傅里叶级数分析34页PPT
合集下载
傅里叶ppt课件
t0的 傅 氏 变 换 及 其 t0
积 分 表 达 式 ,其 中 0.
F()f(t)ejtdt
etejtdte(j)tdt 1
0
0
j
j 2 2
f(t)21 F()ejtd21 2 j2ejtd
10cos2t 2sintd
完整编辑ppt
33
因此
0
cost sint
0
2 2
0
0
其中
+
+
A () f() c o sd , B () f() s i nd .
(2.3)
(2.2) 是 f(t) 的傅里叶积分公式的三角形式
f(t) A(),B()
完整编辑ppt
20
傅里叶积分定理:若函数 f(t) 在区间 (,+) 上满足条件
(1) 在任意有限区间满足狄里克雷条件,
完整编辑ppt
40
(5)
F [ej0tf(t)]F(0)
像函数的 位移性质
F[ej0t f(t)] f(t)ej(0)tdt F(0).
完整编辑ppt
41
(6) 卷积定理 原函数的卷积与像函数的乘积间的关系
F[f1(t)]F1(), F[f2(t)]F2()
F [f1 ( t) f2 ( t) ] F 1 ()F 2 ()
kt
l
,
完整编辑ppt
10
偶函数 f(x) 有
f(t)a0
2
+
ak
k1
coskt,
l
ak
1 l
l f ( ) cos k d ,
l
l
bk
1 l
l f ( ) sin k d .
高等数学-第七版-课件-12-7 傅里叶级数
在 例3 将函数
上的傅里叶展开式
u
展开成傅里叶级数, 其中E 是正的常数 . O t
傅里叶级数
一、三角级数 二、函数展开成傅里叶级数
三、正弦级数和余弦级数
傅里叶级数
一、三角级数 二、函数展开成傅里叶级数
三、正弦级数和余弦级数
周期为2 的奇、偶函数的傅里叶级数 对周期为 2 的奇函数 f (x) , 其傅里叶系数为
a0 f ( x) an cos nx bn sin nx 2 n 1
①
② 定义 由公式 ② 确定的 称为函数f(x)
的傅里叶系数 ; 以f (x)的傅里叶系数为系数的三角级数 a0 an cos nx bn sin nx 称为f(x)的傅里叶级数 . 2 n 1
x
分别展开成正弦级数和余弦级数.
将定义在[0,]上的函数展开成正弦级数与余弦级数 展开思路 在
奇延拓 (偶延拓) 傅里叶展开 在
上有定义 上, 上为奇函数(偶函数)
定义在 在
(0, π] 上 F ( x ) f ( x ) 的正弦级数 (余弦函数) 展开式
y
例6 将函数
O 分别展开成正弦级数和余弦级数.
2) 在一个周期内至多只有有限个极值点, 则 f (x) 的傅里叶级数收敛 , 并且 当x 为f (x)的连续点时,级数收敛于 f ( x );
当x 为f (x)的间断点时,级数收敛于
1 [ f ( x ) f ( x )]. 2
例1 设 f (x) 是周期为 2 的周期函数 , 它在 上的表达式为
引言
简单的周期运动 ( A:振幅 :角频率
?
复杂的周期运动
:初相 )
傅里叶级数分析
c2
c2 1
2 0.25 π
20
1
O
1
2 1
1
O
2 1
0.15π
X
化为指数形式
1 j 1t f (t ) 1 e e j 1t 2j
π π 2 j t 2 j n t 1 1 2 j 1t 1 j 1 t 4 4 e e e e 2 整理 2 π j 1 j 1t 1 j 1t 1 jπ 1 4 j 2 1 t 4 j 2 1 t f (t ) 1 1 e 1 e e e e e 2 j 2 j 2 2
1.复指数正交函数集 e j n 1 t 2.级数形式 3.系数 利用复变函数的正交特性
f (t )
n
n 0 , 1, 2
j n 1 t F ( n ) e 1
4
F ( n )
1
T1
0 T1 0
f ( t ) e j n 1 t d t e j n 1 t e j n 1 t d t
1 T1 f (t )e j n1t d t T1 0
5
16
说明
f (t )
n
F ( n
1
)e
j n 1 t
4
5
1
1 T1 F n1 f (t ) e j n1t d t T1 0
周期信号可分解为 的线性组合。
, 区间上的指数信号e jn t
• 指数信号与正弦信号具有相同的特性
• 由系统的组成来说:当输入为指数信号时, 系统的输出一定也是一个指数信号,只不 过指数信号幅值发生变化。
傅里叶级数课件分解
若两个函数
与
在
上可积, 且
则称
与
在பைடு நூலகம்
上是正交的, 或在
上具有正
交性. 由此三角函数系(4)在
上具有正交性.
