数列求和专题训练 方法归纳
30 数列求和-裂项相消法专题训练精选全文
![30 数列求和-裂项相消法专题训练精选全文](https://img.taocdn.com/s3/m/505fff34ae1ffc4ffe4733687e21af45b307fe96.png)
可编辑修改精选全文完整版专题30数列求和-裂项相消法专题训练【方法总结】裂项相消法求和裂项相消法裂项相消法的基本思想就是把通项a n 分拆成a n =b n +k -b n (k ≥1,k ∈N *)的形式,从而在求和时达到某些项相消的目的,在解题时要善于根据这个基本思想变换数列{a n }的通项公式,使之符合裂项相消的条件.主要适用于⎩⎨⎧⎭⎬⎫1a n a n +1或⎩⎨⎧⎭⎬⎫1a n a n +2(其中{a n }为等差数列)等形式的数列求和. 常用的裂项公式(1)若{a n }是等差数列,则1a n a n +1=1d ⎝⎛⎭⎫1a n -1a n +1,1a n a n +2=12d ⎝⎛⎭⎫1a n -1a n +2; (2)1n (n +1)=1n -1n +1,1n (n +k )=1k ⎝⎛⎭⎫1n -1n +k ; (3)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1; (4)1n (n +1)(n +2)=12⎣⎡⎦⎤1n (n +1)-1(n +1)(n +2); (5)2n +1n 2(n +1)2=1n 2-1(n +1)2(6)1n +n +1=n +1-n ,1n +n +k =1k (n +k -n ); (7)log a ⎝⎛⎭⎫1+1n =log a (n +1)-log a n ; (8)2n (2n +1)(2n +1+1)=12n +1-12n +1+1,2n -k (2n +1)(2n +1+1)=12k ⎝⎛⎭⎫12n +1-12n +1+1; (9)n +2(n 2+n )2n +1=1n ·2n -1(n +1)2n +1; (10)k ·2k +1(k +1)(k +2)=2k +2k +2-2k +1k +1; (11) (-1)n n (n -1)(n +1)=(-1)n 12⎝⎛⎭⎫1n -1+1n +1. 注意:(1)裂项系数取决于前后两项分母的差.(2)在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.【高考真题】1.(2022·新高考Ⅰ)记n S 为数列{}n a 的前n 项和,已知11, n n S a a ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++<. 【题型突破】1.在数列{a n }中,a 1=4,na n +1-(n +1)a n =2n 2+2n .(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列; (2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n . 2.已知数列{a n }满足a 1=12,且a n +1=2a n 2+a n. (1)求证:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列; (2)若b n =a n a n +1,求数列{b n }的前n 项和S n .3.(2017·全国Ⅲ)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n .(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和. 4.(2015·全国Ⅰ)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和. 5.正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ;(2)令b n =n +1(n +2)2a 2n,求数列{b n }的前n 项和为T n . 6.在数列{a n }中,a 1=1,a n +1·a n =a n -a n +1.(1)求数列{a n }的通项公式;(2)若b n =lg a n +2a n,求数列{b n }的前n 项和S n . 7.已知数列{a n },{b n },其中a 1=3,b 1=-1,且满足a n =12(3a n -1-b n -1),b n =-12(a n -1-3b n -1),n ∈N *, n ≥2.(1)求证:数列{a n -b n }为等比数列;(2)求数列⎩⎨⎧⎭⎬⎫2n a n a n +1的前n 项和T n . 8.(2018·天津)设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N *),{b n }是等差数列.已知a 1=1, a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6.(1)求{a n }和{b n }的通项公式;(2)设数列{S n }的前n 项和为T n (n ∈N *),①求T n ;②证明:∑k =1n (T k +b k +2)b k (k +1)(k +2)=2n +2n +2-2(n ∈N *). 9.已知数列{a n }为各项非零的等差数列,其前n 项和为S n ,满足S 2n -1=a 2n .(1)求数列{a n }的通项公式;(2)记b n =n a n a n +1(-1)n ,求数列{b n }的前n 项和T n . 10.在等差数列{a n }中,已知a 6=16,a 18=36.(1)求数列{a n }的通项公式a n ;(2)若________,求数列{b n }的前n 项和S n .在①b n =4a n a n +1,②b n =(-1)n ·a n ,③b n =2a n ·a n 这三个条件中任选一个补充在第(2)问中,并对其求解. 注:若选择多个条件分别解答,按第一个解答计分.11.在①b n =na n ,②b n =⎩⎪⎨⎪⎧a n ,n 为奇数,log 2a n ,n 为偶数,③b n =1(log 2a n +1)(log 2a n +2)这三个条件中任选一个,补充在下 面问题中,并解答.问题:已知数列{a n }是等比数列,且a 1=1,其中a 1,a 2+1,a 3+1成等差数列.(1)求数列{a n }的通项公式;(2)记________,求数列{b n }的前2n 项和T 2n .12.设等差数列{a n }的前n 项和为S n ,已知a 1=9,a 2为整数,且S n ≤S 5.(1)求{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为T n ,求证:T n ≤49. 13.在等比数列{a n }中,首项a 1=8,数列{b n }满足b n =log 2a n (n ∈N *),且b 1+b 2+b 3=15.(1)求数列{a n }的通项公式;(2)记数列{b n }的前n 项和为S n ,又设数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和为T n ,求证:T n <34. 14.已知数列{a n }为等比数列,数列{b n }为等差数列,且b 1=a 1=1,b 2=a 1+a 2,a 3=2b 3-6.(1)求数列{a n },{b n }的通项公式;(2)设c n =1b n b n +2,数列{c n }的前n 项和为T n ,证明:15≤T n <13. 15.已知等比数列{a n }的前n 项和为S n (n ∈N *),满足S 4=2a 4-1,S 3=2a 3-1.(1)求{a n }的通项公式;(2)记b n =log 2()a n ·a n +1(n ∈N *),数列{b n }的前n 项和为T n ,求证:1T 1+1T 2+…+1T n<2. 16.已知数列{a n }的前n 项和为S n ,a 1=32,2S n =(n +1)a n +1(n ≥2).(1)求{a n }的通项公式;(2)设b n =1(a n +1)2(n ∈N *),数列{b n }的前n 项和为T n ,证明:T n <710(n ∈N *). 17.已知各项均不相等的等差数列{a n }的前四项和S 4=14,且a 1,a 3,a 7成等比数列.(1)求数列{a n }的通项公式;(2)设T n 为数列⎩⎨⎧⎭⎬⎫1a n a n +1前n 项的和,若λT n ≤a n +1对一切n ∈N *恒成立,求实数λ的最大值. 18.设函数f (x )=23+1x (x >0),数列{a n }满足a 1=1,a n =f (1a n -1),n ∈N *,且n ≥2. (1)求数列{a n }的通项公式;(2)对n ∈N *,设S n =1a 1a 2+1a 2a 3+1a 3a 4+…+1a n a n +1,若S n ≥3t 4n 恒成立,求实数t 的取值范围. 19.已知数列{a n }满足a 1=1,a 1+12a 2+13a 3+ (1)a n =a n +1-1(n ∈N *),数列{a n }的前n 项和为S n . (1)求数列{a n }的通项公式;(2)设b n =1S n ,T n 是数列{b n }的前n 项和,求使得T n <m 10对所有n ∈N *都成立的最小正整数m . 20.已知公差不为0的等差数列{a n }的首项a 1=2,且a 1+1,a 2+1,a 4+1成等比数列.(1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,n ∈N *,S n 是数列{b n }的前n 项和,求使S n <319成立的最大的正整数n .。
数列求和的八种方法及题型
![数列求和的八种方法及题型](https://img.taocdn.com/s3/m/cf77c51f82c4bb4cf7ec4afe04a1b0717ed5b354.png)
数列求和的八种方法及题型1、抽象加法法:把等差数列的元素抽象为某一个相同的数值(称为项数,式子为S),通过加法求出所求等差数列的和。
例题:这样一个等差数列:2、4、6、8……100,求这一数列的和是多少?答案:抽象加法法:元素个数n = 99,公差d = 2,首项a = 2。
由公式S=n*(a+l)/2可得:S = 99*(2+100)/2 = 99*102/2 = 4950。
2、数值加法法:直接对元素逐一加法求和。
例题:计算这一等差数列的和:1、3、5、7……99?答案:数值加法法:元素个数n = 49,即:1+3+5+7+...+99=49*100/2=4900。
3、改编组合法:将数列改编为组合形式,将大式化简,从这个组合计算其和。
例题:求这一等差数列的和:2、5、8、11……99?答案:改编组合法:元素个数n = 48,公差d = 3,首项a = 2。
将其转换为组合:2+48d ,即2+(48*3)=150,由公式S=n*(a+l)/2可得:S = 48*(2+150)/2 = 48*152/2 = 7344。
4、数表法:把数列列成表,统计其和。
例题:求这一等差数列的和:3、5、7、9……99?答案:数表法:数列:3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99和:3+5+7+9+11+13+15+17+19+21+23+25+27+29+31+33+35+37+39+41+43+ 45+47+49+51+53+55+57+59+61+63+65+67+69+71+73+75+77+79+81+83 +85+87+89+91+93+95+97+99=24505、立方法:一种特殊情形——这一数列两个元素的值等于这两个元素之间的位数的立方和。
数列求和的八种重要方法与例题
![数列求和的八种重要方法与例题](https://img.taocdn.com/s3/m/3270077c14791711cc7917c9.png)
练习10:
已知Sn=-1+3-5+7+…+(-1)n(2n-1),
1)求S20,S21 2)求Sn
=20 S20=-1+3+(-5)+7+……+(-37)+39
S21=-1+3+(-5)+7+(-9)+……+39+(-41)
=-21
总的方向: 1.转化为等差或等比数列的求和 2.转化为能消项的 思考方式:求和看通项(怎样的类型) 若无通项,则须先求出通项 方法及题型: 1.等差、等比数列用公式法 2.倒序相加法 3.错位相减法 4.裂项相消法
1 (1 3
2n )
5
n
12 3
1 (2n 5n 1) 3
热点题型3:递归数列与数学归纳法.
已知数列{an}的各项都是正数,且满足:a01,an1
(nN)
1 2
an (4
an ).
(1)证明an<an+1<2(nN) (2)求数列{an}的通项公式an
用数学归纳法证明:
类型a1+an=a2+an-1=a3+an-2=……
典例. 已知 lg(xy) 2 2.倒序相加法
S =lgxn +lg(xn-·1 y)+ ...+lg(x·1 yn-1)+lgyn,
(x > 0,y > 0) 求S .
