =_______.【答案】2x (x ﹣5)【解析】原式=2x (x ﹣5).故答案是:2x (x ﹣5). 中考案例1.(2012贵州安顺)分解因式:a 3﹣a=_________.【答案】a (a+1)(a ﹣1)【解析】解:a 3﹣a ,=a (a 2﹣1),=a (a+1)(a ﹣1). 针对训练1.因式分解:39a a -=___________.2.分解因式8(x 2-2y 2)-x (7x +y )+xy=____________.3.因式分解:m 2﹣mn=___________.4.=___________.22x x +-5.分解因式:2x 2+4x+2=___________.6.分解因式:a 3﹣a=___________.7.分解因式:4x 2-25=___________.8.分解因式:___________.参考答案1.【答案】a【解析】原式=2(9)(3)(3)a a a a a -=+-2.【答案】(x +4y )(x -4y )【解析】8(x 2-2y 2)-x (7x +y )+xy =8x 2-16y 2-7x 2-xy +xy =x 2-16y 2=(x +4y )(x -4y )3.【答案】m (m ﹣n )【解析】提取公因式m ,即可将此多项式因式分解.解:m 2﹣mn=m (m ﹣n ).故答案为:m (m ﹣n ).4.【答案】(x-1)(x+2)【解析】∵(-1)×2=-2,2-1=1,∴x 2+x-2=(x-1)(x+2).故答案为:(x-1)(x+2).5.【答案】2(x+1)2【解析】先提取公因式2,再根据完全平方公式进行二次分解.完全平方公式:a 2±2ab+b 2=(a±b)2.2x 2+4x+2=2(x 2+2x+1)=2(x+1)2.故答案为:2(x+1)2.6.【答案】a (a+1)(a ﹣1)【解析】解:a 3﹣a ,=a (a 2﹣1),=a (a+1)(a ﹣1).7.【答案】(2x +5)(2x -5)【解析】4x 2-25=(2x )2-52=(2x +5)(2x -5)8.【答案】【解析】 扩展知识分解因式技巧1.分解因式与整式乘法是互为逆变形.2.分解因式技巧掌握:(1)等式左边必须是多项式;(2)分解因式的结果必须是以乘积的形式表示;(3)每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数; ④分解因式必须分解到每个多项式因式都不能再分解为止.注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑. 3223-2+=x y x y xy ()2-xy x y ()()2322322-2-2-x y x y xy xy x xy y xy x y +=+=。
4.2 提取公因式法
要点小结
1.运用提取公因式法分解因式应注意不要犯以下错误: ①提取不尽;②漏项(尤其要注意当某项恰好为公因式 时,提取公因式后,该项应为 1,不可漏掉);③疏忽 变号;④只提取部分公因式,而最后整个式子未变成 乘积的形式.
2.公因式既可以是单项式,也可以是多项式. 3.添括号法则和去括号法则正好相反,因此可以用去括
是
.
【答案】 (b+c)(2a-3)
4.分解因式: (1)4x3-6x2.
【解】 原式=2x2(2x-3).
(2)a3b3+a2b2-ab.
【解】 原式=ab(a2b2+ab-1). (3)6a(b-a)2-2(a-b)3.
【解】 原式=6a(a-b)2-2(a-b)3 =2(a-b)23a-(a-b) =2(a-b)2(2a+b). (4)x(x-y)2-y(x-y).
【点拨】 添括号时,所添括号前面是“-”号,括到括 号里的各项都要改变符号,这是易错点. 【解析】 (1)前一个小括号前为“+”号,故小括号内 各项符号不变;后一个小括号前为“-”号,故小括号 内各项都要变号. (2)两个小括号前都没有符号,即都为“+”号,小括号 内各项符号不变.
【答案】 (1)b+c b+c (2)x-3 x-3
【答案】 (1)3a (2)2x2y2 (3)(p-q)
【典例 2】 把下列各式分解因式: (1)8a3b2+12ab3c. (2)8m2n+2mn2. (3)2a(b+c)-3(b+c). (4)p(a2+b2)-q(a2+b2).
【点拨】 (1)提取公因式时,对数字系数和字母应分别 进行考虑:如果是整数系数,就应取最大公因数;字母取 各项都含有的相同字母的最低次幂的积. (2)提取公因式后,应使多项式余下的各项不再含有公因 式.
提取公因式法解题技巧
提取公因式法解题技巧一、什么是提取公因式法提取公因式法呢,就是把多项式各项中的公因式提出来,将多项式化成两个或多个因式乘积的形式。
比如说啊,对于多项式ab + ac,这里面a就是公因式,提出来就变成a(b + c)啦。
这就像是把一群小伙伴里共同的特点找出来,然后把他们按照这个特点重新分组一样,是不是很有趣呢?二、找公因式的小窍门1. 系数先看系数部分哦。
系数就是多项式里每一项前面的数字啦。
我们要找这些数字的最大公因数。
比如说在6x²+9x这个多项式里,6和9的最大公因数是3,这个3就是我们要找的系数部分的公因式啦。
2. 字母再看字母部分。
要找各项里相同的字母。
像在3xy + 6x²y这个式子中,x和y是两项都有的字母。
而且呢,对于字母的次数,我们要取最低次幂。
这里x的最低次幂是1次,y的最低次幂也是1次,所以xy就是字母部分的公因式。
3. 综合起来把系数和字母部分综合起来,像刚刚那个3xy + 6x²y,系数的公因式是3,字母的公因式是xy,那整个式子的公因式就是3xy 啦。
三、提取公因式法的解题步骤1. 先确定公因式按照前面找公因式的小窍门,准确地找出公因式。
就像侦探找线索一样,要仔细认真,不能错过任何细节哦。
2. 提取公因式把公因式提出来后,用原多项式除以公因式得到另一个因式。
例如对于多项式4x³ - 8x²,公因式是4x²,提出来后就变成4x²(x - 2)。
3. 检查结果提完公因式后,最好检查一下。
可以把提出来的公因式和剩下的因式相乘,看看是不是能得到原来的多项式。
这就像是做完数学题后检查答案一样重要呢。
四、提取公因式法的一些特殊情况1. 首项为负如果多项式的首项是负的,我们可以先把负号提出来。
比如 -x²+2x,我们可以先把 -1提出来,变成-(x² - 2x),然后再按照正常的提取公因式法继续做。
七年级数学提公因式法知识点
七年级数学提公因式法知识点一、概述提公因式法是数学中的一种常见方法,用于简化多项式的表达形式。
该方法通过找出多个项之间的公因子,将它们提取出来并合并为一个因式,从而简化多项式的表达形式。
提公因式法不仅可以简化计算过程,还能够帮助我们更好地理解多项式的结构,提高解题效率。
二、提公因式的基本原则提公因式法的基本原则是找出多个项之间的公因子,并将它们提取出来合并为一个因式。
在提取公因子的过程中,需要遵循以下基本原则:1.提取公因子时,要确保公因子是最大公因子。
最大公因子是指能够整除所有项的最大整数因子。
2.提取公因子时,要注意多项式中项的系数。
如果一个项没有系数或者系数为1,则表示该项没有公因子。
3.提取公因子时,要考虑多项式中各项的指数。
只有当所有项的指数相同时,才能够提取公因子。
4.提取公因子时,要保持多项式的符号不变。
即如果多项式中的项为正数,则提取公因子时也应该保持为正数;如果多项式中的项为负数,则提取公因子时也应该保持为负数。
三、提公因式的步骤提公因式法的具体步骤如下:1.观察多项式中的各项,找出它们之间的公因子。
2.将公因子提取出来合并为一个因式。
3.将原多项式中的各项除以公因子,得到简化后的多项式。
4.检查简化后的多项式,看是否还有进一步提取公因子的可能。
5.重复步骤1至4,直到多项式无法再提取公因子为止。
