6数据结构教案 - 树和二叉树
数据结构二叉树学习教案
[1]
A
[2]
B
[3]
C
[4]
D
[5]
E
般不用
[6] [7] [8] [9]
F G H I
A
一 、顺序 存储结 构 按 二 叉 树 的 结点“ 自上而 下、从 左至右 ”编号 ,用一 组连续 (liánxù)的 存储 单元存 储。
B
C
D EF G
H
I
问:顺序存储后能否复原成唯一对应(duìyìng)的二叉树形状? 答:若是完全/满二叉树则可以做到唯一复原。
right_child
data
left_child
right_child
第6页/共17页
第七页,共16页。
二 叉 树 结 点 (jié diǎn)数 据 类 型 定 义 : typedef stru ct B iTNod e {
TElemT ype d ata; struct BiTN ode *lef t_chi ld, *righ t_ch ild; } BiTNo de, * BiTr ee;
f
d
b
e
ac
g i
h
j
第14页/共17页
第十五页,共16页。
习题2:若一棵二叉树,左右子树均有三个结点,其左子树的前 (先)序序列与中序序列相同,右子树的中序序列与后序 序列相同,试构造该树。
习题3:一棵非空的二叉树其先序序列和后序序列正好相反,画出 这棵二叉树的形状。
习题4:已知一棵完全二叉树共有892个结点,试求:⑴ 树的高度; ⑵ 叶结点数;⑶ 单支(度为1)结点数;⑷ 最后(zuìhòu)一 个非终端结点的序号。
第9页/共17页
第十页,共16页。
数据结构(二叉树遍历)——说课
5 教学方法分析
教法
1、讲授法 2、讲解演示法 3、讨论法
学法
1、边学边练 2、举一反三,自主学习法
6 教学过程分析
1 导入
2 讲授
3 练习
4 拓展
方案: • 旧知识回顾 • 提出如何遍历
二叉树的问题
意义: 采用任务驱动 法,激发学生 的学习兴趣, 为新课的学习 埋下伏笔。
方案:
方案:
• 分散重难点,分 层次教学,逐步 递进。
第六章 树和二叉树
第三节 遍历二叉树
清华大学计算机系列教材 数据结构(C语言版)
1. 教材分析 2. 学情分析 3. 教学目标 4. 教学重难点 5. 教学方法分析 6. 教学过程分析
1 教材分析
数据结构(C语言版)
清华大学出版社出版,严蔚敏和吴伟民主编。 第六章第三节内容“遍历二叉树”。 重点介绍了二叉树的遍历算法,
• 进行典型例题 的操作
• 学会一种遍历后,
找学生讲解,教
师配合演示,导
出后两种方法。 意义:
意义:
使学生充分体验 研究性学习过程, 培养学生研究思
强化对遍历二 叉树遍历的三 种方法的运用 和操作。
维与能力。
方案:
• 分组讨论: 给出先序、中 序序列,还原 一棵二叉树。
意义:
用综合问题, 巩固所学知识, 多个细节思考 可以训练学生 的发散思维, 培养创新意识。
7 板书设计
第六章 树和二叉树 6.3.1 遍历二叉树
一、遍历二叉树的含义: 每个节点被访问一次且仅一次
二、方法: 1、先序遍历:根 左 右 2、中序遍历:左 根 右 3、后序遍历:左 右 根
三、习题
1、
+/
数据结构树教案
数据结构树教案一、教学目标1. 知识目标:理解树的概念、特性及其在数据结构中的应用。
2. 能力目标:掌握树的构建、遍历和查找等基本操作。
3. 情感态度与价值观:培养学生对数据结构的兴趣,提高其解决问题的能力。
二、教学内容1. 树的概念与特性2. 树的表示方法3. 树的构建4. 树的遍历5. 树的查找三、教学难点与重点难点:树的应用和实际操作。
重点:树的构建和遍历。
四、教具和多媒体资源1. 黑板2. 投影仪3. 教学软件:树结构的演示软件。
五、教学方法1. 激活学生的前知:回顾数据结构基础知识,了解学生在树结构方面的知识储备。
2. 教学策略:采用讲解、示范、小组讨论和实践操作相结合的方式,引导学生掌握树结构的基本操作。
3. 学生活动:组织学生进行小组讨论,进行实践操作,加深对树结构的理解。
六、教学过程1. 导入:通过问题导入,如“什么是树?树在数据结构中有什么作用?”等,引发学生的思考。
2. 讲授新课:讲解树的概念、特性、表示方法、构建、遍历和查找等知识,配合教学软件进行演示。
3. 巩固练习:布置相关练习题,让学生进行实践操作,巩固所学知识。
4. 归纳小结:总结本节课所学内容,强调树在数据结构中的重要地位。
七、评价与反馈1. 设计评价策略:通过课堂小测验、小组报告等方式,评价学生对树结构的掌握情况。
2. 为学生提供反馈:根据评价结果,为学生提供针对性的反馈,指导其改进学习方法。
八、作业布置1. 完成教学软件中的练习题。
2. 思考树在实际生活中的应用,写一篇短文。
数据结构-第6章 树和二叉树---4. 树和森林(V1)
6.4.1 树的存储结构
R AB C D EG F
R⋀
A
⋀D
⋀B
⋀E ⋀
C⋀
⋀G
⋀F ⋀
6.4.2 树、森林和二叉树的转换
1. 树转换为二叉树 将树转换成二叉树在“孩子兄弟表示法”中已 给出,其详细步骤是: ⑴ 加线。在树的所有相邻兄弟结点之间加一 条连线。 ⑵ 去连线。除最左的第一个子结点外,父结点 与所有其它子结点的连线都去掉。 ⑶ 旋转。将树以根结点为轴心,顺时针旋转 450,使之层次分明。
B C
D
A E
L HK
M
技巧:无左孩子 者即为叶子结点
6.4.3 树和森林的遍历
1. 树的遍历 由树结构的定义可知,树的遍历有二种方法。 ⑴ 先序遍历:先访问根结点,然后依次先序 遍历完每棵子树等。价于对应二叉树的先序遍历
⑵ 后序遍历:先依次后序遍历完每棵子树,然 后访问根结点。等价于对应二叉树的中序遍历
0 R -1 1A 0 2B 0 3C 0
}Ptree ; R
4D 1 5E 1
AB C
6F 3
7G 6
DE
F
8H 6
9I 6
G H I 10~MAX_Size-1 ... ...