S =lgxn +lg(xn-·1 y)+ ...+lgyn
S =lgyn +lg(yn-·1 x)+ ...+lgxn 2S =lg(xy)n +lg(xy)n + ...+lg(xy)n
数列求和方法归纳与训练
![数列求和方法归纳与训练](https://img.taocdn.com/s3/m/951df93e3169a4517723a35d.png)
数列求和一、直接求和法(或公式法) 掌握一些常见的数列的前n 项和:123+++……+n=(1)2n n +, 1+3+5+……+(2n-1)=2n , 2 + 4 + 6 +......+ 2n = n (n+1) 2222123+++……+n =(1)(21)6n n n ++ 3333123+++……+n =2(1)2n n +⎡⎤⎢⎥⎣⎦等. 二、倒序相加法此方法源于等差数列前n 项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和.例2 求222222222222123101102938101++++++++ 的和. 三、裂项相消法 常见的拆项公式有:1()n n k =+111()k n n k-+ , 1n k n =++1()n k n k +-, 1(21)(21)n n =-+111()22121n n --+,等. 小结:如果数列{}n a 的通项公式很容易表示成另一个数列{}n b 的相邻两项的差,即1n n n a b b +=-,则有11n n S b b +=-.这种方法就称为裂项相消求和法.变式练习:求数列311⨯,421⨯,531⨯,…,)2(1+n n ,…的前n 项和S. 四、错位相减法源于等比数列前n 项和公式的推导,对于形如{}n n a b 的数列,其中{}n a 为等差数列,{}n b 为等比数列,均可用此法.例4 求2335(21)n x x x n x ++++- 的和.小结:错位相减法的步骤是:①在等式两边同时乘以等比数列{}n b 的公比;②将两个等式相减;③利用等比数列的前n 项和公式求和.五、分组求和法若数列的通项是若干项的代数和,可将其分成几部分来求.例5 求数列11111246248162n n ++ ,,,,, 的前n 项和n S .。
数列求和常用方法(含答案)
![数列求和常用方法(含答案)](https://img.taocdn.com/s3/m/e8d86294970590c69ec3d5bbfd0a79563d1ed44e.png)
数列专题 数列求和常用方法一、公式法例1在数列{a n }中,2a n =a n -1+a n +1(n ≥2),且a 2=10,a 5=-5.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 的最大值.解: (1)因为2a n =a n -1+a n +1(n ≥2),所以a n +1-a n =a n -a n -1(n ≥2),所以数列{a n }为等差数列,设首项为a 1,公差为d ,则⎩⎪⎨⎪⎧a 2=a 1+d =10,a 5=a 1+4d =-5,解得⎩⎪⎨⎪⎧a 1=15,d =-5, 所以a n =a 1+(n -1)d =15-5(n -1)=-5n +20.(2)由(1)可知S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-52n 2+352n ,因为对称轴n =72, 所以当n =3或4时,S n 取得最大值为S 3=S 4=30. 跟踪练习1、已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求b 1+b 3+b 5+…+b 2n -1. 解 (1)设等差数列{a n }的公差为d . 因为a 1=1,a 2+a 4=10, 所以2a 1+4d =10, 解得d =2. 所以a n =2n -1.(2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5, 所以b 1q ·b 1q 3=9. 又b 1=1,所以q 2=3.所以b 2n -1=b 1q 2n -2=3n -1.则b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n -12.二、分组转化法例2、已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n ={b n −n 2,n 为偶数2a n,n 为奇数,求数列{c n }的前2n 项的和T 2n .解:(1)设数列{a n }的公差为d ,由题意得,⎩⎪⎨⎪⎧5a 1+10d =20,(a 1+2d )2=(a 1+d )(a 1+4d ),化简得⎩⎪⎨⎪⎧a 1+2d =4,a 1d =0, 因为d ≠0,所以a 1=0,d =2,所以a n =2n -2(n ∈N *),S n =n 2-n ,n ∈N *, 因为S n +b n =2n 2,所以b n =n 2+n (n ∈N *).(2)由(1)知,c n ={b n −n 2,n 为偶数2a n ,n 为奇数=⎩⎪⎨⎪⎧n ,n 为偶数,4n -1,n 为奇数,所以T 2n =c 1+c 2+c 3+c 4+…+c 2n -1+c 2n =(2+4+…+2n )+(40+42+…+42n -2) =n (2+2n )2+1-16n 1-16=n (n +1)+115(16n -1).跟踪练习1、已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49. (1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围. 解 (1)由等差数列性质知,S 7=7a 4=49,则a 4=7, 故公差d =a 4-a 3=7-5=2, 故a n =a 3+(n -3)d =2n -1.(2)由(1)知b n =22n -1+2n -1, T n =21+1+23+3+…+22n -1+2n -1 =21+23+…+22n -1+(1+3+…+2n -1) =21-22n +11-4+n (1+2n -1)2=22n +13+n 2-23.易知T n 单调递增,且T 5=707<1 000,T 6=2 766>1 000, 故T n ≥1 000,解得n ≥6,n ∈N *.三、并项求和法例3、已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25. (1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,由S 5=5a 3=25得a 3=a 1+2d =5, 又a 5=9=a 1+4d ,所以d =2,a 1=1, 所以a n =2n -1,S n =n (1+2n -1)2=n 2.(2)结合(1)知b n =(-1)n n 2,当n 为偶数时, T n =(b 1+b 2)+(b 3+b 4)+(b 5+b 6)+…+(b n -1+b n )=(-12+22)+(-32+42)+(-52+62)+…+[-(n -1)2+n 2]=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+[n -(n -1)][n +(n -1)] =1+2+3+…+n =n (n +1)2.当n 为奇数时,n -1为偶数, T n =T n -1+(-1)n·n 2=(n -1)n 2-n 2=-n (n +1)2. 综上可知,T n =(-1)n n (n +1)2.四、裂项相消法例4、已知数列{a n }的前n 项和为S n ,且2S n =3a n -3(n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =1log 3a n ·log 3a n +1,求数列{b n }的前n 项和T n .解:(1)当n =1时,2a 1=3a 1-3,解得a 1=3;当n ≥2时,2a n =2S n -2S n -1=3a n -3-3a n -1+3=3a n -3a n -1,得a n =3a n -1, 因为a n ≠0,所以a na n -1=3,因为a 1=3, 所以数列{a n }是以3为首项,3为公比的等比数列,所以a n =3n . (2)因为log 3a n =log 33n =n ,所以b n =1log 3a n ·log 3a n +1=1n (n +1)=1n -1n +1,所以数列{b n }的前n 项和T n =⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1. 跟踪练习1、已知数列{a n }的前n 项和为S n ,S n =2a n -1,数列{b n }是等差数列,且b 1=a 1,b 6=a 5.(1)求数列{a n }和{b n }的通项公式;(2)若c n =1b n b n +1,记数列{c n }的前n 项和为T n ,证明:3T n <1.解: (1)由S n =2a n -1,可得n =1时,a 1=2a 1-1,解得a 1=1;n ≥2时,S n -1=2a n -1-1,又S n =2a n -1,两式相减可得a n =S n -S n -1=2a n -1-2a n -1+1,即有a n =2a n -1,所以数列{a n }是首项为1,公比为2的等比数列,所以a n =2n -1.设等差数列{b n }的公差为d ,且b 1=a 1=1,b 6=a 5=16,可得d =b 6-b 16-1=3,所以b n =1+3(n -1)=3n -2.(2)证明:c n =1b n b n +1=1(3n -2)(3n +1)=13⎝ ⎛⎭⎪⎫13n -2-13n +1,所以T n =13⎝ ⎛⎭⎪⎫1-14+14-17+17-110+…+13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1<13,则3T n <1.2、设{a n }是各项都为正数的单调递增数列,已知a 1=4,且a n 满足关系式:a n +1+a n =4+2a n +1a n ,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =1a n -1,求数列{b n }的前n 项和S n .解 (1)因为a n +1+a n =4+2a n +1a n ,n ∈N *,所以a n +1+a n -2a n +1a n =4,即(a n +1-a n )2=4,又{a n }是各项为正数的单调递增数列, 所以a n +1-a n =2,又a 1=2,所以{a n }是首项为2,公差为2的等差数列, 所以a n =2+2(n -1)=2n ,所以a n =4n 2.(2)b n =1a n -1=14n 2-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以S n =b 1+b 2+…+b n =12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.3、已知数列{a n }满足:a 1=2,a n +1=a n +2n . (1)求{a n }的通项公式; (2)若b n =log 2a n ,T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n . 解 (1)由已知得a n +1-a n =2n ,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+2+22+…+2n -1=2+2(1-2n -1)1-2=2n .又a 1=2,也满足上式,故a n =2n . (2)由(1)可知,b n =log 2a n =n , 1b n b n +1=1n (n +1)=1n -1n +1,T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1,故T n =nn +1.五、错位相减法例5、在数列{a n }中,a 1=1,a n +1=a n -2a n a n +1. (1)求{a n }的通项公式;(2)若b n =3na n ,求数列{b n }的前n 项和S n .解:(1)∵a 1=1,a n +1=a n -2a n a n +1,∴a n ≠0,∴1a n =1a n +1-2⇒1a n +1-1a n =2,又∵1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列, ∴1a n =1+2(n -1)=2n -1,∴a n =12n -1(n ∈N *). (2)由(1)知:b n =(2n -1)×3n ,∴S n =1×3+3×32+5×33+7×34+…+(2n -1)×3n , 3S n =1×32+3×33+5×34+7×35+…+(2n -1)×3n +1,两式相减得-2S n =3+2×32+2×33+2×34+…+2×3n -(2n -1)×3n +1 =3+2(32+33+34+…+3n )-(2n -1)×3n +1 =3+2×32(1-3n -1)1-3-(2n -1)×3n +1=3+3n +1-9-(2n -1)×3n +1=2(1-n )×3n +1-6 ∴S n =(n -1)×3n +1+3. 跟踪练习1、已知数列{a n }满足:a 1=1,a n +1=2a n +n -1.(1)证明:数列{a n +n }是等比数列并求数列{a n }的前n 项和S n ; (2)设b n =(2n -1)·(a n +n ),求数列{b n }的前n 项和T n .解: (1)因为a n +1=2a n +n -1,所以a n +1+(n +1)=2a n +2n ,即a n +1+(n +1)a n +n=2,又a 1+1=2,所以数列{a n +n }是以2为首项2为公比的等比数列, 则a n +n =2·2n -1=2n ,故a n =2n -n ,所以S n =(2+22+…+2n )-(1+2+…+n )=2·(1-2n )1-2-n (1+n )2=2n +1-2-n (1+n )2.(2)由(1)得,b n =(2n -1)·(a n +n )=(2n -1)·2n , 则T n =2+3×22+5×23+…+(2n -1)·2n ,①2T n =22+3×23+5×24+…+(2n -3)·2n +(2n -1)·2n +1,②①-②得-T n =2+2×22+2×23+…+2×2n -(2n -1)·2n +1=2×(2+22+…+2n )-2-(2n -1)·2n +1=-(2n -3)·2n +1-6,所以T n =(2n -3)·2n +1+6.2、已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式; (2)设b n =na n ,求数列{b n }的前n 项和T n .解:(1)当n ≥2时,S n =3S n -1-2(n -1)+2,又S n +1=3S n -2n +2, 两式相减可得S n +1-S n =3S n -3S n -1-2,即a n +1=3a n -2, 即有a n +1-1=3(a n -1),令n =1,可得a 1+a 2=3a 1,解得a 2=2a 1=4,也符合a n +1-1=3(a n -1), 则数列{a n -1}是首项为1,公比为3的等比数列, 则a n -1=3n -1,故a n =1+3n -1. (2)由(1)知b n =na n =n +n ·3n -1,则T n =(1+2+…+n )+(1·30+2·31+3·32+…+n ·3n -1), 设M n =1·30+2·31+3·32+…+n ·3n -1, 3M n =1·3+2·32+3·33+…+n ·3n ,两式相减可得-2M n =1+3+32+…+3n -1-n ·3n =1-3n1-3-n ·3n , 化简可得M n =(2n -1)·3n +14.所以T n =12n (n +1)+(2n -1)·3n +14.3、设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项. (1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和. 解 (1)设{a n }的公比为q , ∵a 1为a 2,a 3的等差中项, ∴2a 1=a 2+a 3=a 1q +a 1q 2,a 1≠0, ∴q 2+q -2=0, ∵q ≠1,∴q =-2.(2)设{na n }的前n 项和为S n , a 1=1,a n =(-2)n -1,S n =1×1+2×(-2)+3×(-2)2+…+n (-2)n -1,①-2S n =1×(-2)+2×(-2)2+3×(-2)3+…+(n -1)·(-2)n -1+n (-2)n ,② ①-②得,3S n =1+(-2)+(-2)2+…+(-2)n -1-n (-2)n =1-(-2)n 1-(-2)-n (-2)n =1-(1+3n )(-2)n3,∴S n =1-(1+3n )(-2)n9,n ∈N *.4、设数列{a n }满足a 1=3,a n +1=3a n -4n . (1)计算a 2,a 3,猜想{a n }的通项公式; (2)求数列{2n a n }的前n 项和S n .解 (1)由题意可得a 2=3a 1-4=9-4=5, a 3=3a 2-8=15-8=7,由数列{a n }的前三项可猜想数列{a n }是以3为首项,2为公差的等差数列,即a n =2n +1. (2)由(1)可知,a n ·2n =(2n +1)·2n ,S n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n ,①2S n =3×22+5×23+7×24+…+(2n -1)·2n +(2n +1)·2n +1,② 由①-②得,-S n =6+2×(22+23+…+2n )-(2n +1)·2n +1 =6+2×22×(1-2n -1)1-2-(2n +1)·2n +1=(1-2n )·2n +1-2, 即S n =(2n -1)·2n +1+2.5、已知正项数列{a n }的前n 项和为S n ,且a 2n +1=2S n +n +1,a 2=2. (1)求数列{a n }的通项公式a n ;(2)若b n =a n ·2n ,数列{b n }的前n 项和为T n ,求使T n >2 022的最小的正整数n 的值. 解 (1)当n ≥2时,由a 2n +1=2S n +n +1,a 2=2, 得a 2n =2S n -1+n -1+1,两式相减得a 2n +1-a 2n =2a n +1, 即a 2n +1=a 2n +2a n +1=(a n +1)2.∵{a n }是正项数列,∴a n +1=a n +1. 