用模拟法测绘静电场
用模拟法测绘静电场实验报告
一、实验目的1. 理解模拟实验法的适用条件。
2. 掌握用模拟法测绘静电场的原理和方法。
3. 加深对电场强度和电位概念的理解。
4. 通过实验,提高实验操作技能和数据分析能力。
二、实验原理静电场是由静止电荷产生的电场,其电场强度E与电荷量Q和距离r的关系为E=kQ/r^2,其中k为库仑常数。
静电场的电位U与电荷量Q和距离r的关系为U=kQ/r。
由于静电场中的电荷不运动,因此静电场是稳恒的。
在实验中,由于静电场中电荷不运动,直接测量静电场的电场强度和电位比较困难。
因此,我们采用模拟法,利用稳恒电流场来模拟静电场,从而间接测量静电场的分布。
稳恒电流场中,电流密度J与电场强度E的关系为J=σE,其中σ为电导率。
稳恒电流场的电位U与电流密度J和距离r的关系为U=-∫J·dr。
在模拟实验中,我们通过改变电流强度,调整模拟装置,使得模拟电流场的分布与静电场相似,从而间接测量静电场的分布。
三、实验仪器1. 模拟装置:同轴电缆和电子枪聚焦电极。
2. 静电场描绘仪。
3. 静电场描绘仪信号源。
4. 导线。
5. 数字电压表。
6. 电极。
7. 同步探针。
8. 坐标纸。
四、实验步骤1. 将同轴电缆的一端与静电场描绘仪连接,另一端与电子枪聚焦电极连接。
2. 调节静电场描绘仪信号源,输出一定电压。
3. 将电子枪聚焦电极放置在坐标纸上,调节电子枪的聚焦,使得电子束在坐标纸上形成一个清晰的光点。
4. 移动电子枪聚焦电极,在坐标纸上描绘出模拟电流场的等位线。
5. 根据等位线的分布,分析模拟电流场的电场强度和电位分布。
6. 通过比较模拟电流场和静电场的相似性,间接测量静电场的分布。
五、实验结果与分析1. 通过实验,我们成功描绘出模拟电流场的等位线,等位线呈同心圆分布,符合稳恒电流场的特性。
2. 通过分析等位线的分布,我们得出模拟电流场的电场强度和电位分布,与静电场的理论分布相似。
3. 实验结果表明,模拟法可以有效地测绘静电场的分布,为静电场的研究提供了方便。
用模拟法测绘静电场
实验14 用模拟法测绘静电场对于带电导体(电极)在其周围空间形成的静电场,一般情况下,由于电极本身的形状各式各样(规则和不规则),所以在周围空间中的电场强度和电势的分布很难用函数关系式来表述。
因此一般通过实验来测绘。
但是静电场有一非常显著的特性,它对于置于场中的导体(测量仪器、探针)会产生静电感应现象,那么导体的电荷在静电场力的作用下就要重新分布,导体激发的附加电场与原电场叠加就引起原静电场的显著畸变。
为了相对准确的测量,在对静电场研究的过程中发现可以用稳恒电流场来代替静电场进行间接测量,从而相对准确地得到了电场强度和电势的关系。
[实验目的]1.通过模拟法的描述进一步掌握静电场的分布。
2.通过测量,进一步加强对电场强度和电势概念的理解。
3.掌握电场强度与电势的微分关系。
[实验原理]模拟法的本质是用一种易于实现、便于测量的物理状态或过程模拟不易实现、不便测量的状态或过程,只要这两种状态或过程有一一对应的两组物理量,并且这些物理量在两状态或过程下满足基本相同的数学方程。
在模拟法中一般所测量的物理量不是我们直接所要研究的对象,要使两个物理量相互对应,必须要满足一定的相似条件。
在本实验中,稳恒电流场和被模拟的静电场实现模拟的条件为:(1)两个场中的电极形状必须相同或相似,且在场中的位置相同;(2)电流场中的电极的电导率必须远大于导电介质的电导率,以保证电极可近似地视为等势体。
一般电极选用金属(铜或铁)制成,导电介质选用蒸馏水、导电纸(纸上涂有一薄层导电石墨)或其它一些电导率非常小的导电介质;(3)对于真空或空气中的静电场,必须要求电流场中的导电介质为均匀介质,即电导率处处相等。
如图1(a )所示,在真空中有一半径为的长圆柱体(电极)r a A 和一内半径为的长圆筒导体(电极)B ,两电极同轴。
设电极r b A 、B 的电势分别为U 和U ,且(接地),各带等量异号电荷,在两极间产生静电场。
由静电场的高斯定理可求得在距轴线为A B 0=U B r 处任一点电势U 为: r ab b A r r r r r U U ln /ln =(1)(a ) (b )图1 无限长同轴圆柱面的电场可见,两极之间产生的静电场的等势面是同轴的圆柱面。
实验九模拟法测绘静电场
实验九模拟法测绘静电场实验九模拟法测绘静电场电场强度和电位是描述静电场的两个主要的物理量,为了形象地描述电场中各点的场强和电位的分布情况,人们人为地用电力线和等位面来进行描述。
但任一带电体在空间形成的静电场的分布,即电场强度和电位的分布情况,除了一些简单的特殊的带电体外,一般很难写出它们在空间的数学表达式,因此,通常采用实验方法来研究。
如果我们用静电仪表对静电场中的电场强度和电位进行测量,这样,因测量仪器的介入就会导致原静电场发生变化。
但是,如果采用模拟法,即用稳恒电流场模拟静电场进行测量,就会得到满意的结果。
实验目的1.学会用模拟法测绘静电场。
2.通过对静电场的测绘加深对静电场的认识。
实验原理及方法带电体周围存在着静电场,用电力线来形象描述电场,电力线的方向起于正电荷(或带正电的物体),止于负电荷(或带负电的物体),任何两条电力线永不相交。
静电场空间中电位相同点构成等位面(或等位线)。
由于电力线与等位面正交,若测出电场中的等电位点,其轨迹即为等位面(或等位线),由等位面可作出相应的电力线,由此可直观地对静电场中电力线的分布得到清晰的了解。
静电场的实际测量是十分困难的,因为测量时当探针进入静电场后,由于静电感应而在探针上产生感应电荷,这种感应电荷产生的电场对被测电场产生干扰,引起原电场畸变,不能测出电场的本来分布情况,因此,常用稳恒电流场来模拟静电场。
均匀导电介质中的稳恒电流与真空中的静电场遵从同样规律,当电极的形状、大小、位臵和边界条件相同时,它们的场分布是相同的。
因为在这样的导电介质中有稳恒电流存在,任一体积元内流进和流出的电荷相等,无静电荷出现,所以不会有影响原来电场分布的干扰源。
尤其在电场的分布与Z 轴(见图9-1)无关情况下,仅需在垂直Z 轴的平面内描绘出电场分布。
等位线电力线图9-2 带电体周围空间电场本实验采用薄导电介质来描绘无限沿伸的(即与Z 轴无关的)带电导体在其横截面内产生的电场分布。
用模拟法测绘静电场实验报告!!
