流体力学综合实验数据处理表
实验一 流体力学综合实验实验报告
实验一 流体力学综合实验预习实验:一、实验目的1.熟悉流体在管路中流动阻力的测定方法及实验数据的归纳2.测定直管摩擦系数λ与e R 关系曲线及局部阻力系数ζ 3、 了解离心泵的构造,熟悉其操作与调节方法 4、 测出单级离心泵在固定转速下的特定曲线 二、实验原理流体在管路中的流动阻力分为直管阻力与局部阻力两种。
直管阻力就是流体流经一定管径的直管时,由于流体内摩擦而产生的阻力,可由下式计算:gu d l g p H f 22⋅⋅=∆-=λρ (3-1)局部阻力主要就是由于流体流经管路中的管件、阀门及管截面的突然扩大或缩小等局部地方所引起的阻力,计算公式如下:gu g p H f22''⋅=∆-=ζρ (3-2)管路的能量损失'f f f H H H +=∑ (3-3)式中 f H ——直管阻力,m 水柱;λ——直管摩擦阻力系数;l ——管长,m; d ——直管内径,m;u ——管内平均流速,1s m -⋅;g ——重力加速度,9、812s m -⋅p ∆——直管阻力引起的压强降,Pa;ρ——流体的密度,3m kg -⋅;ζ——局部阻力系数; 由式3-1可得22ludP ρλ⋅∆-=(3-4) 这样,利用实验方法测取不同流量下长度为l 直管两端的压差P ∆即可计算出λ与Re ,然后在双对数坐标纸上标绘出Re λ-的曲线图。
离心泵的性能受到泵的内部结构、叶轮形式、叶轮转速的影响。
实验将测出的H —Q 、N —Q 、η—Q 之间的关系标绘在坐标纸上成为三条曲线,即为离心泵的特性曲线,根据曲线可找出泵的最佳操作范围,作为选泵的依据。
离心泵的扬程可由进、出口间的能量衡算求得:gu u h H H H 221220-++-=入口压力表出口压力表 (3-5)式中出口压力表H ——离心泵出口压力表读数,m 水柱;入口压力表H ——离心泵入口压力表的读数,m 水柱;0h ——离心泵进、出口管路两测压点间的垂直距离,可忽略不计;1u ——吸入管内流体的流速,1s m -⋅; 2u ——压出管内流体的流速,1s m -⋅泵的有效功率,由于泵在运转过程中存在种种能量损失,使泵的实际压头与流量较理论值为低,而输入泵的功率又较理论值为高,所以泵的效率%100⨯=NN eη (3-6) 而泵的有效功率g QH N e e ρ=/(3600×1000) (3-7)式中:e N ——泵的有效功率,K w;N ——电机的输入功率,由功率表测出,K w ;Q ——泵的流量,-13h m ⋅;e H ——泵的扬程,m 水柱。
流体力学及气体动力学综合实验报告册(二)
流体力学及气体动力学综合实验实验报告册(二)班级姓名学号成绩西北工业大学动力与能源学院2015年11月实验三沿程损失实验一、实验目的1、验证沿程水头损失与平均流速的关系。
2、掌握管道沿程阻力系数λ的测量方法。
二、实验设备实验设备为沿程损失实验装置,其主要由恒压水箱、进水阀、出水阀、测压计、接水盒以及自循环供水箱等部件组成,如图3-1所示。
接水盒图3-1 沿程损失实验原理图三、实验原理四、实验方法与步骤1. 确定出水阀完全开启,进水阀半开启。
启动水泵,排出实验管道、测压计中的气泡。
2. 逐渐开启进水阀,稳定2~3分钟,观测各个测压计中液面液高,并用体积法或称重法测定流量。
每次测量流量的时间应大于10秒。
3. 调整流量,继续测量,直至进水阀全开。
4. 如此测量10次以上,其中层流流动时测量3~5次。
5. 每次实验均要测量温度。
6. 实验完毕,先关闭进水阀,然后关闭出水阀,并切断电源,整理实验现场。
五、实验成果及要求实验台号No1.记录计算有关常数:管径d = cm ,管长l = cm , 水温t = ℃,水的密度3______/kg m ρ=。
运动粘度621.7751010.03370.000221t t υ-⨯==++2/m s2.实验数据记录与计算六、实验分析与讨论:1.什么是沿程损失,影响沿程损失的因素有哪些?2.沿程损失系数 与雷诺数Re之间有什么关系,请采用经验公式验证所计算得到的沿程损失系数。
实验四局部损失实验一、实验目的1、掌握管路中测定局部阻力系数的方法。
2、通过对圆管突扩局部阻力系数和突缩局部阻力系数的经验公式的实验验证与分析,熟悉用理论分析法和经验法建立函数式的途径。
3、加深对局部阻力损失机理的了解。
二、实验装置实验设备为局部损失实验装置,其主要由恒压水箱、出水阀、测压计、接水盒以及自循环供水箱等部件组成,如图4-1所示。
