高中数学 经典资料 第121课--导数中的不等式放缩
放缩法证明导数不等式
放缩法证明导数不等式在用导数证明的不等式中,有时采用适当的放缩,会使解题过程事半功倍。
下面先介绍几个不等式。
①1+≥x e x (当且仅当x=0时取等号)对①式两边同时取以e 为底的对数得到②式②x x ≤+)1ln(,()+∞-∈,1x (当且仅当x=0时取等号) ②式中用x-1替换x ,得到③式③1ln -≤x x ,()+∞∈,0x (当且仅当x=1时取等号) ③式中用x 1替换x , 得到x x x -≤11ln 即 ④xx x 1ln -≥ , ()+∞∈,0x (当且仅当x=1时取等号) 由③④式可得 ⑤1ln 1-≤≤-x x xx ,两边等号成立的条件均为x=1 ⑤式中用x+1替换x 得到 ⑥()x x x x ≤+≤+1ln 1,两边等号成立的条件均为x=0 ①式中用x-1替换x ,得到x e x ≥-1,所以x ee x≥,即 ⑦ex e x ≥,(当且仅当x=1时取等号)令()x x x f ln =,则令()0ln 1'=+=x x f ,得e x 1=。
⎪⎭⎫ ⎝⎛∈e x 1,0时,()0'<x f ,()x f 单调递减;⎪⎭⎫ ⎝⎛+∞∈,1e x 时,()0'>x f ,()x f 单调递增,所以()x f 的最小值为e e f 11-=⎪⎭⎫ ⎝⎛,即e x x 1ln -≥,所以得到⑧ex x 1ln -≥,(当且仅当ex 1=时取等号) 以上的不等式应用在在证明过程中时需要先证明,下面用几个例题说明一下例1, 求证02ln 2≤+--ex e ex x ex x证明:先证ex e x ≥令()ex e x f x -=,则()()11'-=-=-x x e e e e x f ,则()1,0∈x 时,()0'<x f ,()x f 单调递减,()+∞∈,1x 时,()0'>x f ,()x f 单调递增。
导数中证明不等式技巧——构造、切线放缩、二元变量、凹凸反转,唯手熟尔!
导数中证明不等式技巧——构造、切线放缩、二元变量、凹凸反转,唯手熟尔!导数中的不等式证明导数中的不等式证明是高考中的一个经典考点。
由于不等式证明的灵活性和多样性,该考点备受命题者的青睐。
本文将从五个方面系统地介绍一些常规的不等式证明手段。
命题角度1:构造函数典例1】(赣州市2018届高三摸底考试)已知函数$f(x)=1-\ln x+\frac{e}{x}$,$g(x)=x-\frac{e}{x}$,若曲线$y=f(x)$与曲线$y=g(x)$的一个公共点是$A(1,1)$,且在点$A$处的切线互相垂直。
求$a,b$的值,并证明当$x\geq1$时,$f(x)+g(x)\geq\frac{2}{x}$。
解析】(1)$a=b=-1$;2)$g(x)=-\frac{e}{2\ln x}+\frac{x}{2}-\frac{e}{2x}$,$f(x)+g(x)\geq\frac{2}{x}$ $\Leftrightarrow 1-\frac{1}{x}+\frac{e}{x}-\frac{e}{2\ln x}+\frac{x}{2}-\frac{e}{2x}\geq\frac{2}{x}$ $\Leftrightarrow\frac{1}{x}+\frac{ e}{2\ln x}-\frac{x}{2}+\frac{e}{2x}\leq1$。
令$h(x)=f(x)+g(x)-\frac{2}{x}$,则$h(x)=1-\frac{1}{x}+\frac{e}{x}-\ln x-\frac{e}{2\ln x}+\frac{x}{2}-\frac{e}{2x}$,$h'(x)=-\frac{1}{x^2}+\frac{e}{x^2}-\frac{1}{x}-\frac{e}{2x^2}+\frac{1}{2}-\frac{e}{2x^2}$,$h''(x)=\frac{2}{x^3}-\frac{3e}{x^3}+\frac{2e}{x^3}$。
导数中常用放缩不等式
导数中常用放缩不等式在数学中,导数是一个重要的概念。
在求导的过程中,经常需要应用一些放缩不等式,以获得更精确的结果。
这些放缩不等式帮助我们在求导中更好地掌握变量的增减趋势和变化的速率。
本文将介绍一些常用的导数放缩不等式,分为基本放缩不等式、中值定理和极值定理。
1. 基本放缩不等式(1) 幂函数放缩不等式若函数f(x)在[x0, x]上单调递增(或递减),则有:f(x0) ≤ f(x) ≤ f(x0)(x/x0)a-a, (a>0)当a>1时,f(x)单调递增一次,当0<a<1时,f(x)在x0左侧单调递增,右侧单调递减。
(2) 三角函数放缩不等式若-functionsadfb6549aaa2a4c7sinx≤x≤tanx (0<x<π/2)cosx≤1≤secx (0<x<π/2)(3) 对数函数放缩不等式若函数f(x)在[x0, x]上单调递增(或递减),则有:f(x0)≤f(x)≤f(x0)+(x-x0)/x0f(x0), x0>0若函数f(x)在[x0, x]上单调递减(或递增),则有:f(x0)+(x-x0)/x0f(x0)≤f(x)≤f(x0), x0>02. 中值定理(1) 麦克劳林定理对无穷次可导函数f(x),有如下麦克劳林公式:f(x)=f(a)+f'(a)(x-a)+f”(a)(x-a)2/2!+…+f(n)(a)(x-a)n/n!+ (x-a)n∫xaf(n+1)(t-t)n/n!dt(2) 拉格朗日中值定理若函数f(x)在[a,b]上连续,在(a,b)上可微,则有:f(b)-f(a)=f’(c)(b-a), c∈(a,b)(3) 均值定理设函数y=f(x)在区间[a,b]上可去掉有限数个点,显然在此区间上存在一点η,使得:f(η)=(f(b)-f(a))/(b-a)3. 极值定理(1)费马(Fermat)定理定理:函数y=f(x)在一点x0处取极值,当且仅当:f’(x0)=0或不存在。
不等式放缩法
不等式放缩法不等式放缩法,这可是数学里一个相当有趣的“小魔法”!咱们先来说说啥是不等式放缩法。