6.4.1 树的存储结构
2. 孩子表示法
每个结点的孩子结点构成一个单链表,即有n 个结点就有n个孩子链表;
n个孩子的数据和n个孩子链表的头指针组成一 个顺序表; 结点结构定义: 顺序表定义:
typedef struct PTNode { ElemType data ;
4.1树与二叉树教学设计高中信息技术浙教版选修1数据与数据结构
-通过问卷调查Leabharlann 访谈等形式,了解学生的学习需求和反馈意见。
7.延伸拓展,引导学生关注树与二叉树的前沿技术和应用,激发学生的创新意识;
-介绍树与二叉树在人工智能、大数据等领域的研究成果和最新应用;
-鼓励学生参加相关竞赛和科研项目,提升学生的综合素质。
四、教学内容与过程
1.采用启发式教学方法,引导学生自主探究树与二叉树的基本概念和性质,培养学生的自主学习能力;
2.利用实例分析,让学生从实际问题中抽象出树与二叉树的结构,培养学生将理论知识与实际应用相结合的能力;
3.通过小组合作,让学生在讨论、交流中掌握二叉树的遍历方法,培养学生的团队协作能力;
4.引导学生运用递归思想解决问题,培养学生的逻辑思维能力;
-例如,通过组织结构图引入树的概念,让学生了解树在现实生活中的应用;
-通过分析算术表达式的计算过程,引出二叉树的表达和求解方法。
2.利用直观教具和多媒体辅助教学,帮助学生建立树与二叉树的直观认识,降低学习难度;
-使用树形结构图和动画演示,直观展示树与二叉树的结构和操作过程;
-通过编程软件的实时演示,让学生更直观地理解算法实现。
4.1树与二叉树教学设计高中信息技术浙教版选修1数据与数据结构
一、教学目标
(一)知识与技能
1.理解树的基本概念,包括树的定义、基本术语(如根节点、叶子节点、子树、深度、高度等);
2.学会使用树的结构表示现实世界中的层次关系和数据组织结构;
3.掌握二叉树的特点,了解满二叉树、完全二叉树等特殊二叉树的概念;
-组织小组汇报,分享学习成果,培养学生的表达和沟通能力。
5.强化编程实践,通过上机操作和编程练习,提高学生的实际操作能力;
树和二叉树——精选推荐
第6章 树和二叉树内容概要:本章主要介绍树,二叉树,最优二叉树的相关概念和操作,存储结构和相应的操作,并在综合应用设计中,给出了对应算法的C 语言实现。
教学目标1.理解各种树和森林与二叉树的相应操作。
2.熟练掌握二叉树的各种遍历算法,并能灵活运用遍历算法实现二叉树的其他操作。
3.熟练掌握二叉树和树的各种存储结构及其建立的算法。
4.掌握哈夫曼编码的方法。
5.通过综合应用设计,掌握各种算法的C 语言实现过程。
基本知识点:树和二叉树的定义、二叉树的存储表示、二叉树的遍历以及其它操作的实现、树和森林的存储表示、树和森林的遍历以及其它操作的实现、最优树和赫夫曼编码重点:二叉树的性质、二叉树的遍历及其应用,构造哈夫曼树。
难点:编写实现二叉树和树的各种操作的递归算法。
本章知识体系结构:课时安排:6个课时树的定义 树树的性质 树的逻辑表示法 树形表示法 树的存储结构 双亲存储结构 文氏表示法凹入表示法 括号表示法 孩子存储结构 孩子双亲存储结构二叉树二叉树的定义 二叉树的性质二叉树的逻辑表示法(采用树的逻辑表示法)二叉树的存储结构二叉树的顺序存储结构先序遍历 中序遍历 后序遍历二叉树的遍历 二叉树的链式存储结构(二叉链) 由先序序列和中序序列构造二叉树 由中序序列和后序序列构造二叉树二叉树的构造 二叉树的线索化 哈夫曼树二叉树和树之间的差别 二叉树与树、森林之间的转换二叉树和树课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标掌握树、二叉树的基本概念和术语,二叉树的性质教学重点二叉树的定义、二叉树的性质、链式存储结构教学难点二叉树的性质、链式存储二叉树的基本操作组织教学一、树的定义二、树的基本概念三、二叉树的定义、性质四、二叉树的顺序存储结构和链式存储结构五、小结作业复习本讲内容并预习下一讲内容课堂情况及课后分析课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标掌握二叉树遍历的三种方法及二叉树的基本操作教学重点二叉树的遍历算法教学难点中序与后序遍历的非递归算法组织教学一、复习二叉树的定义二、遍历二叉树的三种方法三、递归法遍历二叉树四、二叉树的基本操作五、总结作业复习本讲内容并预习下一讲内容课堂情况及课后分析课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标理解树与森林的转换,掌握哈夫曼树教学重点哈夫曼树教学难点树与森林的转换组织教学一、导入二、树与森林三、哈夫曼树四、小结作业习题6课堂情况及课后分析前面几章讨论的数据结构都属于线性结构,线性结构的特点是逻辑结构简单,易于进行查找、插入和删除等操作,可用于描述客观世界中具有单一前驱和后继的数据关系。