当n =1时,a 22=2a 1+2=4, ∴a 1=1,∴a 2-a 1=1,∴数列{a n }是以a 1=1为首项,1为公差的等差数列,∴a n =n . (2)由(1)知b n =a n ·2n =n ·2n ,∴T n =1×21+2×22+3×23+…+n ·2n , 2T n =1×22+2×23+…+(n -1)·2n +n ·2n +1, 两式相减得-T n =2·(1-2n )1-2-n ·2n +1=(1-n )2n +1-2, ∴T n =(n -1)2n +1+2.∴T n -T n -1=n ·2n >0, ∴T n 单调递增.当n =7时,T 7=6×28+2=1 538<2 022, 当n =8时,T 8=7×29+2=3 586>2 022, ∴使T n >2 022的最小的正整数n 的值为8.6、已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n ,对任意n ∈N *恒成立,求实数λ的取值范围.解 (1)因为4S n +1=3S n -9,所以当n ≥2时,4S n =3S n -1-9,两式相减可得4a n +1=3a n ,即a n +1a n =34.当n =1时,4S 2=4⎝⎛⎭⎫-94+a 2=-274-9,解得a 2=-2716, 所以a 2a 1=34.所以数列{a n }是首项为-94,公比为34的等比数列,所以a n =-94×⎝⎛⎭⎫34n -1=-3n+14n .(2)因为3b n +(n -4)a n =0, 所以b n =(n -4)×⎝⎛⎭⎫34n.所以T n =-3×34-2×⎝⎛⎭⎫342-1×⎝⎛⎭⎫343+0×⎝⎛⎭⎫344+…+(n -4)×⎝⎛⎭⎫34n ,① 且34T n =-3×⎝⎛⎭⎫342-2×⎝⎛⎭⎫343-1×⎝⎛⎭⎫344+0×⎝⎛⎭⎫345+…+(n -5)×⎝⎛⎭⎫34n +(n -4)×⎝⎛⎭⎫34n +1,② ①-②得14T n =-3×34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -(n -4)×⎝⎛⎭⎫34n +1 =-94+916⎣⎡⎦⎤1-⎝⎛⎭⎫34n -11-34-(n -4)×⎝⎛⎭⎫34n +1 =-n ×⎝⎛⎭⎫34n +1,所以T n =-4n ×⎝⎛⎭⎫34n +1.因为T n ≤λb n 对任意n ∈N *恒成立,所以-4n ×⎝⎛⎭⎫34n +1≤λ⎣⎡⎦⎤(n -4)×⎝⎛⎭⎫34n 恒成立,即-3n ≤λ(n -4)恒成立, 当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1; 当n =4时,-12≤0恒成立,当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3. 所以-3≤λ≤1.。
数列求和专题训练 方法归纳
![数列求和专题训练 方法归纳](https://img.taocdn.com/s3/m/85e4d6eef61fb7360b4c653b.png)
数列求和专题 方法归纳方法1:分组转化法求和 1.已知{a n }的前n 项是3+2-1,6+4-1,9+8-1,12+16-1,…,3n +2n -1,则S n =________.2.等差数列{a n }中,a 2=4,a 4+a 7=15.(1)求数列{a n }的通项公式;(2)设b n =2an -2+n ,求b 1+b 2+b 3+…+b 10的值.方法2裂项相消法求和3.设数列{}a n 满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为______.4. S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. ①求{a n }的通项公式;②设b n =1a n a n +1,求数列{b n }的前n 项和.5.若已知数列的前四项是112+2,122+4,132+6,142+8,则数列的前n 项和为________.6.等差数列{a n }的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .7.已知数列{a n }各项均为正数,且a 1=1,a n +1a n +a n +1-a n =0(n ∈N *).(1)设b n =1a n ,求证:数列{b n }是等差数列;(2)求数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和S n .方法3:错位相减法求和8.已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列(b n >0),且a 1=b 1=2,a 3+b 3=16,S 4+b 3=34.(1)求数列{a n }与{b n }的通项公式;(2)记T n 为数列{a n b n }的前n 项和,求T n .9.设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *). (1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ;10.已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.(1)求{}n a 和{}n b 的通项公式;(2)求数列221{}n n a b -的前n 项和()n *∈N .4.数列与不等式的交汇问题11.设各项为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *. (1)求a 1的值; (2)求数列{a n }的通项公式;(3)证明对一切正整数n ,有11221111(1)(1)(1)3n n a a a a a a ++⋅⋅⋅<+++。
数列通项公式和前n项和求解方法(有针对训练)
![数列通项公式和前n项和求解方法(有针对训练)](https://img.taocdn.com/s3/m/26437d38dd36a32d72758113.png)
专题一:数列通项公式的求法 一.观察法(关键是找出各项与项数n 的关系.)例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,… (2) ,52,21,32,1一、 公式法公式法1:特殊数列公式法2: 知n s 利用公式 ⎩⎨⎧≥-==-2,1,11n S S n s a n n n例2:已知数列}{n a 的前n 项和n S 的公式12-+=n n S n ,求}{n a 的通项公式.例3:已知数列{a n }的前n 项和为S n ,S n =13(a n -1)(n ∈N *). (1)求a 1,a 2;(2)求证:数列{a n }是等比数列.三、 累加法 【型如)(1n f a a n n +=+的递推关系】简析:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ② 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;③若f(n)是关于n 的二次函数,累加后可分组求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和各式相加得。
例: 若在数列{}n a 中,31=a ,n n n a a 21+=+,求通项n a例4:已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.四、累乘法 【 形如1+n a =f (n)·n a 型】(1)当f(n)为常数,即:q a a nn =+1(其中q 是不为0的常数),此时数列为等比数列,n a =11-⋅n q a . (2)当f(n)为n 的函数时,用累乘法.例5:在数列{n a }中,1a =1, n n a n a n ⋅=⋅++1)1( ,求n a 的表达式.五、构造特殊数列法 【形如0(,1≠+=+c d ca a n n ,其中a a =1)型】(1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法如下:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得)0(,1≠-=c c d λ, 所以:)1(11-+=-+-c d a c c d a n n ,即⎭⎬⎫⎩⎨⎧-+1c d a n 构成以11-+c d a 为首项,以c 为公比的等比数列. 例6:已知数}{n a 的递推关系为121+=+n n a a ,且11=a 求通项n a .六、迭代法【一般是递推关系含有的项数较多】例7:(1)数列{n a }满足01=a ,且)1(2121-=++++-n a a a a n n ,求数列{a n }的通项公式.解析:由题得 )1(2121-=++++-n a a a a n n ①2≥n 时, )2(2121-=+++-n a a a n ②由①-②得⎩⎨⎧≥==2,21,0n n a n .(2)数列{n a }满足11=a ,且2121n a a a a n n =⋅⋅- ,求数列{n a }的通项公式。
详解数列求和的方法+典型例题
![详解数列求和的方法+典型例题](https://img.taocdn.com/s3/m/2461cb2030126edb6f1aff00bed5b9f3f90f722a.png)
详解数列求和的⽅法+典型例题详解数列求和的常⽤⽅法数列求和是数列的重要内容之⼀,除了等差数列和等⽐数列有求和公式外,⼤部分数列的求和都需要⼀定的技巧。
第⼀类:公式法利⽤下列常⽤求和公式求和是数列求和的最基本最重要的⽅法。
1、等差数列的前n 项和公式2)1(2)(11dn n na a a n S n n -+=+=2、等⽐数列的前n 项和公式≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n3、常⽤⼏个数列的求和公式(1)、)1(213211+=+?+++==∑=n n n k S nk n (2)、)12)(1(61321222212++=+?+++==∑=n n n n k S nk n (3)、2333313)]1(21[321+=+?+++==∑=n n n k S nk n第⼆类:乘公⽐错项相减(等差?等⽐)这种⽅法是在推导等⽐数列的前n 项和公式时所⽤的⽅法,这种⽅法主要⽤于求数列}{n n b a ?的前n 项和,其中}{n a ,}{n b 分别是等差数列和等⽐数列。
例1:求数列}{1-n nq(q 为常数)的前n 项和。
解:Ⅰ、若q =0,则n S =0Ⅱ、若q =1,则)1(21321+=+?+++=n n n S n Ⅲ、若q ≠0且q ≠1,则12321-+?+++=n n nqq q S ①n n nq q q q qS +?+++=3232 ②①式—②式:n n n nq qq q q S q -+?++++=--1321)1()1(11132n n n nq q q q q qS -+?++++-=- ?)11(11n nn nq q q q S ----=q nq q q S nn n ----=1)1(12综上所述:≠≠----=+==)10(1)1(1)1)(1(21)0(02q q q nq q q q n n q S nn n 且解析:数列}{1-n nq是由数列{}n 与{}1-n q 对应项的积构成的,此类型的才适应错位相减,(课本中的的等⽐数列前n 项和公式就是⽤这种⽅法推导出来的),但要注意应按以上三种情况进⾏分类讨论,最后再综合成三种情况。
数列求和最全方法例题含答案
![数列求和最全方法例题含答案](https://img.taocdn.com/s3/m/63931dbaa5e9856a5712604c.png)
求数列前n项和题型方法总结1、考纲解读(1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式)。
(2)了解数列是自变量为正整数的一类函数。
(3)理解等差数列、等比数列的概念。
(4)掌握等差数列、等比数列通项公式和前n项和公式。
(5)能在具体的问题情境中识别等差关系或等比关系,并能利用有关知识解决问题。
(6)了解等车数列与一次函数,等比数列与指数函数的关系。
常考题型:填空题,选择题,解答题占分比重:10~17分二、考点梳理(命题特点)&考试趋势2.1.数列的概念与简单表示法2.2.等差数列2.3.等比数列2.4.数列求和、数列的综合应用三、题型讲解3.1解题技巧归纳(提分秘笈)3.1.1公式法公式法:直接利用等差等比数列的前n项和公式.q q a a q q a S q na S q n dn n na a a n S n nn n n n n n --=--=≠==-+=+=11)1(,1.b 1.a 2)1(2)(11111时当;时,当项和公式②等比数列的前项和公式①等差数列的前例1{}.6-3942的值,求项和,且为其前为等差数列,若数列s a a n s a n n =答案 27 解析:{}()272292)(9,346-3359195111=⨯=+===++=+a a a S a d a d a d a d a n ,得,有的公差为设数列【注意事项】(1)善于识别题目类型,确定是等差数列还是等比数列. (2)等比数列中要注意公比为1的情况.3.1.2分组求和分组求和法:把一个数列分成几个可以直接求和的数列例2{}{}{}.)2(2)1(.4-2n n n n n n n T n s n s n a s n a s 项和的前求数列为等比数列;证明:项和,且满足的前是数列已知+-=-答案 (1)见解析;(2)283223--++n n n解析:()[]()()()()283222)1(212142212222-2,2212.24}2{421,3,2122,424)(212313211111-11--+=-++--=-+++++++=+==+-+-=+-=+--=+-+-=-=--++++--n n n n n n n T n S n S n S S a n S n S n S S n S S Sn n n n n n n n n n n n n n n n于,所以)知由(的等比数列,公比为是首项首所以,所以又易知)(所以,即已知【注意事项】(1)数列求和应从通项入手,若无通项,则先求通项.(2)将通项分解成一些等差和等比数列或可直接求和的数列再进行求和.补充:常见数列的前n 项和()()()()()2333322222221321612132112531264221321⎥⎦⎤⎢⎣⎡+=++++++=++++=-+++++=+++++=++++n n n n n n n n n nn n n n n3.1.3裂项相消裂项相消法:把一个数列的通项分成两项差的形式,相加过程中消去中间项,只剩有限项再求和.常见裂项公式{}()()().10log 1log 11log )4(;111)3(;1111)2();11(11),0(0)1(11≠>-+=⎪⎭⎫⎝⎛+-+=+-⎪⎭⎫⎝⎛+-=+-=⋅≠++a a n n n n n n n k n n d k n n a a d a a d d a a a a n n n n n 且则的等差数列,公差为为各项都不为若例3{}{}{}.,)2()1(.240,110111510n n n nn n n n n n T n b a a a a b a s s n a s 项和的前求数列令的通项通项公求数列项和,且满足的前是等差数列设+++===答案()()nn nT nan n21221++== 解析:()()nn nn n n T n n n n n n n n n n b na d a d a d a d n n n 21211141313121211,21111122222222,222402141515110291010,1111++=++-++-+-+-=++-=+++=+++====⎪⎩⎪⎨⎧=⨯+=⨯+ ,解得则有设公差为【注意事项】(1)对于裂项后明显有能够相消的项的一类数列,在求和时常用“裂项相消法”,分式型数列的求和多用此法.(2)利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前边剩两项,后边也剩两项.(3)有些情况下,裂项时需要调整前面的系数,使裂开后的两项之差和系数之积与原项相等.3.1.4错位相减错位相减法:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.例4{}{}{}.,)2()1(.2,22,04322n n nn n n n T n b a nb a a s a s q s n a 项和的前求数列设的通项求数列,公比项和为的前已知等比数列=-=-=>答案()()nn nnn T a222221+-==解析:()()()nn n n n n n n n n n n n n n n n nn n T n n n T n n T n n T n ba a q a q a a a a a a S q q q q a a a a S a S222221122112112122121212121,22122212122123222121222,22,2222.2,0,02222211113213213211112212222434322+-=-⎪⎭⎫ ⎝⎛-=--⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=-++++=-+-+++=+-++++===∴=∴-=+∴-=+∴-==>=---=--=-=++++-则②得①②①,知,由所以又因为,则①得,②②,①,已知【注意事项】(1)善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“Sn ”与“qSn ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确写出“Sn-qSn ”的表达式.(3)应用等比数列求和公式必须注意公比q 时候等于1,如果不能确定公比q 是否为1,应分两种情况进行讨论,这在以前的高考中经常会考查.3.1.5倒序相加倒序相加法:把数列正着写和倒着写再相加,例如等差数列前n 项和公式的推导方法.