简单来讲,就是把一个复杂的不等式通过巧妙的手段进行变形,让它变得更容易处理和证明。
比如说,原本一个长得很吓人的不等式,咱们通过合理的放缩,把它变成一个咱们熟悉的、能轻松搞定的形式。
我给大家举个例子哈。
比如说有这么个不等式:1/2 + 1/3 + 1/4 +… + 1/n > 1/2 ×(n 1) (n ≥ 2)。
要是直接去证明,可能会让人有点头疼。
那咱们就来放缩一下。
先把每一项 1/k (k =2, 3, 4, …, n)都放大成 1/2 ,这样原来的式子就变成了(n 1) × 1/2 ,这不就和要证明的右边一样了嘛!而且因为我们是把每一项都放大了才得到的这个式子,所以原不等式就成立啦!是不是感觉有点神奇?我还记得之前给学生们讲这部分内容的时候,有个小家伙一脸迷糊地问我:“老师,这放缩法咋感觉像是在‘作弊’呢?”我笑着回答他:“这可不是作弊哦,这是数学的智慧!就像你走在路上,遇到一个大石头挡道了,咱们总不能硬撞上去吧,得绕个弯或者找个更简单的路过去,这放缩法就是咱们在数学道路上找的‘捷径’!”那不等式放缩法有啥用呢?用处可大啦!比如说在一些数列求和的问题里,如果直接求和很难算,咱们就可以用放缩法来估计和的范围。
还有在证明一些不等式的结论时,放缩法往往能起到关键作用,让看似复杂的问题一下子变得清晰起来。
不过呢,放缩法也不是随便放缩的,要是放缩得不合理,那可就得出错误的结论啦。
这就好比你修房子,尺寸要是搞错了,房子可就歪歪斜斜没法住人了。
所以在使用放缩法的时候,一定要小心谨慎,多思考多尝试。
再给大家说个我自己的经历。
有一次我在做一道数学题,用了放缩法,结果怎么都证明不出来。
我检查了好几遍,才发现是放缩的时候放得太大了,把原本成立的不等式给弄“变形”了。
从那以后,我每次用放缩法都会特别小心,反复确认放缩的合理性。
导数数列型不等式证明问题
导数数列型不等式的证明涉及到导数的概念、性质和运算,通常需要运用放缩、构造辅助函数、微分中值定理等方法。
以下是一些常见的导数数列型不等式的证明方法:
放缩法:通过放缩不等式,使得不等式的证明变得更加容易。
例如,可以利用导数的性质,将原不等式转化为容易证明的等式或不等式。
构造辅助函数法:根据导数的性质,构造出一个辅助函数,通过研究该函数的性质,证明不等式。
例如,可以构造一个函数,使其在指定区间上单调递增或递减,从而证明不等式。
微分中值定理法:利用微分中值定理,将不等式转化为一个容易证明的等式或不等式。
例如,可以根据微分中值定理,将原不等式转化为一个关于某个变量的函数,然后对该函数求导,证明其单调性,从而证明不等式。
需要注意的是,在证明导数数列型不等式时,需要充分理解导数的性质和运算规则,并能够灵活运用。
同时,还需要注重证明过程中的严谨性和准确性,避免出现错误。
导数中放缩法(切线放缩、对数均值不等式)
导数中放缩法(切线放缩、对数均值不等式)导数证明中的常用放缩在导数证明中,常用的放缩方法有切线放缩、对数放缩、指数放缩、指对放缩和三角函数放缩等。
其中,常用的放缩公式包括对数放缩和指数放缩。
一、常用放缩公式1.对数放缩对数放缩常常可以将一个函数放缩成一次函数或双撇函数,常用的对数放缩公式包括:lnx≤x-1,lnx<x,ln(1+x)≤xlnxx-1/x,x>1lnxx/2,0<x<1lnx≤x^2-x,ln(1+x)≤x-x^2/2,-1<x<∞ln(1+x)≥x/(1+x),ln(1+x)>x/2,x>02.指数放缩指数放缩常常可以将一个函数放缩成一次函数或二次函数,常用的指数放缩公式包括:ex≥x+1,ex>x,ex≥ex,x≤0ex<1-x,ex<1-x+x^2/2,x<0ex≥1+x+x^2,ex≥1+x+x^2+x^3,x>03.指对放缩指对放缩常常可以将一个函数的导数放缩成一个常数,常用的指对放缩公式包括:ex-lnx≥(x+1)-(x-1)/2,x>04.三角函数放缩三角函数放缩常常可以将一个函数放缩成一个三角函数或二次函数,常用的三角函数放缩公式包括:XXX<x<tanx,sinx≥x-x^2,-1≤x≤1cosx≤1-sin^2x,-1≤x≤1二、经典例题以函数f(x)=lnx+ax^2+(2a+1)x为例,讨论其单调性和当a<0时的最大值。
1) 解f(x)的定义域为(0,∞),求导得f'(x)=1/x+2ax+2a+1.当a≥-1/2时,f'(x)>0,因此f(x)在(0,∞)上单调递增;当a<-1/2时,f'(x)<0,因此f(x)在(0,∞)上单调递减。
2) 当a0,因此g(x)在(0,∞)上单调递增,且有g(x)≤g(1)=ln1-2/3=-2/3.又因为f(x)可以表示为f(x)=g(x)+(2a+1)x+ax^2+2/3x,因此有f(x)≤g(1)+(2a+1)x+ax^2+2/3x=-2/3+(2a+1)x+ax^2+2/3x=2/3x+ax^2+(2a+1)x-2/3.当2/3x+ax^2+(2a+1)x-2/3取到最大值时,有x=-(2a+1)/(2a),此时f(x)的最大值为-2/3+(2a+1)^2/(4a)-a(2a+1)^2/(4a)=-3/4a。
放缩法证明导数不等式
放缩法证明导数不等式在用导数证明的不等式中,有时采用适当的放缩,会使解题过程事半功倍。
下面先介绍几个不等式。
①1+≥x e x (当且仅当x=0时取等号)对①式两边同时取以e 为底的对数得到②式②x x ≤+)1ln(,()+∞-∈,1x (当且仅当x=0时取等号) ②式中用x-1替换x ,得到③式③1ln -≤x x ,()+∞∈,0x (当且仅当x=1时取等号) ③式中用x 1替换x , 得到x x x -≤11ln 即 ④xx x 1ln -≥ , ()+∞∈,0x (当且仅当x=1时取等号) 由③④式可得 ⑤1ln 1-≤≤-x x xx ,两边等号成立的条件均为x=1 ⑤式中用x+1替换x 得到 ⑥()x x x x ≤+≤+1ln 1,两边等号成立的条件均为x=0 ①式中用x-1替换x ,得到x e x ≥-1,所以x ee x≥,即 ⑦ex e x ≥,(当且仅当x=1时取等号)令()x x x f ln =,则令()0ln 1'=+=x x f ,得e x 1=。