或者说(5)是正交函数系.
现应用三角函数系(5)的正交性来讨论三角级数(4)
的和函数 f 与级数(4)的系数
之间的关系.
定理12.2 若在[-π,π]上
且等式右边级数一致收敛, 则有如下关系式:
光滑弧段所组成,它至
收敛定理指出, f 的傅里叶级数在点 x 处收敛于 在
该点的左、右极限的算术平均值
而当 f 在点 x 连续时,则有
即此时f的傅里叶级数收敛于
. 这样便有
上按段光滑, 则 f 的傅里叶级数在
上收敛
于 f .
推论 若 f 是以 为周期的连续函数, 且在
上每一点都存在
, 如果在不连续
点补充定义
, 或
, 则
还有
(iii) 在补充定义
在
上那些至多有限个不存在
导数的点上的值后 ( 仍记为
),
在[a, b]上可积.
从几何图形上讲, 在
区间[a, b]上按段光滑
光滑函数,是由有限个
多有有限个第一类间
断点 (图15-1).
时,
于是当
当 时, 级数收敛到 0( 实际上级数每一项都为 0 ).
为进一步研究三角级数(4)的收敛性, 先讨论三角函
数系 (5) 的特性. 首先容易看出三角级数系(5)中所
定理 12.1 若级数
其次, 在三角函数系(5)中, 任何两个不相同的函数
与
在
上可积, 且
则称
与
在பைடு நூலகம்
上是正交的, 或在
上具有正
交性. 由此三角函数系(4)在
上具有正交性.
或者说(5)是正交函数系.
现应用三角函数系(5)的正交性来讨论三角级数(4)
的和函数 f 与级数(4)的系数
之间的关系.
定理12.2 若在[-π,π]上
且等式右边级数一致收敛, 则有如下关系式:
光滑弧段所组成,它至
收敛定理指出, f 的傅里叶级数在点 x 处收敛于 在
该点的左、右极限的算术平均值
而当 f 在点 x 连续时,则有
即此时f的傅里叶级数收敛于
. 这样便有
上按段光滑, 则 f 的傅里叶级数在
上收敛
于 f .
推论 若 f 是以 为周期的连续函数, 且在
上每一点都存在
, 如果在不连续
点补充定义
, 或
, 则
还有
(iii) 在补充定义
在
上那些至多有限个不存在
导数的点上的值后 ( 仍记为
),
在[a, b]上可积.
从几何图形上讲, 在
区间[a, b]上按段光滑
光滑函数,是由有限个
多有有限个第一类间
断点 (图15-1).
时,
于是当
当 时, 级数收敛到 0( 实际上级数每一项都为 0 ).
为进一步研究三角级数(4)的收敛性, 先讨论三角函
数系 (5) 的特性. 首先容易看出三角级数系(5)中所
定理 12.1 若级数
其次, 在三角函数系(5)中, 任何两个不相同的函数
《高数课件:傅里叶级数与傅里叶变换》
《高数课件:傅里叶级数 与傅里叶变换》
傅里叶级数是数学中的一种重要工具,用于将任意函数展开为三角函数的无 穷级数。本课件将介绍傅里叶级数的定义、应用领域以及性质。
什么是傅里叶级数?
