ANSYS复合材料仿真分析及其在航空领域的应用

合集下载

ANSYS 航天航空和国防领域应用及推荐Wiseteam图形工作站

ANSYS 航天航空和国防领域应用及推荐Wiseteam图形工作站

ANSYS 航天航空和国防领域应用及推荐Wiseteam图形工作站航空航空器设计专家不断的挑战来提高飞机的燃油效率,为了达到这个目标,工程师们使用已有的或新的复合材料使设计更加符合空气动力学特性,最终设计出更轻,更牢固、更安全、更舒适的用于商务和军用的飞机。

借助于仿真软件可以解决类似于像预测层流到湍流的转捩这样的复杂问题。

工程师使用ANSYS软件能够很容易的获得层流的范围。

对于设计者最重要的是预测阻力并找到减少阻力的方法。

此外,边界层的状态决定了流动分离的位置,例如,当飞机起飞和着陆时假设为完全湍流时得到了最大升力系数,这样预测的结果是不可信的。

全湍流假设使边界层中具有更大的动量而使预测的附着流动较实际飞行中更长。

使用ANSYS CFD软件,工程师可以更加精确的预测流动在什么位置分离,机翼在什么情况下升力下降。

在详细的设计阶段,工程师们总会发现飞机会超出它们的重量规格,结合了多学科包括结构、流体和电磁的ANSYS软件将会很容易的解决这个问题。

ANSYS整套的参数化流程能够快速的完成权衡分析和多物理场模拟。

例如,跨音速流动、分离流或者高空长航时飞行器的非线性气弹效应能够精确采用ANSYS软件模拟。

例如天线结构设计需要承受静载荷和动载荷,例如有时候会遇到鸟类的撞击和弹道的冲击。

作为仿真驱动产品的开发的开拓者,在改革创新和提高质量的过程中,ANSYS帮助航空公司达到零返工的目标,并且加速了该行业的发展,减小了设计费用国防类公司和政府机构面临一个千变万化的军事和安全形势。