例5()()()()().,lg lg lg lg lg ,12lg ,1,1,lg 1221S y xyy x y x x S b a y b x a nn n n n 求且满足已知平面向量+++++==⋅==---答案()16+=n n S解析:()()()()()()()()()()()[]()()[]()n n n n n n n n nn n n nn n n n n x y y x xy xy y x y x S x y x y xxyy S y xy y x y x x S xy y x b a y b x a lg lg lg lg lg lg lg lg 2lg lg lg lg lg lg lg lg lg lg .12)lg(,12lg lg 12lg ,1,1,lg 111112211221++++++++=+++++=+++++===+=⋅==---------- 两式相加得,,所以,因为即所以,满足因为为平面向()()()()()()[]()()()()16S 112lg 1lg lg lg lg lg lg 11+=+=+=+++=++⋅+=--n n n n xy n n xy xy xy n x y xy y x y x n n n n n n 所以【注意事项】(1)数列特征是“与首末两项等距离的两项之和相等”(2)把数列正着写和倒着写再相加,,即可求出该数列前n 项和的2倍,不要忘记除以 2.3.1.6合并求和合并求和法:针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在数列求和时,可将这些项放在一起先求和,在求Sn.例7{}.log log log 9103231365的值,求中,数列在各项各项均为正数的a a a a a a n +++=答案 10解析:{}109log )(log )(log log log log 95365921013109321310323136592101==⨯⨯⨯==+++====a a a a a a a a a a a a a a a a a a a a a n 所以,是等比数列,所以因为为数【注意事项】(1)善于发现数列的特殊性质,如对数指数的运算等. (2)计算时不要出现错误.3.1.7构造法构造法:先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求和.例8 之和求个11111111111n ++++ 答案81109101--+n n解析:()()()()()()()[]()()811091091011011091910101010911101101109111111*********199999111111109199991111,11091999111,110919911132121191321--=---⨯=-++++⨯=-++-+-⨯=++++-⨯=⨯=-⨯=⨯=-⨯=⨯=-⨯=⨯=+n n n n n nnn nn n 个个个所以【注意事项】(1)善于发现数列的规律,并能找出其通项.(2)计算时不要出现错误.3.2易错易混归纳3.2.1裂项时不注意系数例1{}{}.611)2()1(.,2,12<⎭⎬⎫⎩⎨⎧∈+=+*n n n n n n n n T T n a a a N n n n S S n a ,求证项和为的前设数列的通项求数列且项和为的前已知数列答案见解析)()2(121+=n a n解析:(1);(2)()()()()()()()()()613121321-3121321-1217151513121321-12121321211122121121212122,311112211=⋅<⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡++=++=+=+=+⨯=+=----+=-=≥==+-n n n T n n n n a a n an a a n n n n n S S a n an n n n nn n n n 则所以,因为所以且时,当时,当3.2.2通项公式与n 为奇数有关时,需要分情况讨论例2{}{}{}.,log )2()1(.21n 2n 1n n 1n n n n n S n b a b a a a a a 项和的前求数列若的通项通项公求数列,中,已知在数列===+答案⎪⎩⎪⎨⎧-=⎪⎩⎪⎨⎧=-为偶数,为奇数)(为偶数,为奇数)(n n n n S n n a n nn n 4,4122,2122221解析:{}{}⎪⎩⎪⎨⎧==⋅==⋅======≥=---++为偶数,为奇数的通项通综上,数列为偶数时,当为奇数时,所以当,,又构成等比数列的奇数项奇数项与偶数所以数列,,所以时,,所以当因为n n a a a n a n a a a a a a a a n a a nn n n n n n n n n n 22121-2n 2121n 1211-n 1n 1-n 1-n 1n n 2,2222;221221.2222)1({}⎪⎩⎪⎨⎧-==-+++=++++++=-=-++++=+++++++===+===--++为偶数,为奇数项和的前综上,数列为偶数时当为奇数时当所以,因为n n n n S n b n n b b b b b b S n n n b b b b b b b S n b n b b a b a a a n n n n n n n n n 4,41.4)1(31)()()(,;41)1(420)()()(,,0,,log ,21)2(22214321215432111n n n 2n 1n n 111。
高考数学:数列求和——三大类高频题型的命题规律和满分答题要点
![高考数学:数列求和——三大类高频题型的命题规律和满分答题要点](https://img.taocdn.com/s3/m/2facc9a164ce0508763231126edb6f1aff0071bd.png)
高考数学:数列求和——三大类高频题型的命题规律和满分答题要点近几年出题频率较高的三类数列求和题型有:错位相减法、裂项相消法、分类讨论法等。
下面将它们的解题程序归纳如下:1.错位相减法求和一般地,如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,可采用错位相减法求和,一般是在等式的两边同乘以等比数列{bn}的公比,然后作差求解.若{bn}的公比为参数(字母),则应对公比分等于1和不等于1两种情况分别求和.例题:2.利用裂项相消法探求数列的前n项和如果一个数列的通项为分式或根式的形式,且能拆成结构相同的两式之差,那么通过累加将一些正、负项相互抵消,只剩下有限的几项。
从而求出该数列的前n项和.破解此类题的关键点如下:①裂项技巧.一般将an通过恒等变形拆成形如an=f(n)-f(n-k)的形式(k=1,2,……) ②抵消规律.正、负项相互抵消后,所剩项的一般规律是:前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项,注意剩下的项有前后对称的特点,否则,极易出错.例题:[2018长春市高三第一次质量监测,17]总结:利用裂项相消法求数列的和时,要过好三关:一是通过基本运算快速求出数列的通项;二是根据所求通项的结构特点,借助常见的裂项技巧,找准裂项方向,准确裂项;三是把握消项规律,准确求和,切忌出现丢项或多项的问题,导致结果错误.3.利用分类讨论法探求数列的前n项和若数列的通项公式为分段函数、周期函数或形如(-1)^nan,|an|等形式,在求数列的前n项和时,没有固定的方法可套用,观察数列的规律,发现按照某种标准分类后,每类均可求和,最后相加即可得出结果,在解决问题的过程中渗透着转化与化归、分类讨论数学思想方法。
对项数的奇偶进行分类讨论求数列的前n项和时,一般是先求项思路分析:数为偶数的一组,但要注意n的取值变化不再是1,2,3,…,而是2,4,6,…,当代入公式求和时.注意首项、公差(比)和项数都会对应发生改变;项数为奇数求和时,可代入相应公式求和,也可利用偶数项的结论(Sn=S↓(n-1)+bn),能简化求和过程.总结:破解此类题的关键点如下.①找规律.根据数列的通项公式或递推公式去发现或证明存在某一规律:如通项公式为分段函数的形式等.②定标准.根据规律确定如何分类,是以项数的奇偶分类还是其他.③分类求和.若该类是等差(比)数列可直接求和,但要注意新首项、新公差(比)、新项数分别是多少;若不是特殊数列,再转化为其他方法求和.。
高二数学复习考点知识精讲与练习14 数列求和常考方法归纳
![高二数学复习考点知识精讲与练习14 数列求和常考方法归纳](https://img.taocdn.com/s3/m/49506fd1bb0d4a7302768e9951e79b89680268b4.png)
高二数学《考点•题型 •技巧》精讲与精练高分突破系列(人教A 版选择性必修第二册)第四章:数列专题强化训练二:数列求和常考方法归纳【考点梳理】数列求和的几种常用方法1.公式法直接利用等差数列、等比数列的前n 项和公式求和. (1)等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .(2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.2.分组求和法与并项求和法(1)若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减. (2)形如a n =(-1)n ·f (n )类型,常采用两项合并求解.3.裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (2)常见的裂项技巧 ①1n (n +1)=1n -1n +1.②1n (n +2)=12⎝⎛⎭⎫1n -1n +2.③1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1.④1n +n +1=n +1-n .⑤log a ⎝⎛⎭⎫1+1n =log a (n +1)-log a n (n >0).4.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.【题型精练】题型一、公式法求和1.(2022·全国·高二课时练习)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15.(1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.2.(2022·四川成都·高三月考(文))已知数列{}n a 满足:11a =,且121n n a a n +-=-,其中n *∈N ; (1)证明数列{}n a n +是等比数列,并求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S .3.(2022·河南·郑州市第一〇六高级中学高二月考)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{a n }的通项公式; (2)求和:b 1+b 3+b 5+…+b 2n -1.题型二、分组转化法求和4.(2022·全国·高三专题练习)已知数列{}n a 是等差数列,且81a =,1624S =.(1)求数列{}n a 的通项公式n a ;(2)若数列{}n b 是递增的等比数列,且149b b +=,238b b =,求1133552121()()()()n n a b a b a b a b --++++++⋯++.5.(2022·黑龙江·鹤岗一中高三月考(理))已知数列{a n }的前n 项和S n =n 2+n ,等比数列{b n }的公比为q (q >1),且b 3+b 4+b 5=28,b 4+2是b 3和b 5的等差中项. (1)求{a n }和{b n }的通项公式; (2)令c n =b n +211n a -,{c n }的前n 项和记为T n ,若2T n ≥m 对一切n ∈N *成立,求实数m 的最大值. 6.(2022·全国·高三专题练习)设数列{}n a 满足132(2)n n a a n -=+≥,且12a =,3log (1)n n b a =+. (1)求2a ,3a 的值;(2)已知数列{}n a 的通项公式是:31nn a =-,3n n a =,32n a n =+中的一个,判断{}n a 的通项公式,并求数列{}n n a b +的前n 项和n S .题型三、倒序相加法求和7.(2020·河南大学附属中学高二月考)已知函数()21x f x x =+,设数列{}n a 满足1()n n a f a +=,且112a =. (1)求数列{}n a 的通项公式;(2)若记((21))(1i n b f i a i =--⨯=,2,3,⋯,)n ,求数列{}i b 的前n 项和n T .8.(2020·江苏·高三专题练习)已知数列{}n a 满足121,3a a ==,且对任意*n N ∈,都有()01211231212n n n n n n n n a C a C a C a C a -+++++⋯+=-⋅成立.(1)求3a 的值;(2)证明:数列{}n a 是等差数列.9.(2019·四川·成都外国语学校高一期中(文))数列{}n a 的前n 项和为n S (1)若{}n a 为等差数列,求证:1()2n n n a a S +=; (2)若1()2n n n a a S +=,求证:{}n a 为等差数列.题型四、裂项相消法求和10.(2022·浙江绍兴·高二期末)已知等差数列{}n a 满足11a =,2435a a a +=+,*n N ∈. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足11b =,*12()n n n n b a b a n N ++⋅=⋅∈,求数列{}n b 的前n 项和.11.(2022·广东·金山中学高二期中)已知数列{}n a 满足13a =,121n n a a n +=-+,数列{}n b 满足12b =,1n n n b b a n +=+-.(1)证明数列{}n a n -为等比数列并求数列{}n a 的通项公式; (2)数列{}n c 满足1(1)(1)n n n n a n c b b +-=++,设数列{}n c 的前n 项和n T ,证明:13n T <.12.(2022·广东·广州市番禺区象贤中学高二期中)已知数列{}n a 的前n 项和为n S ,且满足*2()n n a S n n N =+∈. (1)求证:数列{1}n a +是等比数列;(2)记2221log (1)log (1)n n n c a a +=+⋅+,求数列{}n c 的前n 项和n T .题型五、错位相减法求和13.(2022·西藏·拉萨中学高二月考)已知数列{}n a 中,11a =,*1(N )3nn n a a n a +=∈+. (1)求证:数列112n a ⎧⎫+⎨⎬⎩⎭为等比数列,并求出{}n a 的通项公式n a ;(2)数列{}n b 满足(31)2nn n n nb a =-⋅⋅,设n T 为数列{}n b 的前n 项和,求使n k T >恒成立的最小的整数k .14.(2022·全国·高二专题练习)已知数列{a n }的前n 项和为S n ,a 1=5,nS n +1-(n +1)S n =n 2+n . (1)求证:数列n S n ⎧⎫⎨⎬⎩⎭为等差数列;(2)令b n =2n a n ,求数列{b n }的前n 项和T n .15.(2022·河南洛阳·高二期中(文))已知正项数列{}n a 的前n 项和为n S ,且11a =,211n n n S S a +++=.(1)求数列{}n a 的通项公式; (2)求证:12122222nna a a a a a +++<.专题强化训练一、单选题16.(2022·河南·高二期中(文))已知数列{}n a 的前n 项和2n S n =,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前99项和为( )A .1168B .1134C .198199D .9919917.(2022·河南·高二期中(理))已知数列{}n a 中,11a =,12123n n a a n +⎛⎫=- ⎪+⎝⎭,则数列{}1n n a a +的前99项和为( ) A .9967B .29767C .3367D .1986718.(2022·江西·九江一中高二期中)已知数列{}n a 满足112a =,213a =,()1223111n n n a a a a a a n a a n N ++++++=⋅⋅∈,记数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则2021S =( )A .202120212⋅B .202220212⋅C .202120222⋅D .202220222⋅19.(2022·河南南阳·高二期中)已知数列{}n a 满足11a =,221(1)nn n a a -=+-,()*2123n n n a a n +=+∈N ,则数列{}n a 的前2022项的和为( )A .101132022-B .101032022-C .101132020-D .101032020-20.(2022·西藏·拉萨中学高二月考)数列{}n a 满足()()121nn a n =--,则它的前20项和20S 等于( )A .-10B .-20C .10D .2021.(2022·河北省唐县第一中学高二期中)若数列{}n a 满足1222a a ==,且21n n n a a a ++=-,则{}n a 的前100项和为( )A .67B .68C .134D .16722.(2022·全国·高二课时练习)已知函数()()221f x x R x=∈+,若等比数列{}n a 满足120201a a =,则()()()()1232020f a f a f a f a ++++=( ).A .2020B .20202C .2D .1223.(2022·全国·高二课时练习)已知数列{}n a 满足12a =,()1221n n n a a n ++=+,则20001232019a a a a a =+++⋅⋅⋅+( ) A .20212019B .20202019C .20192018D .2021201824.(2022·全国·高二单元测试)已知数列{}n a 满足13a =,()111n n a a n n +=++,则n a =( ) A .14n+B .14n -C .12n +D .12n -25.(2022·全国·高二单元测试)某公园免费开放一天,假设早晨6时30分有2人进公园,接下来的第一个30分钟内有4人进去并出来1人,第二个30分钟内进去8人并出来2人,第三个30分钟内进去16人并出来3人,第四个30分钟内进去32人并出来4人,……,按照这种规律进行下去,那么到上午11时30分公园内的人数是( ) A .11247-B .12257-C .13268-D .14280-二、多选题26.(2022·全国·高二单元测试)已知数列{}n a 满足2212352222nn n na a a +++⋅⋅⋅+=,数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .1a 的值为2B .数列{}n a 的通项公式为()312nn a n =+⨯C .数列{}n a 为递减数列D .3772n nn S +=-27.