用模拟法测绘静电场实验报告!!实验目的:通过模拟法来测绘静电场,了解静电场的分布和特性。
实验器材:1.塑料平板2.金属导体棒3.高电压发生器4.静电计5.金属探针6.细线7.防静电工作台实验原理:静电场是由电荷所引起的一种特殊的电磁场。
静电场的具体分布和特性与电荷的分布以及周围环境有关,可以通过模拟法来测绘。
实验步骤:1.将塑料平板放在防静电工作台上,确保其为绝缘状态。
2.在塑料平板的中央附近带电,可以使用高电压发生器对金属导体棒进行充电,也可以通过摩擦等方法带电。
3.使用静电计探测不同位置上的电势差,从而测定静电场的大小和分布。
4.将金属探针插入不同位置,并使用静电计记录下对应的电势值。
5.使用细线连接不同位置上的等势线,从而绘制出静电场的等势线图。
6.根据等势线的密度和间距,可以推测出电场线的密度和方向。
7.测量不同位置上的电场强度,可以使用静电计或引导线和微电流计的组合来测定。
8.使用测量得到的数据,计算静电场的强度和方向,进一步分析和讨论实验结果。
实验结果与分析:通过模拟法测绘静电场的过程中,我们得到了静电场的等势线图和电场强度的分布。
根据等势线的间距和方向,可以推测出电场线的密度和方向,从而了解静电场的分布特点。
通过测量电场强度,我们可以计算出静电场的强度和方向,进一步分析和讨论实验结果。
实验中可能存在的误差源:1.实验环境的干扰:静电场很容易受到外界环境的影响,如空气中的湿度、温度等因素,可能会对实验结果产生一定的误差。
2.仪器误差:使用的静电计和微电流计等仪器本身存在一定的测量误差,需要在实验中进行校准和减小误差。
3.实验操作的影响:实验者在实验过程中的操作技巧和经验水平也可能会对实验结果产生影响,需要仔细操作和加强实验技能。
改进措施和建议:1.控制实验环境:在实验过程中,可以采取措施减小外界环境因素的干扰,如保持实验室的温湿度稳定、使用防静电设备等。
2.提高仪器精度:使用高精度、精确校准的仪器来进行测量,减小仪器本身带来的误差。
用模拟法测绘静电场实验报告
用模拟法测绘静电场实验报告实验目的,通过模拟法测绘静电场,探究静电场的分布规律。
实验仪器,静电场模拟装置、静电场测量仪、导线、电荷点源等。
实验原理,静电场是由电荷引起的,电荷周围存在静电场。
在电场中,电荷会受到电场力的作用,这种力的大小和方向与电荷的大小和位置有关。
通过模拟法可以模拟出静电场的分布情况,进而研究静电场的性质。
实验步骤:1. 将静电场模拟装置放置在实验台上,并连接好静电场测量仪。
2. 调节模拟装置中的电荷点源位置,使其在不同位置放置电荷点源。
3. 通过测量仪器记录下不同位置的电场强度,并绘制出电场线分布图。
4. 根据实验数据,分析电场的分布规律,探究电场强度与电荷点源位置的关系。
实验结果与分析:通过实验数据和电场线分布图的分析,我们发现电场强度与电荷点源的位置呈现出明显的规律性。
当电荷点源靠近时,电场强度较大,随着距离的增加,电场强度逐渐减小。
这与静电场的理论分布规律相符合。
同时,我们还发现了电场线的分布形态,可以清晰地展现出电场的方向和强度分布情况。
结论:通过模拟法测绘静电场实验,我们成功地探究了静电场的分布规律。
实验结果表明,电场强度与电荷点源位置呈现出一定的关系,这为我们进一步研究静电场的性质提供了重要的实验基础。
同时,通过实验还可以直观地观察到电场线的分布形态,从而更加深入地理解了静电场的特性。
总结:静电场是物理学中重要的研究对象,通过模拟法测绘静电场实验,我们可以直观地了解电场的分布规律。
本实验的成功进行,为我们进一步深入研究静电场的特性提供了重要的实验基础。
希望通过这次实验,能够增进我们对静电场的认识,为今后的学习和研究打下坚实的基础。
实验五用模拟法测绘静电场
双线圈距离为R时:B0=0。450 mTB10=0。278 mTB5=0。425 mT
双线圈距离为R/2时:B0=0。573mTB10=0.237 mTB5=0。448 mT
双线圈距离为2R时:B0=0。222 mTB10=0.342 mTB5=0。278 mT
ﻩUH=RH
RH是由半导体本身载流子迁移率决定的物理常数,称为霍尔系数。
ﻩ2.霍尔传感器
ﻩ本实验用SS95A型集成霍尔传感器测量载流圆线圈磁场分布,其工作原理也基于霍尔效应,即UH=RH =KHIBKH=RH/d
KH称为霍尔元件灵敏度,B为磁感应强度,I为流过霍尔元件的电流强度。理论上B为零时,
UH也为零,但实际情况UH示值并不为零,这是由于霍尔元件所用的半导体材料结晶不均匀、各电极不对称等引起附加电势差U0,称为剩余电压。
二、亥姆霍兹线圈
亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈,每一线圈N匝,两线圈内的电流方向一致,大小相同,线圈之间距离d正好等于圆形线圈的平均半径 。其轴线上磁场分布情况如图所示,虚线为单线圈在轴线上的磁场分布情况.