⎪⎭⎫ ⎝⎛∈e x 1,0时,()0'<x f ,()x f 单调递减;⎪⎭⎫ ⎝⎛+∞∈,1e x 时,()0'>x f ,()x f 单调递增,所以()x f 的最小值为e e f 11-=⎪⎭⎫ ⎝⎛,即e x x 1ln -≥,所以得到⑧ex x 1ln -≥,(当且仅当ex 1=时取等号) 以上的不等式应用在在证明过程中时需要先证明,下面用几个例题说明一下例1, 求证02ln 2≤+--ex e ex x ex x证明:先证ex e x ≥令()ex e x f x -=,则()()11'-=-=-x x e e e e x f ,则()1,0∈x 时,()0'<x f ,()x f 单调递减,()+∞∈,1x 时,()0'>x f ,()x f 单调递增。
2022高考数学函数与导数—导数中的放缩问题
函数与导数—导数中的放缩问题专题综述放缩法是解决函数不等式问题的利器,导数压轴题中的函数往往是指数、对数与其他函数综合,或者指对数并存的超越函数,有时直接构造出的函数难以直接求出最值,需要借助放缩解决.利用导数判断函数单调性、解决函数零点问题、不等式证明等问题中都会用到放缩法,使问题难度降低.常用的放缩方式有:①常用不等式放缩:指数放缩、对数放缩、三角放缩;②利用已知题目信息放缩;③根据已知参数范围或常识,减少变量,适当放缩;③利用单调性放缩;④利用基本不等式放缩: 若0a b >>,则211ln ln 2a b a bb ab a b a b-+<<<<-+;⑤由数值大小关系直接放缩,做题时灵活运用.本专题就前3种,重点探究.专题探究探究1:利用不等式放缩函数中有指数、对数、三角函数时,直接求导,导数不等式无法解出,根据函数结构,选择不等式进行放缩,使函数简单化. 常用不等式有:(1)三角函数放缩:①0,,sin tan 2x x x x π⎛⎫∀∈<< ⎪⎝⎭;②21sin 2x x x ≥-;③22111cos 1sin 22x x x -≤≤-(2)指数放缩:①1x e x ≥+;②x e ex ≥(1,y x y ex =+=为函数x y e =图象的两条切线);③()101xe x x ≤≤-;④()10x e x x≤-< (3)对数放缩:①11ln 1x x x -≤≤-;②ln x x e ≤;③1ln x ex ≥-;(1,xy x y e =-=为函数ln y x =图象的两条切线)(4)指对放缩:()()ln 112xe x x x ->+--=(2021安徽省合肥市联考) 已知函数()(ln ),.xe f x a x x a R x=--∈(1)当0a >时,讨论函数()f x 的单调性;(2)当1a =-时,函数1()()()x g x f x x e mx x =+++满足:对任意(0,)x ∈+∞,都有()1g x 恒成立,求实数m 的取值范围.【审题视点】第(2)问显化函数()g x ,恒成立问题回顾常用的方法(专题1.3.7):分离参数、含参讨论单调性等方法,由解析式的具体结构确定方法与细节.【思维引导】分离参数以后,函数中有指、对结构,若直接通过求导判断单调性求最值,方法较困难,利用不等关系1x e x ≥+,得ln ln 1x x e x x +≥++,使难度大大降低.【规范解析】解:(1)()f x 的定义域是(0,)+∞,22()(1)()x x x a xe e ax e x f x a x x x -+-'=--=,当0a >,0x >时,令()0f x '>,则1x <∴()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;(2)当1a =-时,1()()()ln (1)x x g x f x x e mx xe x m x x=+++=-++,()()0,,1x g x ∀∈+∞≥即ln 1ln 1ln 11x x x x xe x e m x x++-+--=-,1.恒成立问题求参:分离参数构造函数求最值;2.构造的函数中有ln x 、ln x x e +,通过求导判断单调性求最值较困难,通过常用不等关系1xe x ≥+,进行放缩,是函数简单化.设()1x F x e x =--,则()1x F x e '=-,令()0F x '>,则0x >∴()f x 在()0,+∞上单调递增,在(),0-∞上单调递减∴()(0)0F x F =,即1(x e x +当且仅当0x =时“=”成立),故ln ln 1(x x e x x +++当且仅当ln 0x x +=时“=”成立), ()ln G x x x =+在(0,)+∞上是增函数,且11()10G e e=-<,(1)10G =>,故存在01(,1)x e∈使得ln 0x x +=成立,故ln 1ln 1ln (ln 1)112x x x e x x x x x++-+-++--=-(当且仅当0x x =时“=”成立),∴2m -,即m 的取值范围是[2,).-+∞【探究总结】常见的不等关系要灵活运用,解题时函数结构复杂,可考虑运用上述不等式进行放缩,使问题简答化.但不等式1,,ln 1,ln xxx e x e ex x x x e≥+≥≤-≤,从图象的角度看,是以直代曲,放缩的程度大,容易出现误差,在使用时要注意.另外若是求参数取值范围问题,要考虑不等式中的等号能否取到.(2021山东省泰安市一模) 已知函数()()ln 2xf x e x k -=-,(k 为常数, 2.718e =⋅⋅⋅是自然对数的底数),曲线()y f x =在点()()1,1f 处的切线与y 轴垂直.(1)求()f x 的单调区间;(2)设()()1ln 1xx x g x e-+=,对任意0x >,证明:()()21x x x g x e e -+<+. 探究2:利用已证结论放缩1.对使用过得不等关系,构造函数证明成立;2.