(2022·江苏·高二单元测试)设数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,11S =,12n n n S S n++=,且212n n n n a b a a ++=,则下列结论正确的是( )A .20212021a =B .()12n n n S +=C .()112n b n n =-+D .1334n T n ≤-<28.(2022·全国·高二单元测试)已知数列{}n a 满足11a =,()*1N 23nn na a n a +=∈+,则下列结论正确的是( ) A .13n a ⎧⎫+⎨⎬⎩⎭为等比数列B .{}n a 的通项公式为1123n n a -=-C .{}n a 为递增数列D .1n a ⎧⎫⎨⎬⎩⎭的前n 项和2234n n T n +=--29.(2022·全国·高二课时练习)(多选题)已知数列{}n a 的前n 项和为n S ,11a =,121n n n S S a +=++,数列12{}nn n a a +⋅的前n 项和为*,n T n N ∈,则下列选项正确的为( )A .数列{1}n a +是等差数列B .数列{1}n a +是等比数列C .数列{}n a 的通项公式为21nn a =-D .1n T <三、填空题30.(2022·上海市行知中学高二期中)已知数列{}n b 的前n 项和22n S n n =-,设数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和为n K ,则20K 的值为 ___.31.(2022·上海市复兴高级中学高二期中)设数列{}n a 的前n 项和为n S ,且21log 1n a n ⎛⎫=+ ⎪⎝⎭,则满足10n S >的n 最小值为___________32.(2022·河南南阳·高二月考(文))已知等差数列{}n a 的前n 项和为34,3,10n S a S ==,则12111nS S S ++⋯+=___________. 33.(2022·河南郑州·高二期中(文))数列{}n a 的前n 项和21n n S =-,n *∈N .设()1nn n n b a a =+-,则数列{}n b 的前2n项和2n T =___________.34.(2022·河南郑州·高二月考(理))已知数列{}n a 满足11n n a a ++=,且246a a +=,当12020n ≤≤,*n ∈N 时,记12n n S a a a =++⋅⋅⋅+,则1220S S S ++⋅⋅⋅+=________.(备用公式()()222121126n n n n ++++⋅⋅⋅+=)四、解答题35.(2020·全国·高二课时练习)已知等差数列{}n a 满足36a =,前7项和为749.S =(Ⅰ)求{}n a 的通项公式(Ⅱ)设数列{}n b 满足(3)3nn n b a =-⋅,求{}n b 的前n 项和n T .36.(2022·全国·高二专题练习)已知等差数列{}n a 满足:37a =,5726a a +=.{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令211n n b a =-(n N +∈),求数列{}n b 的前n 项和n T .37.(2022·全国·高二课时练习)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n . (Ⅰ)求q 的值;(Ⅱ)求数列{b n }的通项公式.38.(2022·全国·高二专题练习)正项数列{}n a 的前n 项和Sn 满足:222(1)()0n n S n n S n n -+--+=(1)求数列{}n a 的通项公式n a ; (2)令221(2)n n n b n a +=+,数列{bn}的前n 项和为Tn ,证明:对于任意的n ∈N*,都有Tn <564.39.(2022·全国·高二课时练习)已知数列{}n a 是递增的等比数列,且14239,8.a a a a +==(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .40.(2022·江苏省苏州实验中学高二月考)已知数列{}n a 的各项均为正数,对任意*n ∈N ,它的前n 项和n S 满足()()1126n n n S a a =++,并且2a ,4a ,9a 成等比数列. (1)求数列{}n a 的通项公式; (2)设()111n n n n b a a ++=-,n T 为数列{}n b 的前n 项和,求2n T .41.(2022·河南·高二期中(理))等比数列{}n a 的各项均为正数,且212326231,9a a a a a +==.(1)求数列{}n a 的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T .42.(2022·吉林·延边二中高二期中(理))已知数列{}n a 的前n 项和为n S ,且22n S n n =+,*n N ∈,数列{}n b 满足24log 3n n a b =+,*n N ∈.(1)求n a 和n b 的通项公式; (2)求数列{n n a b ⋅}的前n 项和n T .43.(2019·全国全国·高二课时练习)已知数列{}n a 满足212()*,1,2n n a qa q q n N a a +=≠∈==为实数,且1,,且233445,,a a a a a a 成等差数列.(Ⅰ)求q 的值和{}n a 的通项公式; (Ⅱ)设*2221log ,nn n a b n a -=∈N ,求数列{}n b 的前n 项和. 44.(2019·江西上饶·高二月考)已知数列{}n a 满足1220n n a a +-+=,且18a =. (1)证明:数列{2}n a -为等比数列;(2)设1(1)(21)(21)n nn n n a b +-=++,记数列{}n b 的前n 项和为n T ,若对任意的*n N ∈,n m T ≥恒成立,求m 的取值范围.45.(2020·广东广雅中学高二月考)已知数列{}n a 的前n 项和为n S ,()2*n S n n N =∈,数列{}n b 为等比数列,且21a +,41a +分别为数列{}n b 第二项和第三项. (1)求数列{}n a 与数列{}n b 的通项公式; (2)若数列11n n n n n c a b a a +=+,求数列{}n c 的前n 项和n T .10 / 38参考答案1.(1)a n =2n -9;(2)S n = (n -4)2-16;-16. (1)设数列{a n }的公差为d ,由题意得a 1=-7,3S =3a 1+3d =-15. 所以d =2.所以{a n }的通项公式为a n =2n -9. (2)由(1)得()1722n n n S n -=-+⨯=n 2-8n =(n -4)2-16. 所以当n =4时,S n 取得最小值,最小值为-16. 2.(1)证明见解析,2nn a n =-(2)n S 1(1)222n n n ++=--【分析】(1)由121n n a a n +-=-,化简得到1(1)2()n n a a n n ++++=,结合等比数列的定义和通项公式,即可求解;(2)由(1)知:2nn a n =-,结合等差数列、等比数列的求和公式,即可求解.(1)解:由题意,数列{}n a 满足:11a =,且121n n a a n +-=-, 可得1(1)2()n n a a n n ++++=,且112a +=,所以{}n a n +是首项、公比均为2的等比数列,所以2nn a n +=,即2n n a n =-.(2)解:由(1)知:2nn a n =-,则12n n S a a a =++⋅⋅⋅+12(21)(22)(2)n n =-+-+⋅⋅⋅+-12(222)(12)nn =++⋅⋅⋅+-++⋅⋅⋅+2(12)(1)122n n n⋅-+=--1(1)222n n n ++=--. 3.(1)a n =2n -1. (2)312n -【分析】(1)直接利用基本量代换,列方程组即可求出通项公式; (2)先求出公比q ,即可利用等比数列前n 项和公式直接求和. (1)设等差数列{a n }的公差为d ,因为a 1=1,a 2+a 4=10,即1+d +1+3d =10, 解得:d =2,所以a n = a 1+(n -1)d=2n -1. (2)设等比数列{b n }的公比为q ,因为b 1=1,,b 2b 4=a 5=9,所以q 4=9,解得:q 2=3. 所以b 1+b 3+b 5+…+b 2n -1 211131313n -=+++++1113313n --⨯=- 312n -=. 4.(1)7n a n =-;(2)24173n n n --+. 【分析】(1)设数列{}n a 的公差为d ,根据已知条件列关于1a 和d 的方程组,解方程可得1a 和d 的值,即可得{}n a 的通项公式n a ;(2)由等比数列的性质求得1b 和4b 的值,进而可得数列{}n b 的公比和通项公式,再由分组求和即可求解. 【详解】(1)设等差数列{}n a 的公差为d ,由题意可知:1171161516242a d a d +=⎧⎪⎨⨯+=⎪⎩,解得161a d =-⎧⎨=⎩, 所以6(1)7n a n n =-+-=-,(2)因为数列{}n b 是递增的等比数列,由已知可得14142398b b b b b b +=⎧⎨==⎩,解得:1418b b =⎧⎨=⎩,所以3418b q b ==,可得:2q 所以11122n n n b --=⋅=,所以1133552121()()()()n n a b a b a b a b --++++++⋯++,1352113521()()n n a a a a b b b b --=+++⋯+++++⋯+,(628)14214nn n -+--=+-, 24173n n n -=-+. 5.(1)a n =2n (n ∈N *),b n =2n -1,n ∈N *;(2)83.【分析】(1)根据n a 与n S 的关系即可求得数列{}n a 的通项,根据已知条件求出等比数列{b n }的首项和公比,即可求得数列{}n b 的通项;(2)求出数列{c n }的通项,再利用分组求和及裂项相消求和法求出T n ,从而可求得T n 的最小值,从而可得答案. 【详解】解:(1)当n =1时,a 1=S 1=2.当n ≥2时a n =S n -S n -1=2n ,a 1=2也符合上式, ∴a n =2n (n ∈N *).又b 3+b 4+b 5=28,2(b 4+2)=b 3+b 5, 得b 4=8,q =2或q =12. ∵q >1,∴q =2, ∴b n =2n -1,n ∈N *.(2)∵c n =b n +211n a -=2n -1+2141n -=2n -1+11122121n n ⎛⎫- ⎪-+⎝⎭, ∴T n =1212n--+111111123352121n n ⎛⎫-+-++- ⎪-+⎝⎭=2n -1+111221n ⎛⎫- ⎪+⎝⎭=2n -11422n -+, 易知T n 随着n 的增大而增大,∴2T n ≥2T 1=83,故m 的最大值为83.6.(1)28a =,326a =;(2)31n n a =-,121(33)2n n S n n +=+--.【分析】(1)由递推公式得1(3(1)1)n n a a -++=,结合已知{1}n a +是首项为3,公比为3的等比数列,写出n a 的通项公式,进而求2a ,3a 的值;(2)由(1)得31n n c n =+-,再应用分组求和及等差、等比前n 项和公式求n S . 【详解】(1)∵132(2)n n a a n -=+≥,即1(3(1)1)n n a a -++=且12a =, ∴{1}n a +是首项为3,公比为3的等比数列,即13n n a +=, ∴31n n a =-,则22318a =-=,333126a =-=.(2)设n n n c a b =+,由(1)知31nn a =-,又3log (1)n n b a n =+=.∴31n n c n =+-,2(33...3)(12...1)nn S n =+++++++-3(13)(1)(11)132n n n --+-=+-121(33)2n n n +=+--. 7.(1)12n a n=;(2)2n nT =.【分析】(1)由1()n n a f a +=得到121n n n a a a +=+,然后变形为1112n n a a +-=,利用等差数列的定义求解. (2)由(1)得到121221i i b n i -+=⨯-+,由112112211221221i n i i n i b b n i n i -+-+-++=⨯+⨯=-+-+,利用倒序相加法求解. 【详解】(1)因为()21xf x x =+,所以由1()n n a f a +=得121n n n a a a +=+,所以121112n n n na a a a ++==+,∴1112n n a a +-=, 所以1{}n a 是首项为2,公差为2的等差数列,所以12(1)22n n n a =+-⨯=,所以12n a n=. (2)由(1)知21()(1,2,3,,)2i i b f i n n-=-=⋯, 则21(21)1212212[(21)]22212()12i i i i n b i i n n i -----+===⨯-⨯--+-+⨯-+,{}12(1)1[2(1)1]22(1)12[2(1)1]22[]12n i n i n i n b n i n i n n-+-+----+-==-+-⨯--+-+⨯-+,12(1)112212[2(1)1]221n i n i n i n n i -+--+=⨯=⨯-+---+, 所以112112211(1,2,3,,)221221i n i i n i b b i n n i n i -+-+-++=⨯+⨯==⋯-+-+,123n n T b b b b =+++⋯+, 121n n n n T b b b b --=+++⋯+,两式相加,得:121321112()()()()()nn n n n n i n i i T b b b b b b b b b b n ---+==++++++⋯++=+=∑,所以2n n T =. 【点睛】本题主要考查数列的递推关系,等差数列的定义及通项公式以及倒序相加求和,话考查了运算求解的能力,属于中等题.8.(1)5(2)答案见解析 【分析】(1)根据()01211231212n n n n n n n n a C a C a C a C a -+++++⋯+=-⋅,令1n =时,即可求出35a =;(2)假设123n a a a a ⋯,,,,是公差为2的等差数列,则21n a n =-,利用数学归纳法证明,即可求得答案. 【详解】 (1)()01211231212nn n n n n n n a C a C a C a C a -+++++⋯+=-⋅令1n =,则01112131a C a C a +=-由121,3a a ==,则31311a +⨯=- 解得:35a =(2)若123,,,,k a a a a ⋯是等差数列,则公差为2,即21k a k =- ①当3n =时,由(1)知1231,3,5a a a ===,此时结论成立.②假设当(3)n k k =≥时,结论成立,即123,,,,k a a a a ⋯是等差数列,则公差为2.由()0121211213111 12,3k k k k k k k k a C a C a C a C a k ------++++⋯+=-⋅≥ 对该式倒序相加,得()()12112212k k k k a a a --++=-⋅∴1112k k a a a +-=+=,即1212(1)1k a k k +=+=+- ∴当1n k =+时,结论成立.根据①②,可知数列{}n a 是等差数列. 【点睛】本题考查了求数列中的项和证明数列是等差数列,解题关键是掌握数学归纳法的证明方法和等差数列的基础知识,考查了分析能力和计算能力,属于中档题. 9.(1)见解析;(2)见解析 【分析】(1)利用倒序相加法即可证明.(2)利用n a 与n S 的关系分别求出n a 与1n a +,然后作差1n n a a +-,化简即可证明其满足112n n n a a a -+=+,即可证明{}n a 为等差数列. 【详解】(1)证明:已知数列{}n a 为等差数列,设其公差为d ,有()11n a a n d +-= 则123n n S a a a a =++++于是()()()111121n S a a d a d a n d ⎡⎤=+++++++-⎣⎦……① 又()()()21n n n n n S a a d a d a n d ⎡⎤=+-+-++--⎣⎦……②由①②相加有()12n n S n a a =+即()12n n n a a S += (2)证明:由()12n n n a a S +=,有当2n ≥时,()()11112n n n a a S ---+=,所以()()()1111122n n n n n n a a n a a a S S --+-+=-=-, ③()()()1111122n n n n a a n a a a +++++=-, ④④-③并整理,得()112n n n n a a a a n +--=-≥,即112n n n a a a -+=+ 所以数列{}n a 是等差数列. 【点睛】主要考查了倒序相加法,以及等差数列的证明,属于中档题.等差数列的证明常常运用以下两种方法:(1)定义法,通过证明1n n a a d --=(d 为常数,2n ≥)即可;(2)等差中项法:通过证明其满足112n n n a a a -+=+即可. 10.(1)21n a n =-;(2)321nn +. 【分析】(1)设等差数列{}n a 的公差为d ,根据题意列出方程即可解出d ,从而得到数列{}n a 的通项公式;(2)根据题意可得12n nn n b a b a ++=,再根据累乘法求得3(21)(21)n b n n =-+,然后根据裂项相消法即可求出数列{}n b 的前n 项和. 【详解】(1)设等差数列{}n a 的公差为d ,则21a d =+,312a d =+,413a d =+.因为2435a a a +=+,所以24125d d +=++, 解得2d =.所以数列{}n a 的通项公式为1(1)21n a a n d n =+-=-. (2)因为12n n n n b a b a ++⋅=⋅,所以12n n n n b ab a ++=. 所以,当2n ≥时,312121121341n n n n n bb aba ab b b b b a a a --+=⨯⨯⨯⋅⋅⋅⨯=⨯⨯⨯,即1213(2)(21)(21)n n n a a b n a a n n +⋅==≥⋅-+.又11b =适合上式,所以3(21)(21)n b n n =-+.因为3311()(21)(21)22121n b n n n n ==--+-+, 数列{}n b 的前n 项和为123111113[(1)()()]2335212121n n nS b b b n n n =+++=-+-+⋅⋅⋅+-=-++.11. 