四、提公因式的例题演练下面通过几个例题来演练提公因式法的具体步骤。
例题1:将多项式2x3+4x2进行提公因式。
解答:观察多项式中的各项,发现它们之间的公因子是2。
因此,可以将2提取出来合并为公因式。
2x3+4x2=2(x3+2x2)简化后的多项式为2(x3+2x2)。
例题2:将多项式3xy2+6xy进行提公因式。
解答:观察多项式中的各项,发现它们之间的公因子是3x。
因此,可以将3x提取出来合并为公因式。
3xy2+6xy=3x(y2+2y)简化后的多项式为3x(y2+2y)。
例题3:将多项式4a2bc−8ab2c进行提公因式。
提公因式法(基础)知识讲解
提公因式法(基础)【学习目标】1. 了解因式分解的意义,以及它与整式乘法的关系;2. 能确定多项式各项的公因式,会用提公因式法将多项式分解因式.【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.要点诠释:(1)因式分解只针对多项式,而不是针对单项式,是对这个多项式的整体,而不是部分,因式分解的结果只能是整式的积的形式.(2)要把一个多项式分解到每一个因式不能再分解为止.(3)因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、公因式多项式的各项中都含有相同的因式,那么这个相同的因式就叫做公因式.要点诠释:(1)公因式必须是每一项中都含有的因式.(2)公因式可以是一个数,也可以是一个字母,还可以是一个多项式.(3)公因式的确定分为数字系数和字母两部分:①公因式的系数是各项系数的最大公约数.②字母是各项中相同的字母,指数取各字母指数最低的.要点三、提公因式法 把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m,另一个因式是,即,而正好是除以m 所得的商,这种因式分解的方法叫提公因式法.要点诠释:(1)提公因式法分解因式实际上是逆用乘法分配律, 即 .(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式.(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号.(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误.【典型例题】类型一、因式分解的概念1、观察下列从左到右的变形:⑴()()3322623a b a bab -=-; ⑵()ma mb c m a b c -+=-+ ⑶()22261266x xy y x y ++=+; ⑷()()22323294a b a b a b +-=- 其中是因式分解的有 (填序号)【思路点拨】根据因式分解的定义是将多项式形式变成几个整式的积的形式,从对象和结果两方面去判断.【答案】(3).【解析】解:(1) 的左边不是多项式而是一个单项式,(2) (4)的右边都不是积的形式,所以它们都不是因式分解;只有(3)的左边是多项式,右边是整式的积的形式,所以只有(3)是因式分解.【总结升华】因式分解是将多项式变成积的形式,所以等式的左边必须是多项式,将单项式拆成几个单项式乘积的形式不能称为因式分解.等式的右边必须是整式因式积的形式. 举一反三:【变式】(2014?海南)下列式子从左到右变形是因式分解的是( )A.a 2+4a ﹣21=a (a+4)﹣21B.a 2+4a ﹣21=(a ﹣3)(a+7)C.(a ﹣3)(a+7)=a 2+4a ﹣21D.a 2+4a ﹣21=(a+2)2﹣25【答案】B.类型二、提公因式法分解因式2、(1)多项式2363x xy -+的公因式是________;(2)多项式324168mn m m --的公因式是________;(3)多项式()()()x b c a y b c a a b c +--+----的公因式是________;(4)多项式2(3)(3)x x x -+-的公因式是________.【答案】(1)3 (2)4m (3)b c a +- (4)3x -【解析】解:先确定系数部分的公因式,再确定字母部分的公因式.(1)的公因式就是3、6、3的最大公约数,最后的一项中不含字母,所以公因式中也不含字母.公因式为3.(2)公因式的系数是4、16、8的最大公约数,字母部分是m .公因式为4m .(3)公因式是(b c a +-),为一个多项式因式.(4)多项式可变形()()233x x x ---,其公因式是3x -.【总结升华】确定公因式一定要从系数、字母及指数三方面入手,公因式可以是一个数,也可以是一个单项式,还可以是一个多项式,互为相反数的因式可变形为公因式.举一反三:【变式】下列多项式中,能用提公因式法分解因式的是( )A .2x y -B .22x x +C .2x y 2+D .2x xy y 2-+ 【答案】B ;3、若()()()232p q q p q p E ---=-,则E 是( )A .1q p --B .q p -C .1p q +-D .1q p +-【答案】C ;【解析】解:()()23p q q p ---=()()21q p p q -+-.故选C .【总结升华】观察等式的右边,提取的是()2q p -,故可把()2p q -变成()2q p -,即左边=()()21q p p q -+-.注意偶次幂时,交换被减数和减数的位置,值不变;奇次幂时,交换被减数和减数的位置,应加上负号.举一反三:【变式】把多项式()()()111m m m +-+-提取公因式()1m -后,余下的部分是( )A .1m +B .2mC .2D .2m +【答案】D ;解:()()()111m m m +-+-,=()()111m m -++,=()()12m m -+.4、(2015春?新沂市期中)分解因式:3x (a ﹣b )﹣6y (b ﹣a ).【思路点拨】将原式变形后,提取公因式即可得到结果.【答案与解析】解:原式=3x (a ﹣b )+6y (a ﹣b )=3(a ﹣b )(x+2y ).【总结升华】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.举一反三:【变式】用提公因式法分解因式正确的是( )A .()222129343abc a b c abc ab -=- B .()2233632x y xy y y x x y -+=-+C .()2a ab ac a a b c -+-=--+D .()2255x y xy y y x x +-=+【答案】C ;解:A.()222129343abc a b c abc abc -=-,故本选项错误;B.()2233632x y xy y y x x -+=-+,故本选项错误;C.()2a ab ac a a b c -+-=--+,正确;D.()22551x y xy y y x x +-=+-,故本选项错误. 类型三、提公因式法分解因式的应用5、若0232=-+x x ,求x x x 46223-+的值.【答案与解析】解: 由0232=-+x x ,得232x x +=()3222642342240x x x x x x x x x +-=+-=⨯-=.【总结升华】条件求值要注意观察代数式的结构,()3222623x x x x x +=+,这样就能由已知整体代入求值了.。
提取公因式法因式分解(解析版)