数据结构第六章二叉树的应用教案
6.3 哈夫曼树
• • 最优树的定义 如何构造最优树
6.3.1 基本术语
路径和路径长度
若在一棵树中存在着一个结点序列 k1,k2,…,kj,使得ki是ki+1的 双亲(1≤i<j),则称此结点序列是 从k1到kj的路径从k1到kj所经过的 分支数称为这两点之间的路径长度
结点的权和带权路径长度
权 给结点赋上一个有某种意义 的实数,我们称为权。 带权路径长度 从根结点到该结点之间路径 长度与该结点上权的乘积。
23 设 key = 48
T
20 10 T 23 T 25
T T
30
T
40 35 T
bool Find(BTreeNode* T, ElemType& item) if(T==NULL) return false; //查找失败 else { if(item==T->data) { item=T->data; return true; } else if(item<T->data) //向左子树继续查找 return Find(T->left, item); else return Find(T->right, item); } //向右子树继续查找
ri r2i ri r2i 1
(小顶堆)
或
ri r2i ri r2i 1
(大顶堆)
12, 36, 27, 65, 40, 34, 98, 81, 73, 55, 49
是小顶堆
12, 36, 27, 65, 40, 14, 98, 81, 73, 55, 49
不是堆
子树上查找;
3)大于根结点的关键字,则继续在右
子树上查找。
数据结构详细教案——树与二叉树
数据结构详细教案——树与二叉树一、教学目标1.了解树和二叉树的基本概念和特点;2.掌握树和二叉树的基本操作;3.能够通过递归遍历树和二叉树。
二、教学重难点1.树和二叉树的基本概念和特点;2.递归遍历树和二叉树。
三、教学内容1.树的概念和特点1.1树的定义树是n(n>=0)个节点的有限集。
当n=0时,称为空树;如果不为空树,则1. 树有且仅有一个特殊节点被称为根(Root);2.其余节点可分为m(m>0)个互不相交的有限集T1,T2,...,Tm,其中每个集合又是一棵树。
1.2节点间的关系- 父节点(parent)是当前节点的直接上级节点;- 子节点(child)是当前节点的直接下级节点;- 兄弟节点(sibling)是具有同一父节点的节点;- 祖先节点(ancestor)是通过从当前节点到根的任意路径可以到达的节点;- 子孙节点(descendant)是通过从该节点到子树的任意节点可以到达的节点。
1.3树的特点-树是一个有层次的结构,可以看作是一个鱼骨图;-树中的每个节点都可以有多个子节点,但只有一个父节点;-树中的节点之间是唯一的,不存在重复节点;-树中的任意两个节点之间都有且仅有一条路径连接。
2.二叉树的概念和特点2.1二叉树的定义二叉树是一种特殊的树结构,它的每个节点最多只能有两个子节点,分别称为左子节点和右子节点。
2.2二叉树的特点-二叉树的度最大为2,即每个节点最多有两个子节点;-二叉树的第i层最多有2^(i-1)个节点;-对于任意一颗二叉树,如果其叶子节点数为n0,度为2的节点数为n2,则有n0=n2+1;-完全二叉树是一种特殊的二叉树,除了最后一层的叶子节点外,每一层的节点都是满的。
四、教学过程1.讲解树和二叉树的基本概念和特点,引导学生理解树和二叉树的定义和节点间的关系。
2.分析树和二叉树的基本操作,并通过实例演示操作过程,让学生掌握操作的步骤和方法。
3.运用递归算法遍历树和二叉树的过程,详细讲解前序遍历、中序遍历和后序遍历的定义和实现方法。
第6章树和二叉树
第6章树和二叉树第 6 章树和二叉树6.1 已知一棵树如图所示,回答下列问题:(1) 哪个是根结点?(2) 哪些是叶子结点?(3) 哪个是结点 G 的双亲?(4) 哪些是结点 G 的祖先?(5) 哪些是结点 B 的孩子?(6) 哪些是结点B的子孙?(7) 哪些是结点 E 的兄弟?(8) 结点 B 和 H 的层次号分别是什么 ?(9) 树的深度是多少?(10) 以结点 C 为根的子树的深度是多少? 【6.1 解】:(1) A(2) K, F,G,H,I,J(3) B(4) B,A(5) E,F,G(6) E,F,G,K(7) F,G(8) 2, 3(9) 4(10) 26.2 在结点个数为n(n>1)的各棵树中,最小的高度是多少?它有多少个叶结点?多少个分支结点?最大的高度树是多少?它有多少个叶结点?多少个分去结点?【6.2解】结点个数为n时,高度最小的树高度为1,有2层;它有n-1个叶结点,1个分支结点;高度最大的树的高度为n-1,有n层;它有1个叶结点,n-1个分支结点。