实验管道具有突扩与突缩段,在突扩与突缩段前后设置有测压计,用来测量突扩与突缩所造成的压力损失。
实验一 流体力学综合实验
实验一 流体力学综合实验流体力学综合实验台为多功能实验装置,其结构示意图如图1所示。
图1 流体力学综合实验台结构示意图1.储水箱2.恒压水箱溢流管3.上水管4.恒压水箱5.墨盒6.实验管段组7.支架8.计量水箱9.回水管10.实验桌利用上述流体力学综合实验台可进行下列实验:I. 雷诺实验;II.能量方程实验;III.阻力损失实验:1.沿程阻力2.局部阻力(含阀门、突扩和突缩);IV.孔板流量计流量系数和文丘里流量计流量系数的测定。
1··I 雷诺实验实验目的1. 观察流体在管道中的流动状态及层流状态下的速度分布。
2. 测定不同流态下的雷诺数,了解流态与雷诺数的关系。
3. 测定下临界雷诺数。
实验原理众所周知,流体在管道中具有不同的流态。
在图2所示的实验装置中,可以看到两种流态的征状。
容器A内装有清水,水从管G送入容器,从侧壁上的玻璃管B及靠近容器顶部的溢流管H流出。
送入的水量应使总有一部分水经过溢流管流出,这样可使容器的液面维持一定。
玻璃管的排水量可用阀C调节。
容器上方有小瓶D,瓶内装入有色液体,有色液体可经过细管E注入玻璃管B内。
图2 雷诺实验装置示意图当玻璃管内的流速较低时,从细管注入的有色液体能成为单独的一股细流前进,同玻璃管内的水不相混杂(见图1a)。
当玻璃管内的流速较高时,从细管注入的那股有色的细流马上消失在水中,同水混杂起来(见图1c)。
前一种情况说明流体流动时,流体的质点成为互不干扰的细流前进,各股细流互相平行,层次分明,流体的这种状态叫层流,或叫滞流。
后一种情况说明流体流动时,出现一种紊乱状态。
流体各质点作不规则的运动,流体内各股细流互相更换位置,流体质点有轴向和横向运动,互相撞击,产生湍动和旋涡,这种流态叫湍流,或称紊流。
这个实验称为雷诺实验。
2··实验证明,除了流速u对流态有影响外,管道直径d、流体密度ρ和粘度μ对流态也产生影响。
若流体处于层流状态时,d、ρ愈大,μ愈小,流态就愈容易从层流转为紊流;相反,d、ρ愈小,μ愈大,流态就愈不易从层流转为紊流。
《流体力学》实验指导书
实验二 雷 诺 数 实 验一、 实验目的1、 观察液体在不同流动状态时流体质点的运动规律2、 观察流体由层流变紊流及由紊流变层流的过度过程3、 测定液体在圆管中流动时的下临界雷诺数2c e R二、 实验原理及实验设备流体在管道中流动,由两种不同的流动状态,其阻力性质也不同。
雷诺数的物理意义,可表征为惯性力与粘滞力之比。
在实验过程中,保持水箱中的水位恒定,即水头H 不变。
如果管路中出口阀门开启较小,在管路中就有稳定的平均速度v ,微启红色水阀门,这是红色水与自来水同步在管路中沿轴线向前流动,红颜色水呈一条红色直线,其流体质点没有垂直于主流方向的横向运动,红色直线没有与周围的液体混杂,层次分明地在管路中流动。
此时,在流速较小而粘性较大和惯性力较小的情况下运动,为层流运动。
如果将出口阀门逐渐开大,管路中的红色直线出现脉动,流体质点还没有出现相互交换的现象,流体的流动呈临界状态。
如果将出口阀门继续开大,出现流体质点的横向脉动,使红色线完全扩散与自来水混合,此时流体的流动状态微紊流运动。
图1雷诺数实验台示意图1.水箱及潜水泵2.接水盒3. 上水管4. 接水管5.溢流管6. 溢流区7.溢流板8.水位隔板9. 整流栅实验管 10. 墨盒 11. 稳水箱 12. 输墨管 13. 墨针 14.实验管15.流量调节阀雷诺数表达式e v dR ν⋅=,根据连续方程:A=v Q ,Qv A=流量Q 用体积法测出,即在Δt 时间内流入计量水箱中流体的体积ΔV 。
tVQ ∆=42d A π=式中:A —管路的横截面积;d —实验管内径;V —流速;ν—水的粘度。
三、实验步骤1、准备工作:将水箱充满,将墨盒装上墨水。
启动水泵,水至经隔板溢流流出,将进水阀门关小,继续向水箱供水,并保持溢流,以保持水位高度H 不变。
2、缓慢开启阀门7,使玻璃管中水稳定流动,并开启红色阀门9,使红色水以微小流速在玻璃管内流动,呈层流状态。
3、开大出口阀门15,使红色水在玻璃管内的流动呈紊流状态,在逐渐关小出口阀门15,观察玻璃管中出口处的红色水刚刚出现脉动状态但还没有变为层流时,测定此时的流量。
《工程流体力学》沿程水头损失与平均流速的关系实验
《工程流体力学》沿程水头损失与平均流速的关系实验
【实验目的】
验证沿程水头损失与平均流速的关系。
【实验装置】