提取公因式法因式分解【知识梳理】一.因式分解的意义1、分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.2、因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.例如:3、因式分解是恒等变形,因此可以用整式乘法来检验.二.公因式1、定义:多项式ma+mb+mc中,各项都含有一个公共的因式m,因式m叫做这个多项式各项的公因式.2、确定多项式中各项的公因式,可概括为三“定”:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.三.因式分解-提公因式法1、提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.2、具体方法:(1)当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.(2)如果多项式的第一项是负的,一般要提出“﹣”号,使括号内的第一项的系数成为正数.提出“﹣”号时,多项式的各项都要变号.3、口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.4、提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同.【考点剖析】一.因式分解的意义(共4小题)1.(2022秋•黄浦区期中)下列等式中,从左到右的变形是多项式的因式分解的是()A.(a+b)2=a2+2ab+b2B.x2﹣2x+5=x(x﹣2)+5C.a2﹣2ab+b2=(a﹣b)2D.x2+1=x(x+)【分析】根据因式分解的定义对各选项分析后利用排除法求解.【解答】解:A、(a+b)2=a2+2ab+b2是多项式的乘法,不是因式分解,故本选项不合题意;B、x2﹣2x+5=x(x﹣2)+5,等式的右边不是几个整式积的形式,故本选项不合题意;C、a2﹣2ab+b2=(a﹣b)2是因式分解,故本选项符合题意;D、x2+1=x(x+),右边分母上有字母,不是因式分解,故本选项不合题意.故选:C.【点评】本题主要考查了因式分解定义,因式分解就是把一个多项式写成几个整式积的形式,是基础题,比较简单.2.(2022秋•静安区校级期中)在下列等式中,从左到右的变形是因式分解的是()A.2a2﹣3a+1=a(2a﹣3)+1B.C.(a+1)(a﹣1)=a2﹣1D.﹣4﹣x2y2+4xy=﹣(2﹣xy)2【分析】根据因式分解的定义逐个判断即可.【解答】解:A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.【点评】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键.3.(2022秋•闵行区校级期末)下列各式从左到右的变形是因式分解的是()A.a(a+b)=a2+ab B.a2+2a+1=a(a+2)+1C.(a+b)(a﹣b)=a2﹣b2D.2a2﹣6ab=2a(a﹣3b)【分析】把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答即可.【解答】解:A.等式右边不是乘积形式,故选项错误,不合题意;B.等式右边不是乘积形式,故选项错误,不合题意;C.等式右边不是乘积形式,故选项错误,不合题意;D.符合定义,故选项正确,符合题意.故选:D.【点评】本题考查了因式分解,解题的关键是理解因式分解的定义.4.(2022秋•浦东新区校级期末)下列等式从左到右是因式分解,且结果正确的是()A.a2+8a+16=(a+4)2B.(a+4)2=a2+8a+16C.a2+8a+16=a(a+8)+16D.a2+8(a+2)=a2+8a+16【分析】根据因式分解的定义逐个判断即可.【解答】解:A.等式由左边到右边的变形属于因式分解,并且正确,故本选符合题意;B.等式由左边到右边的变形属于整式乘法,不属于因式分解,故本选项不符合题意;CD.等式由左边到右边的变形不属于因式分解,故本选项不符合题意;故选:A.【点评】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.二.公因式(共7小题)5.(2022秋•青浦区校级期中)单项式3a3b与单项式9a2b3的公因式是()A.3a2b B.3a3b3C.a2b D.a3b3【分析】根据公因式的概念分别求得系数的最大公因数,相同字母的次数的最低次数即可.【解答】解:单项式3a3b与单项式9a2b3的公因式是3a2b.故选:A.【点评】此题考查的是公因式,掌握其定义是解决此题的关键.6.(2020秋•浦东新区期末)多项式3x﹣9,x2﹣9与x2﹣6x+9的公因式为()A.x+3B.(x+3)2 C.x﹣3D.x2+9【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.【解答】解:因为3x﹣9=3(x﹣3),x2﹣9=(x+3)(x﹣3),x2﹣6x+9=(x﹣3)2,所以多项式3x﹣9,x2﹣9与x2﹣6x+9的公因式为(x﹣3).故选:C.【点评】此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.7.(2022秋•嘉定区期中)多项式6x3y2﹣3x2y2+12x2y3的公因式是.【分析】直接利用公因式的确定方法:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂,进而得出答案.【解答】解:多项式6x3y2﹣3x2y2+12x2y3的公因式是3x2y2.故答案为:3x2y2.【点评】此题主要考查了公因式,正确把握确定公因式的方法是解题的关键.8.(2019秋•黄浦区校级期中)多项式4a(x﹣y)﹣6a2(x﹣y)中各项的公因式是.:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.【解答】解:多项式4a(x﹣y)﹣6a2(x﹣y)中各项的公因式是2a(x﹣y),故答案为:2a(x﹣y).【点评】本题主要考查了公因式,多项式ma+mb+mc中,各项都含有一个公共的因式m,因式m叫做这个多项式各项的公因式.9.(2018秋•嘉定区期末)写出多项式x2﹣y2与多项式x2+xy的一个公因式.【分析】先把两个多项式因式分解,再找出它们的公因式.【解答】解:因为x2﹣y2=(x+y)(x﹣y),x2+xy=x(x+y),所以两个多项式的公因式为:x+y.故答案为:x+y【点评】本题考查了因式分解的平方差公式和提取公因式法.掌握多项式因式分解的方法是解决本题的关键.10.(2019秋•浦东新区期末)8x3y2和12x4y的公因式是.【分析】根据公因式的定义,找出系数的最大公约数,相同字母的最低指数次幂,然后即可确定公因式.【解答】解:系数的最大公约数是4,相同字母的最低指数次幂是x3y,∴公因式为4x3y.故答案为:4x3y.【点评】本题考查公因式的定义,熟练掌握公因式的确定方法是解题的关键,11.(2019秋•松江区期中)多项式:4x(x﹣y)﹣3(x﹣y)的公因式是.【分析】根据公因式的定义:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数解答.【解答】解:4x(x﹣y)﹣3(x﹣y)的公因式是(x﹣y).故答案为:(x﹣y).三.因式分解-提公因式法(共14小题)12.(2022秋•徐汇区期末)分解因式:(x﹣5)(3x﹣2)﹣3(x﹣5)=.【分析】将原式的公因式(x﹣5)提出即可得出答案.【解答】解:(x﹣5)(3x﹣2)﹣3(x﹣5)=(x﹣5)(3x﹣2﹣3)=(x﹣5)(3x﹣5).故答案为:(x﹣5)(3x﹣5).【点评】本题考查因式分解﹣提公因式法,因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式.13.(2022秋•嘉定区期中)分解因式:3x3﹣9x2﹣3x=.【分析】提取公因式后即可因式分解.【解答】解:3x3﹣9x2﹣3x=3x(x2﹣3x﹣1),故答案为:3x(x2﹣3x﹣1).【点评】本题考查因式分解,熟练掌握提取公因式法因式分解的方法是解题的关键.14.(2022秋•宝山区校级期末)分解因式:4x2y﹣12xy=.