利用不等关系进行替换.恒成立求取值范围的问题,放缩以后,要确保不等式中等号能否取到解答题的上一问中证明的不等式,或者推导过程中证明出的结论,为后续的证明提供放缩的依据.需证明的不等式为关于n 的多项式的和或不等式结构复杂,利用已证结论,进行放缩,使不等式化繁为简,便于构造函数求最值.(2021湖南省郴州市模拟) 已知函数()e (1)ln(1) 1.x f x x x =-++-(1)当0x >时,证明:()0f x >;(2)已知数列{}n a 的通项公式为1e 1nn n na n -=+,证明:12ln (1).n a a a n ++⋅⋅⋅+>+ 【审题视点】第(2)问,出现数列的前n 项和,且不能用常规的求和方法求和,借助第一问的结论对n a 的通项公式进行放缩,便于求和.【思维引导】对第一问的不等式进行变形,观察n a 的结构,进行放缩,能够用已知方法求和.【规范解析】解:(1)由题意得 ()()ln(1)10x f x e x x '=-+->, 设()ln(1)1x g x e x =-+-,则1(1)1()11x xe x g x e x x +-'=-=++, 当0x >时, 1x e >,11x +>,则(1)1x e x +>则(1)1()01x e x g x x +-'=>+, ()g x ∴在()0,+∞上单调递增,故()()00g x g >=,即()0f x '> ()f x ∴在()0,+∞上单调递增,∴当0x >时,()(0)0f x f >=,即()0f x >(2)由(1)知:当0x >时,()(1)ln(1)10x f x e x x =-++->,即1ln(1)1x e x x ->++ 令1x n=,则11ln()1nne n n n n -+>+,12231ln ln ln12n n a a a n++++>+++ 231ln()ln(1)12n n n+=⨯⨯⨯=+ ∴12ln (1)n a a a n ++⋅⋅⋅+>+【探究总结】函数中证明与n 有关的求和问题,或不等式证明问题,要仔细观察不等式结构特点,往往会利用前一问的结论,或者解题过程中的结论.利用已证结论,进行放缩,化繁为简,证明不等式的成立.(2021广东省东莞市联考) 已知函数()ln (1),(0)f x x a x a =-->( 2.718e ≈即自然对数的底数).(1)若函数()f x 在()1,+∞上是单调减函数,求实数a 的取值范围; (2)在(1)的条件下,当n N +∈时,证明:2311111111.2222n e ⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭探究3:利用已知参数范围或常识放缩函数解析中含有参数,且已知参数范围,证明不等式成立,可以从参数的范围入手,使参数取确定的值或利用单调性、其它不等关系,对不等式进行放缩,减少变量,使函数结构简单,易于判断单调性.(2021河北省石家庄联考) 已知函数()(2).x f x e k x =-+(1)讨论函数()f x 的单调性;(2)证明:当0k e <<时,()(1ln )0.f x k x x ++->【审题视点】已知参数范围,证明不等式成立,且函数指对结构都有,若含参讨论难度大,可能要借助放缩,化繁为简.【思维引导】1.对已证不等式进行变形,变形为与n a 通项公式相似的结构;2.对自变量进行替换,得出新的不等式.利用不等式性质进行求和,实现放缩,证明结论.第(2)问不等式的证明,函数中有x e ,ln x ,构造函数求导,含参讨论解导数不等式较困难,可巧妙利用参数的范围,参数取确定的值,进行放缩,求不含参函数的最值较为简单.【规范解析】解:(1)由题意得 ()e .x f x k '=- ①当0k 时,()e 0x f x k '=->,∴函数()f x 在(,)-∞+∞上单调递增;②当0k >时,令()e 0x f x k '=-> 得ln x k >,则()g x '在(0,)+∞上单调递增,且(1)0g '= 当(0,1)x ∈时,()0g x '< 当(1,)x ∈+∞时,()0g x '>)0,10⎫->⎪⎭∴当0k e <<时,()(1ln )0.f x k x x ++->【探究总结】不等式的证明问题中含有参数,若直接构造函数含参讨论,难以解决的情况下,为避开讨论,可以在参数给定的范围内,结合不等式的结构进行第一步的放缩,达到消参的目的,转化为证明不含参的不等式.若不等式的结构依然复杂,在利用常用不等关系、已证结论等方法进一步放缩.(2021湖北省荆州市高三模拟) 已知函数()ln(2).x m f x e x -=-(1)设1x =是函数()f x 的极值点,求m 的值并讨论()f x 的单调性; (2)当2m 时,证明:()ln 2.f x >-专题升华导数解答题中函数多以xe 、ln x 型的函数与其他函数结合的形式出现,考查零点问题、不等式证明问题、恒成立问题等方向时,如果利用常规方法处理时,因函数结构复杂求导判断单调性难度较大,通过放缩将难以处理的函数转化为较为简单的函数进行处理.放缩法较为灵活,要根据不等式的结构、形式等特征,使条件与结论建立联系,选择适当的方法是关键. 1.积累常见的不等结论:如探究1中提及的不等式,解题时需构造函数,证明其正确性,再进行放缩.利用不等式进行放缩,体现了数学中的化归与转化思想,也体现了处理数学问题时以直代曲、以曲代曲的方法.2.巧用已证不等式,顺水推舟:利用已证不等式(或结论) “服务”于后续问题的求解,这类题目最明显的“暗示”,即为证明一个类似于数列求和的不等式,需利用已证不等式进行逐项替换放缩.若题目的第一问证明不等式,在后续解题时,留意是否会利用已证结论.3.已知参数范围:含参不等式的证明时,若因为参数的存在使函数讨论非常复杂,可考虑结合参数范围及其它结论进行放缩.4.其他放缩方法:除了上述三种难度较大的放缩方法以外,单调性、已知结论、基本不等式等.如利用基本不等式进行放缩,化曲为直,()202x x +=≥;和积互化等.不仅仅应用于简化不等式,在解题过程中,也可能用放缩证明代数式的值.长干行·其一[唐]李白妾发初覆额,折花门前剧。