在流体力学综合实验台中,本实验涉及的部分有沿程水头损失实验管、阀门、上水阀、出水阀,水泵和计量水箱等,时间及温度可由显示面板直接读出。
【实验原理】
对沿程阻力两测点的断面列伯努利方程
w
h g u a pg P Z g u a pg P Z +++=++2//2//2
2
11112222
因实验管段水平,且为均匀流动:f w h h u u d d Z Z ====∴;;;212121
得:h pg P pg P h f ∆=-=//21,本式中: w h 为测压管水头差即为沿程水头损失。
由此式求得沿程水头损失,同时根据实测流量计算平均流速u ,将所得w h ,u 数据点绘在对数坐标纸上,就可确定沿程水头损失与流速的关系。
【实验内容】
测定沿程水头损失h ∆及其对应平均流速,绘制lghf-lgu 关系曲线。
【实验步骤】
(1)开启调节阀门,读出测压计水面差; (2)用体积法测量流量,并计算出平均流速;
(3)将实验的w h 与计算得出的u 值标入对数坐标纸内,绘出lghf-lgu 关系曲线; (4)调节阀门逐次由大到小,共测定8次;
【实验数据记录】
仪器常数:d= cm, A= cm2 L= m, t= ℃
表 3-1 沿程水头损失及平均流速记录表。
流动状态(中国石油大学流体力学实验报告)
中国石油大学(华东) 工程流体力学 实验报告实验日期: 成绩:班级: 学号: 姓名: 教师: 同组者:实验六、流动状态实验一、实验目的1.测定液体运动时的沿程水头损失(f h )及断面的 平均流速(υ) ;2.绘制流态(f lg h —v lg )曲线图,找出下临界点并计算 临界雷诺数(Re c ) 的值。
二、实验装置本室验的装置如图所示。
本实验所用的设备有流态实验装置、量筒、秒表、温度计及粘温表。
在图1-6-1横线上正确填写实验装置各部分的名称图1-6-1 流态实验装置1. 稳压水性 ;2. 进水管 ;3. 溢流管 ;4. 试验管路 ;5. 压差计 ;6. 流量调节阀 ;7. 回流管线 ;8. 试验台 ;9. 蓄水线 ; 10. 抽水泵 ;11. 出水管三、实验原理 填空1.液体在同一管道中流动,当 速度 不同时有层流、紊流两种流动状态。
层流 特点是质点互不掺混,成线状流动。
在 紊流 中流体的各质点相互掺混,有脉动现象。
不同的流态,其 沿程水头损失 与断面平均速度的关系也不相同。
层流的沿程水头损失与断面平均流速的 一次方 成正比;紊流的沿程水头损失与断面平均速度的m 次方成正比 (m= 1.75~2.0 ) 。
层流与紊流之间存在一个过渡区,它的沿程水头损失与断面平均流速关系与层流、紊流的不同。
2.当稳压水箱一直保持溢流时,实验管路水平放置且管径不变,流体在管内的流动为 稳定流 ,此种情况下v 1=v 2。
那么从A 点到B 点的沿程水头损失为h f ,可由能流量方程导出:221122f 12121212()()22()()p v p v h z z g gp pz z h h hγγγγ=++-++=+-+=-=∆h 1、h 2分别是A 点、B 点的测压管水头,由 压差计 中的两个测压管读出。
3.雷诺数(Reynolds Number )判断流体流动状态。
雷诺数的计算公式为:Dv Re ν=D —圆管内径;v —断面平均速度;ν—运动粘度系数当c Re Re <(下临界雷诺数)为层流,c Re =2000~2320;当cRe Re '>(上临界雷诺数)为紊流,c Re '=4000~12000之间。
流体综合实验数据处理
流体综合实验数据处理在流体综合实验中,我们测试了多个流体力学参数,如雷诺数、阻力系数、流量、压降等。
如何处理这些数据是一个非常重要的问题,因为数据处理的质量直接影响我们对结果的信任度。
在这篇文章中,我们将介绍我们在数据处理方面采取的策略。
首先,我们需要对从实验中获得的原始数据进行筛选和处理。
原始数据可能包含噪声、干扰和误差,我们需要把这些因素尽可能排除掉。
为了保证数据的可靠性,我们对每个参数进行多次测量,并取平均值作为该参数的最终结果。
同时,我们也需要对实验数据进行比较和分析,以了解它们之间的关系和趋势。
其次,我们需要使用适当的工具和模型进行数据分析。
例如,在计算雷诺数时,我们需要使用流体的密度、速度和粘度等参数。
在计算阻力系数时,我们需要使用流体的密度、速度、压降和物体的尺寸等参数。
因此,在处理数据时,我们需要确保我们使用了正确的参数和公式,以保证结果的准确性和可靠性。