【分析】直接提取公因式4xy进行分解因式即可.【解答】解:4x2y﹣12xy=4xy(x﹣3),故答案为:4xy(x﹣3).【点评】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.15.(2021秋•金山区期末)因式分解:6a2﹣8a3=.【分析】直接找出公因式进而提取公因式得出答案.【解答】解:6a2﹣8a3=2a2(3﹣4a).故答案为:2a2(3﹣4a).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.16.(2021秋•奉贤区期末)分解因式:2m2n﹣mn2=.【分析】直接提取公因式mn进行因式分解即可.【解答】解:2m2n﹣mn2=mn(2m﹣n).故答案为:mn(2m﹣n).【点评】如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.17.(2022秋•嘉定区校级期中)因式分解:﹣15a﹣10ab+5abc=.【分析】直接提取公因式﹣5a,进而分解因式即可.【解答】解:原式=﹣5a(3+2b﹣bc).故答案为:﹣5a(3+2b﹣bc).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.18.(2022秋•嘉定区期中)当a=3,b=时,代数式﹣a2+4ab的值为.【分析】将原式变形为﹣a(a﹣4b),把a与b的值分别代入计算即可得到结果.【解答】解:当a=3,b=时,﹣a2+4ab=﹣a(a﹣4b)=﹣3×(3﹣4×)=﹣3×2=﹣6.故答案为:﹣6.【点评】此题考查了代数式求值和因式分解,熟练掌握运算法则是解本题的关键.19.(2022秋•嘉定区期中)因式分解:6(x+y)2﹣2(x+y)(x﹣y)【分析】直接提取公因式进而分解因式得出答案.【解答】解:6(x+y)2﹣2(x+y)(x﹣y)=2(x+y)[3(x+y)﹣(x﹣y)]=2(x+y)(2x+4y)=4(x+y)(x+2y).【点评】此题主要考查了提取公因式法分解因式,正确掌握公因式是解题关键.20.(2022秋•杨浦区期中)分解因式:a2(a+2b)﹣ab(﹣4b﹣2a).【分析】原式变形可得a2(a+2b)+2ab(a+2b),再提公因式a(a+2b)因式分解即可.【解答】解:a2(a+2b)﹣ab(﹣4b﹣2a)=a2(a+2b)+2ab(a+2b)=a(a+2b)(a+2b)=a(a+2b)2.【点评】本题考查了提公因式法因式分解,正确找出公因式是解答本题的关键.21.(2022秋•浦东新区校级期中)因式分解:(y﹣x)2+2(x﹣y)=.【分析】利用提公因式法,进行分解即可解答.【解答】解:(y﹣x)2+2(x﹣y)=(y﹣x)2﹣2(y﹣x)=(y﹣x)(y﹣x﹣2),故答案为:(y﹣x)(y﹣x﹣2).【点评】本题考查了因式分解﹣提公因式法,熟练掌握提公因式法是解题的关键.22.(2022秋•青浦区校级期中)因式分解:15a2b﹣3ab=.【分析】先确定公因式为3ab,然后提取公因式后整理即可.【解答】解:15a2b ﹣3ab =3ab (5a ﹣1).故答案为:3ab (5a ﹣1).【点评】本题考查提公因式法分解因式,较为简单,准确找出公因式是解题的关键.23.(2022秋•虹口区校级期中)分解因式:3x 2y ﹣12xy 2= .【分析】得出多项式的公因式进而提取得出即可.【解答】解:3x2y ﹣12xy2=3xy (x ﹣4y ).故答案为:3xy (x ﹣4y ).【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.24.(2022秋•宝山区校级期中)分解因式:a (a ﹣b )+b (b ﹣a )= .【分析】首先把式子变形为:a (a ﹣b )﹣b (a ﹣b ),再找出多项式的公因式,然后提取公因式法因式分解即可.【解答】解:a (a ﹣b )+b (b ﹣a )=a (a ﹣b )﹣b (a ﹣b )=(a ﹣b )(a ﹣b )=(a ﹣b )2.故答案为:(a ﹣b )2.【点评】此题主要考查了提取公因式法因式分解,根据题意找出公因式是解决问题的关键.25.(2022m (a ﹣c )﹣5(a ﹣c ).【分析】直接提取公因式a ﹣c 即可.【解答】解:原式=(a ﹣c )(2m ﹣5).【点评】此题主要考查了提公因式法分解因式,关键是正确找到公因式.【过关检测】一、单选题1.(2023·上海·七年级假期作业)下列各式从左到右的变形是因式分解的是( ) A .()2222x y x y xy +=−+ B .()422211(1x x x x x x ++=++−+) C .()230130x x x x −−=−−D .()22121a a a −=−+【答案】B【分析】根据因式分解的定义,逐项判断即可求解.【详解】解:A 、从左到右的变形不是因式分解,故本选项不符合题意;B 、从左到右的变形是因式分解,故本选项符合题意;C 、从左到右的变形不是因式分解,故本选项不符合题意;D 、从左到右的变形不是因式分解,故本选项不符合题意;故选:B【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,因式分解是把一个多项式化为几个整式的积的形式,注意因式分解与整式乘法的区别.2.(2022秋·上海宝山·七年级校考期中)分解因式()()222b x b x −+−正确的结果是( )A .()()22x b b −+B .()()21b x b −+C .()()22x b b −−D .()()21b x b −−【答案】D【分析】先将式子变形,再提取公因式分解即可.【详解】解:()()222b x b x −+− ()()222b x b x =−−− ()(2)1b x b =−−.故选:D 【点睛】本题考查因式分解,解题的关键是熟练掌握提公因式法分解因式. 3.(2022秋·上海松江·七年级校考期中)已知多项式2ax bx c ++分解因式得()()32x x −+,则a ,b ,c 的值分别为( )A .1,1−,6B .1,1,6−C .1,1−,6−D .1,1,6 【答案】C【分析】根据多项式乘以多项式运算法则将()()32x x −+展开,分别对应2ax bx c ++即可得出答案.【详解】解:()()2632x x x x =−+−−,∵多项式2ax bx c ++分解因式得()()32x x −+,∴1,1,6a b c ==−=−,故选:C .【点睛】本题考查了多项式乘以多项式,也可根据十字相乘法因式分解得326,321,111c b a =−⨯=−=−+=−=⨯=进行求解.4.(2023秋·上海浦东新·七年级校考期末)下列等式从左到右是因式分解,且结果正确的是( ) A .22816(4)a a a ++=+B .22(4)=816a a a +++C .2816(8)16a a a a ++=++D .228(2)816a a a a ++=++ 【答案】A【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据定义即可判断.【详解】A .把一个多项式转化成几个整式乘积的形式,是因式分解,故此选项符合题意;B .是整式乘法,不是因式分解,故此选项不符合题意;C .结果不是整式的乘积的形式,不是因式分解,故此选项不符合题意;D .是整式乘法,不是因式分解,故此选项不符合题意;故选:A【点睛】因式分解是整式的变形,注意结果是整式的乘积的形式,并且变形前后值不变.5.(2020秋·七年级校考课时练习)把多项式-4a 3+4a 2-16a 分解因式( )A .-a (4a 2-4a+16)B .a (-4a 2+4a-16)C .-4(a 3-a 2+4a )D .