高中数学导数放缩法
高中数学导数放缩法导数作为数学中重要的概念,是微积分中的一个基础知识。
在高中数学中,导数是一个重要的内容,学生需要掌握导数的定义、性质和计算方法。
其中,导数的放缩法是导数的一种重要应用,能够帮助我们简化复杂的导数计算,提高计算的效率。
一、导数的定义及性质回顾在学习导数的放缩法之前,我们先来回顾一下导数的定义及性质。
在数学中,函数y = f(x)在点x处的导数定义为:f'(x) = lim(h->0)[f(x+h)-f(x)]/h这个极限表示当自变量在点x处偏离x时,函数值的变化情况。
导数有一些重要的性质,比如:1.常数函数的导数为0:即对于常数k,f(x) = k的导数为f'(x) = 02.和函数的导数:(u + v)' = u' + v'3.差函数的导数:(u - v)' = u' - v'4.常数倍函数的导数:(ku)' = ku'5.积函数的导数:(uv)' = u'v + uv'6.商函数的导数:(u/v)' = (u'v - uv')/v^2这些性质在导数的计算中起着非常重要的作用,能够帮助我们简化计算过程。
接下来,我们将介绍导数的放缩法,以及如何运用这一方法简化导数的计算。
二、导数的放缩法原理导数的放缩法是指根据导数的定义及性质,通过放缩函数的表达式,将复杂的导数计算化简为简单的计算。
具体来说,导数的放缩法主要有以下几种形式:1.基本放缩法:指利用导数的性质,将一个复杂函数拆分成几个简单函数的和、差、积或商,然后利用导数的性质求导,最后将得到的导数组合起来得到原函数的导数。
2.递推放缩法:指通过递推的方式,将一个复杂函数的导数化简为一个或多个简单函数的导数,然后根据导数的性质组合起来得到原函数的导数。
3.反函数放缩法:指利用反函数的性质,将一个函数的导数与其反函数的导数之间建立联系,通过求导得到原函数的导数。
高中数学不等式放缩二次求导确定单调区间,缩放构建新函数求最值
高中数学不等式放缩二次求导确定单调区间,缩放构建新函数求最值在高中数学中,不等式放缩、二次求导和构建新函数等方法可以用于确定函数的单调区间和最值。
以下是一些示例:1. 不等式放缩:假设我们有一个函数 f(x),我们需要确定它的单调区间。
我们可以通过使用不等式放缩来扩展 f(x) 的符号,从而确定其单调区间。
例如,如果我们想要确定 f(x) = x^2 在 x = 2 处的单调区间,我们可以使用不等式放缩来扩展 f(x) 的符号。
如果我们将 x^2 替换为 (x - 2)(x + 2),我们可以得到 f(x) = (x - 2)(x + 2) + 4。
通过使用不等式放缩,我们可以得出结论,f(x) 在 x = 2 处单调递增。
2. 二次求导:如果我们有一个函数 f(x),我们需要确定它的单调区间,我们可以使用二次求导法来确定其单调区间。
例如,如果我们想要确定 f(x) = x^2 在 x = 2 处的单调区间,我们可以使用二次求导法。
我们可以通过对 f(x) 求导并检查导数是否为零来确定其单调区间。
具体来说,我们可以使用 f"(x) = 2x,并检查在 x = 2 处是否为零。
我们发现 f"(x) 在 x = 2 处不为零,因此 f(x) 在 x =2 处单调递增。
3. 构建新函数:如果我们想要确定一个函数的最值,我们可以使用构建新函数的方法。
例如,如果我们想要确定函数 f(x) = x^2 + 2x + 1 在 x = 1 处的最值,我们可以使用构建新函数的方法。
我们可以将 f(x) 替换为 g(x) = x^2 + 2x + 1 + C,其中 C 是常数。
通过计算,我们得出结论,g(x) 在 x = 1 处取得最小值。
这些方法是高中数学中用于确定函数单调区间和最值的常见方法。
高考数学助手:导数中证明不等式技巧构造切线放缩二元变量凹凸反转
高考数学助手:导数中证明不等式技巧构造切线放缩二元变量凹凸反转
导数中不等式的证明是历年的高考中一个永恒的话题,由于不等式证明的灵活性,多样性,该考点也备受命题者的青睐。
今天将会通过五个方面系统的介绍一些常规的不等式的证明手段。
总的来说:
命题角度1 构造函数
命题角度2 放缩法
命题角度3 切线法
命题角度4 二元或多元不等式的证明思路
命题角度5 函数凹凸性的应用
这五种命题角度,五种解题方法,同学们一定要会呢!导数在高考中占的比重还是挺大的!。
高中数学导数常见放缩不等式
高中数学导数常见放缩不等式导数常见放缩不等式是高中数学学习中不可遗漏的一个重点内容,它通过对导函数的性质进行分析和推导,引出了许多常用的不等式。
在学习过程中,我们需要理解和掌握这些不等式的性质,以便在数学实践中灵活应用。
下面是高中数学导数常见放缩不等式的详细介绍:一、极值问题1. 定理1:f(x)在[a,b]上连续,且在(a,b)内可导,如果在x1和x2两点处取得了极值,那么f'(x1)=f'(x2)=0。
2. 定理2:f(x)在[a,b]上连续,且在(a,b)内可导,如果f(x)在[a,b]上有两个极值,一个是局部极大值,一个是局部极小值,那么在两个极值点之间必存在一个驻点。
二、中值定理3. 定理3:f(x)在[a,b]上连续,且在(a,b)内可导,那么在[a,b]中至少存在一个点c,使得f'(c)=(f(b)-f(a))/(b-a)。
三、平均值不等式4. 定理4:f(x)在[a,b]上连续,且在(a,b)内可导,那么f(x)在[a,b]上的平均值f(c)满足f(c)=(1/(b-a))*∫[a,b]f(x)dx,且在[a,b]的任意一点x0处有f(x0)-f(c)=[(x0-c)/(b-a)]*[f(b)-f(a)]。
四、柯西-Schwarz不等式5. 定理5:f(x)和g(x)在[a,b]上可导,那么[(∫[a,b]f(x)g(x)dx)^2]<=∫[a,b]f(x)^2dx * ∫[a,b]g(x)^2dx。