目前威胁到国家安全的不总是那些容易确认因素,现在的斗争领域就像一个城市的街道是一个开放的领域。

政府和企业必须快速发展,使科技、装备和兵器能够适应新型战争的要求。

降低系统和航天器的重量对国防工业来讲是一个主要的任务。

装甲要足够轻以便士兵能操纵它。

油箱必须足够轻以便飞行器能够更容易的完成输运工作。

现在人们不断的尝新型轻薄型材料和复合材料希望能满足战争环境的要求。

复合材料在航空航天领域的应用

复合材料在航空航天领域的应用

复合材料在航空航天领域的应用航空航天工程是当今科技领域中最具挑战性和前沿性的领域之一。

随着科技的不断进步,复合材料作为一种新型材料,在航空航天领域中得到了广泛的应用。

复合材料是由两种或两种以上的不同材料组合而成,具有优异的力学性能和轻质化特点,成为航空航天工程中不可或缺的材料。

复合材料在航空航天领域中的应用主要体现在飞机结构中。

传统的金属材料在飞机结构中存在着重量大、阻力大等问题,而复合材料具有比重较低、强度高、刚度大等优点,可以有效减轻飞机的自重,并提高飞机的飞行性能。

例如,复合材料可以用于飞机的机翼、机身等结构部件,使得飞机具有更好的飞行稳定性和燃油经济性。

复合材料在航空航天领域中还广泛应用于航天器热保护系统。

航天器在大气层再入过程中会受到高温的热辐射,传统的热保护材料往往难以满足高温、高速的要求。

而复合材料具有优异的耐高温性能和热稳定性,可以有效保护航天器在再入过程中不受高温的影响。

因此,复合材料在航天器热保护系统中的应用,可以保证航天器的安全和稳定。

复合材料还被广泛应用于卫星的结构设计和制造中。

卫星需要具有轻质化、高强度、高刚度等性能,以满足卫星在太空中的长期运行需求。

复合材料作为一种理想的卫星结构材料,可以有效减轻卫星的重量,提高卫星的运载能力和工作效率。

因此,复合材料在卫星制造中的应用,可以提高卫星的整体性能和可靠性。

复合材料在航空航天领域中的应用是不可忽视的。

复合材料以其轻质化、高强度、高刚度等优点,为航空航天工程提供了新的解决方案。

随着科技的不断进步,相信复合材料在航空航天领域中的应用将会更加广泛,为航空航天工程的发展注入新的活力。

复合材料在航空领域的用途

复合材料在航空领域的用途

复合材料在航空领域的用途航空工业的发展从来都是以技术进步为驱动力的,而复合材料作为一种新型材料,在航空领域的应用越来越广泛。

复合材料具有高强度、轻质化、耐腐蚀、低热膨胀系数等优点,可以有效提高飞机的性能和安全性。

本文将重点介绍复合材料在航空领域的用途。

1. 结构件应用复合材料在航空领域广泛应用于飞机结构件上,如机身壁板、翼面、垂尾等。

相比于传统金属材料,采用复合材料可以显著减轻结构重量,降低燃油消耗,并提升飞机整体性能。

复合材料的高强度和抗冲击性能可以提高飞机的结构强度,增加安全性。

2. 动力系统应用复合材料在航空领域的另一个重要应用是动力系统上,如发动机叶片、气门、涡轮等。

复合材料可以耐高温、耐磨损、降低噪音和振动,使得动力系统具有更好的性能和可靠性。

同时,采用复合材料制造发动机部件还可以减轻重量,提高燃烧效率,降低机身油耗。

3. 内饰及设备应用除了结构件和动力系统,复合材料还被广泛应用于飞机的内饰及设备中。

例如客舱内部的座椅、行李架、蒙皮等都可以采用复合材料制造,不仅能够提供更好的舒适性和安全性,还能够减轻飞机自身重量,降低能耗。

4. 航空器维修与保养在航空器维修与保养方面,复合材料也起到了重要的作用。

由于其优异的耐腐蚀性能和良好的可靠性,使用复合材料制造的零部件不仅具有较长的使用寿命,而且在维护过程中需要投入较少的时间和费用。

因此,在航空器维修与保养中广泛采用的一种做法就是使用复合材料替换原有金属零件。

5. 其他应用除了以上提到的主要领域,航空工业还会在其他方面应用复合材料。

例如,在无人机制造中,采用复合材料能够提供更好的机动性能和稳定性。

此外,在航天器设计中,使用复合材料可以减轻重量并提供更好的抗辐射和抗高温能力。

结论复合材料在航空领域的应用越来越广泛,对于提升飞机整体性能和安全性起到了重要作用。

随着科学技术的进步和人们对于环保和节能要求的日益增强,相信复合材料在航空领域将会有更大的发展前景,并将持续推动这一行业向更加先进和可持续方向发展。

ANSYS在飞机设计中的应用

ANSYS在飞机设计中的应用

ANSYS 在飞机设计中的应用 飞机一般由机翼起落架和飞机操作系统组成用以往的经典工程分析进行应力分析已满足不了现代飞机型号设计的要求分析的部位具有局限性使得复杂的工程问题得以用有限元法进行分析使用有限元对飞机结构进行分析具有极大的优越性它可以对飞机的各大部件如机身舵面气密舱热分析电磁分析固体耦合结构耦合结构耦合以及电流体完全能满足飞机设计中对有限元分析的需求设计军用飞机在高振动条件下工作的马达控制器装有PCB 板为了在实验前揭露潜在的设计问题采用ANSYS 进行了随机振动分析穆格公司的工程师杰拉德.米耶尔兹说我们发现ANSYS是一个极有价值的工具识别潜在的许多问题图3-2 为变形 1. 总体 在飞机总体设计分析中要考虑的问题有l 飞机12 飞机用ANSYS 进行了动力响应分析 ANSYS 强大的动力响应分析功能可以快速地进行模态和振型计算可以准确地计算出飞机在各种条件下的模态和振型ANSYS 共有九十九层的复合材料壳单元和实体单元这些单元允许叠加各向同性或各向异性材料层ANSYS 提供的失效准则有最大应变失效准则Wu 失效准则ANSYS 的复合材料功能特别适合于有大量复合材料的飞机系统ANSYS/LS-DYNA 为机身在振动一方面软件自身提供了铆接焊缝另一方面显示求解方法在振动等瞬态分析中容易处理联接  解决动态撞击问题也是ANSYS 的优势所在但要想通过实验来获得这样的效果是不现实的而且设计周期也会很长还特有安全带单元图3-5 图3-5 飞机事故模拟 1 6 8ANSYS 能方便地进行失稳分析从稳态到瞬态的各种气动力学问题所以对计算的结构形式没有任何限制ANSYS 在航空航天器空气动力学分析中的应用ANSYS 在航空航天器电子产品热设计中的应用 ANSYS 具有强大的电磁场分析功能可以很方便地计算军用飞机的雷达和红外隐身特性ANSYS 在航空航天器电磁兼容直径为2 毫米的水滴会使后者发生塑性变形一只重约250 克的飞鸟足以使飞机的挡风玻璃发动机叶片或外罩等严重变形或破碎因此鸟撞问题一直是航空航天领域倍受关注的难题一般为50 毫秒左右结构亦将产生大变形例如挡风玻璃破碎发动机叶片断裂等结构的动态响应将在较长时间内持续发生 由于鸟撞整个过程在较短的时间内完成因此采取方法是以应用有限元技术模拟鸟撞为主 有限元程序在模拟鸟撞时 l 飞鸟物理材料的描述 l 飞鸟流动变形的描述 l 飞鸟与飞行器接触的描述 l 飞行器结构大变形和破坏过程的描述 当前该程序是著名高度非线性有限元显式求解程序爆炸等动载荷下的动态响应可进行流体 飞鸟在高速撞击时将产生强大压力在这样的变形条件下ANSYS/LS-DYNA 中的飞鸟材料采用流体动力材料粘度外如可压缩性 以前飞行器对飞鸟变形过程不够重视还与其流动过程以及破碎的时间密切相关正确描述飞鸟的流动和破碎过程对整个分析至关重要ANSYS/LS-DYNA 提供两种方式描述飞鸟的流动和破碎或ALEEULER 单元或ALE足以描述与结构分离前的变形在图3-6 的鸟撞过程模拟中 图3-6 叶片的鸟撞过程模拟 ANSYS/LS-DYNA 在处理飞鸟与飞行器的接触过程中亦提供两种方式或ALE使用结构/结构接触算法采用流体/结构耦合算法飞行器可使用ANSYS/LS-DYNA 附加破坏算法的结构材料挡风玻璃弹塑性破坏材料发动机外罩机体等smooth-particle-hydrodynamics (SPH)这种方法的特点是以一组质点定义相应物质更易于描述飞鸟的变形和破碎过程图3-7 的叶片鸟撞过程即采用的这种方法最初的机翼结构设计造成内部横梁断裂图3-8 为鸟撞过程已经是相当成熟的技术关于鸟撞的研w w w . i t 1 6 8 . c o m究文章每年都占一定比例发动机叶片 图3-8 GV 型湾流豪华公务机机翼前缘鸟撞模拟 3. 机翼 机翼大致由蒙皮翼梁和墙机翼主体受到气动载荷可以运用ANSYS 提供的梁单元壳单元各向异性单元对机翼进行静力分析模态抖振等失稳分析结构优化设计然后将计算结果作为气动激励进一步计算分析机翼的动力响应图3-9 机翼动力响应分析机翼的固定件还可以运用ANSYS 的非线性功能进行塑性和接触等非线性分析都是典型的薄壁结构隔框承受的主要载荷有l 惯性载荷 l 地面载荷 l 动力装置载荷 l 其他载荷 机身骨架由梁组成梁单元的断面参数定义结果表示非常不方便并允许用户自定义不规则断面形状库方便使模型表示及检查更加容易按拉正压负的工程习惯绘制彩色弯矩图 ANSYS 强大而方便的建模及载荷处理功能杆单元三维实体单元可方便动力响应分析颤振等失稳分析结构优化设计结构耦合分析功能可以对机身进行温度场计算以及热应力和热变形计算移动壁面的功能可以方便地模拟机身的飞行状态利用ANSYS 的流图3-10 对机身的固定件还可以运用ANSYS 的非线性功能进行塑性和接触等非线性分析以确定过渡圆角半径和销钉厚度蓝色单元表示轴承 5. 起落架 在飞机设计里为了保证飞机的安全起飞要求起落架具有足够的强度为了使飞行器离地后具有良好的性能 1 6 8图3-11 轮胎与地面碰撞的仿真分析 可以运用ANSYS 提供的多种单元对起落架进行静力分析飞机着陆过程是典型的冲击类问题可对着陆过程进行冲击分析损伤容限分析 起落架在载荷上要承受强冲击载荷因此起落架的分析是高度非线性分析滑动间隙弹簧组合矩阵单元可方便地模拟多种阻尼缓冲件的静因此在起落架的分析中可以考虑进所有的主要因素同样可以运用ANSYS 的分析计算功能进行各种分析可以模拟在紧急状况下安全部件对乘员的保护过程提高了安全性图3-13 为坐椅的应力云图锻件这些加工过程涉及冲击类载荷接触非线性的塑性大变形过程应力场为提高工件的加工质量制定合理的工艺过程提供依据热接触类型热塑性材料本构模式ALE 及Euler 三种描述方式  w w w . i t 1 6 8 . c o mLS-DYNA 时间积分器采用中心差分格式由于质量矩阵进行对角化处理一般的冲压铸造等问题合理控制有限元规模这样的效率是其它程序难以相比的可良好地完成冲压模拟拉延切边翻边分析板料的减薄拉裂回弹板料通过给定材料的FLD判断板料在拉延过程中局部开裂现象用于板料成形的材料模式是各种弹塑性材料强化特征随动强化混合强化以及应变率对材料强化的影响适于板成形分析的有12种penalty在接触计算过程中考虑壳单元厚度及其变化可在计算过程中对板料网格进行局部加密材料在多数情况下经历较大的温度变化ANSYS/LS-DYNA 中热塑性材料模型很适于描述锻压过程中的材料行为ANSYS/LS-DYNA 特有的单点积分良好地解决了大变形体积锁死问题应力更新中采用Jaumann 应力率在剪切变形较大时 在多数锻压分析中则随着金属件成形过程的继续将导致单元精度降低甚至发生畸变ANSYS/LS-DYNA 可以自动进行网格重划分ANSYS/LS-DYNA 早已采用一种更为先进的网格ALEALE 网格进行Rezoning 的目的和过程与Remeshing 基本相同后者是拉格朗日网格ALE 结合拉格朗日和欧拉网格各自的优点除此之外此方法的最大特点是物质与网格相互独立同时时间步长不会因变形的增大而降低此外如冷却水耦合分析欧拉构形主要有三种二阶精度的Van Leer多物质流体的单元构形主要有二种多种材料的混合单元(压力平衡)shell不需要滑移界面此类求解器的加入可求解如自由界面流动流体混合金属构件浇注成型图3-16 浇注过程模拟 ANSYS/LS-DYNA 在进行浇注模拟时并将其材料定义成空或任何物质Euler ambient即物质由此进入Euler 区或 ANSYS/LS-DYNA 的流体介质定义为流体动力材料即压力方程随着物质由浇口流入Euler 区最终达到平衡LS-DYNA 中可方便施加温度边界条件和热生成 浇注过程模拟完成后ANSYS 的相变分析及热变形应力分析功能考察不同的落沙条件PCC 叶片制造公司输入熵与温度关系取得了很好的结果图3-17 中红色部分表示仍然处在熔化状态 图3-17w w w . i t 1 6 8 .。