-4a (a 2-a+4) 【答案】D【详解】把多项式-4a3+4a2-16a 运用提取公因式法因式分解,可得-4a3+4a2-16a=-4a (a2-a+4). 故选D .【答案】D【分析】根据完全平方公式求出225x y +=,再把原式因式分解后可代入求值.【详解】解:因为2x y −=,12xy =,所以()24x y −=,22425x y xy +=+=所以32233x y x y xy ++()223xy x xy y =++115322134⎛⎫=+⨯ ⎪⎝⎭=故选:D【点睛】考核知识点:因式分解的应用.灵活应用完全平方公式进行变形是解题的关键.二、填空题7.(2023·上海·七年级假期作业)若5x y −=,6xy =则22x y xy −=________,2222x y +=________.【答案】 30 74【分析】第一个空先利用提公因式法因式分解,再代入计算即可;第二个空利用完全平方公式变形后,代入计算即可.【详解】解:22()6530x y xy xy x y −=−=⨯=;()222222()22251274x y x y xy ⎡⎤+=−+=⨯+=⎣⎦.故答案为:30,74.【点睛】本题考查代数式求值,掌握因式分解法和熟练利用完全平方公式是解题关键.8.(2022秋·上海·七年级上海市西延安中学校考期中)分解因式:22615x z yz −+=__________.【答案】()2325z x yz −−【分析】提取公因式即可分解.【详解】解:()222615325x z yz z x yz −+=−−, 故答案为:()2325z x yz −−. 【点睛】本题是一道有关因式分解的题目,解题的关键是掌握提公因式法分解因式的步骤.9.(2022秋·上海浦东新·七年级校考期中)分解因式:223714ab a b −=______.【答案】()2712ab ab −【分析】直接提取公因式进行计算即可.【详解】解:原式()2712ab ab =−.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.10.(2022秋·上海·七年级上海市建平中学西校校考期中)因式分解:2()2()y x x y −+−=___________.【答案】()()2x y x y −−+【分析】直接利用提公因式法分解因式即可. 【详解】()()2()2()2y x x y x y x y −+−=−−+.故答案为:()()2x y x y −−+.【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.【答案】234y x y −【分析】利用提公因式法分解因式求解即可.【详解】()23268234y x y xy y −=−. 故答案为:()2234y x y −. 【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.12.(2023秋·上海浦东新·七年级校考期中)分解因式:25x y xy +=__________.【答案】()5xy x +【分析】根据提公因式法分解因式即可.【详解】解:()255x y xy xy x +=+.故答案为:()5xy x +.【点睛】本题主要考查了因式分解,解题的关键是熟练掌握提公因式法.13.(2023秋·上海宝山·七年级校考期末)分解因式:2412x y xy −=______.【答案】()43xy x −【分析】直接提取公因式4xy 进行分解因式即可.【详解】解:2412x y xy −()43xy x =−,故答案为:()43xy x −.【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.14.(2022秋·上海松江·七年级校考期中)因式分解:()()()2222a b b a a b −−−+=___________.【答案】()()23a b a b −−【分析】提公因式()2a b −,即可求解.【详解】解:()()()2222a b b a a b −−−+ ()()()2222a b a b a b −+−+=()()222a b a b a b =−−++ ()()23a b a b =−−. 故答案为:()()23a b a b −−.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.15.(2023·上海·七年级假期作业)因式分解:15105a ab abc −−+=___________.【答案】()532a b bc −+−【分析】提出公因式5a −即可.【详解】解:()15105532a ab abc a b bc −−+=−+− 故答案为:()532a b bc −+−. 【点睛】本题考查因式分解,熟练掌握提公因式法分解因式是解题的关键.16.(2023·上海·七年级假期作业)已知:()()2111x x x x x +++++=[](1)1(1)x x x x +⋅+++=()()()()31111x x x x ⎡⎤+⋅+⋅+=+⎣⎦,因式分解()()()220221111x x x x x x x ++++++⋅⋅⋅++,结果为_______________. 【答案】()20231x + 【分析】将()()()220221111x x x x x x x ++++++⋅⋅⋅++提出一个()1x +,再将 ()()()()220211111...1x x x x x x x x ⎡⎤+++++++++⎣⎦提出一个()1x +,继续提出一个()1x +,以此类推,直到原式变为()()202211x x ++,再化简即可.【详解】解:()()()220221111x x x x x x x ++++++⋅⋅⋅++ ()()()()220211111...1x x x x x x x x ⎡⎤=+++++++++⎣⎦()()()()2220201111...1x x x x x x x ⎡⎤=+++++++++⎣⎦()()()()3220191111...1x x x x x x x x ⎡⎤=+++++++++⎣⎦…()()2021111x x x x =++++⎡⎤⎣⎦ ()()202211x x =++()20231x =+故答案为:()20231x +【点睛】本题考查了提公因式法,一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成多项式与另一个因式的乘积的形式,在这种分解因式的方法叫做提公因式法.17.(2022秋·上海普陀·七年级统考期中)如果210x x ++=,那么23991x x x x ++++⋅⋅⋅+的值是______.【答案】1【分析】首先需要先将23991x x x x ++++⋅⋅⋅+变形为()()234561x x x x x x +++++++()979899x x x ⋅⋅⋅+++,经过提公因式得到()()242111x x x x x x ++++++()9721x x x +⋅⋅⋅+++ ,将210x x ++=整体代入即可. 【详解】解:23991x x x x ++++⋅⋅⋅+()()234561x x x x x x =+++++++()979899x x x ⋅⋅⋅+++ ()()242111x x x x x x =++++++()9721x x x +⋅⋅⋅+++将210x x ++=代入,得到10001=+++⋅⋅⋅+=. 故答案为:1.【点睛】本题主要考查因式分解的应用,寻找公因式21x x ++是解题的关键.18.(2023·上海·七年级假期作业)分解因式:(5)(32)3(5)x x x −−−−=___________【答案】()()535x x −−/()()355x x −−【分析】提取公因式()5x −,同类项合并即可解得. 