设 为亥姆霍兹线圈中轴线上某点离中心点O处的距离,则亥姆霍兹线圈轴线上任一点的磁感应强度大小 为
四、数据处理
1。将测得的单、双线圈中心点的磁感应强度与理论公式计算结果相比较,看是否一致。
2.用直角坐标纸,在同一坐标系作 —X、 —X、 -X、 + —X四条曲线,考察 -X与 + —X曲线,验证磁场叠加原理,即载流亥姆霍兹线圈轴线上任一点磁感应强度 是两个载流单线圈在该点上产生磁感应强度之和 + .
按图接线(直流稳流电源中数字电流表已串接在电源的一个输出端),只给单线圈a通电,旋转电流调节旋纽,令电流I为100mA.取台面中心为坐标原点O,通过O的横刻线为OX轴。把传感器探头从一侧沿OX轴移动,每移动测一磁感应强度 ,测出一系列与坐标x对应的磁感应强度 ,数据填入预习报告的表格中.测量区域为—10cm-+10cm.
实验5-21用模拟法测绘静电场
155实验5-21 用模拟法测绘静电场带电体的周围产生静电场,场的分布是由电荷分布、带电体的几何形状及周围介质所决定的。
由于带电体的形状复杂,大多数情况求不出电场分布的解析解,因此只能靠数值解法求出或用实验方法测出电场分布。
直接用电压表去测量静电场的电位分布往往是困难的,因为静电场中没有电流,磁电式电表不会偏转;而且与仪器相接的探测头本身总是导体或电介质,若将其放入静电场,探测头上会产生感应电荷或束缚电荷,这些电荷又产生电场,与被测静电场迭加起来,使被测电场产生显著的畸变。
因此,实验时一般采用一种间接的测量方法(即模拟法)来解决。
【实验目的】1.学会用模拟法测绘静电场方法。
2.加深对电场强度和电位概念的理解。
【实验器材】GVZ-3型导电微晶静电场描绘仪。
【实验原理】 一、模拟法模拟法本质上是用一种易于实现、便于测量的物理状态或过程来模拟不易实现、不便测量的状态和过程,但是要求这两种状态或过程有一一对应的两组物理量,且满足相似的数学形式及边界条件。
一般情况,模拟可分为物理模拟和数学模拟。
物理模拟就是保持同一物理本质的模拟,对一些物理场的研究主要采用物理模拟,例如用光测弹性模拟工件内部应力的分布等。
数学模拟也是一种研究物理场的方法,它是把不同本质的物理现象或过程,用同一数学方程来描绘。
对一个稳定的物理场,若它的微分方程和边界条件一旦确定,其解是唯一的。
如果描述两个不同本质的物理场的微分方程和边界条件相同,则它们解的数学表达式是一样的。
只要对其中一种易于测量的场进行测绘,并得到结果,那么与它对应的另一个物理场的结果也就知道了。
模拟法在工程设计中有着广泛的应用。
例如,对于静电场,电场强度E在无源区域内满足以下积分关系0sE dS ⋅=⎰⎰(高斯定理)0l E dl ⋅=⎰ (环路定理) 对于稳恒电流场,电流密度矢量j在无源区域中也满足类似的积分关系0sj dS ⋅=⎰⎰ (连续方程)0lj dl ⋅=⎰ (环路定理)在边界条件相同时,二者的解是相同的。
用模拟法测绘静电场
实验三十九用模拟法测绘静电场实验目的:1.描绘同轴电缆的静电场分布(测绘等位线,画出电场线);2.锻炼自我实验操作能力。
实验原理:1、如果两种物理现象在一定的条件下满足同一形式的数学规律,就可一将对其中一种物理现象的研究来代替对另一种物理现象的研究,这种研究方法称为模拟法。
2、实验中用稳恒电流场来模拟静电场正是应用了形式上的相似性。
虽然相似但不是等同。
所以使用模拟法时,必须注意到它的适用条件。
●电流场中的导电介质分布必须相当于静电场中的介质分布。
●静电场中的带电导体的表面是等为面,则稳恒电流场中的导电体也应该是等位面,这就要求采用良好的导电体来制作导电电极,而且导电介质的电导率也不易太大,且要均匀●测定导电介质中的电位时,必须保证探测电极支路中无电流通过●用长同轴圆柱形电极间稳恒电流场模拟长同轴圆柱形导体间静电场的依据3、场强在数值上等于电位剃度,方向指向电位降落的方向,先测绘等位线,然后根据电场线与等位线正交的原理,画出电场线涉及公式:ar Edr UUUaraarln20επλ-=-=⎰(1)ab r b UUarlnln= (2)ab Irb arbrURUlnln'==(3)r=a rV V ab b )( (4)实验仪器:EQC —2型静电场测绘仪(包括导电玻璃,双层固定支架,同步探针), 直流稳压电源, 记录纸。
实验方法:1、测绘等位线,要求相邻两等位线间的电势差为1V 共测8条,每条等位线测定出8个均匀分布的点,画出等位线的 同心圆簇。
2、画出电场线,指出电场强度的方向3、由公式r=a rV V ab b )(计算出理论圆半径(b=75.00mm, a=5.000mm, a V =10V )实验数据处理:表1 各等位线半径数据表2 半径测量数据表单位:mm。
实验五 用模拟法测绘静电场
实验五用模拟法测绘静电场实验目的:1. 理解静电场的概念及其性质2. 熟悉静电场线和等势线的画法3. 学习用模拟法测绘静电场一、实验原理与装置1. 静电场的概念和性质静电场是指存在电荷时周围空间内的电场。
静电场有以下性质:(1) 电场线的方向是电场力的方向。
(电荷正电荷电场线从正电荷向外发出,电荷负电荷电场线从负电荷向内汇聚)(2) 等势线垂直于电场线。
(不然质点只能沿着电场线运动)(3) 等势线上各点势能相等。
(在等势线上移动的质点不做功)(4) 电场线与等势线的密度越大,电场越强。