复合材料在航空领域的应用

复合材料在航空领域的应用

复合材料在航空领域的应用
复合材料是指由两种或两种以上不同的材料组成的新材料,具有多种
材料的优点和互补性能。

在航空领域,复合材料具有重量轻、强度高、耐
腐蚀、热稳定性好等优点,因此被广泛应用于飞机的结构件、外壳、发动
机舱等部位。

本文将从复合材料在飞机结构中的应用、外壳及涂层中的应
用以及在发动机舱中的应用等方面进行论述。

首先,复合材料在飞机结构中的应用广泛,主要体现在机翼、尾翼、
襟翼等部位。

由于复合材料具有较高的强度和刚度,可以减少结构重量,
提高飞机的机动性和燃油效率。

例如,波音公司的777客机采用了大量的
复合材料结构件,使整机减重约20%,燃油效率提高了10%以上。

此外,
复合材料还具有良好的耐腐蚀性能,可以延长飞机使用寿命,减少维护成本。

其次,复合材料在飞机外壳中的应用也非常重要。

飞机外壳是保护乘
客和货物免受外界环境影响的重要部位。

复合材料具有优异的抗疲劳性能
和耐腐蚀性能,可以提供更好的保护。

此外,复合材料的制备工艺灵活,
可以制造出各种形状和尺寸的外壳,以满足不同型号和用途的飞机的需求。

例如,波音公司的787梦想飞机采用了大量的复合材料外壳,使整机的飞
行距离和航程得到了大幅度的增加。

总之,复合材料在航空领域的应用非常广泛,不仅可以减少飞机的自重,提高燃油效率,还可以提供更好的抗疲劳性能和防腐蚀性能。

未来,
随着航空科技的不断发展和复合材料技术的进一步成熟,相信复合材料在
航空领域的应用将会进一步扩大。

ANSYS在航空航天器电子产品中的应用解析

ANSYS在航空航天器电子产品中的应用解析

ANSYS 在航空航天器电子产品中的应用解析
飞机一般由机翼、机身、起落架和飞机操作系统组成,其结构受力复杂,用以往的经典工程分析进行应力分析已满足不了现代飞机型号设计的要求,花费的时间长,分析的部位具有局限性。

随着大型计算机及工作站的出现和大量工程应用软件的投入使用,使得复杂的工程问题得以用有限元法进行分析。

从而使航空结构分析走上CAE 的道路。

使用有限元对飞机结构进行分析具有极大的优越性。

ANSYS 程序是一个功能强大灵活的设计分析及优化软件包,它可以对飞
机的各大部件如机身、机翼、舵面、发动机短舱、气密舱、起落架等进行常规的结构分析、热分析、空气动力分析、电磁分析,而且其强大的多物理场耦合功能可进行诸如流体-固体耦合、热-结构c、磁-结构耦合以及电-磁-流体-热- 结构耦合分析,完全能满足飞机设计中对有限元分析的需求。

图3-1 图3-2 图3-3
位于纽约州的奥欧拉市的穆格公司,设计军用飞机在高振动条件下工作的马达控制器,该控制器由铸铝室和若干电子模块组成,装有PCB 板,冷却风扇及其它结构。

为了在实验前揭露潜在的设计问题,以避免鉴定阶段的重复。

复合材料在航空航天领域的应用与发展

复合材料在航空航天领域的应用与发展

复合材料在航空航天领域的应用与发展航空航天领域一直是科技发展的前沿领域之一,为了满足航空器和航天器对结构材料的高强度、轻量化、高温耐久性等要求,复合材料在航空航天领域中得到了广泛的应用和发展。