【详解】(5)(32)3(5)x x x −−−−(5)(323)x x =---(5)(35)x x =--【点睛】此题考查了分解因式,解题的关键是熟悉提取公因式法.三、解答题【答案】()()25a c m −−【分析】根据提公因式法分解因式求解即可.【详解】解:2()5()m a c a c −−−()()25a c m =−−【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.20.(2022秋·上海·七年级专题练习)因式分解:()13(1)22n n n a a a a +−−−【答案】)(1n a a +【分析】先计算单项式乘多项式,合并后,再提取公式即可.【详解】解:()13(1)22n n n a a a a +−−−112433n n n n a a a a ++=−−+1n n a a +=+)(1n a a =+.【点睛】本题考查了单项式乘多项式,同底数相乘,提公因式分解因式,解题的关键是灵活运用所学知识解决问题.21.(2022秋·上海·七年级专题练习)因式分解:()()42a x y b y x −−−.【答案】()()22x y a b −+【分析】将原式变为()()42a x y b x y −+−,再利用提公因式法分解因式即可. 【详解】解:()()42a x y b y x −−− ()()42a x y b x y =−+− ()()22x y a b =−+.【点睛】本题考查了提公因式法分解因式,注意将题目中的y x −变为x y −时符号的变化,正确找到公因式是解答本题的关键.22.(2022秋·上海黄浦·七年级上海市民办立达中学校考期中)因式分解:()22a b a b −−+【答案】()()221a b a b −−−【分析】先把原式化为()()22a b a b −−−,再提取公因式分解因式即可.【详解】解:()22a b a b −−+ ()()22a b a b =−−−()()21a b a b =−−−⎡⎤⎣⎦()()221a b a b =−−−【点睛】本题考查的是提取公因式分解因式,掌握“公因式的确定以及提取公因式的方法”是解本题的关键.23.(2022秋·上海浦东新·七年级校考期中)因式分解:()()()22x y x y x y +−−−【答案】()()3x y x y +−【分析】直接提取公因式()x y −进行分解因式即可. 【详解】解:()()()22x y x y x y +−−−()()()2x y x y x y =+−−−⎡⎤⎣⎦()()22x y x y x y =+−+−()()3x y x y =+−.【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键. 24.(2023·上海·七年级假期作业)把下列各式分解因式:(1)()()33113510m m a b a b a b b a +−−−−;(2)()()()223222122418ab x y a b y x ab y x −+−+−.【答案】(1)13225()(2)m a b a b a b −−+ (2)26()(2433)ab x y b ab x y −+−+【分析】(1)原式利用提公因式法解答;(2)原式利用提公因式法解答.【详解】(1)原式()()33113510m m a b a b a b a b +−=−+−13225()(2)m a b a b a b −=−+;(2)原式()()()223222122418ab x y a b x y ab x y =−+−−−26()[243()]ab x y b ab x y =−+−−26()(2433)ab x y b ab x y =−+−+.【点睛】本题主要考查利用提取公因式法分解因式,注意公因式是指每一项中都含有的因式,取相同字母的最低次幂.【答案】3()(32)16x y a b −− 【分析】根据提公因式法因式分解直接求解即可得到答案【详解】解:()()93168a x y b y x −+−()()93168a x y b x y =−−− 3()(32)16x y a b =−−.【点睛】本题主要考查利用提取公因式法分解因式,注意提取公因式后,剩余的项的项数与原来的项数相同,并且让系数变为整数.26.(2022秋·上海普陀·七年级统考期中)因式分解:()()32232x a a a x −+−.【答案】()()222x a x a −+【分析】先提取公因式,然后化简即可.【详解】解:原式()()2223x a x a a =−−+ ()()2222x a x a =−+()()222x a x a =−+.【点睛】本题主要考查因式分解,掌握提公因式法是解决因式分解的关键.27.(2022秋·上海宝山·七年级校考期中)分解因式:()()()()2232253x y x y y x x y −+−−+.【答案】()()3243x y x y −+【分析】根据提公因式法分解因式求解即可【详解】解:()()()()2232253x y x y y x x y −+−−+()()()()2232253x y x y x y x y =−++−+ ()()223253x y x y x y =−+++⎡⎤⎣⎦()()2129x y x y =−+()()3243x y x y =−+ 【点睛】此题考查了提公因式法分解因式,解题的关键是熟练掌握分解因式的方法.28.(2023·上海·七年级假期作业)化简下列多项式:()()()()23200611111x x x x x x x x x ++++++++++.【答案】()20071x +【分析】原式利用提公因式法逐步分解因式得出答案.【详解】原式22005(1)[1(1)(1)(1)]x x x x x x x x =+++++++++222004(1)[1(1)(1)(1)]x x x x x x x x =+++++++++ 322003(1)[1(1)(1)(1)]x x x x x x x x =+++++++++ =()()200611x x =++()20071x =+. 【点睛】本题主要考查利用提取公因式法分解因式,掌握解答的方法是关键.。
提取公因式法知识点
提取公因式法知识点一、公因式的概念。
1. 定义。
- 多项式各项都含有的相同因式,叫做这个多项式各项的公因式。
例如,对于多项式6x^2 + 9x,3x就是公因式,因为6x^2=3x×2x,9x = 3x×3。
2. 确定公因式的方法。
- 系数:取各项系数的最大公因数。
例如在多项式12x^3y - 18x^2y^2+24xy^3中,系数12、-18、24的最大公因数是6。
- 字母:取各项相同的字母。
如上述多项式中相同的字母有x和y。
- 字母的指数:取相同字母的最低次幂。
在12x^3y - 18x^2y^2+24xy^3中,x 的最低次幂是1(在24xy^3中),y的最低次幂也是1(在12x^3y中),所以公因式是6xy。
二、提取公因式法分解因式。
1. 提取公因式法的定义。
- 如果一个多项式的各项有公因式,可以把这个公因式提出来,将多项式写成公因式与另一个多项式的乘积的形式,这种分解因式的方法叫做提取公因式法。
例如,ma + mb+mc=m(a + b + c)。
2. 提取公因式法的步骤。
- 第一步:确定公因式。
- 按照前面确定公因式的方法找出多项式各项的公因式。
例如对于多项式8a^3b^2 - 12ab^3c,先确定系数的最大公因数为4,相同字母有a和b,a的最低次幂是1,b的最低次幂是2,所以公因式是4ab^2。
- 第二步:提取公因式。
- 将公因式提出来,写成公因式与另一个多项式的乘积形式。
对于8a^3b^2 - 12ab^3c,提取公因式4ab^2后得到4ab^2(2a^2 - 3bc)。
3. 注意事项。
- 当多项式的首项系数为负时,一般要提出“ - ”号,使括号内的首项系数为正。