6.3简述树与二叉树的区别?【6.3解】二叉树的度最大为2,而树的度可以大于2;二叉树的每个结点的孩子有左、右之分,而树中结点的孩子无左右之分。
6.4 n(n>1)个结点的各棵二叉树中,最小的高度(h≥1)多少?最大的高度是多少?【6.4解】最小高度为:⎣⎦n2log+1,此时树为完全二叉树;最大高度为n,比如一棵斜二叉树。
6.5如果一棵树有n1个度为1的结点,有n2个度为2的结点,…,n m个度为m的结点,试问有多少个度为0的结点?试推导之。
【6.5解】设叶子结点数为n0,则树中结点数和总度数分别为: 结点数=n0+n1+n2+...+n m总度数=n1+2n2+...+m×n m结点数等于总度数加1,所以得到:n0=∑=+-miini21))1((6.6如果已知一棵二叉树有20个叶子结点,有10个结点仅有左孩子,15个结点仅有右孩子,求出该二叉树的结点数目。
云大《数据结构》课程教学课件-第6章 树和二叉树(147P)_OK
^d ^ ^ e ^ 三叉链表
3)二叉链表是二叉树最常用的存储结构。还有其它链接方 法,采用何种方法,主要取决于所要实施的各种运算频度。
例:若经常要在二叉树中寻找某结点的双亲时,可在每个结 点上再加一个指向其双亲的指针域parent,称为三叉链表。
lchild data parent rchild
2021/8/16
2021/8/16
9
6.2 二 叉 树
6.2.1 二叉树的概念
一、二叉树的定义: 二叉树(Binary Tree)是n(n>=0)个结点的有限集,它或者是 空集(n=0)或者由一个根结点和两棵互不相交的,分别称 为根的左子树和右子树的二叉树组成。 可以看出,二叉树的定义和树的定义一样,均为递归定 义。
A
集合3
集合1
BCD
EF
G
集合2
2021/8/16
3
2、树的表示方法 1)树形图法
A
BCD
EF
G
2)嵌套集合法
3)广义表形式 ( A(B, C(E,F), D(G) )
4)凹入表示法
2021/8/16
A B
D
CG
EF
A B C E DF G
4
3、 树结构的基本术语
1)结点的度(Degree):为该结点的子树的个数。 2)树的度:为该树中结点的最大度数。
7)路径(Path):若树中存在一个结点序列k1,k2,…,kj,使得ki是 ki+1的双亲(1<=i<j),则称该结点序列是从ki到kj一条路径 (Path)
路径长度:路径的长度为j-1,其为该路径所经过的边的数 目。
A
BCD
EF
G
第四章-树和二叉树-说课教案
第五章树和二叉树说课教案姓名:仇环单位:信息工程系年级与科目:08级计算机应用《数据结构》课题:树和二叉树职称:讲师教龄:1年(各位老师下午好,我说课的题目是树和二叉树)说课的内容包括:一.教学大纲分析二.教材分析三、学情分析四.教学目标五、教学重点与难点六、教学方法七、教学过程八、教学效果预测及教学后记一、教学大纲分析:高职高专教育的人才培养特征是高级技术应用型人才,具体到计算机专业来说,就是培养从事计算机产品生产、维修和编程和实际应用的技术人才。
在计算机专业的课程体系中,《数据结构》不仅是一门重要的专业基础课程,而且是计算机程序设计重要的理论基础,更是计算机等级、专升本等考试的必考课程之一。
它在整个学科体系中具有重要作用,有着不可替代的地位。
本课程的教学不仅重视学生对理论知识的理解和掌握,锻炼学生抽象思维能力和想象能力,更注重实践动手的能力,要求学生能够设计出结构清晰、可读性好、运行效率高的算法,并能够用一种或多种计算机高级程序设计语言实现。
学好这门课程,对培养学生程序设计的能力、设计算法的能力和运用计算机进行数据处理的能力有着深远的意义。
其前导课程为:《C语言程序设计》或《C++语言》。
二、教材分析本教材属于“21世纪高职高专规划教材”,这套教材主要面向高职高专院校学生。
教材内容力求体现以应用为主体,强调理论知识的理解和运用,实现专科教学以实践体系及技术应用能力培养为主的目标。
1、教材特点:本教材的特点可总结为:(1)基础理论知识的阐述由浅入深、通俗易懂。
内容的组织和编排以应用为主线,省略了一些理论推导和数学证明过程,淡化了算法的设计分析和复杂的时空分析。
(2)各章都配有应用举例,列举分析了很多实用的例子,且大多数算法都直接给出了相应的C语言程序,以便上机练习和实践。
(3)便于复习和掌握每章的重点,每章的起始处都给出了要点,并在每章结尾处给出了小结。
2、教材内容:本书共分为8章。
第一章叙述数据、数据结构、算法等基本概念。
树与二叉树哈夫曼树教案