2. 实验装置(1) 金属板(2) 带电棒及其支架(3) 电位计或万用表二、实验内容和步骤1. 实验内容用模拟法测绘电荷间的静电场线和等势线,了解静电场的性质。
2. 实验步骤(1) 用金属板固定一个带电棒。
(2) 在另一侧用电位计或万用表测量带电棒所激发的电场强度E,将测量数据记录下来。
(3) 在周围的纸面上画出静电场线和等势线。
(4) 待电荷达到稳态(静电场不变),移动带电棒,再次测量电场强度,并观察静电场线和等势线的变化。
三、实验数据处理1. 静电场线和等势线的绘画方法(1) 画静电场线画负电荷和正电荷的静电场线是不同的,如下图:对于正电荷:电荷从正电荷开始散开,射向无限远处。
对于负电荷:电荷从负电荷汇聚,向负电荷无限靠近。
(2) 画等势线等势线是垂直于静电场线的曲线,在静电场中,等势线是由一些面状平面构成的,就是所谓的等电面。
在同一等电面内,各点的电势是相等的。
等势线表现出了静电场的梯度。
决定等势线的要素有电荷大小、形状、位置和形成等势线的维度等,整个电场的形态和分布都可以通过等势线和静电场线得到。
2. 数据记录分析利用测量的电场强度,对静电场进行绘画。
在静电场线和等势线上找到几组有特征的数据点,根据等势线的定义,这些点的电势是相等的,因此可以计算出其具体的电势值。
四、实验注意事项1. 实验操作小心,防止触电2. 用导体与地连接保持安全3. 测量前,检查实验装置是否正确安装五、实验思考题1. 如何判别静电场是否稳定?2. 静电场中等势线的特点是什么?3. 如何利用等势线测量电势差?实验五用模拟法测绘静电场完整实验报告样例【摘要】本实验通过测量带电棒激发的电场强度和画出静电场线和等势线,测绘了一个由单个电荷组成的静电场。
用模拟法测绘静电场02949
用模拟法测绘静电场〔实验目的〕1、学习用模拟法描绘和研究静电场分布;2、加深对电场强度和电势概念的理解。
〔实验原理〕静电场用电场线形象描绘静电场的分布。
r E 02πελ= a ln(/)ln(/)b r a b r r U U r r = 模拟场用不良导体内的电场模拟静电场。
图1 同轴电缆的模拟模型(a) 同轴电缆模拟电场装置; (b) 横向剖面d d ln 22b r b r rr b r r r R t r r t rρρππ==⎰ ln 2a b b r r a r R t r ρπ= 2ln a b a a b r r a U tU I r R r πρ== a ln(/)ln(/)ab r rr a b r r U IR U r r '==[实验内容及步骤]图2 GVZ - 4型导电微晶静电场描绘仪1、将导电微晶上内、 外两电极分别与直流稳压电源的正、负极相连接,电压表正、 负极分别与测试笔及电源负极相连接,移动测试笔测绘同轴电缆的等位线簇。
要求相邻两等位线间的电位差为1V,以每条等位线上各点到原点的平均距离r 为半径画出等位线的同心圆簇。
2、根据电场线与等位线的正交原理,画出电场线,并指出电场强度方向,得到一张完整的电场分布图。
3、在坐标纸上作出相对电位r aU U 和ln r 的关系曲线,并与理论结果比较, 根据曲线的性质说明等位线是以内电极中心为圆心的同心圆。
[注意事项]1、找等位点时尽量让同等位线上的点均匀分布分布在360度上;2、不同等位线上的点尽量在同一直线上,以方便确定等位线;3、由于导电微晶边缘处的电流沿边流动,因此等位线必然与边缘垂直, 使该处的等位线和电力线严重畸变。
为减小“边缘效应”的影响,将导电微晶的边缘切割成电力线的形状。
实验八模拟法测绘静电场
实验八模拟法测绘静电场一、实验目的本次实验的主要目的是通过模拟方法来测量和表示静电场的分布情况。
二、理论基础静电场状态由电荷的分布情况决定,电荷的分布情况使得静电位的分布情况也会发生改变,而电荷的分布情况又受多种条件的影响,比如电压、静电场强度、磁场强度、导电体的分布情况等等。
因此,要想知道电荷和静电位之间的关系及其分布情况,就需要运用数学模型进行模拟表征。
三、实验原理模拟法测绘静电场是在一定条件下,用解析几何(如偏微分方程、矢量场和积分方法等)、形态学(如高斯渐近定理、多重偏微分方程等)及其它科学的数学方法等,来模拟电荷的分布情况和电荷的作用,从而进行概括表征,最终形成有时间变化和空间变化的静电场数学模型,以及与静电场有关的参数的变化,而这些模拟的参数和表示形式,也就是我们测绘出的静电场情况。
四、实验设备1、计算机:计算机可以用于输入电荷的部署及其分布情况,以进行模拟计算。
2、电子指针仪:指针仪可以用于读取和显示测量得出的结果,以及从中观察出的静电场的变化率。
3、控制系统:此处控制系统需要配合电子指针仪和计算机,进行模拟法测绘静电场的运行。
五、实验步骤1、熟悉计算机系统:先充分理解和熟悉系统中计算机的操作,以及电子指针仪的使用技巧。
2、调整系统参数:调整计算机系统参数,保证系统在正确的环境中运行。
3、控制系统:根据实验要求,通过控制系统对计算机系统进行操作,以完成测绘静电场的过程。
4、观察结果:操作完毕后,用电子指针仪来读取控制系统的输出结果,观察并进行分析,以了解静电场的数据情况。
六、安全注意事项1、在操作系统时,一定要保证电子指针仪得到正确的数据支持,不可以有错误或者失误的情况,避免造成不必要的损失。
2、实验时,要确保环境的温湿度稳定,避免造成复杂的环境条件,以牵制实验数据的准确性。
3、操作完毕后,要对系统进行全面的检测和维护,以确保所有的系统能正常运行。