【详解】解:(1)证明:当*n N ∈时,1(1)(21)(1)2n n n n a n a n n a n a n+-+-+-+==--, 又112a -=,∴数列{}n a n -是首项为2,公比为2的等比数列,∴11(1)22n n n a n a --=-⋅=,∴*2()n n a n n N =+∈;(2)证明:122n n n n n n n b b a n b n n b +=+-=++-=+,∴12n n n b b +-=,当1n =时12b =,当2n 时112n n n b b ---=,∴111121121()()22222221n n n n n n b b b b b b ----=-++-+=+++=⨯+=-,当1n =时符合,∴2nn b =,∴111211(1)(1)(21)(21)2121n n n n n n n n n a n c b b +++-===-++++++,1212231111111111111()()()()2121212121212121321n n n n n n n n T c c c c --++∴=++++=-+-++-+-=-+++++++++.又11021n +>+,∴13n T <.12.【详解】(1)证明:由*2()n n a S n n N =+∈, 可得111211a S a =+=+,解得11a =,2n 时,11221n n n n n a S S a n a n --=-=--+-,可得121n n a a -=+, 则112(1)n n a a -+=+,所以数列{1}n a +是首项和公比均为2的等比数列; (2)由(1)可得12nn a +=,则222222111111()log (1)log (1)2log 2(2)22log n n n n n c a a n n n n ++====-+⋅+⋅++,所以1111111111(1...)232435112n T n n n n =-+-+-++-+--++ 1111323(1)221242(1)(2)n n n n n +=+--=-++++. 13. 【详解】 (1)由*1(N )3nn n a a n a +=∈+,得13131n n n na a a a ++==+, 令1113n n a a λλ+⎛⎫+=+ ⎪⎝⎭,所以21λ=,解得12λ=,所以11111322n n a a +⎛⎫+=+ ⎪⎝⎭, 由等比数列的定义可知:数列112n a ⎧⎫+⎨⎬⎩⎭是以3为公比,以111322a +=为首项的等比数列,所以1113322n na -+=⨯,即231n n a =-,(2)由题意得1(31)2(31)21223nnn n n n n n n n n b a -=-=-⋅⋅=-⋅⋅, 0122111111123(1)22222n n n T n n --=⨯+⨯+⨯+⋅⋅⋅+-⨯+⨯, 121111112(1)22222n n n T n n -=⨯+⨯+⋅⋅⋅+-⨯+⨯, 两式相减得:0121111111122212222222212n n n n n nT n n n --+=+++⋅⋅⋅+-⨯=-=--,所以12442n n n T -+=-<, 所以4k ≥,所以使n k T >恒成立的最小的整数k 为4. 14. 【详解】(1)证明:由nS n +1-(n +1)S n =n 2+n 得111n n S S n n +-=+,又11S=5, 所以数列n S n ⎧⎫⎨⎬⎩⎭是首项为5,公差为1的等差数列.(2)由(1)可知n Sn=5+(n -1)=n +4,所以S n =n 2+4n .当n ≥2时,a n =S n -S n -1=n 2+4n -(n -1)2-4(n -1)=2n +3. 又a 1=5也符合上式,所以a n =2n +3(n ∈N *), 所以b n =(2n +3)2n ,所以T n =5×2+7×22+9×23+…+(2n +3)2n ,① 2T n =5×22+7×23+9×24+…+(2n +1)2n +(2n +3)·2n +1,② 所以②-①得T n =(2n +3)2n +1-10-(23+24+…+2n +1) =(2n +3)2n +1-10-()3121212n ---=(2n +3)2n +1-10-(2n +2-8) =(2n +1)2n +1-2. 15.解:因为正项数列{}n a 的前n 项和为n S ,且11a =,211n n n S S a +++=,所以当1n =时,2212S S a +=,即22122a a a +=,即2222a a +=,解得22a =或21a =-(舍去)当2n ≥时,21n n n S S a -+=,两式相减可得()22111n n n n n n S S S S a a +-++-+=-,即()()111n n n n n n a a a a a a ++++=+-,所以11n n a a +-=,又211a a -=,所以{}n a 是以1为首项,1为公差的等差数列,所以n a n = (2)解:由(1)可得22n n n a a n =,令1212222nn na a a a a a T =+++,所以231232222n nn T ①,所以2341112322222n n n T +=++++②;①-②得,23111111222222n nn nT +=++++- 1111221212n n n +⎛⎫-⎪⎝⎭=--1212n n ++=-,所以2222nn n T +=-<,所以12122222nna a a a a a +++< 16.D解:因为数列{}n a 的前n 项和2n S n =,2121n S n n -=-+,两式作差得到21(2)n a n n =-≥,又当1n =时,21111a S ===,符合上式,所以21n a n =-,111111(21)(21)22121n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭, 所以12233411111n n a a a a a a a a +++++=111111111111233557212122121n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 所以12233499100111199992991199a a a a a a a a ++++==⨯+. 故选:D. 17.A 【详解】因为12123n n a a n +⎛⎫=- ⎪+⎝⎭,即1(21)23n n n a a n ++=+,1[2(1)1](21)n n n a n a +++=+, 所以数列{}(21)n n a +是常数列, 所以1(21)33n n a a +=⋅=, 所以321n a n =+,19911(21)(23)22123n n a a n n n n +⎛⎫==- ⎪++++⎝⎭,所以122334*********1235577921239113232323n n a a a a a a a a n n nn n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎛⎫=-= ⎪++⎝⎭于是1223349910039999299367a a a a a a a a ⨯++++==⨯+,故选:A 18.B 【分析】降标相减可得()()()111122n n n n a a na n a n ++=--≥,从而可得()1122n n n n n a a+-=-≥,再降标相减得出1n a ⎧⎫⎨⎬⎩⎭是等差数列,再利用错位相减法即可求解. 【详解】降标相减可得()()()111122n n n n a a na n a n ++=--≥ 即()()11212n n n n a a na n a n ++=--≥ 变形得:()1122n n n n n a a +-=-≥, 降标相减可得()112113n n n n a a a -+=+≥可算得112a =,213a =,314a =即1n a ⎧⎫⎨⎬⎩⎭是等差数列,可得()12112nn n n n n a a =+⇒=+, 所以()12223212n n S n =⋅+⋅++⋅, 所以()2312223212n n S n +=⋅+⋅++⋅错位相减可得12n n S n +=⋅.所以2022202120212S =⋅.故选:B 19.A 【分析】利用累加法得到()12113122n nn a ---=+-,带入得到231(1122)n nn a =-+-,再利用分组求和法计算得到答案.【详解】212213(1)3n n n n n n a a a +-+-==++,即2121(1)3n n n n a a +---+=.()()()2121232325131n n n n n a a a a a a a a -----=-+-+⋅⋅⋅+-+[]()1121211331(31)3(11221)3n n n n n n --------⎡⎤⎡⎤=++⋅⋅⋅+-++=-+⎣⎦⎣⎦-+-+()()11311311222n n n n --+--=-=+-.()12211331112(1)(1)(12)22nnn n n n n n a a ---==+---+-+=+-.故()()2021132021242020S a a a a a a =++⋅⋅⋅+++⋅⋅⋅()()()0110101210111113331111222222⎛⎫---=++-++-+⋅⋅⋅++- ⎪ ⎪⎝⎭2101021010(1)(1)(3131311112222221)⎛⎫++-++-+⋅⋅--⋅++- ⎪⎝⎭-1010101110111331132021*********-=++--=--.故选:A. 20.D 【分析】根据()()121nn a n =--,利用并项求和法即可得出答案. 【详解】解:因为()()121nn a n =--, 所以2012341920S a a a a a a =+++++()()()13573739=-++-+++-+ ()()()13573739=-++-+++-+21020=⨯=.故选:D. 21.B 【分析】由题意得122,1a a ==,根据21n n n a a a ++=-,列举数列的项,得到数列从第2项起,3项一个循环求解. 【详解】因为1222a a ==, 所以122,1a a ==, 因为21n n n a a a ++=-,所以数列的项依次为2,1,1,0,1,1,0,…, 所以从第2项起,3项一个循环,所以{}n a 的前100项的和为233(110)68+⨯++=, 故选:B .【分析】由函数解析式可知,()12f x f x ⎛⎫+= ⎪⎝⎭,而根据等比数列的性质120202201932018202011a a a a a a a a ===== 恰好满足两两互为倒数.因此可以利用函数特征代入,利用倒序求和解决求和问题 【详解】∵()()221f x x R x =∈+,∴()2222212222211111x f x f x x x x x ⎛⎫+=+=+= ⎪+++⎝⎭⎛⎫+ ⎪⎝⎭. ∵数列{}n a 为等比数列,且120201a a ⋅=,∴120202201932018202011a a a a a a a a =====.∴()()()()()()()()120202201932018202012f a f a f a f a f a f a f a f a +=+=+==+=,∴由倒序求和可得()()()()12320202020f a f a f a f a ++++=.故选:A . 23.A解:由()1221n n n a a n ++=+,得1221n n a an n +=++,所以数列1n a n ⎧⎫⎨⎬+⎩⎭是以1111a =+为首项,2为公比的等比数列,所以121n n a n -=+,所以()112n n a n -=+⋅.设{}n a 的前n 项和为n S ,则()012122324212n n S n -=⨯+⨯+⨯+⋅⋅⋅++⋅, 两边同乘2,得()12122232212n nn S n n -=⨯+⨯+⋅⋅⋅+⋅++⋅,两式相减得()()()()101212122222212212212n n nn n n S n n n ----=⨯+++⋅⋅⋅+-+⋅=+-+⋅=-⋅-,所以2nn S n =⋅,所以2019202020191232019202122021201922019a a a a a ⨯==+++⋅⋅⋅+⨯.故选:A. 24.B 【分析】 由1111n n a a n n +-=-+,利用累加法得出n a .由题意可得()111111n n a a n n n n +-==-++,所以21112a a -=-,321123a a -=-,…,1111n n a a n n--=--, 上式累加可得()()()121321--=-+-++-n n n a a a a a a a a111111112231=-+-++-=--n n n, 又13a =,所以14=-n a n.故选:B . 25.B 【详解】由题意,可知从早晨6时30分开始,接下来的每个30分钟内, 进入的人数构成以4为首项,2为公比的等比数列, 出来的人数构成以1为首项,1为公差的等差数列, 记第n 个30分钟内进入公园的人数为n a ,出来的人数为n b ,则142n n a -=⨯,n b n =,则上午11时30分公园内的人数为()()1012412101102257122S -+=+-=--.故选:B. 26.ACD 【分析】对于A ,令1n =直接求解1a ,对于B ,当2n ≥时,()()22112131512222n n n n a a a ---+-++⋅⋅⋅+=,然后与已知的式子相减可求出n a ,对于C ,利用1n n a a +-进行判断,对于D ,利用错位相减法求解即可 【详解】当1n =时,124a =,∴12a =,∴A 正确;当2n ≥时,()()22112131512222n n n n a a a ---+-++⋅⋅⋅+=,∴()()2231513523122n n n n n n a n -+-+=-=+,∴312n nn a +=,∵上式对1n =也成立,∴312n n n a +=(N n *∈),∴B 错误; ∵1111343134623202222n n n n n n n n n n n a a +++++++---+-=-==<, ∴数列{}n a 为递减数列,∴C 正确;∵234710312222n n n S +=+++⋅⋅⋅+,∴2341147103122222n n n S ++=+++⋅⋅⋅+,两式相减得, ∴23111111131113173123232222222222n n n n n n n n n S ++++++⎛⎫⎛⎫=+++⋅⋅⋅+-=+--=- ⎪ ⎪⎝⎭⎝⎭, ∴3772n nn S +=-.∴D 正确. 故选:ACD . 27.ABD 【分析】对于AB ,通过累乘法求出{}n S 的通项公式,进而求出{}n a 的通项公式,即可求解; 对于CD ,通过{}n a 的通项公式求出{}n b 的通项公式,再通过裂项相消求n T ,进而求解. 【详解】 由题意,得12n n S n S n++=, ∴当2n ≥时,()12112111311212n n n n n n n S S S n n S S S S S n n ---++=⨯⨯⋅⋅⋅⨯⨯=⨯⨯⋅⋅⋅⨯⨯=--, 又当1n =时11S =也符合上式, ∴()12n n n S +=,易得n a n =,∴20212021a =, 故A ,B 正确;()()()221211111112222n n n n n a b a a n n n n n n +++⎛⎫===+=+- ⎪+++⎝⎭,∴11111111111111112324351122212n T n n n n n n n n ⎛⎫⎛⎫=+-+-+-+⋅⋅⋅+-+-=++-- ⎪ ⎪-++++⎝⎭⎝⎭3111342124n n n n ⎛⎫=+-+<+ ⎪++⎝⎭, 易知{}n T n -单调递增, ∴1113n T n T -≥-=,∴1334n T n ≤-<,故C 错误,D 正确.故选:ABD . 28.AD因为123nn n a a a +=+,所以112323n nn n a a a a ++==+, 所以111323n n a a +⎛⎫+=+ ⎪⎝⎭,且11340a +=≠,所以13n a ⎧⎫+⎨⎬⎩⎭是以4为首项,2为公比的等比数列,即11342n na -+=⨯,所以1231n n a +=-,可得1123n n a +=-,故选项A 正确,选项B 不正确;因为1231n n a +=-单调递增,所以1123n n a +=-单调递减,即{}n a 为递减数列,故选项C 不正确;1n a ⎧⎫⎨⎬⎩⎭的前n 项和()()()()2312132323232223n n n T n ++=-+-+⋅⋅⋅+-=++⋅⋅⋅+- 22122323412nn n n +-=⨯-=---.故选项D 正确;故选:AD . 29.BCD 【分析】根据n a 与n S 的关系及121n n n S S a +=++,可得112(1)n n a a ++=+,再根据等比数列和等差数列的定义即可判断AB ;从而可求的数列{}n a 的通项公式,即可判断C ;利用裂项相消求和法求得数列12{}nn n a a +⋅的前n 项和为n T ,即可判断D. 【详解】解:由121n n n S S a +=++即为1121n n n n a S S a ++=-=+,可化为112(1)n n a a ++=+,由111S a ==,可得数列{1}n a +是首项为2,公比为2的等比数列,故A 错误,B 正确;则12n n a +=,即21nn a =-,故C 正确;又1112211(21)(21)2121n n n n n n n n a a +++==-----,可得22311111111111212*********n n n n T ++=-+-+⋯+-=-<------, 故D 正确.故选:BCD . 30.2081当1n =时,11b =,当2n ≥时,1n n n b S S -=-可得{}n b 的通项公式,再利用裂项求和即可求解. 