例如,对于-5x^2+10x,先提出“ - ”号,得到-5x(x - 2)。
- 提取公因式后,括号内的项数与原多项式的项数相同。
例如3x^2y+6xy^2 = 3xy(x + 2y),原多项式有两项,提取公因式后括号内也是两项。
《提公因式法》
汇报人:2023-11-28contents•提公因式法的基本概念•提公因式法的应用目录•提公因式法的注意事项•提公因式法的练习与解析•提公因式法的总结与回顾01提公因式法的基本概念公因式是指多项式中各项都含有的因式,它可以是一个单项式,也可以是一个多项式。
公因式定义识别公因式是提公因式法的基础,可以通过将多项式进行分组,找到可以使得每组都相等的那个因式。
公因式的识别什么是公因式通过提取公因式,可以将多项式简化为更容易处理的形式,从而降低问题的复杂性。
简化多项式便于计算体现数学思想在因式分解或求多项式的值时,提取公因式可以使得计算过程更加简便。
提取公因式体现了数学中的“化归”思想,即将复杂问题转化为简单问题。
030201公因式的重要性如果多项式中各项的符号相同,那么可以将这个符号作为公因式。
符号相同为了使得提取公因式后的多项式更加简单,应该选择次数最低的因式作为公因式。
次数最低在选择公因式时,应该选择使得提取公因式后的多项式的系数最大的那个因式。
系数最大公因式的提取方法02提公因式法的应用首先需要确定多项式中各项的系数,包括整数和分数。
确定多项式中的各项系数将多项式中的各项系数找出来,并计算它们的最大公约数。
寻找最大公约数将找到的最大公约数或公因式提取出来,并对多项式进行因式分解。
提取公因式将多项式分解成若干个因式,便于化简和计算。
因式分解提取多项式的公因式首先需要确定分式的分子和分母,包括各项的系数和次数。
确定分式的分子和分母寻找最小公倍数提取公因式化简分式将分式的分子和分母找出来,并计算它们的最小公倍数。
将找到的最小公倍数或公因式提取出来,并对分式进行约分。
将分式约分成最简形式,便于计算和比较。
首先需要确定根式的被开方数和指数,包括各项的系数和次数。
确定根式的被开方数和指数将被开方数中相同的部分找出来,并计算它们的最大公约数。
寻找根式之间的公因式将找到的最大公约数或公因式提取出来,并对根式进行化简。
《因式分解-提公因式法》知识点归纳
因式分解-提公因式法知识点归纳1. 什么是因式分解-提公因式法?因式分解是将一个多项式写成两个或多个不可再因式分解的多项式相乘的形式。
提公因式法是一种常用的因式分解方法,它通过提取多项式中的公因式来简化多项式的表示。
2. 如何进行因式分解-提公因式法?步骤1:提取公因式首先,观察多项式中是否存在公因式,即是否有因子可以整除多项式的每一项。
如果存在公因式,将其提取出来。
例如:2x^2 + 4x = 2x(x + 2)步骤2:判断多项式的可进一步因式分解性质提取公因式后,判断剩余的部分是否还可以进行进一步因式分解。
常见的因式分解性质包括二次平方差公式、差平方公式等。
例如:x^2 - 4 = (x + 2)(x - 2)3. 因式分解-提公因式法的应用因式分解-提公因式法在解决各种数学问题时广泛应用,包括但不限于以下几个方面:3.1. 简化多项式因式分解-提公因式法可以将复杂的多项式简化为更简洁的形式,从而使问题的求解更加方便。
例如:3x^2 + 6x = 3x(x + 2)3.2. 解方程在解方程时,因式分解-提公因式法可以帮助我们找到方程的根。
例如:x^2 - 4 = 0通过因式分解得到:(x + 2)(x - 2) = 0解得x的值为2和-2。
3.3. 求导数在微积分中,因式分解-提公因式法常常用于求函数的导数。
例如:f(x) = x^3 + 3x^2 + 3x + 1可以通过因式分解-提公因式法得到导数:f'(x) = 3x^2 + 6x + 33.4. 求极限在求极限的过程中,因式分解-提公因式法可以帮助我们简化复杂的表达式,使得求解更加便利。
例如:lim(x->0) (x^2 - 4x) / x通过因式分解-提公因式法,可以将上述表达式化简为:lim(x->0) x(x - 4) / x = lim(x->0) (x - 4) = -44. 因式分解-提公因式法的重要性因式分解-提公因式法是数学中的基础操作之一,对于深入理解和解决复杂的数学问题至关重要。
提取公因式法
提取公因式法公因式法,又称“求根公式”,是一种用来解求方程根的数学技术,是比较重要的代数计算方法。
它能够解求出一元n次方程(其中n为正整数)的根。
一般来说,它对解决一元n次多项式方程有很好的效果。
1. 公因式法的基本概念a) 公式的原理:其原理是,当满足特定条件时,一元n次方程的根可以满足公式的求解条件,从而求得出它们的根。
b) 公式的性质:公式的性质决定了其求解范围。
举例来说,一元二次方程的根只能用平方根式表示出来,而一元三次方程却能用公式表示出来。
c) 公式的开发:公式最初是由古希腊数学家克劳德发现的,他发现一元三次方程的根能够用公式的形式求出。
其后,巴洛克数学家谢拉著名的公式,也将一元四次方程的根用公式表示出来,并且获得一元n次方程的求根公式。
2. 公因式的求解方法a) 寻找公因式的原理:要求解一元n次方程的根,首先要构建一个系数表(或贝叶斯表),可以从中求得多项式系数,再用特定的求根公式求出方程根。
b) 公式的推导:根据不同的公式性质,可以将元素系数表按照要求,推导出适用于求解指定一元n次方程的公式。
c) 求解过程与步骤:根据推导出的公式,用其中的参数将指定的一元n 次多项式方程式带入公式,根据公式的运算步骤,计算出各个根的值,进而求出方程的根。
3. 公因式法的应用a) 用于求解方程:求根公式作为一种计算方法,通常可以用来求解一元n次多项式方程的根。
其优点是比较精确、方便,缺点是计算量相对较大,但计算过程简单。
b) 用于计算几何角度:其次,公式也在几何学中有着广泛的应用。
例如,用来计算椭圆的长短轴,表面积,周长等。
c) 用于解求曲线方程:公式也用于解求曲线方程,例如圆的方程,椭圆的方程,双曲线的方程以及螺线的方程等等。
从上述可以看出,公因式法是一种比较重要的求根方法,它既能够用于求解方程,又能够用于解求几何角度,以及曲线方程等等,在数学计算上十分重要。
提公因式法。
提公因式法。
公因式法,即将多项式中的每一项的公因式提取出来,也是求多项式最大公因数的主要方法。
具体操作步骤如下:
首先,观察多项式中每一项的系数,找出他们的最大公约数。
若最大公约数不为1,则提取出来。
例如,12x²和18x都可以被6整除,因此我们将6提取出来。
其次,观察多项式中的字母项。
对于每一个字母项,我们取所有项中该字母项指数最小的那一个,然后提取出来。
比如在式子2a²b和4ab²中,取a的最小项是"a",b的最小项是"b",因此我们把a和b都提取出来。
最后,我么将提取出来的公共因数写在前面,原式子中剩下的部分写在括号中,即得到了提取公因式后的式子。
例如,原式子为12x²+18x,提取了公因式6x之后,得到的式子就是6x(2x+3)。
以上就是公因式法的操作步骤,采用这种方法可以简化多项式,方便后续的计算工作。
同时,这种方法也有助于我们观察和理解多项式的结构。
公因式法在日常生活中也有广泛的应用,如在解决实际问题中,往往需要将复杂的问题转化为简单的问题,这就需要用到公因式法。
例如计算购物时的折扣,设计房屋的建筑方案等等,都需要用到这种方法。
总的来说,掌握公因式法,不仅可以方便我们解决数学问题,还可以提高我们解决实际问题的能力。
因此,公因式法是我们学习数学的重要工具,需要我们熟
练掌握。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提公因式法(基础)
【学习目标】
1.了解因式分解的意义,以及它与整式乘法的关系;
2.能确定多项式各项的公因式,会用提公因式法将多项式分解因式.