傅里叶级数是将周期函数分解为一组频率不同的正弦和余弦函数的总和。它在信号处理、图像处理等领域有广 泛的应用。
傅里叶级数的性质
线性性质
傅里叶级数具有线性叠加性质,可以对信号进 行加法和乘法操作。
对称性质
有些函数的傅里叶级数具有对称性,可以利用 对称性简化级数的计算。
周期性质
傅里叶级数可以看作是周期函数的频谱表达, 具有与原函数相同的周期。
收敛性质
傅里叶级数在一定条件下收敛,能够逼近原函 数的近似值。
傅里叶变换的定义
傅里叶变换是将一个函数在连续频域和时域之间进行转换的数学工具。它为信号的频谱分析提供了一种强大的 方法。
傅里叶变换的频谱解释
频域 高频成分 低频成分 频谱幅度 频谱相位
时域 快速变化的信号 缓慢变化的信号 信号幅度的变化情况 相邻波形之间的偏移角度
傅里叶变换的应用案例
信号处理
傅里叶变换广泛应用于音频、图 像和视频信号的处理和压缩。
图像处理
傅里叶变换在图像频域滤波、图 像锐化和边缘检测等方面具有重 要作用。
通信系统
傅里叶变换用于信号的调制、解 调以及频谱分析,是现代通信系 统的关键技术之一。
傅里叶级数与傅里叶变换的关系
傅里叶级数是傅里叶变换在周期函数上的特例,是一种将函数展开为频谱成分的方法。
傅里叶级数与傅里叶变换的应用领域
1Hale Waihona Puke 音乐傅里叶变换在音乐信号分析和合成中有广泛 的应用。
2 图像处理
傅里叶级数是数学中的一种重要工具,用于将任意函数展开为三角函数的无 穷级数。本课件将介绍傅里叶级数的定义、应用领域以及性质。
什么是傅里叶级数?
傅里叶级数是将周期函数分解为一组频率不同的正弦和余弦函数的总和。它在信号处理、图像处理等领域有广 泛的应用。
傅里叶级数的性质
线性性质
傅里叶级数具有线性叠加性质,可以对信号进 行加法和乘法操作。
对称性质
有些函数的傅里叶级数具有对称性,可以利用 对称性简化级数的计算。
周期性质
傅里叶级数可以看作是周期函数的频谱表达, 具有与原函数相同的周期。
收敛性质
傅里叶级数在一定条件下收敛,能够逼近原函 数的近似值。
傅里叶变换的定义
傅里叶变换是将一个函数在连续频域和时域之间进行转换的数学工具。它为信号的频谱分析提供了一种强大的 方法。
傅里叶变换的频谱解释
频域 高频成分 低频成分 频谱幅度 频谱相位
时域 快速变化的信号 缓慢变化的信号 信号幅度的变化情况 相邻波形之间的偏移角度
傅里叶变换的应用案例
信号处理
傅里叶变换广泛应用于音频、图 像和视频信号的处理和压缩。
图像处理
傅里叶变换在图像频域滤波、图 像锐化和边缘检测等方面具有重 要作用。
通信系统
傅里叶变换用于信号的调制、解 调以及频谱分析,是现代通信系 统的关键技术之一。
傅里叶级数与傅里叶变换的关系
傅里叶级数是傅里叶变换在周期函数上的特例,是一种将函数展开为频谱成分的方法。
傅里叶级数与傅里叶变换的应用领域
1Hale Waihona Puke 音乐傅里叶变换在音乐信号分析和合成中有广泛 的应用。
2 图像处理
《傅立叶级数》课件
傅立叶级数可以用于图像压缩,通 过对图像进行频域变换和编码,实 现图像数据的压缩和存储。
特征提取
傅立叶级数可以用于图像特征提取 ,通过分析图像的频谱特性,提取 出图像中的边缘、纹理和结构等特 征。
数值分析中的应用
数值积分
傅立叶级数可以用于数值积分, 通过对被积函数进行展开,将积 分转换为一系列项的和,从而近 似计算积分值。
优点
思路清晰,易于理解。
步骤
将傅立叶级数的计算问题分解为若干个子问题,分别计算 每个子问题的傅立叶级数,最后合并得到原函数的傅立叶 级数。
缺点
需要仔细选择分治策略,否则可能影响计算的精度和效率 。
05
傅立叶级数的应用实例
信号处理中的应用
信号分析
频域分析
傅立叶级数可以将复杂的信号分解为 简单的正弦波和余弦波,从而方便分 析信号的频率、振幅和相位等特性。
傅立叶级数
目录