本文将探讨复合材料在航空航天领域中的应用以及有关的发展趋势。

首先,复合材料在航空领域中的应用已经成为航空器结构设计中的重要组成部分。

与传统金属材料相比,复合材料具有重量轻、强度高、抗腐蚀性能好等优点,使得其成为航空领域中的理想选择。

例如,复合材料可以用于制造飞机机身、机翼和尾翼等结构件,以减轻整体重量并提高机身的稳定性和气动性能。

同时,复合材料还可以用于制造飞行器的隔离罩、发动机罩和燃料储存系统等关键部件,以提高其耐高温和抗腐蚀能力。

其次,复合材料在航天领域中的应用也不断扩大与深化。

航天器一直是人类探索宇宙的重要工具,而复合材料的应用则在提高载荷能力、提升耐受极端环境能力方面发挥着重要作用。

例如,复合材料可以用于制造航天器的热防护板,以保护航天器免受大气层再入期间的高温和高速冲击。

此外,复合材料还可以用于制造卫星的外壳、反射天线和太阳能电池板等部件,以提高卫星的稳定性和运行效率。

除了在航空器和航天器的结构应用中,复合材料还在航空航天领域的其他方面有广泛的应用。

例如,复合材料可以用于制造燃料系统和推进系统中的储存和传输部件,以提高燃料的效率和安全性。

此外,复合材料的电磁性能优越,可以用于制造雷达罩和电磁干扰措施系统等电子设备。

此外,复合材料还可以用于制造航空航天器的装饰件和内饰件,以满足航天器外观的美观要求。

在复合材料在航空航天领域的应用发展过程中,一些潜在的挑战和问题也需关注。

首先,复合材料的制造技术和工艺需要高度的控制和专业知识,制造和维修成本较高。

其次,复合材料的可靠性和耐久性需要进一步验证和研究,确保在严苛的环境中长时间的使用。

另外,复合材料的再生和回收问题也需要解决,以降低材料的环境影响和资源浪费。

复合材料在航空航天领域的应用

复合材料在航空航天领域的应用

复合材料在航空航天领域的应用航空航天领域一直是人类探索未知、追求进步的前沿阵地,而复合材料的出现和应用则为这个领域带来了革命性的变化。

复合材料具有优异的性能,如高强度、高刚度、低密度、耐腐蚀等,使其成为航空航天领域中不可或缺的重要材料。

复合材料在飞机结构中的应用十分广泛。

飞机的机身、机翼、尾翼等主要结构部件都可以采用复合材料制造。

以机身为例,使用复合材料可以显著减轻飞机的重量,从而降低燃油消耗,提高飞行效率。

例如,波音 787 客机的机身结构中有大约 50%使用了复合材料,这使得飞机在重量上相比传统金属结构的飞机有了大幅降低。

机翼是飞机产生升力的关键部件,复合材料的高强度和高刚度特性能够满足机翼在复杂受力情况下的要求,同时还能减轻重量,提高飞机的载重能力和飞行性能。

在航天领域,复合材料同样发挥着重要作用。

航天器在发射和运行过程中要承受极端的温度、压力和辐射环境,对材料的性能要求极高。

复合材料的耐高温、耐腐蚀和高强度等特性使其成为制造航天器结构的理想选择。

比如,火箭的外壳和发动机部件常常采用复合材料制造。

复合材料能够承受火箭发射时的高温和巨大的推力,保证火箭的结构完整性和可靠性。

复合材料在航空航天领域的应用还体现在飞行器的内饰和零部件上。

飞机的座椅、行李架、控制面板等内饰部件使用复合材料可以减轻重量,提高舒适度和安全性。

在零部件方面,复合材料制成的螺栓、螺母、垫片等具有重量轻、强度高、耐腐蚀的优点,能够提高飞行器的整体性能和可靠性。

除了结构方面的应用,复合材料在航空航天领域的功能应用也日益重要。

例如,复合材料可以用于制造雷达罩,其良好的电性能可以保证雷达信号的传输和接收不受干扰。

此外,复合材料还可以用于制造隔热材料,保护飞行器在高温环境下的设备和人员安全。

然而,复合材料在航空航天领域的应用也面临一些挑战。

首先是成本问题,复合材料的制造工艺相对复杂,原材料价格较高,导致其成本相对传统金属材料较高。

这在一定程度上限制了复合材料在一些对成本敏感的项目中的应用。

复合材料在航空航天领域的应用研究

复合材料在航空航天领域的应用研究

复合材料在航空航天领域的应用研究复合材料是一类优异材料,由两种或两种以上的材料组成,在它们的结合体中保留了各自的特性。

它有着超群的材料特性,被广泛应用于市场上的高端产品。

航空航天领域也是复合材料应用的重点领域,因为那里需要使用低密度、高强度、高刚度的材料来减轻飞行器质量,提高性能。

本文将探讨复合材料在航空航天领域的应用研究。

一、复合材料在飞机制造中的应用1.1 碳纤维复合材料碳纤维复合材料具有高的比强度、比刚度和低的密度,它的优势就在于比如可以代替机身部件重量更重的金属材料,从而使飞机的重量减轻20-30%,并减少了耗费燃料的能量。

由于光照也是飞机旅程中的主要耗费来源,这些复合材料的使用直接影响了飞行器的经济效益。

另外,在要求更高、对减轻结构重量更为苛刻的卫星等应用领域中,碳纤维复合材料的应用也是十分重要的。

1.2 玻璃纤维复合材料玻璃纤维复合材料是较为便宜的一类复合材料,可以通过手工制造,替代部分航空零部件的铝合金,并且能够承受冲击、磨损和化学腐蚀。

2000年之前,航空器中曾经广泛使用玻璃纤维复合材料。

但由于其相对较低的强度和刚度,玻璃纤维复合材料在航空领域的应用越来越少,逐渐被碳纤维复合材料所取代。

二、复合材料在火箭制造中的应用2.1 增材制造增材制造,也称为3D打印,已经成为火箭制造领域的重要一部分。

在这个过程中,通常使用复合材料,在3D打印机中将复合材料层层叠加,直至形成需要的部件。

这种技术可以节省费用和时间,并减少浪费的材料。

这种技术目前主要用于生产低质量和小批量的零部件。

2.2 碳纤维增强复合材料在现代火箭推进系统中,尤其是在发动机喷嘴和推力向量控制方面,强度高、轻量的复合材料是及其必要的。

这种具有向心力的负载被偏向更有效的复合材料,轻质、强度高的碳纤维增强复合材料在此领域中广泛应用。

三、复合材料在航空航天领域的未来随着3D打印和其他新技术的发展,未来的复合材料将更创新,更具工程度。

飞机设计中ANSYS的应用

飞机设计中ANSYS的应用
在最新发布的DYNA7.0版本中加入了光顺质点流体动力算法(smooth-particle-hydrodynamics(SPH)),这种方法的特点是以一组质点定义相应物质,由于没有有限元网格,更易于描述飞鸟的变形和破碎过程,这些质点描述的物质具有拉格朗日属性。图3-7的叶片鸟撞过程即采用的这种方法。
飞机设计中ANSYS的应用
飞机一般由机翼、机身、起落架和飞机操作系统组成,其结构受力复杂,用以往的经典工程分析进行应力分析已满足不了现代飞机型号设计的要求,花费的时间长,分析的部位具有局限性。随着大型计算机及工作站的出现和大量工程应用软件的投入使用,使得复杂的工程问题得以用有限元法进行分析。从而使航空结构分析走上CAE的道路。使用有限元对飞机结构进行分析具有极大的优越性。
ANSYS程序是一个功能强大灵活的设计分析及优化软件包,它可以对飞机的各大部件如机身、机翼、舵面、发动机短舱、气密舱、起落架等进行常规的结构分析、热分析、空气动力分析、电磁分析,而且其强大的多物理场耦合功能可进行诸如流体-固体耦合、热-结构c、磁-结构耦合以及电-磁-流体-热- 结构耦合分析,完全能满足飞机设计中对有限元分析的需求。
图3-5飞机事故模拟
ANSYS能方便地进行失稳分析。
ANSYS的计算流体力学分析可以分析从低速到高超音速、从稳态到瞬态的各种气动力学问题,而且由于采用的是有限元法进行计算,所以对计算的结构形式没有任何限制。详见第六章“ANSYS在航空航天器空气动力学分析中的应用”及第七章“ANSYS在航空航天器电子产品热设计中的应用”。
图3-7叶片鸟撞过程模拟
Boeing公司为GulfstreamAerospaceGVBusimessJet(GV型湾流豪华公务机)的机翼前缘多个部位进行鸟撞模拟。最初的机翼结构设计造成内部横梁断裂,改进后的机翼满足标准FAR25.571(e)和JAR25.631的要求,图3-8为鸟撞过程。

复合材料在航空领域的用途

复合材料在航空领域的用途

复合材料在航空领域的用途航空工业是一个高度技术化和创新性的领域,复合材料作为一种轻质、高强度、耐腐蚀的新型材料,在航空领域得到了广泛的应用。

本文将探讨复合材料在航空领域的用途,以及其在航空工业中的重要性和发展前景。

一、复合材料在飞机结构中的应用飞机结构是航空器的重要组成部分,其质量和强度直接影响着飞机的性能和安全性。

传统的金属材料虽然具有一定的强度和韧性,但密度较大,容易生锈,限制了飞机的性能提升。

而复合材料由于其轻质、高强度、耐腐蚀等优点,被广泛应用于飞机结构中,如机身、机翼、尾翼等部件。

复合材料的使用不仅可以减轻飞机的重量,提高飞机的燃油效率,还可以增加飞机的结构强度和耐久性,提高飞机的飞行安全性。

二、复合材料在航空发动机中的应用航空发动机是飞机的“心脏”,其性能直接影响着飞机的动力输出和燃油效率。

复合材料具有优异的耐高温、耐腐蚀性能,因此在航空发动机中得到了广泛的应用。

复合材料可以用于制造发动机的涡轮叶片、燃烧室、外壳等部件,可以有效减轻发动机的重量,提高发动机的工作效率,延长发动机的使用寿命,降低维护成本,从而提高飞机的整体性能和经济性。