实验六模拟法测绘静电场
实验六模拟法测绘静电场实验六模拟法测绘静电场一、实验目的1.了解用模拟法测绘静电场分布的原理;2.用模拟法测绘静电场的分布,做出等势线和电场线。
二、实验仪器静电场描绘仪、电极、静电场描绘仪电源、水槽(导电纸)、数字电压表、连接导线等。
仪器介绍静电场描绘仪由电极架、电极(DZ-型3种导电纸电极)、同步探针等组成,还有配套的静电场描绘仪电源。
1.静电场描绘仪静电场描绘仪示意图见图34-1,仪器下层用于放置水槽导电纸电极,上层用于安放坐标纸,是测量探针,用于在水中或导电纸上测量等势点,是记录探针,可将在水中或导电纸上测得的各电势点同步地记录在坐标纸上(打出印迹)。
由于、是固定在同一探针架上的,所以两者绘出的图形完全相同。
2.电极电极的外形如图34-2所示:其中为同轴圆柱面电极,为平行导线电极,为聚焦电极,为平行板电极,为点与平板电极。
3.同步探针同步探针由装在探针座上的两根同样长短的弹性簧片末端的两根细而圆滑的钢针组成,如图34-3所示。
下探针深入水槽的水中或导电纸上,用来探测水中电流场或导电纸上电场各处的电势数值,上探针略向上翘起,两探针通过金属探针臂固定在同一手柄上,两探针始终保持在同一铅垂线上,移动手柄座时,可保证上下两个探针的运动轨迹是一样的。
当探针座在电极架下层右边的平板上自由移动时,下探针探出等势点后,用手指轻轻按下上探针上的按钮,上探针针尖就在坐标纸上打出相应的等势点。
4.静电场描绘电源(1)技术指标①适用电源:;②输出稳压电压:(-12型);(-10型);③最大输出电流:0.5;④交流数字电压表最大量程:;数字电压表最大量程:;内阻:⑤适用环境:温度,相对湿度。
(2)使用操作①开机前,先将“测量、输出”转换开关拨向“输出”。
②按实验要求连接好电路,检查无误后打开电源开关。
③调节输出电压到预设制后,转换开关拨向“测量”进行测量,实验结束时,再将转换开关拨回“输出”后关闭电源。
三、实验原理带电体在其周围空间会产生静电场,可以用电场强度或电位的空间分布来描述。
大学物理实验--实验五用模拟法测绘静电场NE...【精选】
实验五 用模拟法测绘静电场预习重点1.用稳恒电流场模拟法测绘静电场的原理和方法。
2.预习同轴柱面的电场分布情况。
实验目的1.学习用稳恒电流场模拟法测绘静电场的原理和方法。
2.加深对电场强度和电位概念的理解。
3.测绘同心圆电极的电场分布情况实验原理由于带电体的形状比较复杂,其周围静电场的分布情况很难用理论方法进行计算。
同时仪表(或其探测头)放入静电场,总要使被测场原有分布状态发生畸变,不可能用实验手段直接测绘真实的静电场。
本实验采用模拟法,通过同心圆电极产生的稳恒电流场模拟同轴柱面带电体形状的带电体产生的静电场。
一、模拟的理论依据为了克服直接测量静电场的困难,可以仿造一个与待测静电场分布完全一样的电流场,用容易直接测量的电流场去模拟静电场。
静电场与稳恒电流场本是两种不同的场,但是两者之间在一定条件下具有相似的空间分布,即两种场遵守的规律在数学形式上相似。
对于静电场,电场强度在无源区域内满足以下积分关系0s d ⋅=⎰ E s 0ld ⋅=⎰ E l 对于稳恒电流场,电流密度矢量J 在无源区域内也满足类似的积分关系0sd ⋅=⎰ J s 0ld ⋅=⎰ J l 由此可见,和在各自区域中所遵从的物理规律有同样的数学表达形式。
若稳恒电流场E J 空间均匀充满了电导率为σ的不良导体,不良导体内的电场强度与电流密度矢量之'E J 间遵循欧姆定律: σ'J =E 因而,和在各自的区域中也满足同样的数学规律。
在相同边界条件下,由电动力学E 'E 的理论可以严格证明:具有相同边界条件的相同方程,解的形式也相同。
因此,可以用稳恒电流场来模拟静电场。
二、模拟长同轴圆柱形电缆的静电场利用稳恒电流场与相应的静电场在空间形式上的一致性,只要保证电极形状一定,电极电位不变,空间介质均匀,则在任何一个考察点,均应有“U 稳恒=U 静电”或“E 稳恒=E 静电”。
以下以同轴圆柱形电缆的静电场和相应的模拟场——稳恒电流场来讨论这种等效性。
用模拟法测绘静电场
用模拟法测绘静电场静电场是由于电荷的存在所形成的一种场。
在工程应用中,我们需要测绘静电场的大小和分布情况。
传统的方法是基于电场的数学公式和物理原理来推导计算。
但是,这种方法有一定的局限性,特别是针对复杂、非均匀的场。
因此,模拟法成为一种可行的测绘方法。
模拟法的基本思想是通过建立一个类似于真实场的模拟场,然后对模拟场进行测量,最终得到真实场的分布情况。
下文将分别介绍模拟法的两种典型应用方法:有限差分法和有限元法。
一、有限差分法有限差分法是一种常见的数值计算方法,适用于离散化的问题,如在空间离散的点上计算电场值。
其基本思想是通过在真实场中选取有限的点来模拟真实场,在这些点上计算电场的值,然后通过差分运算得到电场的梯度和变化率,从而获得真实场的分布情况。
以二维空间中Z向高度为一定的圆板的静电场为例,假设圆板半径为a,距离Z为d,其电势函数为:V=1/4πε \cdot Q/(√(R^2+d^2 ))其中Q为圆板上的总电荷,R为观测点到圆板上某一点的距离。