第三,我们需要对结果进行有效的可视化和表达,以便更好地理解实验数据。
例如,我们可以将不同雷诺数下的阻力系数绘制成曲线图,以显示它们之间的关系和趋势。
我们也可以使用散点图来显示流量和压降之间的线性关系。
通过这些可视化工具,我们可以更直观地理解实验结果,发现问题并进行改进。
最后,我们需要对结果进行统计和分析,以确定它们在统计学上的显著性。
例如,在比较两个不同阻力系数时,我们可以进行t检验,以确定它们之间的差异是否显著。
这将有助于我们确定实验结果是否可靠,以及我们的实验是否能够证明我们的假设。
综上所述,数据处理在流体综合实验中起着非常重要的作用。
通过正确的数据处理策略,我们可以提高数据的质量和准确性,更好地理解实验结果,并得出可靠的结论。
实验一 流体力学综合实验实验报告
实验一 流体力学综合实验预习实验:一、实验目的1.熟悉流体在管路中流动阻力的测定方法及实验数据的归纳 2.测定直管摩擦系数λ和e R 关系曲线及局部阻力系数ζ 3. 了解离心泵的构造,熟悉其操作和调节方法 4. 测出单级离心泵在固定转速下的特定曲线 二、实验原理流体在管路中的流动阻力分为直管阻力和局部阻力两种。
直管阻力是流体流经一定管径的直管时,由于流体内摩擦而产生的阻力,可由下式计算:gu d l g p H f 22⋅⋅=∆-=λρ (3-1) 局部阻力主要是由于流体流经管路中的管件、阀门及管截面的突然扩大或缩小等局部地方所引起的阻力,计算公式如下:gu g p H f22''⋅=∆-=ζρ (3-2) 管路的能量损失'f f f H H H +=∑ (3-3)式中 f H ——直管阻力,m 水柱;λ——直管摩擦阻力系数;l ——管长,m ; d ——直管内径,m ;u ——管内平均流速,1s m -⋅;g ——重力加速度,9.812s m -⋅p ∆——直管阻力引起的压强降,Pa ;ρ——流体的密度,3m kg -⋅;ζ——局部阻力系数; 由式3-1可得22ludP ρλ⋅∆-=(3-4) 这样,利用实验方法测取不同流量下长度为l 直管两端的压差P ∆即可计算出λ和Re ,然后在双对数坐标纸上标绘出Re λ-的曲线图。
离心泵的性能受到泵的内部结构、叶轮形式、叶轮转速的影响。
实验将测出的H —Q 、N —Q 、η—Q 之间的关系标绘在坐标纸上成为三条曲线,即为离心泵的特性曲线,根据曲线可找出泵的最佳操作范围,作为选泵的依据。
离心泵的扬程可由进、出口间的能量衡算求得:gu u h H H H 221220-++-=入口压力表出口压力表 (3-5) 式中出口压力表H ——离心泵出口压力表读数,m 水柱;入口压力表H ——离心泵入口压力表的读数,m 水柱;0h ——离心泵进、出口管路两测压点间的垂直距离,可忽略不计;1u ——吸入管内流体的流速,1s m -⋅;2u ——压出管内流体的流速,1s m -⋅泵的有效功率,由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又较理论值为高,所以泵的效率%100⨯=NN eη (3-6) 而泵的有效功率g QH N e e ρ=/(3600×1000) (3-7) 式中:e N ——泵的有效功率,K w ;N ——电机的输入功率,由功率表测出,K w ; Q ——泵的流量,-13h m ⋅;e H ——泵的扬程,m 水柱。
流体力学综合实验报告
浙江大学化学实验报告课程名称:过程工程原理实验甲实验名称:流体力学综合实验指导教师:专业班级:姓名:学号:同组学生:实验日期:实验地点:Ⅰ流体流动阻力的测定一、实验目的1)掌握测定流体流经直管、管件(阀门)时阻力损失的一般实验方法。
2)测定直管摩擦系数λ与雷诺准数Re的关系,验证在一般湍流区内λ与Re的关系曲线。
3)测定流体流经管件(阀门)时的局部阻力系数ξ。
4)识辨组成管路的各种管件、阀门,并了解其作用。
二、试验流程与装置图 1 流体力学综合实验流程示意图三、基本原理1.流量计校核通过计时称重对涡轮流量计读数进行校核。