五、泰勒公式6. 定理6:f(x)在点x0处n+1阶可导,那么当|x-x0|<=h时,有f(x)=f(x0)+f'(x0)(x-x0)/1!+f''(x0)(x-x0)^2/2!+...+f^(n)(x0)(x-x0)^n/n!+o((x-x0)^n)。
以上就是高中数学导数常见放缩不等式的详细介绍,掌握好这些重要的定理和公式,将有助于我们在数学学习和实践中有更好的应用。
高中数学讲义:放缩法证明数列不等式
放缩法证明数列不等式一、基础知识:在前面的章节中,也介绍了有关数列不等式的内容,在有些数列的题目中,要根据不等式的性质通过放缩,将问题化归为我们熟悉的内容进行求解。
本节通过一些例子来介绍利用放缩法证明不等式的技巧1、放缩法证明数列不等式的理论依据——不等式的性质:(1)传递性:若,a b b c >>,则a c >(此性质为放缩法的基础,即若要证明a c >,但无法直接证明,则可寻找一个中间量b ,使得a b >,从而将问题转化为只需证明b c >即可 )(2)若,a b c d >>,则a c b d +>+,此性质可推广到多项求和:若()()()121,2,,n a f a f a f n >>>L ,则:()()()1212n a a a f f f n +++>+++L L (3)若需要用到乘法,则对应性质为:若0,0a b c d >>>>,则ac bd >,此性质也可推广到多项连乘,但要求涉及的不等式两侧均为正数注:这两条性质均要注意条件与结论的不等号方向均相同2、放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点:① 等差数列求和公式:12nn a a S n +=×,n a kn m =+(关于n 的一次函数或常值函数)② 等比数列求和公式:()()1111n n a q S q q -=¹-,n n a k q =×(关于n 的指数类函数)③ 错位相减:通项公式为“等差´等比”的形式④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项(2)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。
导数中的不等式放缩
高考数学优质专题(附经典解析)导数中不等式放缩基础知识:(1)在不等式放缩中,常见的函数不等式有①e 1x x ≥+;②1ln x x -≥. 特别地,要注意在具体题目中灵活变形应用这些不等式. 如利用上面①、②易得1ln 2x x +≥+,e ln 2x x >+,e sin 1x x ≥+等不等式.(2)与隐零点相关的放缩问题常用方法:利用隐零点问题中常用的代换技巧表达出()f x 的最大值(最小值)0()f x ,再由0x 的取值范围求出0()f x 的最大值(最小值),即得到0()()f x f x M ≤≤(0()()f x f x M ≥≥),进而证得题目中所证不等式. 一、典型例题1.已知函数23e x fx x ,91g x x . 比较f x 与g x 的大小,并加以证明.2.已知函数2e x f x x .(1)求曲线fx 在1x 处的切线方程; (2)求证:当0x 时,e 2e 1ln 1x x x x .二、课堂练习1. 已知e ln x fx x . (1)求yf x 的导函数y f x 的零点个数; (2)求证:2f x .2. 已知函数23e 4cos 1x fx x ax x x ,e 1x g x m x . (1)当1m 时,求函数g x 的极值; (2)若72a ,证明:当0,1x 时,1f x x .三、课后作业1. 已知函数21ln f x x x x ,求证:当02x 时,12f x x .2. 设函数()e sin x f x a x b . 若()f x 在0x 处的切线为10x y ,求,a b 的值. 并证明当(0,)x 时,()ln f x x .3.已知函数e ln x f x x a x a x ,a R .若函数f x 在定义域上为单调增函数.(1)求a 最大整数值; (2)证明:23341e ln2ln ln ln 23e 1n n n .。
高中常用不等式放缩公式
高中常用不等式放缩公式在高中数学的学习中,不等式放缩是一种非常重要的解题技巧。
它能够帮助我们在解决一些复杂的不等式问题时,简化运算,找到解题的突破口。
下面,我们就来一起学习一下高中常用的不等式放缩公式。
一、基本不等式基本不等式是高中数学中最基础也是最重要的不等式之一,其形式为:对于任意的正实数 a、b,有$\sqrt{ab} \leq \frac{a + b}{2}$,当且仅当 a = b 时,等号成立。
这个不等式在放缩中有着广泛的应用。
例如,当我们要证明一个不等式中涉及到两个正数的乘积时,可以考虑使用基本不等式进行放缩。
二、绝对值不等式绝对值不等式也是高中数学中的重要内容,常见的有:$\vert a \vert \vert b \vert \leq \vert a + b \vert \leq \vert a \vert +\vert b \vert$在处理一些含有绝对值的不等式问题时,利用绝对值不等式进行放缩,可以使问题变得更加清晰。
三、柯西不等式柯西不等式的形式为:对于任意的实数$a_1, a_2, \cdots, a_n$ 和$b_1, b_2, \cdots, b_n$ ,有$(a_1^2 + a_2^2 +\cdots + a_n^2)(b_1^2 + b_2^2 +\cdots + b_n^2) \geq (a_1b_1 + a_2b_2 +\cdots + a_nb_n)^2$ ,当且仅当$\frac{a_1}{b_1} =\frac{a_2}{b_2} =\cdots =\frac{a_n}{b_n}$(当$b_i \neq 0$ )时,等号成立。
柯西不等式在放缩时,可以将一些复杂的乘积形式进行简化和处理。
四、糖水不等式若有正实数$a, b, m$ ,且$a < b$ ,则$\frac{a + m}{b +m} >\frac{a}{b}$。