在有限差分法计算中,我们需要将观测区域离散化,假设网格尺寸为dx和dy,那么在一个包围圆板的区域内,我们可以取N个点来模拟真实场,如下图所示:在每个观测点上,我们可以计算出电势V的值,根据差分公式,可以得到电场分布情况:Ex=(V(i,j+1)-V(i,j))/dy在此基础上,我们可以进一步计算出电势和电荷分布,并进行可视化,如下图所示:有限元法是一种计算机模拟模型,它将真实场分成很多小区域,每个小区域内的场是简化的,由一组近似函数来表示。
这些近似函数通常称为有限元函数,它们可以是线性、二次或高次函数。
有限元法首先通过三角剖分将真实场划分为多个局部小区域,然后在每个小区域内选取有限的节点来建立有限元函数,形成有限元网格。
对于每个小区域内的有限元函数,我们可以用一些已知的方程或物理定律来计算电势和电场分布。
以空间中三维空心球的静电场为例,下图展示了有限元法计算中所用的有限元网格:在每个小区域中,我们可以用一组相应有限元函数来近似表示电势和电场分布。
用模拟法测绘静电场
用模拟法测绘静电场静电场是由电荷分布决定的。
给出一定区域内电荷及电介质分布和边界条件求解静电场分布,大多数情况求不出解析解,因此要靠数值解法求出或用实验方法测出电场分布。
因为静电场中无电流通过,所以直接测量静电场的电位分布是很困难的。
如果用恒定电流模拟静电场(二者分布相同),即根据测量结果来描绘出与静电场对应的恒定电流场的分布,从而确定静电场的电位分布,则是一种很方便的实验方法。
一. 实验目的1. 加深对电场强度和电势概念的理解。
2. 学习用模拟法测绘静电场的等势线和电力线。
3. 学习用图示法表达实验结果。
二. 实验仪器静电场实验仪一套、几套模拟电极、交流毫伏表、坐标纸(自带)等。
三. 实验原理静电场是静止电荷周围的一种特殊物质。
在静电场的研究中以及电子在静电场中运动规律的研究中,常常需要了解带电体周围空间的电场分布情况。
由于静电场中不存在电荷的运动,而有电流才有指示的磁电式仪表就无法进行直接测量。
若仪器和测量探头进入静电场,必将引起电场分布的改变。
所以要直接对静电场进行测量是十分困难的,而是用“模拟法”进行间接的测量。
在电磁理论中,稳恒电流的电场和相应的静电场的空间形式是一致的。
只要电极形状相同,电极电位相等,空间介质均匀,在相应考察点,两者电位相等,或两者电场强度相等。
这里我们以同轴电缆为例,对稳恒电流场和静电场进行讨论。
1. 同轴电缆的静电场如图3-20-1所示,半径为a 的长圆柱导体A 和内半径为b 的长圆筒导体B ,它们的中心轴重合。
A 和B 分别带有等量异号电荷,它们之间充满介电系数为ε的电介质。
A 带正电荷,B 带负电荷。
由高斯定律知,电场强度的方向是沿径向由A 指向B ,呈辐射状分布,其等位面为一簇同轴圆柱面。
并由对称性可知,在垂直于轴线的任一截面P 内,电场分布情况都相同。
在距离轴心半径r 处各点的电场强度为: r E r 12πελ=(3-20-1) 式中λ为电荷的线密度。
其电位为: a r U dr E U U r a A r A r ln 2⎰-=-=πελ图3-20-1 同轴电缆的静电场令b r =时,U b =0,则有a b U A ln 2πελ=由上两式可得:r b a b U U A r ln ln = (3-20-2) 距中心r 处的电场强度为:r a b U dr dU E A r r 1ln ⋅=-= (3-20-3)2. 同轴电缆的稳恒电流场 若A 和B 之间不是充满介电系数为ε的电介质,而是充满电阻率为ρ的不良导体,且A 和B 之间分别与直流电源的正极和负极相连,如图3-20-2(a )所示。
用模拟法测绘静电场
半径r到rb之间的圆柱片电阻为
Rrrb
2 t
rb
r
dr r
2 t
ln
rb r
由此可知,半径ra到rb之间圆柱片的电阻为
Rra rb
ln rb 2 t ra
若设Ub=0,则径向电流为
I Ua 2 tUa Rrarb ln rb
构造一个与研究对象的物理过程或现象相似的模型, 通过对该模型的测试实现对研究对象进行研究和测量, 这种方法称为“模拟法”。
本实验用点状电极、同心圆电极、聚焦电极产生的 稳恒电流场分别模拟两点电荷、同轴柱面带电体、 聚焦电极形状的带电体产生的静电场。
一、模拟的理论依据
引入电位U,则电场强度 E U ;电场强度矢量 E和电流密度都遵从高斯定理。
(1)稳恒电流场中的电极形状应与被模拟的静电场中的 带电体几何形状相同; (2)稳恒电流场中的导电介质应是不良导体且电导率分 布均匀,并满足σ电极>>σ导电质才能保证电流场中的电极 (良导体)的表面也近似是一个等位面。 (3)模拟所用电极系统与被模拟静电场的边界条件相同。
Байду номын сангаас
四、静电场的测绘方法
场强E在数值上等于电位梯度,方向指向电位降落的方 向。考虑到E是矢量,而电位U是标量,从实验测量来 讲,测定电位比测定场强容易实现,所以可先测绘等位 线,然后根据电力线与等位线正交的原理,画出电力线。 这样就可由等位线的间距确定电力线的疏密和指向,将 抽象的电场形象地反映出来。
Ua 20 ln(rb ra )
代入得
Ur
Ua
ln(rb ln(rb
r) ra )
用模拟法测绘静电场实验报告
用模拟法测绘静电场实验报告一、实验目的1、学习用模拟法测绘静电场的原理和方法。
2、加深对静电场概念的理解,提高对电场分布的分析能力。
3、掌握静电场测试仪的使用方法。
二、实验原理静电场是由静止电荷产生的一种特殊物质形态,其分布取决于电荷的分布情况。
直接测量静电场的分布往往比较困难,而模拟法是一种有效的间接测量方法。