2.雷诺数求解Re=ρudμ (1)u=V900πd2 (2)式中:V----流体流量,m3ℎ⁄3.直管阻力摩擦系数λ的测定流体水平等径直管中稳定流动时,阻力损失为:ℎf=Δp fρ=λldu22 (3)即λ=2dΔp fρlu2 (4)式中:Δp f----直管长度为l的压降,Pa4.局部阻力系数ξ的测定阻力系数法:流体通过某一管件(阀门)时的机械能损失可表示为流体在管径内流动时平均动能的某一倍数,即:ℎf′=Δp f′ρg=ξu22g (5)即ξ=2Δp f′ρu2 (6)式中:Δp f′----局部阻力压力降,Pa局部阻力压力降的测量方法:测量管件及管件两端直管(总长度为l′)总的压降为∑Δp,减去其直管段的压降,该直管段的压降可由直管阻力Δp f(长度为l)实验结果求取,即Δp f′=∑Δp−l′lΔp f (7)四、实验步骤1)离心泵灌水,关闭出口阀(23),打开电源,启动水泵电机,待电机转动平稳后,把泵的出口阀(23)缓缓开到最大;2)对压差传感器进行排气,完成后关闭排气口阀,使压差传感器处于测量状态;3)开启旁路阀(24),选定自最小到最大若干流量,对流量计做流量校核试验;4)开启流量调节阀(21),先调至最大流量,然后在最小流量1m3ℎ⁄之间再连续取8组等比数据,每次改变流量,待流量稳定后,,记录压差、流量、温度等数据;5)实验结束,关闭出口阀(23),停止水泵电机,清理装置。
流体力学及气体动力学综合实验报告册(二)
流体力学及气体动力学综合实验实验报告册(二)班级姓名学号成绩西北工业大学动力与能源学院2015年11月实验三沿程损失实验一、实验目的1、验证沿程水头损失与平均流速的关系。
2、掌握管道沿程阻力系数λ的测量方法。
二、实验设备实验设备为沿程损失实验装置,其主要由恒压水箱、进水阀、出水阀、测压计、接水盒以及自循环供水箱等部件组成,如图3-1所示。
接水盒图3-1 沿程损失实验原理图三、实验原理四、实验方法与步骤1. 确定出水阀完全开启,进水阀半开启。
启动水泵,排出实验管道、测压计中的气泡。
2. 逐渐开启进水阀,稳定2~3分钟,观测各个测压计中液面液高,并用体积法或称重法测定流量。
每次测量流量的时间应大于10秒。
3. 调整流量,继续测量,直至进水阀全开。
4. 如此测量10次以上,其中层流流动时测量3~5次。
5. 每次实验均要测量温度。
6. 实验完毕,先关闭进水阀,然后关闭出水阀,并切断电源,整理实验现场。
五、实验成果及要求实验台号No1.记录计算有关常数:管径d = cm ,管长l = cm , 水温t = ℃,水的密度3______/kg m ρ=。
运动粘度621.7751010.03370.000221t t υ-⨯==++2/m s2.实验数据记录与计算六、实验分析与讨论:1.什么是沿程损失,影响沿程损失的因素有哪些?2.沿程损失系数 与雷诺数Re之间有什么关系,请采用经验公式验证所计算得到的沿程损失系数。
实验四局部损失实验一、实验目的1、掌握管路中测定局部阻力系数的方法。
2、通过对圆管突扩局部阻力系数和突缩局部阻力系数的经验公式的实验验证与分析,熟悉用理论分析法和经验法建立函数式的途径。
3、加深对局部阻力损失机理的了解。
二、实验装置实验设备为局部损失实验装置,其主要由恒压水箱、出水阀、测压计、接水盒以及自循环供水箱等部件组成,如图4-1所示。
实验管道具有突扩与突缩段,在突扩与突缩段前后设置有测压计,用来测量突扩与突缩所造成的压力损失。
实验三、流体力学综合实验化工基础实验.wps
实验三、流体力学综合实验流体力学综合实验包括流体在管路内流动时的直管和局部阻力的测定,流量计的流量系数校核和在一定的转速下离心泵的特性曲线的测定。
这三个实验都是以柏努利方程为基础。
流体流动时会产生阻力,为了克服阻力需损耗一部分能量,因此,柏努利方程在实际应用中Σh f一项代表每公斤流体因克服各种流体流动阻力而损耗的能量,在应用柏努利方程时,不管是为了求取各能量之间的互相转化关系式或是计算流体输送机械所需的能量及功率都必须算出Σh f:对于在长距离的流体输送,流体输送机械所作的功,主要是用于克服输送管路中的流体阻力,故阻力的大小关系到流体输送机械的动力消耗,也涉及到流体输送机械的选用。
流体阻力的大小与流体的性质(如粘性的大小),流体流动类型、流体所通过管路或设备的壁面情况(粗糙或光滑)通过的距离及截面的大小等因素有关。
在流体流动的管路上装有孔板或文氏流量计用于测定流体的流量,流量计一般都按标准规范制造,给出一定的流量系数按规定公式计算或者给出标定曲线,照其规定使用,如果不慎遗失原有的流量曲线或者流量计经过长期使用而磨损较大,或者被测流体与标准流体的成分或状态不同;或者由于科研往往需要自制一些非标准形式的流量计,此时,为了精确地测定流量,必须对自制流量计进行校验,求出具体计算式或标定流量曲线。
泵是输送液体的机械,离心泵铭牌上所示的流量,扬程,功率是离心泵在一定转速下效率最高点所对应的Q,H,N的值。
在一定转速下,离心泵的扬程H,轴功率N及效率η均随流量的大小而改变,其变化关系可用曲线表示,该所示曲线称为离心泵的特性曲线。