• 傅立叶级数简介 • 傅立叶级数的性质 • 傅立叶级数的展开 • 傅立叶级数的计算方法 • 傅立叶级数的应用实例 • 傅立叶级数的展望与未来发展
01
傅立叶级数简介
傅立叶级数的定义
1
傅立叶级数是一套将周期函数表示为无穷级数的 方法,由法国数学家约瑟夫·傅立叶在19世纪初提 出。
2
微分方程求解
傅立叶级数可以用于求解微分方 程,通过对微分方程进行变换, 将其转换为代数方程,从而求解 微分方程的解。
插值和拟合
傅立叶级数可以用于插值和拟合 ,通过对数据进行展开,找到数 据的最佳拟合函数,从而进行插 值和拟合计算。
06
傅立叶级数的展望与未来发展
傅立叶级数与其他数学分支的联系
调和分析
$$f(x) = sum_{n=0}^{infty} d_n e^{ifrac{2pi n}{T}x}$$
特征提取
傅立叶级数可以用于图像特征提取 ,通过分析图像的频谱特性,提取 出图像中的边缘、纹理和结构等特 征。
数值分析中的应用
数值积分
傅立叶级数可以用于数值积分, 通过对被积函数进行展开,将积 分转换为一系列项的和,从而近 似计算积分值。
优点
思路清晰,易于理解。
步骤
将傅立叶级数的计算问题分解为若干个子问题,分别计算 每个子问题的傅立叶级数,最后合并得到原函数的傅立叶 级数。
缺点
需要仔细选择分治策略,否则可能影响计算的精度和效率 。
05
傅立叶级数的应用实例
信号处理中的应用
信号分析
频域分析
傅立叶级数可以将复杂的信号分解为 简单的正弦波和余弦波,从而方便分 析信号的频率、振幅和相位等特性。
傅立叶级数
目录
• 傅立叶级数简介 • 傅立叶级数的性质 • 傅立叶级数的展开 • 傅立叶级数的计算方法 • 傅立叶级数的应用实例 • 傅立叶级数的展望与未来发展
01
傅立叶级数简介
傅立叶级数的定义
1
傅立叶级数是一套将周期函数表示为无穷级数的 方法,由法国数学家约瑟夫·傅立叶在19世纪初提 出。
2
微分方程求解
傅立叶级数可以用于求解微分方 程,通过对微分方程进行变换, 将其转换为代数方程,从而求解 微分方程的解。
插值和拟合
傅立叶级数可以用于插值和拟合 ,通过对数据进行展开,找到数 据的最佳拟合函数,从而进行插 值和拟合计算。
06
傅立叶级数的展望与未来发展
傅立叶级数与其他数学分支的联系
调和分析
$$f(x) = sum_{n=0}^{infty} d_n e^{ifrac{2pi n}{T}x}$$
课件:傅里叶(Fourier)级数
nx
dx
0
9
但是在三角函数系中两个相同的函数的乘积在
上的积分不等于 0 . 且有
1
1d
x
2
cos2
n xdx
sin
2
nx
dx
cos2 nx 1 cos 2nx , sin 2 nx 1 cos 2nx
2
2
10
6.4.2 函数展开为傅里叶级数
定理 2 . 设 f (x) 是周期为 2 的周期函数 , 且
5x
( x , x (2k 1) , k 0, 1 , 2 , )
说明:
当
x
(2k
1)
时,
级数收敛于
0
(
2
)
2
22
定义在[– ,]上的函数 f (x)的傅氏级数展开法
周期延拓
f (x) ,
x [ , )
F(x)
f (x 2k ) , 其它
傅里叶展开
上的傅里叶级数
23
例3. 将函数
2
,
n 2k 1 n 2k
( k 1, 2 , )
bn
1
f (x)sin nx d
2 cos x
x
1
0
x sin nxdx
sin x 1 sin 2x (
n
(1)n1 n
1, 2, )
4
2
2
32
cos3x 1 sin 3x 1 sin 4x
3
4
522
cos 5 x
1 5
sin
f
(x)
a0 2
(an
n1
cos nx
bn
sin
高中数学(人教版)傅里叶级数课件
其导函数在[a, b]上除了至多有限个点外都存 并且在这有限个点上导函数
在且连续, 极限存在,
f 的左、右
则称 f 在
[a , b]上按段光滑.