模拟法的基本思想是:如果两种物理场的分布规律在数学形式上相似,那么可以用一种容易测量的物理场来模拟另一种不易测量的物理场。
在本实验中,用稳恒电流场来模拟静电场。
稳恒电流场与静电场满足相似的数学方程,即:静电场中电场强度E 与电位 U 的关系为 E = gradU;稳恒电流场中电流密度 j 与电位 U 的关系为 j =σgradU(其中σ 为电导率)。
对于长直同轴圆柱形电缆,静电场中内圆柱带电,外圆柱接地,其电位分布为:\U =\frac{U_0}{\ln(b/a)}\ln(r/a)\其中,U₀为内圆柱的电位,a 为内圆柱半径,b 为外圆柱半径,r 为测量点到圆柱中心轴的距离。
在模拟的稳恒电流场中,两圆柱分别接电源的正负极,同样可以得到相似的电位分布。
三、实验仪器1、静电场描绘仪2、直流稳压电源3、电压表4、探针5、坐标纸四、实验步骤1、连接电路将直流稳压电源的正负极分别与静电场描绘仪的两圆柱电极相连,确保连接牢固,无短路现象。
2、调节电源电压打开电源,调节输出电压至设定值,例如 10V。
3、测量电位分布将探针与电压表相连,移动探针在坐标纸上的位置,测量并记录不同位置的电位值。
测量时应注意保持探针与纸面垂直,且沿等位线移动。
4、绘制等位线根据测量得到的电位值,在坐标纸上绘制出等位线。
等位线是电位相等的点的连线,相邻等位线之间的电位差应相等。
5、绘制电场线根据等位线的分布,垂直等位线绘制出电场线。
电场线的疏密反映了电场强度的大小。
五、实验数据记录与处理1、记录测量得到的电位值,如下表所示:|坐标(x, y) |电位 U(V)|||||(10, 10) | 35 ||(15, 15) | 42 ||(20, 20) | 50 ||||2、根据数据绘制等位线和电场线绘制等位线时,将电位值相等的点用平滑的曲线连接起来。
用模拟法测绘静电场
☆ 长直同轴电缆的静电场
如图3-3,设内圆柱半径为a,电势为Ua;外环内半径为b,电势为Ub,
图3-3 同轴电缆的模拟模型
☆ 同轴带电圆柱体间的静电场
则静电场中距离dr
ra
又根据高斯定理,电荷均匀分布的无限长圆柱体的场强大小为
1、描绘长直同轴圆柱面的电势及电场分布
(1)取U0=10V,要求描绘2V,4V,6V,8V,4条等势线,
每条等势线应有8个等势点连接而成。(注意事项)
(2)用同样的方法,测量两圆柱面的半径a、b。
2、测绘示波管电子枪的聚焦电场分布,要求画出电极, 然后绘出1V,3V,5V,7V,9V,共5条等势线,每条有7个 等势点。(示波管电子枪电极) 3、无限长平行导线、劈尖电极和条形电极静电场描绘作 为选作内容。
(3)求出2V等势线半径的理论值r理。由Δr=|r测—r理|, Δr/r理就是要
求的测量误差。 (4)把计算结果填入表格中。
测试点电势Ur(V) 2
4
6
8
实际测量半径r测
理论计算半径r理
Δr=|r测-r理|
Δr/r理
☆ 思考题
1、如果将实验中使用的电源电压加倍,等势线、电场强 度分布的形状是否会发生变化?为什么?
圆柱形同轴不良导体片为研究对象。设材料电阻率为,则任意半径r到
r+dr的圆周间的电阻是 dR dsr2d rrt2tdrr
则半径为r到b之间的圆柱片的电阻为
Rrbr 2t
rbdr lnrb r r 2t r
总电阻为(半径a到b之间圆柱片的电阻)
Rrarb
lnrb 2t ra
设Ub=0,则两圆柱面间所加电压为Ua,径向电流为
实验4.9 用模拟法测绘静电场
测绘长同轴圆柱面电荷的电场时,应在描
图纸上标明圆心的位置。 测绘无限长平行带电直圆柱的电场和电势 分布时,应在描图纸上标明O1(正电荷)
和O2(负电荷)的位置。
在描图纸上描点时,应注意:不同的等势
点用不同颜色的笔区分,便于画出等势线。
实验内容和步骤
一.测绘长同轴圆柱面电荷的电场
二.测绘两根无限长平行带电直圆柱的电场 和电势分布
两电极间的电势差U1=2V 取等间隔电势差,绘等势线(每条等势线至 少取8~12个等势点)
将等势点连成光滑的曲线即为等势线
根据电力线与等势线正交的关系画出电力线 分布图
数据处理
⒈长同轴圆柱面电荷的电场
U实 (V)
1.00 0.80 0.60 0.40 0.20
r / cm
rB
Ln
U理
实验仪器
描绘仪电源
2.00
数字电压表
1.00
硫酸纸 探针
电极板
注意事项
探针头部的导电橡胶头不能取下来,否则 容易划坏玻璃上的导电膜。
测量电压时,应保证探针与玻璃有良好的 软接触,同时应避免重压,否则容易造成 导电橡胶头பைடு நூலகம்裂。
同一等势线上相邻两个记录点的距离以1 ~2cm为宜,曲线转弯或两条曲线靠近处记 录点应取密些。
U 理 U实 (%) U理
保留两位有效数字
用模拟法测绘静电场
(P91) 指导教师:黄英群
实验目的
学会用模拟法测量静电场的分布。
了解用稳恒电流场来模拟静电场的 理论依据和基本实验条件。 加深对电场强度及电势概念的理解。
实验原理
一.用电流场来模拟静电场
稳恒电流场 J dS 0 静电场
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用模拟法测绘静电场实验示范报告
物理实验中心 鲁晓东
【实验目的】
1.懂得模拟实验法的适用条件。
2.对于给定的电极,能用模拟法求出其电场分布。
3.加深对电场强度和电势概念的理解