【详解】当1n =时,2112111b S ==⨯-=,当2n ≥时,()221221143n n n b S S n n n n n -=-=---+-=-, 因为11b =满足上式,所以43n b n =-,所以()()111111434144341n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭所以20111111111120114559913778148181K ⎛⎫⎛⎫=-+-+-++-=-= ⎪ ⎪⎝⎭⎝⎭, 故答案为:2081.31.1024 【分析】先求得n S ()2=log 1n +,由10n S >,可得()2log 110n +>,由此即可求解 【详解】因为2211log 1=log n n a n n +⎛⎫=+ ⎪⎝⎭,所以22222341=log log log log 123n n nS +++++ ()222331=log =log 1122n n n +⎛⎫⨯⨯⨯⨯+ ⎪⎝⎭,由10n S >,可得()2log 110n +>,解得1023n >, 所以满足10n S >的n 最小值为1024, 故答案为:1024 32.21nn + 【详解】解:设公差为d ,因为343,10a S ==,所以11234610a d a d +=⎧⎨+=⎩,解得111a d =⎧⎨=⎩,所以n a n =,所以()12n n n S +=,所以()1211211n n n n S n ⎛⎫==- ⎪++⎝⎭, 所以121111111121222231n S S S n n ⎛⎫⎛⎫⎛⎫++⋯+=-+-++- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭11111122121223111n n n n n ⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪+++⎝⎭⎝⎭ 故答案为:21n n + 33.4(41)3n -【分析】 项和转换可得12n n a ,故**2,2,0,21,n n n k k N b n k k N ⎧=∈=⎨=-∈⎩,按照奇数项、偶数项分组求和,即得解 【详解】由题意,1111,22,22,11,1n n n n n S S n n a S n n ----≥⎧⎧≥===⎨⎨==⎩⎩()****2,2,2,2,10,21,0,21,n nn n n n a n k k N n k k N b a a n k k N n k k N ⎧⎧=∈=∈∴=+-==⎨⎨=-∈=-∈⎩⎩21321242(...)(...)n n n T b b b b b b -∴=+++++++24224(14)4(41)22...244 (4143)n n nn--=+++=+++==- 故答案为:4(41)3n - 34.1540 【分析】由数列{}n a 满足11n n a a ++=,得数列{}n a 是以1为公差的等差数列,再根据246a a +=,可得11a =,从而求得n a n =,再利用等差数列前n 项和的公式求得n S ,再结合()()222121126n n n n ++++⋅⋅⋅+=即可得出答案.【详解】解:数列{}n a 满足11n n a a ++=,所以数列{}n a 是以1为公差的等差数列, 又246a a +=,则313,1a a ==, 所以n a n =,所以()1212n n n n S a a a +=++⋅⋅⋅+=, 所以22212201232012202S S S +++⋅⋅⋅++++⋅⋅⋅+++⋅⋅⋅+=由()()222121126n n n n ++++⋅⋅⋅+=,可得222202141122028706⨯⨯++⋅⋅⋅==,()20120123202102++++⋅⋅⋅+==,所以12201540S S S ++⋅⋅⋅+=. 故答案为:1540. 35.(1) 3.n a n =+ (2) 1(21)334n n n T +-⨯+=.【详解】试题分析:(1)根据等差数列的求和公式可得()17747=7=492a a S a ⨯+=,得4=7a ,然后由已知36a =可得公差,进而求出通项;(2)先明确()33n n n b a =-⋅= 3n n ⋅,为等差乘等比型通项故只需用错位相减法即可求得结论.解析: (Ⅰ)由()17747=7=492a a S a ⨯+=,得4=7a因为36a =所以1d = 14,3n a a n ==+所以(Ⅱ)()33=3n n n n b a n =-⋅⋅()12313233331n n T n =⨯+⨯+⨯+⋯+⨯所以 ()234+1313233332n n T n =⨯+⨯+⨯+⋯+⨯()()123+1+13312233333=313n nn n n T n n +---=++++-⨯-⨯-由得: ()+121334n nn T -⨯+=所以 36.(Ⅰ)21,(2)n n a n S n n =+=+; (Ⅱ)4(1)nn +.【详解】试题分析:(1)设等差数列{}n a 的公差为d ,由已知3577,26a a a =+=可得1127{21026a d a d +=+= 解得1,a d ,则n a 及n S 可求;(2)由(1)可得111()41n b n n =-+,裂项求和即可 试题解析:(1)设等差数列{}n a 的公差为d ,因为37a =,5726a a +=,所以有1127{21026a d a d +=+=,解得13,2a d==,所以32(1)21n a n n =+-=+,2(1)3222n n n S n n n -=+⨯=+. (2)由(1)知,21n a n =+,所以22111111()1(21)14(1)41n n b a n n n n n ====--+-++, 所以11111111(1)(1)42231414(1)n nT n n n n =-+-++-=-=+++, 即数列{}n b 的前n 项和4(1)n nT n =+.考点:等差数列的通项公式,前n 项和公式.裂项求和 37.(Ⅰ)2q ;(Ⅱ)2115(43)()2n n b n -=-+⋅.【分析】分析:(Ⅰ)根据条件、等差数列的性质及等比数列的通项公式即可求解公比;(Ⅱ)先根据数列1{()}n n n b b a +-前n 项和求通项,解得1n n b b +-,再通过叠加法以及错位相减法求n b . 【详解】详解:(Ⅰ)由42a +是35,a a 的等差中项得35424a a a +=+, 所以34543428a a a a ++=+=, 解得48a =.由3520a a +=得1820q q ⎛⎫+= ⎪⎝⎭,因为1q >,所以2q.(Ⅱ)设()1n n n n c b b a +=-,数列{}n c 前n 项和为n S .由11,1,, 2.n nn S n c S S n -=⎧=⎨-≥⎩解得41n c n =-.由(Ⅰ)可知12n na ,所以()111412n n n b b n -+⎛⎫-=-⋅ ⎪⎝⎭,故()21145,22n n n b b n n --⎛⎫-=-⋅≥ ⎪⎝⎭,()()()()11123221n n n n n b b b b b b b b b b ----=-+-++-+-()()23111454973222n n n n --⎛⎫⎛⎫=-⋅+-⋅++⋅+ ⎪⎪⎝⎭⎝⎭.设()22111371145,2222n n T n n -⎛⎫⎛⎫=+⋅+⋅++-⋅≥ ⎪ ⎪⎝⎭⎝⎭,()()2211111137494522222n n n T n n --⎛⎫⎛⎫⎛⎫=⋅+⋅++-⋅+-⋅ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭。
数列求和的基本方法和技巧
![数列求和的基本方法和技巧](https://img.taocdn.com/s3/m/43bc8f3b54270722192e453610661ed9ad5155b4.png)
数列求和的基本方法和技巧数列是高中数学的重要内容,又是学习高等数学的基础。
高考对数列的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
下面是小编整理的数列求和的基本方法和技巧,供参考。
更多相关信息请关注相应栏目!一.公式法如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式.注意等比数列公示q的取值要分q=1和q≠1.二.倒序相加法如果一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.三.错位相减法如果一个数列的各项和是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.四.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.用裂项相消法求和时应注意抵消后并不一定只剩下第一项和最后一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称出现的.五.分组求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减.六.并项求和法一个数列的前n项和中,若可两两结合求解,则称之为并项求和法.形如类型,可采用两项合并求解.数列知识整合1、在掌握等差数列、等比数列的定义、*质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题。
2、在解决综合题和探索*问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力。
32 数列求和-分组求和法专题训练
![32 数列求和-分组求和法专题训练](https://img.taocdn.com/s3/m/03bbab125627a5e9856a561252d380eb63942375.png)
专题32 数列求和-分组求和法专题训练【方法总结】分组转化法求和有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个可求和的数列,先分别求和,然后再合并.(1)若a n =b n ±c n ,且{b n },{c n }为可求和的数列(等差或等比数列),可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是可求和的数列(等比数列或等差数列),可采用分组求和法求和.【题型突破】1.已知数列{a n }为等差数列,其中a 5=3a 2,a 2+a 3=8.(1)求数列{a n }的通项公式;(2)数列{b n }中,b 1=1,b 2=2,从数列{a n }中取出第b n 项记为c n ,若{c n }是等比数列,求{b n }的前n 项和.2.已知递增等比数列{a n }的前三项之积为8,且这三项分别加上1,2,2后又成等差数列.(1)求等比数列{a n }的通项公式;(2)记b n =a n +2n ,求数列{b n }的前n 项和T n .3.已知数列{a n }是等差数列,S n 是其前n 项和,且a 1=2,S 3=12.(1)求数列{a n }的通项公式;(2)设b n =a n +4n ,求数列{b n }的前n 项和T n .4.已知数列{a n }是各项均为正数的等比数列,且a 1+a 2=2⎝⎛⎭⎫1a 1+1a 2,a 3+a 4=32⎝⎛⎭⎫1a 3+1a 4. (1)求数列{a n }的通项公式;(2)设b n =a 2n +log 2a n ,求数列{b n }的前n 项和T n .5.已知各项都不相等的等差数列{a n },a 6=6,又a 1,a 2,a 4成等比数列.(1)求数列{a n }的通项公式;(2)设b n =2n a+(-1)n a n ,求数列{b n }的前2n 项和T 2n .6.由整数构成的等差数列{a n }满足a 3=5,a 1a 2=2a 4.(1)求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =2n ,将数列{a n },{b n }的所有项按照“当n 为奇数时,b n 放在前面;当n 为偶数时,a n 放在前面”的要求进行“交叉排列”,得到一个新数列{c n },b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,求数列{c n }的前(4n +3)项和T 4n +3.7.若数列{a n }的前n 项和S n 满足S n =2a n -λ(λ>0,n ∈N *).(1)证明数列{a n }为等比数列,并求a n ;(2)若λ=4,b n =⎩⎪⎨⎪⎧a n ,n 为奇数,log 2a n ,n 为偶数(n ∈N *),求数列{b n }的前2n 项和T 2n . 8.已知数列{a n }为等比数列,首项a 1=4,数列{b n }满足b n =log 2a n ,且b 1+b 2+b 3=12.(1)求数列{a n }的通项公式;(2)令c n =4b n ·b n +1+a n,求数列{c n }的前n 项和S n . 9.已知数列{a n }为等比数列,首项a 1=4,数列{b n }满足b n =log 2a n ,且b 1+b 2+b 3=12.(1)求数列{a n }的通项公式;(2)令c n =4b n ·b n +1+a n,求数列{c n }的前n 项和S n . 10.在各项均为正数的等比数列{a n }中,a 1a 3=4,a 3是a 2-2与a 4的等差中项,若a n +1=2n b(n ∈N *).(1)求数列{b n }的通项公式;(2)若数列{}c n 满足c n =a n +1+1b 2n -1·b 2n +1,求数列{}c n 的前n 项和S n . 11.(2019·天津)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c n =⎩⎪⎨⎪⎧1,n 为奇数,b n 2,n 为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *). 12.已知数列{a n }的前n 项和为S n ,若a n =-3S n +4,b n =-log 2a n +1.(1)求数列{a n }和{b n }的通项公式;(2)令c n =b n 2n +1+1n (n +1),其中n ∈N *,若数列{c n }的前n 项和为T n ,求T n . 13.在数列{a n }中,已知a 1=1,a n ·a n +1=⎝⎛⎭⎫12n ,记S n 为{a n }的前n 项和,b n =a 2n +a 2n -1,n ∈N *.(1)判断数列{b n }是否为等比数列,并写出其通项公式;(2)求数列{a n }的通项公式;(3)求S n .14.(2021·新高考Ⅰ)已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧a n +1,n 为奇数,a n +2,n 为偶数. (1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式;(2)求{a n }的前20项和.15.已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25.(1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .16.在①b n =na n ,②b n =⎩⎪⎨⎪⎧a n ,n 为奇数,log 2a n ,n 为偶数,③b n =1(log 2a n +1)(log 2a n +2)这三个条件中任选一个,补充在下面问题中,并解答.问题:已知数列{a n }是等比数列,且a 1=1,其中a 1,a 2+1,a 3+1成等差数列.(1)求数列{a n }的通项公式;(2)记________,求数列{b n }的前2n 项和T 2n .17.已知{a n }是等差数列,{b n }是等比数列,且{b n }的前n 项和为S n ,2a 1=b 1=2,a 5=5(a 4-a 3),________.在①b 5=4(b 4-b 3),②b n +1=S n +2这两个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答.(1)求数列{a n }和{b n }的通项公式;(2)求数列{a n -b n }的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分.18.已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49.(1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围.19.已知等比数列{a n }为递增数列,且a 4=23,a 3+a 5=209,设b n =log 3a n 2(n ∈N *). (1)求数列{b n }的前n 项和S n ;(2)令T n =b 1+b 2+b 22+…+b 2n -1,求使T n >0成立的最小值n .20.已知数列{a n }的前n 项和S n 满足关系式S n =ka n +1,k 为不等于0的常数.(1)试判断数列{a n }是否为等比数列;(2)若a 2=12,a 3=1. ①求数列{a n }的通项公式及前n 项和S n 的表达式;②设b n =log 2S n ,数列{c n }满足c n =1b n +3b n +4+b n +2·2n b ,数列{c n }的前n 项和为T n ,当n >1时,求使4n -1T n <S n +3+n +122成立的最小正整数n 的值.。
数列求和题型及解题方法
![数列求和题型及解题方法](https://img.taocdn.com/s3/m/f74de52326d3240c844769eae009581b6bd9bd2e.png)
数列求和题型及解题方法
数列求和是数学中的一个重要概念,其题型和解题方法有很多种。
以下是一些常见的数列求和题型及其解题方法:
1. 等差数列求和
等差数列是一种常见的数列,其相邻两项的差是常数。
等差数列的求和公式为:S = n/2 (a1 + an),其中n是项数,a1是首项,an是尾项。
例如:1+2+3+...+n=n(n+1)/2
2. 等比数列求和
等比数列是一种常见的数列,其相邻两项的比是常数。
等比数列的求和公式为:S = a1 (1 - q^n) / (1 - q),其中a1是首项,q是公比,n是项数。
例如:1+2+4+...+2^(n-1)=2^n-1
3. 错位相减法
对于一些等差数列和等比数列的混合数列,可以使用错位相减法来求和。
具体做法是将原数列的每一项都乘以一个适当的常数,使得新数列成为等差数列或等比数列,然后使用相应的求和公式进行计算。
例如:100+101+102+...+999=99/2=44550
4. 分组求和法
对于一些项数较多、难以直接求和的数列,可以将它们分成若干组,每组有有限项,然后分别求每组的和,最后将各组的和相加即可。
例如:(1+2+3)+(4+5+6)+(7+8+9)=9+18+27=54
5. 倒序相加法
对于一些奇偶项相间的数列,可以将正序和倒序分别求和,再将两个和相加,即可得到原数列的和。
例如:(1+2+3+4)+(3+2+1)=8+6=14
以上是一些常见的数列求和题型及其解题方法,掌握这些方法对于解决数列求和问题非常有帮助。
数列求和常见的7种方法
![数列求和常见的7种方法](https://img.taocdn.com/s3/m/22a24c32d5bbfd0a78567353.png)
.