树与二叉树哈夫曼树教案一、教学目标1. 了解树(Tree)和二叉树(Binary Tree)的概念;2.掌握树和二叉树的基本结构和操作;3. 理解哈夫曼树(Huffman Tree)的概念和应用;4.能够通过给定的数据构建哈夫曼树,并进行编码和解码操作。
二、教学内容1.树与二叉树1.1树的定义和基本术语1.2树的表示和操作1.3二叉树的定义和遍历方式1.4二叉树的应用示例2.哈夫曼树2.1哈夫曼树的定义和应用2.2构建哈夫曼树的算法2.3哈夫曼编码和解码的实现三、教学步骤与方法1.导入新知识通过提问与学生讨论,引导学生了解树与二叉树的概念,及其在现实生活中的应用场景。
2.介绍树与二叉树2.1形式化定义树的相关概念,如根节点、子节点、叶子节点等。
2.2介绍二叉树的相关概念,如二叉树的性质、三种遍历方式等。
3.树与二叉树的应用示例通过实际例子演示树与二叉树的应用,如目录结构、表达式求值等。
4.引入哈夫曼树4.1介绍哈夫曼树的概念和应用场景,如数据压缩。
4.2讲解构建哈夫曼树的算法,包括选择最小权值节点等。
4.3演示哈夫曼编码和解码的实现,让学生理解哈夫曼编码的原理和过程。
5.练习与巩固在课堂上进行与树、二叉树和哈夫曼树相关的练习,巩固学生对所学内容的理解。
6.小结与作业布置对本节课所学内容进行小结,并布置相关作业,让学生进行巩固和深化学习。
四、教学资源1. PowerPoint或电子白板2.示例代码和编程环境,用于演示和实践3.相关课堂练习题目和解答五、教学评估1.课堂练习表现评估,包括对树、二叉树和哈夫曼树的理解和应用能力;2.作业和实践项目的结果评估,包括构建哈夫曼树和实现哈夫曼编码的准确性和效率。
六、教学扩展1.拓展相关概念和应用,如平衡二叉树、B树等;2.引导学生进行更深层次的研究和实践,如自定义数据结构、更复杂的压缩算法等。
数据结构——用C语言描述(第3版)教学课件第6章 树与二叉树
6.2 二叉树 6.2.1 二叉树的定义与基本操作 6.2.2 二叉树的性质 6.2.3 二叉树的存储结构
6.2.1 二叉树的定义与基本操作 定义:我们把满足以下两个条件的树型结构叫做二 叉树(Binary Tree): (1)每个结点的度都不大于2; (2)每个结点的孩子结点次序不能任意颠倒。
有序树:在树T中,如果各子树Ti之间是有先后次序的,则称为有序树。 森林:m(m≥0)棵互不相交的树的集合。将一棵非空树的根结点删去,树就变成一 个森林;反之,给森林增加一个统一的根结点,森林就变成一棵树。
同构:对两棵树,通过对结点适当地重命名,就可以使两棵树完全相等(结点对应相 等,对应结点的相关关系也像等),则称这两棵树同构。
二叉树的基本结构由根结点、左子树和右子树组成
如图示
LChild Data RChild
Data
LChild RChild
用L、D、R分别表示遍历左子树、访问根结点、遍 历右子树,那么对二叉树的遍历顺序就可以有:
(1) 访问根,遍历左子树,遍历右子树(记做DLR)。 (2) 访问根,遍历右子树,遍历左子树(记做DRL)。 (3) 遍历左子树,访问根,遍历右子树(记做LDR)。 (4) 遍历左子树,遍历右子树,访问根 (记做LRD)。 (5) 遍历右子树,访问根,遍历左子树 (记做RDL)。 (6) 遍历右子树,遍历左子树,访问根 (记做RLD)。
(8) NextSibling(Tree,x): 树Tree存在,x是Tree中的某个结点。若x不 是其双亲的最后一个孩子结点,则返回x后面的下一个兄弟结点,否则 返回“空”。
基本操作:
(9) InsertChild(Tree,p,Child): 树Tree存在,p指向Tree 中某个结点,非空树Child与Tree不相交。将Child插入Tree中, 做p所指向结点的子树。
数据结构第六章:树和二叉树
性质2:深度为 的二叉树至多有 个结点(k≥ 性质 :深度为k的二叉树至多有2 k 1 个结点 ≥1)
证明:由性质 ,可得深度为k 证明:由性质1,可得深度为 的二叉树最大结点数是
(第i层的最大结点数 ) = ∑ 2 i 1 = 2 k 1 ∑
i =1 i =1
k
k
10
性质3:对任何一棵二叉树 ,如果其终端结点数(即 性质 :对任何一棵二叉树T,如果其终端结点数 即 叶节点)为 度为2的结点数为 的结点数为n 叶节点 为n0,度为 的结点数为 2,则n0=n2+1 证明: 为二叉树 中度为1的结点数 为二叉树T中度为 证明:n1为二叉树 中度为 的结点数 因为:二叉树中所有结点的度均小于或等于2 因为:二叉树中所有结点的度均小于或等于 所以:其结点总数n=n0+n1+n2 所以:其结点总数 又二叉树中,除根结点外, 又二叉树中,除根结点外,其余结点都只有一个 分支进入; 分支进入; 为分支总数, 设B为分支总数,则n=B+1 为分支总数 又:分支由度为1和度为 的结点射出,∴B=n1+2n2 分支由度为 和度为2的结点射出, 和度为 的结点射出 于是, 于是,n=B+1=n1+2n2+1=n0+n1+n2 ∴n0=n2+1