三、复合材料在航空航天器中的应用航空航天器是人类探索宇宙的重要工具,其要求具有较高的速度、高温、高压等特殊环境下的性能。

复合材料具有优异的耐高温、耐腐蚀性能,因此在航空航天器中得到了广泛的应用。

复合材料可以用于制造航天器的隔热层、外壳、结构件等部件,可以有效提高航天器的耐热性能、减轻航天器的重量,提高航天器的载荷能力和飞行稳定性,从而推动航天技术的发展和进步。

四、复合材料在航空领域的发展前景随着航空工业的不断发展和进步,对材料性能的要求也越来越高。

复合材料作为一种新型材料,具有轻质、高强度、耐腐蚀等优点,被广泛应用于航空领域。

未来,随着复合材料制造工艺的不断改进和完善,复合材料的成本将进一步降低,性能将进一步提高,应用范围将进一步扩大。

复合材料有望在航空领域发挥越来越重要的作用,推动航空工业的发展和进步。

ANSYS的航空航天的应用案例整机模态分析

ANSYS的航空航天的应用案例整机模态分析

ANSYS的航空航天的应用案例整机模态分析
航空航天工业无时无刻不面临着飞机及太空飞行器性能方面的挑战,从鸟撞分析到NASA航天飞机泵体结构最小化设计,有限元分析都扮演着至关重要的角色。

作为使用CAE技术的先驱,航空航天行业使用仿真技术进行整机设计、装配、部件测试等研制。

引领航空航天领域新一代最具代表性的仿真分析技术,安世亚太航空航天解决方案提供全面的分析功能、高品质的计算精度、可靠的质量保证体系,使得越来越多的航空航天企业选择我们为其提供CAE解决方案。

项目名称:整机模态分析
所在行业:航空航天
ANSYS提供的模态综合法为整机大模型的模态计算以及灵活的设计提供了方便。

首先对各部件的分别分析,最后通过综合得到整机模态,使得整机的模态分析不受硬件性能限制。

同时,对局部设计的修改之后的整机模态分析并不需要重新分析,只需修改后的部件进行重新分析便可得到精确的整机分析结果。

复合材料在航空航天领域的应用分析

复合材料在航空航天领域的应用分析

复合材料在航空航天领域的应用分析复合材料是相对于金属材料而言的一种新材料,它由两种或以上的不同的材料组成。

复合材料具有比金属材料更高的强度、更好的韧性、更轻的重量、更好的耐磨性和耐腐蚀性,因此已经被广泛应用到航空航天领域。

首先,复合材料在飞机机身方面具有广泛的应用。

与传统的金属结构相比,采用复合材料制造的飞机具有更高的强度和轻量化的特点。

由于复合材料的密度较低,机身重量减轻后,就可以提高飞机的续航能力,从而提高飞行效率。

同时,采用复合材料制造机身还可以解决传统金属机身结构在防腐方面存在的问题,延长飞机的使用寿命,同时也更容易进行维护维修。

其次,在航空航天中,复合材料也广泛应用于飞机机翼部分。

机翼具有承受飞行时所发生气动载荷的重要作用,因此需要具有足够的强度和刚度。

采用复合材料制造的机翼具有更好的受力性能,可以更好地满足飞行过程中的需求,同时减轻机身的重量,提高机翼的飞行效率。

另外,复合材料在火箭制造中也得到广泛应用。

由于复合材料具有较好的高温性能,可以在火箭制造中用于制作热护盾和引擎部分。

复合材料的特点使得火箭具有更高效、更精准的轨迹控制能力和更高的安全性能,并且还可以在太空环境中确保高效的功能保持。

在宇航飞行器制造方面,也经常采用复合材料。

航天器通过发射逃离地球引力,进入宇宙空间并完成任务,因此极其要求精度、重量轻、刚性和人工控制等特点,而这正是复合材料的长处所在,一般来说,航天器外部设施都采用复合材料制造,因为使用复合材料具有显著的优势,许多宇航任务设置许多高挑的要求,如极低的质量、高精度的打击等,因此,它是解决上述问题的理想选择。

总的来说,复合材料在航空航天领域中的应用广泛,随着社会科技的进步和国家工业的带动,大规模应用已经成为即将到来的必然趋势。

创新思维、加强研究创新、大力提升自主技术创新,发展具有全球竞争力的新一代高性能航空航天器材料,使得大陆在技术上,更加强大,更加富有竞争力。

复合材料在航空航天领域中的应用研究

复合材料在航空航天领域中的应用研究

复合材料在航空航天领域中的应用研究一、引言复合材料是由两种或以上不同性质的材料按一定方式组合而成的新材料,具有轻量化、高强度、耐腐蚀等优点,是航空航天领域中重要的结构材料。

本文将探讨复合材料在航空航天领域的应用研究,主要包括以下几个方面。

二、复合材料在飞机结构中的应用1.航空结构材料的发展航空器结构材料要求具备轻质化、高强度、高温稳定性等特点。

复合材料因其优越的特性,可以满足这些要求。

随着复合材料制备工艺的不断发展,航空器结构材料从传统的金属材料逐渐向复合材料转变。

2.复合材料在飞机机翼中的应用飞机机翼是航空器结构中承受最大风载荷的部位,要求具备较高的强度和刚度。

传统的金属机翼重量大,影响飞机的燃油消耗和性能。

而采用复合材料制作的机翼不仅重量轻,而且具有更好的抗风载荷性能。

同时,复合材料可以根据设计要求进行形状调整,提高飞机的升阻比,减少油耗。

3.复合材料在飞机机身中的应用飞机机身是航空器结构中最为重要的部分之一,要求具备较高的强度、刚度和防腐蚀性。

复合材料具有卓越的抗腐蚀性能,能够有效地减少飞机机身的维修成本和维修时间。

此外,复合材料还可以根据飞机机身的特殊形状进行成型,提高飞机的流线型,减少空气阻力。

三、复合材料在航天器结构中的应用1.航天器结构材料的发展航天器作为进入外太空的交通工具,要求结构材料具备轻量化、高强度、高温耐受性等特点。

传统的金属材料由于重量过重,难以满足航天器的要求。

而复合材料因其轻质化和高强度,成为航天器结构的首选材料。

2.复合材料在航天器热防护中的应用航天器在进入大气层时,会面临极高的温度和压力。

复合材料具有良好的高温稳定性和隔热性能,可以作为航天器的热防护材料。

航天器表面的热防护层可以采用碳纤维复合材料,有效地减少热量传导和热辐射,保护航天器内部的仪器设备不受高温的影响。

3.复合材料在航天器舱内结构中的应用航天器内部结构要求具备较高的刚度和强度,以抵抗离心力和振动力的作用。

ANSYS对航空工业解决方案

ANSYS对航空工业解决方案

ANSYS对航空工业解决方案发表时间:2009-1-25 作者: 安世亚太来源: 安世亚太关键字: 航空航天CAE仿真解决方案ANSYS安世亚太中国航空工业在CAE应用方面也迈着坚实的步伐,各类CAE技术在产品设计制造方面发挥着巨大作用,有效解决了本行业的诸多难题,为顺利研制新机型发挥了不可缺少的作用。