这个不等式在一些分式的放缩中非常有用。
高中数学解题方法系列:不等式放缩
求证: f (2x) 2 f (x)(x 0) 对任意 n N 且 n 2 恒成立。(90 年全国卷压轴题)
简析 本题可用数学归纳法证明,详参高考评分标准;这里给出运用柯西( Cauchy )
n
n
n
不等式[ (aibi )]2 ai2 bi2 的简捷证法:
i 1
一 利用重要不等式放缩
1. 均值不等式法
例 1 设 Sn
12
23
n(n
1). 求证
n(n 1) 2
Sn
(n
1)2 2
.
解析 此数列的通项为 ak k(k 1), k 1,2,, n.
k
k(k
1)
k
k 2
1
k
1 2
,
n
k
k 1
i 1
i 1
f (2x) 2 f (x) lg1 22x 32x (n 1)2x a n2x 2 lg 1 2x 3x (n 1) x a n x
n
n
[1 2x 3x (n 1) x a n x ]2 n [1 22x 32x (n 1)2x a n2x ]
nan1 n an1
1 an
n an1 an1
1 an1
1 ,即 n
1 1 1 n ( 1 1 ) n 1 .
an an1 n
a k 2
k
ak 1
k2 k
于是当 n
3 时有 1
an
1 a1
1 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第121课导数中不等式放缩基础知识:(1)在不等式放缩中,常见的函数不等式有①e 1x x ≥+;②1ln x x -≥.特别地,要注意在具体题目中灵活变形应用这些不等式.如利用上面①、②易得1ln 2x x +≥+,e ln 2x x >+,e sin 1x x ≥+等不等式.(2)与隐零点相关的放缩问题常用方法:利用隐零点问题中常用的代换技巧表达出()f x 的最大值(最小值)0()f x ,再由0x 的取值范围求出0()f x 的最大值(最小值),即得到0()()f x f x M ≤≤(0()()f x f x M ≥≥),进而证得题目中所证不等式.一、典型例题1.已知函数()23e x f x x =+,()91g x x =-.比较()f x 与()g x 的大小,并加以证明.答案:()()f xg x >解析:设()()()h x f x g x =-23e 91x x x =+-+,∵()3e 29x h x x ¢=+-为增函数,∴可设()00h x ¢=,∵()060h ¢=-<,()13e 70h ¢=->,∴()00,1x Î.当0x x >时,()0h x ¢>;当0x x <时,()0h x ¢<.∴()()0min h x h x =02003e 91x x x =+-+,又003e 290x x +-=,∴003e 29x x =-+,∴()2000min 2991h x x x x =-++-+2001110x x =-+()()00110x x =--.∵()00,1x Î,∴()()001100x x -->,∴()min 0h x >,()()f x g x >.2.已知函数()2e x f x x =-.(1)求曲线()f x 在1x =处的切线方程;(2)求证:当0x >时,()e 2e 1ln 1x x x x +--³+.答案:(1)()e 21y x =-+;(2)见解析解析:(1)()e 2x f x x ¢=-,由题设得()1e 2f ¢=-,()1e 1f =-,()f x 在1x =处的切线方程为()e 2 1.y x =-+(2)()e 2x f x x ¢=-,()e 2x f x =-,∴()f x ¢在()0,ln2上单调递减,在()ln2,+¥上单调递增,所以()()ln222ln20f x f ³=->,所以()f x 在[]0,1上单调递增,所以()()[]max 1e 1,0,1f x f x ==-Î.()f x 过点()1,e 1-,且()y f x =在1x =处的切线方程为()e 21y x =-+,故可猜测:当0,1x x >¹时,()f x 的图象恒在切线()e 21y x =-+的上方.下证:当0x >时,()()e 21f x x ³-+,设()()()e 21,0g x f x x x =--->,则()()()e 2e 2,e 2x x g x x g x =---=-,()g x ¢在()0,ln2上单调递减,在()ln2,+¥上单调递增,又()()03e 0,10,0ln21g g =->=<<,∴()ln20g ¢<,所以,存在()00,ln 2x Î,使得()00g x ¢=,所以,当()()00,1,x x Î+¥时,()0g x ¢>;当()0,1x x Î时,()0g x ¢<,故()g x 在()00,x 上单调递增,在()0,1x 上单调递减,在()1,+¥上单调递增,又()()010g g ==,∴()()2e e 210x g x x x =----³,当且仅当1x =时取等号,故()e 2e 1,0x x x x x +--³>.又ln 1x x ³+,即()e 2e 1ln 1x x x x +--³+,当1x =时,等号成立.二、课堂练习1.已知()e ln x f x x =-.(1)求()y f x =的导函数()y f x ¢=的零点个数;(2)求证:()2f x >.答案:(1)1个;(2)见解析解析:(1)()()1e ln e x x f x x f x x ¢=-Þ=-,设()1e x g x x=-,则()21e 0x g x x ¢=+>,()()1e x g x f x x¢==-在()0,+¥上递增,()11e 10,202f f=->=-<,存在()0000111,0e 02x x f x x ¢<<=Þ-=,所以()y f x =的导函数()y f x ¢=的零点个数为1个.