7
结点A的度:3 结点 的度: 的度 结点B的度:2 结点 的度: 的度 结点M的度:0 结点 的度: 的度 结点A的孩子: , , 结点 的孩子:B,C,D 的孩子 结点B的孩子 的孩子: , 结点 的孩子:E,F 树的度: 树的度:3 E K 结点A的层次: 结点 的层次:1 的层次 结点M的层次 的层次: 结点 的层次:4 L B F A C G H M
第六章树与二叉树教案 二叉树的类型定义 存储结构 遍历 哈夫曼树与哈夫曼编码
即 k-1 ≤ log2 n < k
因为 k 只能是整数,因此, k =log2n + 1
问题:
一棵含有n个结点的二叉树,可能达 到的最大深度和最小深度各是多少?
1
答:最大n,
2
最小[log2n] + 1
第六章 树和二叉树教案
二叉树的类型定义 存储结构 遍历 哈夫曼树与哈夫曼编码
树是常用的数据结构
•家族 •各种组织结构 •操作系统中的文件管理 •编译原理中的源程序语法结构 •信息系统管理 •。。。。
2
6.1 树的类型定义 6.2 二叉树的类型定义
6.2.3 二叉树的存储结构 6.3 二叉树的遍历
二叉树上每个结点至多有两棵子树, 则第 i 层的结点数 = 2i-2 2 = 2i-1 。
性质 2 :
深度为 k 的二叉树上至多含 2k-1 个 结点(k≥1)。
证明:
基于上一条性质,深度为 k 的二叉
树上的结点数至多为
20+21+ +2k-1 = 2k-1 。
(等比数列求和)
k
k
(第i层的最大结点数) 2i1 2k
i 1
i 1
性质 3 :
对任何一棵二叉树,若它含有n0 个叶 子结点(0度节点)、n2 个度为 2 的结 点,则必存在关系式:n0 = n2+1。
证明:
设 二叉树上结点总数 n = n0 + n1 + n2 又 二叉树上分支总数 b = n1+2n2
而 b = n-1 = n0 + n1 + n2 - 1 由此, n0 = n2 + 1 。
数据结构 第六章 树和二叉树
F
G
H
M
I
J
结点F,G为堂兄弟 结点A是结点F,G的祖先
5
树的基本操作
树的应用很广,应用不同基本操作也不同。下面列举了树的一些基本操作: 1)InitTree(&T); 2)DestroyTree(&T); 3)CreateTree(&T, definition); 4)ClearTree(&T); 5)TreeEmpty(T); 6)TreeDepth(T); 7) Root(T); 8) Value(T, &cur_e); 9) Assign(T, cur_e, value); 10)Paret(T, cur_e); 11)LeftChild(T, cur_e); 12)RightSibling(T, cur_e); 13)InsertChild(&T, &p, i, c); 14)DeleteChild(&T,&p, i); 15)TraverseTree(T, Visit( ));
1
2 4 8 9 10 5 11 12 6 13 14 3 7 15 4 6 2
1
3
5 7
证明:设二叉树中度为1的结点个数为n1 根据二叉树的定义可知,该二叉树的结点数n=n0+n1+n2
又因为在二叉树中,度为0的结点没有孩子,度为1的结点有1 个孩子,度为2的结点有2个结孩子,故该二叉树的孩子结点 数为 n0*0+n1*1+n2*2(分支数) 而一棵二叉树中,除根结点外所有都为孩子结点,故该二叉 树的结点数应为孩子结点数加1即:n=n0*0+n1*1+n2*2+1
文件夹1
文件夹n
数据结构课程设计-二叉树
《数据结构》课程设计说明书二叉平衡树算法实现班级组别:二指导老师:完成时间:2019.6.19 组长:学号:05 组员1:学号:33 组员2:学号:组员3:学号:成绩:目录目录一、课题设计任务 (2)二、任务分析 (2)1. 数据逻辑结构(算法描述) (2)2. 关键算法思想 (3)三、概要设计(总体设计) (3)四、详细设计 (4)1. 数据存储结构 (4)2. 各模块流程图及算法 (5)3. 算法效率分析 (9)五、测试 (10)1. 删除 (10)2. 查找 (10)3. 遍历 (10)六、课程设计心得 (10)七、参考文献 (11)八、附录 (11)一、课题设计任务针对给定的序列建立存储结构,实现各种遍历;实现树的生成,实现数据的查找、插入、删除,输出各种遍历。