1、 等差数列求和公式: Sn
n (a1 an)
n(n 1)
na1
d
2
2
2、等比数列求和公式: Sn
na1 a1 (1 qn )
1q
( q 1)
a1 an q 1q
(q 1)
3、 Sn
n
k
k1
1n(n 1) 2
4、 Sn
n
k2
k1
1n(n 1)(2n 1) 6
5、 Sn
n
k3
1 [ n( n
1)] 2
数列求和常见的 7 种方法
数列求和的基本方法和技巧
一、总论:数列求和 7 种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和
二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减 法,
三、逆序相加法、错位相减法是数列求和的二个基本方法。
[ 例 12] 求 cos1° + cos2° + cos3° +··· + cos178° + cos179°的值 . 解:设 Sn= cos1° + cos2° + cos3° +···+ cos178° + cos179°
∵ cos n cos(180 n )
(找特殊性质项)
∴ Sn= ( cos1° + cos179°) +( cos2°+ cos178°) + ( cos3°+ cos177°) +···
4
数列求和常见的 7 种方法
( 2)利用第( 1 )小题已经证明的结论可知,
数列求和的基本方法和技巧
![数列求和的基本方法和技巧](https://img.taocdn.com/s3/m/aab1c4fa81eb6294dd88d0d233d4b14e85243e9c.png)
数列求和的基本方法和技巧
1. 先计算出等比数列的首项和公比,再算出等比数列的和;
2. 若数列为等差数列,则可以用公式来计算等差数列的和;
3. 利用数学归纳法,逐项和来计算数列的和。
技巧:
1. 将一个数列分解为几个部分,每一部分可以迅速求出,再求出整个数列的和;
2. 利用二元数列的性质,将数列分成两个等比数列,再用公式算出和;
3. 对于大量项的数列,可以把其分成等差数列和几项相续数列,考虑只依靠前几项数列的和,也能推出整个数列的和;
4. 将大量的数加起来时,可以把一些大的数以千为单位分成几份,以百为单位进行计算;。
数列求和7种方法(方法全,例子多)
![数列求和7种方法(方法全,例子多)](https://img.taocdn.com/s3/m/11c16811dd36a32d737581aa.png)
数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c = .解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位)①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和)=)111(8+-n =18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立练习题1.答案:.练习题2。
数列求和各种方法总结归纳
![数列求和各种方法总结归纳](https://img.taocdn.com/s3/m/014c284a2b160b4e767fcf1e.png)
1 1 1 = 2n-1-2n+1, 2
1 1 1 1 1 1 + - +…+ ∴Sn= 1-3 2n-1-2n+1 2 3 5
1 1 n = 1-2n+1= . 2 2n+1
[理](2012· 西南大学附中月考)已知函数f(x)=2x+1,g(x)=x,x∈ R,数列{an},{bn}满足条件:a1=1,an=f(bn)=g(bn+1),n∈N*. (1)求证:数列{bn+1}为等比数列; 2n 2 011 (2)令Cn= ,Tn是数列{Cn}的前n项和,求使Tn>2 012成立的 an·n+1 a 最小的n值.
解:(1)证明:由题意得2bn+1=bn+1, ∴bn+1+1=2bn+2=2(bn+1). 又∵a1=2b1+1=1, ∴b1=0,b1+1=1≠0.
故数列{bn+1}是以1为首项,2为公比的等比数列.
(2)由(1)可知,bn+1=2n-1,∴an=2bn+1=2n-1. 2n 2n 1 1 故Cn= = n = n - n+1 . an·n+1 2 -12n+1-1 2 -1 2 -1 a ∴Tn=C1+C2+…+Cn 1 1 1 1 1 =(1-3)+(3-7)+…+( n - ) 2 -1 2n+1-1 1 2 011 =1- n+1 .由Tn>2 012,得2n+1>2 013,解得n≥10. 2 -1 ∴满足条件的n的最小值为10.
②不能转化为等差或等比数列的数列,往往通过裂项
相消法、错位相减法、倒序相加法等来求和.
[例1] (2011· 山东高考)等比数列{an}中,a1,a2,a3分别是下表 第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不 在下表的同一列. 第一行 第二行 第一列 第二列 第三列 3 6 9 2 4 8 10 14 18
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和专题 方法归纳方法1:分组转化法求和1.已知{a n }的前n 项是3+2-1,6+4-1,9+8-1,12+16-1,…,3n +2n-1,则S n =________.2.等差数列{a n }中,a 2=4,a 4+a 7=15.(1)求数列{a n }的通项公式;(2)设b n =2an -2+n ,求b 1+b 2+b 3+…+b 10的值. 方法2裂项相消法求和3.设数列{}a n 满足a 1=1,且a n +1-a n =n +1(n ∈N*),则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 前10项的和为______.4. S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. ①求{a n }的通项公式; ②设b n =1a n a n +1,求数列{b n }的前n 项和.5.若已知数列的前四项是112+2,122+4,132+6,142+8,则数列的前n 项和为________. 6.等差数列{a n }的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .7.已知数列{a n }各项均为正数,且a 1=1,a n +1a n +a n +1-a n =0(n ∈N *). (1)设b n =1a n ,求证:数列{b n }是等差数列;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n +1的前n 项和S n .方法3:错位相减法求和8.已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列(b n >0),且a 1=b 1=2,a 3+b 3=16,S 4+b 3=34.(1)求数列{a n }与{b n }的通项公式;(2)记T n 为数列{a n b n }的前n 项和,求T n .9.设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ;10.已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.(1)求{}n a 和{}n b 的通项公式;(2)求数列221{}n n a b -项和()n *∈N .的前n4.数列与不等式的交汇问题11.设各项为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *. (1)求a 1的值; (2)求数列{a n }的通项公式; (3)证明对一切正整数n ,有11221111(1)(1)(1)3n n a a a a a a ++⋅⋅⋅<+++。
12.已知等比数列{a n }是递增数列,且a 2a 5=32,a 3+a 4=12,数列{b n }满足b 1=1, 且b n +1=2b n +2a n (n ∈N*). (1)证明:数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫b n a n 是等差数列;(2)若对任意n ∈N *,不等式(n +2)b n +1≥λb n 总成立,求实数λ的最大值.数列求和专题 方法归纳参考答案1.【解析】 由题意知a n =3n +2n -1,∴S n =a 1+a 2+…+a n =3×1+21-1+3×2+22-1+…+3n +2n -1 =3×(1+2+3+…+n )+21+22+…+2n -n =3×?1+n ?×n 2+2?1-2n ?1-2-n =3n 2+n2+2n +1-2.2.解: (1)设等差数列{a n }的公差为d ,由已知得⎩⎨⎧a 1+d =4,?a 1+3d ?+?a 1+6d ?=15,解得⎩⎨⎧a 1=3,d =1.所以a n =a 1+(n -1)d =n +2. (2)由(1)可得b n =2n +n ,所以b 1+b 2+b 3+…+b 10=(2+1)+(22+2)+(23+3)+…+(210+10) =(2+22+23+…+210)+(1+2+3+…+10) =2?1-210?1-2+?1+10?×102=(211-2)+55=211+53=2 101.3.【解析】 (1)由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2).以上各式相加,得a n -a 1=2+3+…+n =?n -1??2+n ?2=n 2+n -22.又∵a 1=1,∴a n =n 2+n 2(n ≥2).∵当n =1时也满足此式,∴a n =n 2+n 2(n ∈N *).∴1a n =2n 2+n =2⎝ ⎛⎭⎪⎫1n -1n +1.∴S 10=2×⎝ ⎛⎭⎪⎫11-12+12-13+…+110-111 =2×⎝⎛⎭⎪⎫1-111=2011.4.解:①由a 2n +2a n =4S n +3,(1)可知a2n+1+2a n+1=4S n+1+3.(2)由(2)-(1),得a2n+1-a2n+2(a n+1-a n)=4a n+1,即2(a n+1+a n)=a2n+1-a2n=(a n+1+a n)(a n+1-a n).由a n>0,得a n+1-a n=2.又a21+2a1=4a1+3,解得a1=-1(舍去)或a1=3.所以{a n}是首项为3,公差为2的等差数列,通项公式为a n=2n+1.②由a n=2n+1 可知b n=1anan+1=1?2n+1??2n+3?=12⎝⎛⎭⎪⎫12n+1-12n+3.设数列{b n}的前n项和为T n,则T n =b1+b2+…+b n=12⎝⎛⎭⎪⎫13-15+⎝⎛⎭⎪⎫15-17+…+⎝⎛⎭⎪⎫12n+1-12n+3=n3?2n+3?.5.【解析】由前四项知数列{a n}的通项公式为a n=1n2+2n,由1n2+2n=12⎝⎛⎭⎪⎫1n-1n+2知,S n =a1+a2+a3+…+a n-1+a n=12⎣⎢⎡1-13+12-14+13-15+…+⎝⎛⎭⎪⎫1n-2-1n⎦⎥⎤⎝⎛⎭⎪⎫1n-1-1n+1+⎝⎛⎭⎪⎫1n-1n+2=12⎣⎢⎡⎦⎥⎤1+12-1n+1-1n+2=34-2n+32?n+1??n+2?.6.【解】 (1)由a 1=10,a 2为整数,知等差数列{a n }的公差d 为整数.又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0.解得-103≤d ≤-52.因此d =-3.数列{a n }的通项公式为a n =13-3n .(2)b n =1?13-3n ??10-3n ?=13⎝⎛⎭⎪⎫110-3n -113-3n . 于是T n =b 1+b 2+…+b n=13⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+110-3n -113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n10?10-3n ?.7.解:(1)证明:因为a n +1a n +a n +1-a n =0(n ∈N *),所以a n +1=a n a n +1.因为b n =1a n,所以b n +1-b n =1a n +1-1a n=a n +1a n -1a n =1. 又b 1=1a 1=1,所以数列{b n }是以1为首项、1为公差的等差数列.(2)由(1)知,b n =n ,所以1a n =n ,即a n =1n,所以a nn +1=1n ?n +1?=1n -1n +1,所以S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1.8.解: (1)设数列{a n }的公差为d ,数列{b n }的公比为q ,由已知q >0,∵a 1=b 1=2,a 3+b 3=16,S 4+b 3=34.∴{ 2+2d +2q 2=16,8+6d +2q 2=34?{ d =3,q =2,∴a n =a 1+(n -1)d =2+3(n -1)=3n -1,b n =b 1q n -1=2n .(2)T n =2×2+5×22+…+(3n -1)×2n ,2T n =2×22+5×23+…+(3n -1)×2n +1,两式相减得-T n =4+3×22+…+3×2n -(3n -1)×2n +1=4+12?1-2n -1?1-2-(3n -1)×2n +1=-8-(3n -4)2n +1. ∴T n =(3n -4)2n +1+8. 9.解: (1)由已知,b 7=2a 7,b 8=2a 8=4b 7, 有2a 8=4×2a 7=2a 7+2.解得d =a 8-a 7=2.所以S n =na 1+n ?n -1?2d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x 在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),它在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2.所以d =a 2-a 1=1,从而a n =n ,b n =2n,a n b n =n2n .所以T n =12+222+323+…+n -12n -1+n2n ,2T n =11+22+322+…+n2n -1.因此,2T n -T n =1+12+122+…+12n -1-n2n=2-12n -1-n2n =2n +1-n -22n 所以T n =2n +1-n -22n.10.解:(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q . 由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=. 又因为0q >,解得2q =.所以,2n n b =.由3412b a a =-,可得138d a -= ①.由114=11S b ,可得1516a d += ②, 联立①②,解得11a =,3d =,由此可得32n a n =-.所以,数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2n n b =. (2)解:设数列221{}n n a b -的前n 项和为n T ,由262n a n =-,12124n n b --=⨯,有221(31)4n n n a b n -=-⨯, 故23245484(31)4n n T n =⨯+⨯+⨯++-⨯L ,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯L ,上述两式相减,得231324343434(31)4n n n T n +-=⨯+⨯+⨯++⨯--⨯L1112(14)4(31)414(32)48.n n n n n ++⨯-=---⨯-=--⨯- 得1328433n n n T +-=⨯+. 所以,数列221{}n n a b -的前n 项和为1328433n n +-⨯+. 11.解: (1)令n =1代入得a 1=2(负值舍去).(2)由S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *得[S n -(n 2+n )](S n +3)=0.又已知各项均为正数,故S n =n 2+n .当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n , 当n =1时,a 1=2也满足上式, 所以a n =2n ,n ∈N *.(3)证明k ∈N *,4k 2+2k -(3k 2+3k )=k 2-k =k (k -1)≥0, ∴4k 2+2k ≥3k 2+3k ,∴1a k ?a k +1?=12k ?2k +1?=14k 2+2k ≤13k 2+3k =13⎝ ⎛⎭⎪⎫1k -1k +1. ∴1a 1?a 1+1?+1a 2?a 2+1?+…+1a n ?a n +1?≤13⎝ ⎛⎭⎪⎫11-12+12-13+…+1n -1n +1 =13⎝⎛⎭⎪⎫1-1n +1<13.∴不等式成立. 12.解:(1)证明:设{a n }的公比为q ,因为a 2a 5=a 3a 4=32,a 3+a 4=12,且{a n }是递增数列,所以a 3=4,a 4=8,所以q =2,a 1=1,所以a n =2n -1.因为b n +1=2b n +2a n ,所以b n +1a n +1=b na n+1, 所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫b n a n 是以b 1a 1=1为首项、1为公差的等差数列.(2)由(1)知b n =n ×2n -1,所以λ≤?n +2?b n +1b n=?n +2??n +1?2n n ·2n -1=2⎝ ⎛⎭⎪⎫n +2n +3. 因为n ∈N *,易知当n =1或2时,2⎝⎛⎭⎪⎫n +2n +3取得最小值12,所以λ的最大值为12.。