§1 傅里叶级数
三角级数 · 正交函数系
以2π为周期的函数的傅里叶级数
收敛定理
在[a, b]上按段光滑的函数 f ,有如下重要性质: (i) f 在 (ii) 在
所产生的一般形式的三角级数. 容易验证,若三角级数(4)收敛, 则它的和一定是一
个以
为周期的函数. 2π
关于三角级数(4)的收敛性有如下定理:
§1 傅里叶级数
三角级数 · 正交函数系
以2π为周期的函数的傅里叶级数
收敛定理
定理15.1
若级数
| a0 | (| an | | bn, |) 收敛 2 n 1
(8)
( x ) ( x )dx 0,
a
b
则称 交性.
与 在 [a , b] 上是正交的,
由此三角函数系(5)在
或在
[a , b]上具有正
[ π, π] 上具有正交性.
或者说(5)是正交函数系.
§1 傅里叶级数
三角级数 · 正交函数系
以2π为周期的函数的傅里叶级数
收敛定理
(10a ) (10b周期的函数的傅里叶级数
收敛定理
以的傅里叶系数为系数的三角级数(9)称为 f (关于三
角函数系) 的傅里叶级数,
记作
a0 f ( x ) ~ (an cos nx bn sin nx ). 2 n1
这里记号“~”表示上式右边是左边函数的傅里叶级
π
(7)
§1 傅里叶级数
傅立叶(Fourier)级数的展开方法PPT幻灯片课件
k
ck
1 2l
l l
i kx
f ( x)e l dx
例5 把锯齿波f(x)在(0,T)这个周期上可表示
为f(x)=Hx/T,试把它展为复数形式的傅立叶 级数。
f (x)
解 函数曲线如图 x
T
27
周期为 2l T , l T
2
ck
1 2l
l l
i 2kx
f ( x)e T dx
1
T
H
i
xe
方法
将函数 f(x)解析延拓到[-l,l]区间,再将[-l,l] 区间的函数再延拓到[-∞∞]区间上,构成周期函数 g(x),其周期为2l
例4 定义在(0,l)上的函数f(x)=a(1-x/l),将
该函数展开为傅立叶级数。
解 函数曲线如图
f (x)
a x
l
21
延拓到(- l,l)后再周期延拓,如图做偶延拓:
16
三、定义在有限区间上的函数的傅里叶展开
工程以及物理上用到的函数一般是定义在有限区间上的. 1、定义在 [-l, l] 上的函数 f(x)展开;
方法 将函数 f(x)解析延拓到[-∞,∞]区间, 构成的周期函数g(x),其周期为2l
f (x)
l
l
f (x)
l
l
x x
17
f (x)
l
l
x
f (x)
x
l
l
仅在 [-l,l]上,g(x)≡f(x).
例3 在(-1,1)上定义了函数f(x)为:
x
f
(
x)
1
1
(1,0)
(0, 1 ) 2
( 1 ,1) 2
9.7.傅里叶级数ppt
①
f (x)dx
1 2
a0dx
[
(ak cos kx bk sin kx)]dx
k 1
1 2
a0dx
ak cos kxdx k 1
bk sin kxdx k 1
a0
1 2
2
,
a0
1
f (x)dx
(2) 求an .
f
( x)cos nxdx
a0 2
cos nxdx
an n , bn n .
练习题
一、设周期为2 的周期函数f ( x) 在[ , ) 上的表达式
为
f
(
x
)
bx ax
, ,
0
x
x
0
(常数a b 0)试将
其展开成傅里叶级数 .
二、将下列函数 f ( x) 展开成傅里叶级数:
1、
f
(x)
e x ,
x
0;
1,0 x
2、 f ( x) sin(arcsin x).
1) 在一个周期内连续或只有有限个第一类间断点; 2) 在一个周期内只有有限个极值点, 则 f (x) 的傅里叶级数收敛 , 且有
f (x) ,
f (x) f (x) , 2
x 为连续点 x 为间断点
其中 an , bn 为 f (x) 的傅里叶系数 .
特别地,当 x为端点 x 时, 收敛于 f ( 0) f ( 0). 2
n1
令
an An sinn , bn An cosn ,
得函数项级数
a0 2
(an
n1
cos nx
bn
sin nx)
称上述形式的级数为三角级数.