通常根据H~Q曲线,可以确定离心泵在给定管路条件下输送能力,根据N~Q曲线可以给离心泵合理选配电动机功率,根据η~Q曲线可以选择离心泵的工况处于高效工作区,发挥泵的最大效率。
离心泵的特性曲线目前还不能用解析方法进行准确计算,只能通过实验来测定。
一、管道流体阻力测定一、实验目的:1.掌握测定流体阻力的实验方法。
流体力学综合实验指导
离心泵特性测定实验一、实验目的(1)能进行离心泵特性曲线测定实验, 测出扬程、功率和效率与流量的关系曲线图;(2)学习工业上流量、功率、转速、压力和温度等参数的测量方法, 使学生了解玻璃转子流量计、压力表、以及相关仪表的原理和操作。
一、基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一, 其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线, 它是流体在泵内流动规律的宏观表现形式。
由于泵内部流动情况复杂, 不能用理论方法推导出泵的特性关系曲线, 只能依靠实验测定。
1.流量的测定流量通过转子流量计读数, 同时记录水温表的读数t 。
通过水温表的读数t 查水在操作条件下的密度, 通过式(1)对转子流量计的流量进行校正。
(1)qv1—— 转子流量计读数, m3/h qv2—— 流体实际流量, m3/hρ1—— 标定温度下(20ºC )水的密度, 1000 kg/m3 ρ2—— 操作温度下水的密度, kg/m3 ρf —— 转子的密度, 近似为 kg/m3由于转子流量计密度ρf 比ρ1和ρ2大很多, (ρf-ρ1)≈(ρf-ρ2), 因此, 式(1)可以简化为:(2)2. 扬程H 的测定与计算取离心泵进口真空表和出口压力表处为1、2两截面, 列机械能衡算方程:()()122112ρρρρρρ--=f f v v q q 2112ρρv v q q =f e h gug p z H g u g p z ∑+++=+++2222222111ρρ (3)由于两截面间的管长较短, 通常可忽略阻力项 , 速度平方差也很小故可忽略, 则有 (=e H gp p z z ρ1212)-+- (4) 式中: ρ——流体密度, kg/m3 ; g ——重力加速度 m/s 2;p1.p2——分别为泵进、出口的真空度和表压, Pa ; u1.u2——分别为泵进、出口的流速, m/s ; z1、z2——分别为真空表、压力表的安装高度, m 。
流体力学综合实验报告
流体力学综合实验报告
一、实验目的:通过本次实验,掌握流体力学的基本概念和实验方法,以及对流体在各种情况下的运动规律的理解和掌握。
二、实验原理:本次实验涉及的基本原理包括流量计的原理、雷诺数的计算原理、流体静力学原理、流体动力学原理等。
三、实验设备和材料:实验设备包括流量计、压力计、流体控制阀、水泵等,材料包括水、乙醇等。
四、实验步骤:分别进行流量计实验、雷诺数实验、流体静力学实验、流体动力学实验等。
五、实验数据处理与分析:对实验所得数据进行处理,包括流量计测量、雷诺数计算、压力计测量等,通过数据分析得到实验结果和结论。
六、实验结论:通过本次实验,得到了流体力学的基本知识和实验方法,掌握了流体在各种情况下的运动规律,同时也发现了一些与理论规律不同的现象,为进一步深入研究流体力学提供了一定的基础。
- 1 -。
10-1工程流体力学实验报告
工程流体力学实验报告班级:_________姓名:_________学号:_________实验一 能量转换实验一、实验目的1、熟悉流体在流动过程中各种能量和水头的概念及其转换关系,加深对伯努利方程的理解;2、观察流体流速随管径变化的规律。
二、实验原理1、总水头的分析:总水头为测压管水头与流速水头之和,任意两截面间的能量方程为21,2111222222--++=++f H gv g p Z g v g p Z ρρ 。
图一所示实验装置中,从实验可以观测到B 截面的总水头低于A 截面的总水头,这符合伯努利方程。
2、A 、B 截面间压强水头的分析:由于A 、B 两截面处于同一水平位置,B 截面面积比A 截面面积大。
所以B 截面处的流速比A 截面处小。
设流体从A 截面流到B 截面的水头损失为B A f H -,,在A 、B 两截面间列伯努利方程。