美国ANSYS公司致力于CAE技术的研究和发展,专注于工程仿真解决方案,提供世界顶级的工程模拟技术,帮助企业优化设计流程,使企业在更短的时间内开发出高质量的产品。

以下是美国ANSYS公司对航空工业的解决方案,全文分九章。

ANSYS对航空工业解决方案(一)前言ANSYS对航空工业解决方案(二)航空工业期待协同仿真环境ANSYS对航空工业解决方案(三)航空发动机仿真方案_1ANSYS对航空工业解决方案(三)航空发动机仿真方案_2ANSYS对航空工业解决方案(四)飞机仿真解决方案ANSYS对航空工业解决方案(五)ANSYS在导弹设计中的应用ANSYS对航空工业解决方案(六)航空气动解决方案ANSYS对航空工业解决方案(七)航空器电子产品热设计ANSYS对航空工业解决方案(八)航空器电子产品天线及隐身设计解决方案ANSYS对航空工业解决方案(九)航空器电子产品电磁兼容及干扰解决方案第一章前言1航空工业对CAE技术的需求国际上早在60年代初就开始投入大量的人力和物力开发CAE软件,但真正的通用商品化软件是诞生于70年代初期,而最近10多年则是CAE软件的高速发展阶段。

美国于1998年成立了工程计算机模拟和仿真学会(CMSE: Computer Modeling and Simulation in Engineering),其它国家也成立了类似的学术组织,以推动CAE开发和应用技术的快速发展。

目前,CAE软件的功能、分析问题的深度和广度、用户界面和前后处理能力、计算精度和计算效率等都获得了大幅度的改进与扩充。

ANSYS动力学仿真技术在航天计算机机箱结构设计中的应用

ANSYS动力学仿真技术在航天计算机机箱结构设计中的应用

ANS YS动力学仿真技术在航天计算机机箱结构设计中的应用Ξ杨宇军(航天科技集团第九研究院七七一研究所,陕西西安 710065)摘 要:在航天电子产品设计过程中,机箱结构的动力学仿真分析对于提高产品的环境适应性起着举足轻重的作用。

它不仅有助于在产品研发阶段寻求最优化的解决方案,而且能明显缩短产品研制周期、降低生产成本、确保产品质量。

这里使用著名有限元分析软件ANSYS,针对航天专用计算机机箱结构进行了动力学仿真分析,其中包括模态分析、半正弦冲击分析和随机振动分析。

并与试验测试结果相比较,验证了研究中所提取的仿真模型及所施加的边界条件的合理性。

该模型在某实际产品设计中产生了显著的经济效益。

关键词:动力学仿真;航天加固计算机;振动分析中图分类号:TP391.9;TP303 文献标识码:A 文章编号:100825300(2003)0520042206Vibration Analysis of the Aerospace Rugged ComputerUsing ANSYS Dynamic Simulation TechniqueY ANG Y u2jun(N o.771Research Instit ute of Aerospace Technology Group,Xi′an710065,Chi na)Abstract:The dynamic simulation of aerospace rugged computer case plays an important role in product de2 sign cycle.It is helpful not only in seeking optimum solution for product,but also efficient in shortening the research cycle,reducing cost and insuring the product quality.In this paper,the famous FEM software ANSYS has been used.Modal analysis,transient analysis of response of half2sin2shock and PSD analysis ofa computer′s case has been studied.Then the simulation result was compared with experimental data.Itverified the reasonability of the simplified model and the boundary condition used in analysis.K ey Words:Dynamic simulation;Aerospace rugged computer;Vibration analysis1 引 言航天计算机与普通商用计算机有着很大的不同。

航空用复合材料层合结构ANSYS有限元分析

航空用复合材料层合结构ANSYS有限元分析

复合材料的优势
层合结构的特点
层合结构是复合材料的一种重要形式, 通过将不同材料层层叠加形成,具有 各向异性的特点,对其进行分析需要 采用有限元方法。
复合材料具有高强度、轻质、抗疲劳 等优点,能够显著提高航空器的性能 和安全性。
目的和意义
目的
通过对航空用复合材料层合结构进行 ANSYS有限元分析,探究其力学性 能和损伤演化规律,为优化设计和安 全评估提供依据。
意义
有限元分析能够准确模拟层合结构的 复杂应力分布和变形行为,有助于提 高航空器的结构效率和安全性,对于 推动航空工业的发展具有重要意义。
02
航空复合材料层合结构概述
复合材料的定义和分类
定义
复合材料是由两种或两种以上材 料组成的一种材料,其性能取决 于各个组成材料的性质以及它们 的组合方式。
分类
软件概述
01
全球知名的工程仿真软件
02
提供多物理场仿真能力
支持多种操作系统平台
03
功能模块
前处理模块
支持复杂模型的建立和网 格划分
求解模块
进行各种物理场的仿真计 算
后处理模块
提供丰富的可视化功能和 结果分析工具
在复合材料分析中的应用
高效模拟复合材料的力学 行为
预测复合材料的损伤和破 坏行为
考虑材料的非均匀性和各 向异性
优化设计和改进建议
要点一
总结词
基于有限元分析结果,可以提出优化设计和改进建议。
要点二
详细描述
根据应力和应变分布以及损伤和破坏模式的分析结果,我 们可以提出一系列优化设计和改进建议。例如,可以调整 复合材料的层合顺序、改变连接方式或增加加强筋等措施 来改善结构的力学性能。同时,还可以通过优化工艺参数 和选择合适的材料来提高复合材料的质量和可靠性。这些 建议有助于提高航空用复合材料层合结构的安全性和可靠 性。