二、任务分析1.数据逻辑结构(算法描述)//中序--递归void InorderTra(PNode root) {if (root) {InorderTra(root->leftChild); //中序遍历左子树printf("%d\t", root->keyValue); //访问根节点InorderTra(root->rightChild); //中序遍历右子数}}//前序--递归void PreOrderTra(PNode root) {if (root != NULL) {printf("%d\t", root->keyValue); //访问根节点PreOrderTra(root->leftChild); //前序遍历左子树PreOrderTra(root->rightChild); //前序遍历右子数}}//后序--递归void PostOrderTra(PNode root) {if (root) {PostOrderTra(root->leftChild); //后序遍历左子树PostOrderTra(root->rightChild); //后序遍历右子树printf("%d\t", root->keyValue); //访问根节点}}//求树的最大深度int getDeep(PNode root) {if (!root) {return 0;}int leftDeep = getDeep(root->leftChild) + 1;int rightDeep = getDeep(root->rightChild) + 1;return leftDeep > rightDeep ? leftDeep : rightDeep;}//从根节点开始打印出所有层void printByLevel(PNode root, int deep) {for (int i = 0; i < deep; i++) {LevelOrderTra(root, i);}printf("\n");}2.关键算法思想树的生成过程保持左右平衡,插入删除过程中保证树的平衡。
树和二叉树教案1
教学过程一、导入树是一类重要的非线性数据结构,是以分支关系定义的层次结构。
在日常生活同学们经常见到树。
树有一个树根。
有许多树枝,在树枝上长有很多树叶。
就象我们今天要讲的树,是一种层次结构。
二、新授(一)树1.树的定义树(tree)是由n (n≥0) 个结点组成的有限集合。
它是树型结构的简称,是一种重要的非线性数据结构,应用广泛。
如:磁盘上的文件目录结构、家族成员关系、单位的组织机构、书的内容组织、算术表达式等。
任何一棵非空树是一个二元组:Tree = (root,F)其中:root被称为根结点,F被称为子树森林2.基本术语森林:是m(m≥0)棵互不相交的树的集合有向树:有确定的根,树根和子树根之间为有向关系(自上到下,自左到右)有序树:树中结点的各子树从左到右是有次序的,不能互换无序树:树中结点的各子树从左到右是没有次序的子女:结点的子树的根是该结点的孩子双亲:孩子结点的根结点兄弟:具有同一双亲的结点堂兄弟:双亲在同一层的结点祖先:从根到该结点所经历分支上的所有结点子孙:以某结点为根的子树中的任一结点学生活动:请同学门总结树形与线形的异同(二) 二叉树1.二叉树的定义二叉树(BinaryTree)是n(n≥0)个结点的有限集,它或者是空集(n=0),或者由一个根结点及两棵互不相交的、分别称作这个根的左子树和右子树的二叉树组成。
2.二叉树的五种基本形态二叉树可以是空集;根可以有空的左子树或右子树;或者左、右子树皆为空。
3.二叉树不是树的特例(1)二叉树与无序树不同二叉树中,每个结点最多只能有两棵子树,并且有左右之分。
二叉树并非是树的特殊情形,它们是两种不同的数据结构。
(2)二叉树与度数为2的有序树不同在有序树中,虽然一个结点的孩子之间是有左右次序的,但是若该结点只有一个孩子,就无须区分其左右次序。
而在二叉树中,即使是一个孩子也有左右之分。
4、满二叉树和完全二叉树是二叉树的两种特殊情形。
a、满二叉树一棵深度为k且有2k-1个结点的二又树称为满二叉树。
数据结构详细教案——树与二叉树
数据结构教案第六章树与二叉树目录6.1树的定义和基本术语 (1)6.2二叉树 (2)6.2.1 二叉树的定义 (2)6.2.2 二叉树的性质 (4)6.2.3 二叉树的存储结构 (5)6.3树和森林 (6)6.4二叉树的先|中|后序遍历算法 (7)6.5先|后|中序遍历的应用扩展 (9)6.5.1 基于先序遍历的二叉树(二叉链)的创建 (9)6.5.2 统计二叉树中叶子结点的数目 (9)6.5.3 求二叉树的高度 (10)6.5.4 释放二叉树的所有结点空间 (11)6.5.5 删除并释放二叉树中以元素值为x的结点作为根的各子树 (12)6.5.6 求位于二叉树先序序列中第k个位置的结点的值 (12)6.5.7 线索二叉树 (13)6.5.8 树和森林的遍历 (14)6.6二叉树的层次遍历 (16)6.7判断一棵二叉树是否为完全二叉树 (16)6.8哈夫曼树及其应用 (18)6.8.1 最优二叉树(哈夫曼树) (18)6.8.2 哈夫曼编码 (19)6.9遍历二叉树的非递归算法 (19)6.9.1 先序非递归算法 (19)6.9.2 中序非递归算法 (20)6.9.3 后序非递归算法 (21)第6章二叉树和树6.1 树的定义和基本术语1、树的递归定义1)结点数n=0时,是空树2)结点数n>0时有且仅有一个根结点、m个互不相交的有限结点集——m棵子树2、基本术语结点:叶子(终端结点)、根、内部结点(非终端结点、分支结点);树的规模:结点的度、树的度、结点的层次、树的高度(深度)结点间的关系:双亲(1)—孩子(m),祖先—子孙,兄弟,堂兄弟兄弟间是否存在次序:无序树、有序树去掉根结点非空树森林引入一个根结点3、树的抽象数据类型定义树特有的操作:查找:双亲、最左的孩子、右兄弟结点的度不定,给出这两种操作可以查找到一个结点的全部孩子插入、删除:孩子遍历:存在一对多的关系,给出一种有规律的方法遍历(有且仅访问一次)树中的结点ADT Tree{数据对象:D={a i | a i∈ElemSet, i=1,2,…,n, n≥0}数据关系:若D为空集,则称为空树;若D仅含一个数据元素,则R为空集,否则R={H},H是如下二元关系:(1) 在D中存在唯一的称为根的数据元素root,它在关系H下无前驱;(2) 若D-{root}≠Ф,则存在D-{root}的一个划分D1, D2, …, D m (m>0)(D i 表示构成第i棵子树的结点集),对任意j≠k (1≤j, k≤m) 有D j∩D k=Ф,且对任意的i (1≤i≤m),唯一存在数据元素x i∈D i, 有<root,x i>∈H(H表示结点之间的父子关系);(3) 对应于D-{root}的划分,H-{<root, x1>,…, <root, x m>}有唯一的一个划分H1, H2, …, H m(m>0)(H i表示第i棵子树中的父子关系),对任意j≠k(1≤j,k≤m)有H j∩H k=Ф,且对任意i(1≤i≤m),H i是D i上的二元关系,(D i, {H i})是一棵符合本定义的树,称为根root的子树。
第6章树和二叉树(下)-数据结构简明教程(第2版)-微课版-李春葆-清华大学出版社
6.6
【例6.16】 已知先序序列为ABDECFG,中序序列为DBEACGF,
给出构造该二叉树的过程。
解:构造该二叉树的过程如下所示。
根:A 左先序:BDE 右先序:CFG 右中序:DBE 右中序:CGF
二
叉 树
根:B 左先序:D 右先序:E
根:C 左先序:空 右先序:FG
的
右中序:D 右中序:E
右子树中
序序列, 有n-k-1 个结点
的
构 造
若bk前面有k个结点,则左子树有k个结点,右子树有n-k-1 个结点。
可以求出左右子树的中序序列和后序序列。
这样根结点是确定的,左右子树也是确定的,则该二叉树是 确定的。
6.6
【例6.17】 已知一棵二叉树的后序遍历序列为DEBGFCA,
中序遍历序列为DBEACGF,给出构造该二叉树的过程。
间 的
以树的根结点为轴心,将整棵树顺时针转动45度,使之结
转
构层次分明。
换
【例6.18】 将图6.27(a)所示的树转换成二叉树。 解:转换的过程:
A
A
6.7
BC D
二
叉 树
EF
G
与
一棵树
树 之
A
间
的
B
转
换
E
C
相邻兄弟之间 加连线(虚线)
BC D
EF
G
删除与双亲 结点的连线
转换后的二叉树
A BC D
【例6.15】 一棵二叉树的先序遍历序列和中序遍历序列相同,
说明该二叉树的形态。
解:二叉树的先序遍历序列为NLR,中序遍历序列为LNR:
NLR = LNR
二 则L应为空(因为N为空后其L、R没有意义)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)二叉树的定义、性质、抽象类型、数组表示和链表存储表示
3)二叉树的遍历,二叉树的存储表示,二叉树的计数
4)霍夫曼树
重点难点:1)二叉树的定义、性质、抽象类型、数组表示和链表存储表示
2)二叉树的遍历,二叉树的存储表示
教学过程设计
强调二叉树的重要性;利用实例说明二叉树在解决实际问题中的灵活性及二叉树的特点
课程名称
数据结构B
章节名称
树和二叉树
授课学时
总学时:6课堂学时:6
教学目标与要求:
了解:树、森林的概念;二叉树的概念、性质和表示
掌握:二叉树பைடு நூலகம்历方法;二叉树的特点及寻找结点的前驱和后继;树和森林的实现与遍历;二叉树的实现、计数方法。
掌握:霍夫曼树的实现方法及霍夫曼编码的概念。
主要知识点、重点、难点
知识点:1)树、森林、二叉树的定义