B A f BB B A A A H gv g p Z g v g p Z -+++=++,2222ρρB A Z Z =B A f BA AB H gv g v g p g p ---=-,2222ρρ 即A 、B 两截面处的压强水头之差,决定于ggBA2222νν-和B A f H -,。
当ggBA2222νν-大于B A f H -,时,压强水头的增值为正,反之,压强水头的增值为负。
3、C 、D 截面间压强水头的分析:出口阀全开时,由于C 、D 截面积相等,所以C 、D 两截面处的流速相等,即流速水头相等;设流体从C 截面流到D 截面的水头损失为D C f H -, ,在C 、D 两截面间列伯努利方程。
D C f DD D C C C H gv g p Z g v g p Z -+++=++,2222ρρgv g v DC 2222=D C f D C CD H Z Z gp g p ---=-,ρρ 即C 、D 两截面压强水头之差,决定于)(D C Z Z -和D C f H -,。
流体力学综合实验——流体流动阻力测定
4
2.64
2.31
26.40
24.88
2.12
55270
0.02174
11.15
5
2.08
1.40
16.45
15.53
1.67
43546
0.02122
11.21
6
1.70
0.95
11.31
10.68
1.36
35590
0.02156
11.54
7
1.36
0.58
7.73
7.35
1.09
28472
光滑管
21
1000
660
粗糙管
22
1000
680
2.数据处理
水温t=30.7℃,查表得:
ρ=995.7kg/ ;μ=0.801 Pa·s;
取流量V大于1m3/h的数据组进行计算,结果见表2,表3:
表2光滑管实验数据处理
序号
流量V/(m3/h)
直管压差△pf1/kPa
含阀门直管压差/△pf2/kPa
截止阀压/
光滑管截止阀ξ=11.4;粗糙管闸阀ξ=1.49。
⑵分析:
由上图可以看出,本实验所绘制的λ~Re图与课本的Moody图差别较大,原因除了操作不当外,还可能是当流速过低时,压力传感器的测量值偏小,导致较小的数据的偏移也会产生很大的相对误差,因此分析时应把Re过小的点舍去。
对于光滑管来说,当流体流过光滑管时,因为管的粗糙峰很小,粗糙峰都处在湍流的层流底层之下,故ε/d对流动阻力不产生任何影响,这时λ只是Re的函数,那么,光滑管的图像应与课本里的Moody图完全一致,然而上图并没有这个趋势,原因可能是实验所选用的光滑管本身光滑度就不是很好,在实验过程中由于操作不精细也会引入误差,因此其粗糙度不可忽略。
流体力学综合实验
实验一 流体力学综合实验一、实验目的1. 测定水在管道内流动时的直管阻力损失,作出与Re的关系曲线;2. 测定水在管道内流动时的局部阻力损失,测量和计算不同开度下截止阀的局部阻力系数或当量长度l e;3. 测定一定转速下,离心泵的特性曲线;4. 观察水在直管内的流动类型。
二、实验原理1. 摩擦阻力系数~Re流体在管道内流动时,由于内摩擦力的存在,必然有能量损耗,此损耗能量为直管阻力损失。
在流经阀门、管件时,由于流道方向或大小的改变,造成流体的剧烈湍动,造成的能量损失称为局部阻力损失。
根据柏努利方程,对等直径的1、2两截面间的直管阻力损失为:图2-1 直管阻力测量原理示意图(1)由因次分析法得(2)(3)(4)式中:h f 直管阻力损失 (J/kg);摩擦阻力系数;l 、d 、直管的长度、管内径和绝对粗糙度 (m);p流体流经直管的压降 (Pa);、分别是流体的密度 (kg/m3) 和粘度 (Pas);u流体在管内的平均流速 (m/s)。
由公式(2)可以看出,流体流动时的摩擦阻力损失与管道的长度成正比,与管道的直径成反比。
流体的平均速度越高,阻力损失越大。
利用公式(2)计算直管阻力损失时,需要知道不同雷诺数下摩擦阻力系数的值。
穆迪图给出了~Re的关系曲线。
本实验装置可以利用上面的公式来验证直管阻力损失计算,测定~Re的关系曲线。
流体在长度和直径一定的管道内流动时,利用U型管压差计实验测出一定流量下流体流经该长度管段所产生的压降,即可算得h f,利用公式(2)可得到,根据流速和物性数据可按公式(5)计算出对应的雷诺数Re,从而关联出与Re的关系曲线。
改变实验管可得出不同粗糙度(不同材质直管)的与Re的关系曲线。
2. 局部阻力系数和当量长度l e对于由阀门或管件造成的局部阻力损失,可以用以下的公式计算:当量长度法(5)局部阻力系数法(6)式中:h f 局部阻力损失 (J/kg);局部阻力系数;l e当量长度 (m);图2-2 局部阻力测量原理示意图测出一定流速时流体通过阀门或管件的压降h f,就可利用公式(5)、(6)计算出对应的当量长度或局部阻力系数。