ANSYS复合材料仿真分析及其在航空领域的应用

ANSYS复合材料仿真分析及其在航空领域的应用

ANSYS复合材料仿真分析及其在航空领域的应用复合材料,是由两种或两种以上性质不同的材料组成。

主要组分是增强材料和基体材料。

复合材料不仅保持了增强材料和基体材料本身的优点,而且通过各相组分性能的互补和关联,获得优异的性能。

复合材料具有比强度大、比刚度高、抗疲劳性能好、各向异性、以及材料性能可设计的特点,应用于航空领域中,可以获得显著的减重效益,并改善结构性能。

目前,复合材料技术已成为影响飞机发展的关键技术之一,逐渐应用于飞机等结构的主承力构件中,西方先进战斗机上复合材料使用量已达结构总重量的25%以上。

飞机结构中,复合材料最常见的结构形式有板壳、实体、夹层、杆梁等结构。

板壳结构如机翼蒙皮,实体结构如结构连接件,夹层结构如某些薄翼型和楔型结构,杆梁结构如梁、肋、壁板。

此外,采用缠绕工艺制造的筒身结构也可视为层合结构的一种形式。

一.复合材料设计分析与有限元方法复合材料层合结构的设计,就是对铺层层数、铺层厚度及铺层角的设计。

采用传统的等代设计(等刚度、等强度)、准网络设计等设计方法,复合材料的优异性能难以充分发挥。

在复合材料结构分析中,已经广泛采用有限元数值仿真分析,其基本原理在本质上与各向同性材料相同,只是离散方法和本构矩阵不同。

复合材料有限元法中的离散化是双重的,包括了对结构的离散和每一铺层的离散。

这样的离散可以使铺层的力学性能、铺层方向、铺层形式直接体现在刚度矩阵中。

有限元分析软件,均把增强材料和基体复合在一起,讨论结构的宏观力学行为,因此可以忽略复合材料的多相性导致的微观力学行为,以每一铺层为分析单元。

二.ANSYS复合材料仿真技术及其在航空领域应用复合材料具有各向异性、耦合效应、层间剪切等特殊性质,因此复合材料结构的精确仿真,已成为现代航空结构的迫切需求。

许多CAE程序都可以进行复合材料的分析,但是大多程序并没有提供完备的功能,使复合材料的精确仿真难以完成。

如有些程序不提供非线性分析能力,有些不提供层间剪切应力的求解能力,有些不提供考虑材料失效破坏继续计算能力等等。

复合材料技术在航空领域中的应用

复合材料技术在航空领域中的应用

复合材料技术在航空领域中的应用在当今世界,复合材料技术已成为了航空领域的重要组成部分。

复合材料技术指的是将两种或两种以上的材料按照一定比例混合在一起,从而形成具有新的特性的材料制品。

航空领域是复合材料技术的一个重要应用领域。

因为在这个领域中,材料的质量和性能决定着飞行器的性能。

而复合材料材料具有化学性能稳定,机械性能优异,和重量轻的特性,能够很好地满足航空领域对材料的要求。

复合材料技术在航空领域中最常用的是碳纤维复合材料。

碳纤维复合材料由碳纤维和树脂等组成,具有重量轻、强度高、弹性模量大、腐蚀性小、可塑性佳等特点。

因此,它们在航空领域中的使用越来越广泛。

1. 复合材料技术在飞机制造中的应用复合材料技术在飞机的制造过程中的应用越来越广泛。

在飞机的机身、机翼和尾翼等部位中,都使用了复合材料材料。

这些材料具有重量轻、强度高、振动小、半导体性质好等特点,在提高飞机性能的同时,还可以减轻机体重量,从而增加燃料效率,进一步提高飞机性能。

在民用航空领域中,空客公司使用了多种碳纤维复合材料制造A320和A340飞机的机身。

据悉,这种材料不仅重量轻,还强度高,能够耐受极端温度和湿度条件下的使用。

这在提高机身性能、减少燃料消耗的同时,还能够减少对环境的污染和能源的浪费。

2. 复合材料技术在航空发动机中的应用航空发动机是航空器的核心部件,其性能直接影响到航空器的性能。

由于航空发动机的工作环境十分复杂,因此对材料的要求也十分高。

复合材料在航空发动机的制造过程中的应用越来越广泛。

在航空发动机的燃烧室和叶轮等关键部位中,都使用了复合材料材料。

3. 复合材料技术在航空电子设备中的应用航空电子设备也是航空器中至关重要的一部分。

因为现代航空器需要使用大量的电子设备来完成各种任务。

在这些电子设备中,也广泛地使用了复合材料材料。

这是因为复合材料材料具有机械强度高、耐腐蚀性好、防电磁波干扰等优点,从而能够满足航空电子设备对材料的要求。

仿真技术在航空航天行业中的应用教程

仿真技术在航空航天行业中的应用教程

仿真技术在航空航天行业中的应用教程随着科技的发展和进步,仿真技术在航空航天行业中扮演着越来越重要的角色。

本文将向您介绍仿真技术在航空航天行业的应用,并提供相应的教程来帮助您更好地了解和应用这些技术。

一、航空航天仿真技术的应用概述航空航天行业是对飞行器和宇宙飞行器进行研究、设计、制造、运行和维护的领域。

而仿真技术作为一种基于计算机的工具,旨在模拟现实世界,提供决策支持和培训。

在航空航天行业中,仿真技术主要应用于飞行器设计、飞行模拟、飞行器维修和训练等方面。

1. 飞行器设计:仿真技术在飞行器设计中发挥着重要的作用。

通过模拟不同飞行条件下的气动特性、结构强度、燃料效率等参数,可以帮助工程师优化设计方案,提高飞行器的性能和安全性。

2. 飞行模拟:飞行模拟是仿真技术在航空航天行业中的一个常见应用领域。

通过建立真实的飞行环境和飞行器模型,飞行员可以在虚拟空间中进行各种训练和飞行操作,以提高飞行技能和应对紧急情况的能力。

3. 飞行器维修:仿真技术也广泛应用于飞行器维修领域。

通过建立虚拟的飞行器模型和故障仿真,技术人员可以模拟和分析各种故障情况,并制定相应的维修方案,提高维修效率和减少飞行器停飞时间。

4. 训练:仿真技术在飞行员和技术人员的培训中起到了重要的作用。

通过虚拟仿真环境,可以提供各种训练场景,培养飞行员和技术人员的应对能力和决策能力,降低培训成本和风险。

二、飞行器设计中的仿真技术应用教程在飞行器设计中,仿真技术可以帮助工程师优化设计方案,提高飞行器的性能和安全性。

下面是一些常见的仿真技术和应用教程:1. 气动力学仿真:通过建立飞行器的气动力学模型,模拟不同飞行条件下的气动特性,如升力、阻力和操纵性能。

工程师可以使用流体力学软件,如FLUENT,来进行仿真分析和优化设计。

2. 结构强度仿真:通过建立飞行器的结构模型,模拟不同载荷条件下的结构强度和疲劳寿命,以确保飞行器的结构安全和可靠性。

工程师可以使用有限元分析软件,如ANSYS,来进行仿真分析和结构优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ANSYS复合材料仿真分析及其在航空领域的应用
复合材料,是由两种或两种以上性质不同的材料组成。