(2)由(1)可知,()y f x =在()00,x 上递减,在()0,x +¥上递增,()()00000min 011e ln 2(1)2x f x f x x x x x ==-=+><<,所以()2f x >.2.已知函数()()23e 4cos 1x f x x ax x x =+++,()()e 1x g x m x =-+.(1)当1m ³时,求函数()g x 的极值;(2)若72a ³-,证明:当()0,1x Î时,()1f x x >+.答案:(1)见解析;(2)见解析解析:(1)()e x g x m ¢=-,由()0g x ¢=得ln x m =.由ln x m >得()0g x ¢>,ln x m <得()0g x ¢<,所以函数()g x 只有极小值()()ln ln 1ln g m m m m m m =-+=-.(2)不等式等价于3214cos 1e xx x ax x x ++++>,由(1)得:e 1x x ³+,所以()22e 1x x ³+,所以211e 1x x x +<+,()0,1x Î,()3214cos 1e x x x ax x x ++++->()314cos 11x ax x x x +++-+34cos 1x x ax x x x =++++214cos 1x x x a x =++++令()214cos 1h x x x a x =++++,则()()2124sin 1h x x x x ¢=--+,令()24sin I x x x =-,则()()24cos 212cos I x x x ¢=-=-,当()0,1x Î时,π1cos cos1cos 32x >>=,所以12cos 0x -<,所以()0I x ¢<,所以()I x 在()0,1上为减函数,所以()()00I x I <=,则()0h x ¢<,所以()h x 在()0,1上为减函数,因此,()()314cos12h x h a >=++,因为π4cos14cos 23>=,而72a ³-,所以34cos102a ++>,所以()0h x >,而()0,1x Î,所以()1f x x >+.三、课后作业1.已知函数()()21ln f x x x x =-+,求证:当02x <£时,()12f x x >.答案:见解析解析:只需证:ln 1ln 2x x x x -->,令()ln g x x x =-,()ln 12x h x x =+,由()110g x x =-=¢解得:()1,x g x =在(0,1)递减,在(1,2]上递增,故()()min 11g x g ==,由()21ln x h x x -¢=可知:()h x 在(0,2]上递增,故()()()max min 1ln2212h x h g x +==<=,故()()h x g x <,即()12f x x >.2.设函数()e sin x f x a x b =++.若()f x 在0x =处的切线为10x y --=,求,a b 的值.并证明当(0,)x Î+¥时,()ln f x x >.答案:见解析解析:由()e sin x f x a x b =++得()e cos x f x a x ¢=+,且(0)1f b =+.由题意得0(0)e 1f a =¢+=,所以0a =.又()0,1b +在切线10x y --=上,所以0110b ---=,所以2b =-.所以()e 2x f x =-.先证e 21x x ->-,即e 10(0)x x x -->>,令()e 1(0)x g x x x =-->,则()e 10x g x ¢=->,所以()g x 在(0,)+¥是增函数.所以()(0)0g x g >=,即e 21x x ->-.①再证1ln x x -³,即1ln 0(0)x x x --³>,令()1ln x x x j =--,则11()1x x x x j -=-=¢,()0x j ¢=时,1x =,()0x j ¢>时,1x >,()0x j ¢<时,01x <<.所以()x j 在(0,1)上是减函数,在(1,)+¥上是增函数,所以min ()(1)0x j j ==.即1ln 0x x --³,所以1ln x x -³.②由①②得e 2ln x x ->,即()ln f x x >在(0,)+¥上成立.3.已知函数()()()e ln x f x x a x a x =-+++,a R Î.若函数()f x 在定义域上为单调增函数.(1)求a 最大整数值;(2)证明:23341e ln2ln ln ln 23e 1n n n +++++<-.答案:(1)2;(2)见解析解析:由题意知,()()e ln x f x x a ¢=-+,若函数()f x 在定义域上为单调增函数,则()0f x ¢³恒成立.(1)先证明e 1x x ³+.设()e 1x g x x =--,则()e 1x g x ¢=-,则函数()g x 在(),0-¥上单调递减,在()0,+¥上单调递增,∴()()00g x g ³=,即e 1x x ³+.同理可证ln 1x x £-∴()ln 21x x +£+,∴()e 1ln 2x x x ³+³+.当2a £时,()0f x ¢>恒成立.当3a ³时,()01ln 0f a ¢=-<,即()()e ln 0x f x x a ¢=-+³不恒成立.综上所述,a 的最大整数值为2.(2)(1)知,()e ln 2x x ³+,令1t x t -+=,∴111e ln 2ln t t t t t t-+-++³+=∴11e ln tt t t-++³.由此可知,当1t =时,0e ln2>.当2t =时,213e ln 2->,当3t =时,324e ln 3->, ,当t n =时,11e ln n n n n -++³.累加得0121e e e e n ---+++++>23341ln2ln ln ln 23nn n +++++ .又0121e e e e n ---+++++=111e e 11e 111e e n -<=---,∴2334ln2ln ln 23++1e ln e 1n n n +++<-.。