流体力学综合实验数据处理表
流体力学综合实验数据处理表水在管道内流动的直管阻力损失由附录查得水温t=20C 时,密度3/2.998m kg 粘度1001.0 s pa由公式 ph f (1)22u d l h f (2)u d Re (3)可分别算出f h , 和Re 管内径管a=管b=管cd=长度管a=管b=管cL=1m以a 管第一组数据为例p =310 则2.9981032.103f h =(J/kg )平均流速201.014.3360013.11u =s 则=285.9134.1002.02 = Re =001.02.99885.902.0 =196645 管a管b管c局部阻力系数 的计算由公式22u h f 得22uh f不同开度下截止阀的局部阻力系数管a管b管c离心泵的特性曲线杨程H= f h gu g p g p 22 真表0 fh离心泵轴功率N=传电电 N 离心泵的效率 是理论功率与轴功率的比值,即N N t而理论功率t N 是离心泵对水所作的有效功,即)(102kw QH N t 以第一组数据为例计算H= 10201.014.3360002.20102.99818000102.9981250002O H 2=95.075.01489 =(kw)2.99821.1502.20离心泵特性曲线思考与讨论1,只管阻力产生的原因是什么?如何测定及计算?答:原因是流涕在管道内流动时,由于内摩擦力的存在,必然有能量的损耗,此损耗能量为直观阻力损失。
测定及计算方法为ph f (1)22u d l h f (2)2,影响本实验测量准确度的原因有哪些?怎样侧准数据?答:读数不精确,供水系统不稳定,电压不稳定,出口胶管排气未排完,如果要侧准数据,应该等仪器上显示的数据稳定后再读取。
3,根据实验测定数据,如何确定离心泵的工作点?水平或是垂直管中,对相同直径,相同条件下所测出的阻力损失是否相同?答:根据极值数据来确定离心泵的工作点,水平或是垂直管中,对相同直径,相同条件下所测出的阻力损失不相同,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体力学综合实验数据处理表
水在管道内流动的直管阻力损失
由附录查得水温t=20C
时,密度3
/2.998m kg 粘度1
001.0 s pa
由公式 p
h f (1) 22u d l h f (2)
u d Re (3)可分别算出f h , 和
Re 管内径管a=管b=管c d=0.02m 长度管a=管b=管c L=1m
以a 管第一组数据为例 p =10.323
10 pa 则2
.9981032.103
f h =10.34(J/k
g )
平均流速201.014.3360013.11
u =9.85m/s 则
=2
85.9134
.1002.02 =0.0043 Re =
001
.02
.99885.902.0 =196645
管b
管c
局部阻力系数 的计算
由公式22
u h f 得22u
h f
不同开度下截止阀的局部阻力系数
管a
管b
离心泵的特性曲线
杨程H= f h g
u g p g p 22
真表
0 f
h
离心泵轴功率N=传电电 N 离心泵的效率 是理论功率与轴功率的比值,即
N N t
而理论功率t N 是离心泵对水所作的有效功,即)(102
kw QH N t 以第一组数据为例计算H= 10
201.014.3360002
.20102.99818000102.998125000215.21
m O H 2 N=95.075.01489 =1.601(kw)
2
.99821.1502.20 1.86
离心泵特性曲线
思考与讨论
1, 只管阻力产生的原因是什么?如何测定及计算?
答:原因是流涕在管道内流动时,由于内摩擦力的存在,必然有能量的损耗,此损耗能量为直观阻力损失。
测定及计算方法为
p
h f (1) 22
u d l h f (2)
2, 影响本实验测量准确度的原因有哪些?怎样侧准数据?
答:读数不精确,供水系统不稳定,电压不稳定,出口胶管排气未排完,如果要侧准数据,应该等仪器上显示的数据稳定后再读取。
3,根据实验测定数据,如何确定离心泵的工作点?水平或是垂直管中,对相同直径,相同条件下所测出的阻力损失是否相同?
答:根据极值数据来确定离心泵的工作点,水平或是垂直管中,对相同直径,相同条件下所测出的阻力损失不相同,。