【要点梳理】
要点一、因式分解
把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.
要点诠释:(1)因式分解只针对多项式,而不是针对单项式,是对这个多
项式的整体,而不是部分,因式分解的结果只能是整式的
积的形式.
(2)要把一个多项式分解到每一个因式不能再分解为止.
(3)因式分解和整式乘法是互逆的运算,二者不能混淆.因式
分解是一种恒等变形,而整式乘法是一种运算.
要点二、公因式
多项式的各项中都含有相同的因式,那么这个相同的因式就叫做公因式.
要点诠释:(1)公因式必须是每一项中都含有的因式.
(2)公因式可以是一个数,也可以是一个字母,还可以是一个多项式.
(3)公因式的确定分为数字系数和字母两部分:①公因式的系数是各项系数的最大公约数.②字母是各项中相同的字母,
指数取各字母指数最低的.
要点三、提公因式法
把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m,另一个因式是,即,而
正好是
除以m 所得的商,这种因式分解的方法叫提公因
式法. 要点诠释:(1)提公因式法分解因式实际上是逆用乘法分配律, 即 .
(2)用提公因式法分解因式的关键是准确找出多项式各项的公
因式.
(3)当多项式第一项的系数是负数时,通常先提出“—”号,
使括号内的第一项的系数变为正数,同时多项式的各项都
要变号.
(4)用提公因式法分解因式时,若多项式的某项与公因式相等
或它们的和为零,则提取公因式后,该项变为:“+1”或
“-1”,不要把该项漏掉,或认为是0而出现错误.
【典型例题】
类型一、因式分解的概念
1、观察下列从左到右的变形:
⑴()()3322623a
b a b ab -=-; ⑵()ma mb
c m a b c -+=-+ ⑶()22261266x xy y x y ++=+; ⑷()()22323294a b a b a b +-=-
其中是因式分解的有 (填序号)
【思路点拨】根据因式分解的定义是将多项式形式变成几个整式的积的形式,从对象和结果两方面去判断.
【答案】(3).
【解析】
解:(1) 的左边不是多项式而是一个单项式,
(2) (4)的右边都不是积的形式,所以它们都不是因式分解;
只有(3)的左边是多项式,右边是整式的积的形式,所以只有(3)是因式分解.
【总结升华】因式分解是将多项式变成积的形式,所以等式的左边必须是多项式,将单项式拆成几个单项式乘积的形式不能称为因式分解.等式的右边必须是整式因式积的形式.
举一反三:
【变式】(2014?海南)下列式子从左到右变形是因式分解的是( )
2+4a ﹣21=a (a+4)﹣21 2
+4a ﹣21=(a ﹣3)(a+7)
C.(a ﹣3)(a+7)=a 2+4a ﹣21
2+4a ﹣21=(a+2)2
﹣25 【答案】B. 类型二、提公因式法分解因式
2、(1)多项式2363x xy -+的公因式是________;
(2)多项式324168mn m m --的公因式是________;
(3)多项式()()()x b c a y b c a a b c +--+----的公因式是________;
(4)多项式2(3)(3)x x x -+-的公因式是________.
【答案】(1)3 (2)4m (3)b c a +- (4)3x -
【解析】
解:先确定系数部分的公因式,再确定字母部分的公因式.
(1)的公因式就是3、6、3的最大公约数,最后的一项中不含字母,所以公因式中也不含字
母.公因式为3.
(2)公因式的系数是4、16、8的最大公约数,字母部分是m .公因式为4m .
(3)公因式是(b c a +-),为一个多项式因式.
(4)多项式可变形()()233x x x ---,其公因式是3x -.
【总结升华】确定公因式一定要从系数、字母及指数三方面入手,公因式可以是一个数,也可以是一个单项式,还可以是一个多项式,互为相反数的因式可变形为公因式.
举一反三:
【变式】下列多项式中,能用提公因式法分解因式的是( )
A .2x y -
B .22x
x + C .2x y 2+ D .2x xy y 2-+ 【答案】B ;
3、若()
()()232p q q p q p E ---=-,则E 是( ) A .1q p --
B .q p -
C .1p q +-
D .1q p +- 【答案】C ;
【解析】
解:()()23p q q p ---=()()21q p p q -+-.故选C .
【总结升华】观察等式的右边,提取的是()2q p -
,故可把()2p q -变成()2q p -,即左边=()()21q p p q -+-.注意偶次幂时,交换被减数和减数的位置,值不变;奇次幂时,交换被减数和减数的位置,应加上负号.
举一反三:
【变式】把多项式()()()111m m m +-+-提取公因式()1m -后,余下的部分是( )
A .1m +
B .2m
C .2
D .2m +
【答案】D ;
解:()()()111m m m +-+-,
=()()111m m -++,
=
()()12m m -+.
4、(2015春?新沂市期中)分解因式:3x (a ﹣b )﹣6y (b ﹣a ). 【思路点拨】将原式变形后,提取公因式即可得到结果.
【答案与解析】
解:原式=3x (a ﹣b )+6y (a ﹣b )=3(a ﹣b )(x+2y ).
【总结升华】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键. 举一反三:
【变式】用提公因式法分解因式正确的是( )
A .()222129343abc a
b c abc ab -=- B .()2233632x y xy y y x x y -+=-+
C .()2a
ab ac a a b c -+-=--+ D .()2255x y xy y y x x +-=+
【答案】C ;
解:A.()222129343abc a
b c abc abc -=-,故本选项错误; B.()2233632x y xy y y x x -+=-+,故本选项错误;
C.()2a
ab ac a a b c -+-=--+,正确; D.()22551x y xy y y x x +-=+-,故本选项错误.
类型三、提公因式法分解因式的应用
5、若0232=-+x x ,求x x x 46223-+的值.
【答案与解析】
解: 由0232=-+x x ,得232x
x += ()3222642342240x x x x x x x x x +-=+-=⨯-=.
【总结升华】条件求值要注意观察代数式的结构,()32
22623x x x x x +=+,这样就能由已知整体代入求值了.。