主要组分是增强材料和基体材料。

复合材料不仅保持了增强材料和基体材料本身的优点,而且通过各相组分性能的互补和关联,获得优异的性能。

复合材料具有比强度大、比刚度高、抗疲劳性能好、各向异性、以及材料性能可设计的特点,应用于航空领域中,可以获得显著的减重效益,并改善结构性能。

目前,复合材料技术已成为影响飞机发展的关键技术之一,逐渐应用于飞机等结构的主承力构件中,西方先进战斗机上复合材料使用量已达结构总重量的25%以上。

飞机结构中,复合材料最常见的结构形式有板壳、实体、夹层、杆梁等结构。

板壳结构如机翼蒙皮,实体结构如结构连接件,夹层结构如某些薄翼型和楔型结构,杆梁结构如梁、肋、壁板。

此外,采用缠绕工艺制造的筒身结构也可视为层合结构的一种形式。

一.复合材料设计分析与有限元方法复合材料层合结构的设计,就是对铺层层数、铺层厚度及铺层角的设计。

采用传统的等代设计(等刚度、等强度)、准网络设计等设计方法,复合材料的优异性能难以充分发挥。

在复合材料结构分析中,已经广泛采用有限元数值仿真分析,其基本原理在本质上与各向同性材料相同,只是离散方法和本构矩阵不同。

复合材
料有限元法中的离散化是双重的,包括了对结构的离散和每一铺层的离散。

这样的离散可以使铺层的力学性能、铺层方向、铺层形式直接体现在刚度矩阵中。

有限元分析软件,均把增强材料和基体复合在一起,讨论结构的宏观力学行为,因此可以忽略复合材料的多相性导致的微观力学行为,以每一铺层为分析单元。

二.ANSYS复合材料仿真技术及其在航空领域应用复合材料具有各向异性、耦合效应、层间剪切等特殊性质,因此复合材料结构的精确仿真,已成为现代航空结构的迫切需求。

许多CAE程序都可以进行复合材料的分析,但是大多程序并没有提供完备的功能,使复合材料的精确仿真难以完成。

如有些程序不提供非线性分析能力,有些不提供层间剪切应力的求解能力,有些不提供考虑材料失效破坏继续计算能力等等。

ANSYS作为一款著名的商业化大型通用有限元软件,广泛应用于航空航天领域,为飞机结构中的复合材料层合结构分析提供了完整精确的解决方案。

1.复合材料的有限元模型建立针对飞机结构中的复合材料层合板、梁、实体以及加筋板等结构类型,ANSYS提供一种特殊的复合材料单元———层单元,以模拟各种复合材料,铺层数可达250层以上,并提供一系列技术模拟各种复杂层合结构。

复合材料层单元支持非线性、振动特性、热应力、疲劳断裂等各种结构和热的分析功能和算法。

2.复合材料的层合结构定义:■铺层结构:ANSYS对于每一铺层可先定义材料性质、铺层角、铺层厚度,然后通过由下到上的顺序逐层叠加组合为复合材料层合结构;也可以通过直接输入材料本构矩阵来定义复合材料性质。

■板壳和梁单元截面形状:ANSYS利用截面形状工具可定义矩形、I型、槽型等各种形式;还可以定义各种函数曲线以模拟变厚度截面。

3.特殊层合结构的模拟:?变厚度板壳铺层切断:将切断的某铺层厚度定义为零,即可模拟铺层切断前后的板壳实际形状。

(图1上)?不同铺层板壳的节点协调:ANSYS板壳层单元的节点均可偏置到任意位置,使不同铺层数板壳的节点在中面或顶面、底面对齐。

(图1下)?蜂窝/泡沫夹层结构:ANSYS通过板壳层单元来模拟夹层结构的特性,夹层面板和芯子可以是不同材料。

(图2)?板-梁-实体组合结构:ANSYS将实体、板壳与梁等不同类型单元通过MPC技术相联系,各类单元的节点不需要重合并协调,便于飞机等复杂结构模型的处理。

4.复合材料有限元模型的检查:复合材料结构模型建立后,可以将板壳和梁单元显示为实际形状,还可以通过图形显示和列表直观地观察铺层厚度、铺层角度和铺层组合形式,方便模型的检查及校对。

(图3)5.复合材料层合结构分析ANSYS层单元支持各种静强度刚度、非线性、稳定性、疲劳断裂和振动特性等结构分析。

完成分析后,可以图形显示或输出每个铺层及层间的应力和应变等结果(虽然一个单元包含许多铺层),根据这些结果可以判断结构是否失效破坏和满足设计要求。

6.复合材料失效准则ANSYS已经预定义了三种复合材料破坏准则来评价复合材料结构安全性,包括最大应变/应力失效准则,蔡-吴(Tsai-Wu)准则。

每种强度准则均可定义与温度相关,考虑不同温度下的材料性能。

另外,用户也可自定义最多达六种的
失效准则,对特殊复合材料进行失效判断。

7.复合材料结构层间剪切应力:复合材料层合结构的层间剪切应力,几乎完全依靠层间界面的树脂基体承载,很容易导致层合结构的分层破坏,是整个结构的薄弱环节。

通常的有限元分析依据经典的层合板理论,各铺层按平面应力状态计算,不考虑层间应力,不够精确。

ANSYS可以利用各铺层单元在厚度方向上的叠加来模拟层合结构,弥补了经典理论的不足,可以精确地求解层间应力。

8.复合材料结构热应力分析:复合材料热膨胀系数的各向异性和铺层方向的不对称造成的耦合效应,使复合材料结构即使均匀升温也会在结构内部产生热应力。

复合材料这一特性与普通均匀材料大为不同,因此复合材料结构的热应力分析必须引起重视。

■ANSYS的结构-热耦合分析,可以对复合材料在热环境下的热膨胀应力、结构固化成形过程中100℃~200℃的温差而引起的结构固化变形和残余应力进行分析。

■ANSYS程序中的材料性质、强度准则均可以定义为随温度变化,以此来引入温度变化对结构物理性能的影响。

三.复合材料结构屈曲失稳实例 1.工程背景:飞机的复合材料结构中,板加筋结构形式最为常见,如壁板、隔框、翼盒等。

通常,飞机的复合材料加筋板的厚度较薄,因此结构分析不仅仅是判断材料的失效破坏和层间剪切破坏,还应该关注结构是否屈曲失稳而破坏。

利用ANSYS对某复合材料加筋板(图4)的屈曲特性进行分析,并确定结构的极限承载能力。

结构壁板和筋条的厚度很小,为典型的板-梁结构,选用ANSYS复合材料板壳单元,同时将单元节点偏置以协调铺层数的变化导致的板结构错层。

2.复合材料结构屈曲失稳理论复合材料结构的屈曲分析可分为特征值屈曲和非线性屈曲。

通常特征值屈曲所得出的结果偏大,不够安全,实际工程中应用较少。

非线性屈曲分析可以考虑结构大变形、结构初始缺陷、复合材料失效等实际工况,从而获得更为
精确的屈曲临界载荷。

特别是结构屈曲失稳之前,部分复合材料有可能已经失效破坏,结构的应力将重新分布并且刚度有所减弱。

因此考虑复合材料失效后,结构屈曲荷载将有所降低并接近实际。

3.屈曲分析结果首先进行特征值屈曲分析,屈曲临界荷载为808.0KN。

但是,在考虑结构几何大变形、应力刚化等实际情况后,非线性屈曲的临界荷载降低为770.1KN。

再引入复合材料结构失效对非线性屈曲的影响,因为结构部分失效导致应力重分布和刚度减弱,屈曲临界载荷更降低为656.2KN(图5)。

计算结果与实验结果只相差5%。

4.应用小结计算过程考虑了结构非线性及材料失效对屈曲临界荷载的影响,实际结果为656.2KN,与试验结果相差仅5%,结果比较精确。

而特征值屈曲分析和不考虑材料失效影响的非线性屈曲临界载荷的计算,被证明是不够保守的,难以为复合材料结构屈曲的设计提供准确依据。

四.结论飞机等航空结构中的复合材料结构仿真分析,越来越强调分析精度和贴近工程实际,如要求计算复合材料层间剪切效应、固化成形后的残余热应力、材料部分失效后的结构屈曲失稳等。

ANSYS通过对复合材料的铺层定义材料、铺层角以及铺层厚度,来组成“层单元”,以模拟各类航空复合材料层合结构,可以精确地分析材
料的失效破坏、层间剪切效应。

另外还可以满足飞机结构中复合材料的非线性屈曲失稳、振动特性分析、以及结构的热效应分析等更多仿真需求。

(注:素材和资料部分来自网络,供参考。

请预览后才下载,期待你的好评与关注!)。

相关文档
最新文档