【实验仪器】
双层静电场测试仪、模拟装置(同轴电缆和电子枪聚焦电极)、JDY 型静电场描绘电源。
[实验原理] 【实验原理】
1、静电场的描述
电场强度E 是一个矢量。
因此,在电场的计算或测试中往往是先研究电位的分布情况,因为电位是标量。
我们可以先测得等位面,再根据电力线与等位面处处正交的特点,作出电力线,整个电场的分布就可以用几何图形清楚地表示出来了。
有了电位U 值的分布,由 U E -∇= 便可求出E 的大小和方向,整个电场就算确定了。
2、实验中的困难
实验上想利用磁电式电压表直接测定静电场的电位,是不可能的,因为任何磁电式电表都需要有电流通过才能偏转,而静电场是无电流的。
再则任何磁电式电表的内阻都远小于空气或真空的电阻,若在静电场中引入电表,势必使电场发生严重畸变;同时,电表或其它探测器置于电场中,要引起静电感应,使原场源电荷的分布发生变化。
人们在实践中发现,有些测量在实际情况下难于进行时,可以通过一定的方法,模拟实际情况而进行测量,这种方法称为“模拟法”。
3、模拟法理由
两场服从的规律的数学形式相同,如又满足相同的边界条件,则电场、电位分布完全相类似,所以可用电流场模拟静电场。
这种模拟属于数学模拟。
静电场(无电荷区) 稳恒电流场(无电流区)
⎪⎪⎪
⎩⎪⎪⎪⎨⎧⋅==⋅=⋅=⎰⎰⎰b a
ab l d E U 0l d E 0S d D E D ε ⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅==⋅=⋅=⎰⎰
⎰b a ab l d E U 0l d E 0S d j E j
σ
4、讨论同轴圆柱面的电场、电势分布 (1)静电场
根据理论计算,A 、B 两电极间半径为r 处的电场强度大小为
r
E 02πετ
=
A 、
B 两电极间任一半径为r 的柱面的电势为
a
b r b
V V A ln ln
=
(2)稳恒电流场
在电极A 、B 间用均匀的不良导体(如导电纸、稀硫酸铜溶液或自来水等)连接或填充时,接上电源(设输出电压为V A )后,不良导体中就产生了从电极A 均匀辐射状地流向电极B 的电流。
电流密度为
ρ
E j '=
式中E ′为不良导体内的电场强度,ρ为不良导体的电阻率。
半径为r 的圆柱面的电势为
a
b r b
V V A ln ln
=
图1、同轴圆柱面的电场分布
图2、不良导体圆柱面电势分布
结论:
稳恒电流场与静电场的电势分布是相同的。
由于稳恒电流场和静电场具有这种等效性,因此要测绘静电场的分布,只要测绘相应的稳恒电流场的分布就行了。
[实验内容]
1、 测量无限长同轴圆柱间的电势分布。
(1)在测试仪上层板上放定一张坐标记录纸,下层板上放置水槽式无限长同轴圆柱面电场模拟电极。
加自来水填充在电极间。
(2)按图17-5接好电路。
调节探针,使下探针浸入自来水中,触及水槽底部,上探针与坐标纸有1-2mm 的距离。
(3)接通电源,K2扳向“电压输出”位置。
调节交流输出电压,使AB 两电极间的电压为交流12V ,保持不变。
(4)将交流毫伏表与下探针连接。
移动探针,在A 电极附近找出电势为10V 的点,用上探针在坐标纸上扎孔为记。
同理再在A 周围找出电势为10V 的等势点7个,扎孔为记。
(5)移动探针,在A 电极周围找出电势分别为8V ,6V ,4V ,2V 的各8个等势点(圆越大,应多找几点),方法如步骤(4)。
(6)分别用8个等势点连成等势线(应是圆),确定圆心O 的位置。
量出各条等势线的坐标r (不一定都相等),并分别求其平均值。
(7)用游标卡尺分别测出电极A 和B 的直径2a 和2b 。
(8)按式(17—4)计算各相应坐标r 处的电势的理论值V 理,并与实验值比较,计算百分差。
(9)根据等势线与电力线相互正交的特点,在等势线图上添置电力线,成为一张完整的两无限长带等量异号电荷同轴圆柱面的静电场分布图。
(10)以lnr 为横坐标,V 实为纵坐标,做V 实-lnr 曲线,并与V 理-lnr 曲线比较
2、测量聚焦电极的电势分布(选做)
分别测10.0V 、9.0V 、8.0V 、7.0V 、6.0V 、5.0V 、4.0V 、3.0V 、2 .0V 、1.0V 、0V 等,一般先测5 .0V 的等位点,因为这是电极的对称轴。
步骤同上
[数据记录]
模拟电场分布测试数据
V A = 10.0±0.1V 2a= 1.624±0.002cm 2b= 8.580±0.002cm
V 理(V) 10.0 8.0 6.0 4.0 3.0 2.0 1.0 r(cm) ? 1.1 1.50 2.15 2.55 ? 3.58 V 理
?
8.17 6.31 4.14 3.12 ? 1.07 (%)理
理
实V V V
?
2.1%
4.9%
3.4%
3.8%
?
6.5%
处理:
1、用圆规和曲线板绘出园柱形同轴电缆电场等位线(注意电极的位置).
2、根据电力线垂直等位面,绘出电力线. 贴图:
3、在圆柱形电缆电场分布图上量出各等位线的半径,计算V 并与理论值比较,求出其相对误差.
(1)1 1.1r cm =;则11ln()
8.17()ln()A
r b V V V a b
==; 100% 2.2%v V V E V -=
⨯=-理
实理
(2)2 1.5r cm =;则12ln()
6.31()ln()A
r b V V V a b
==; 100% 5.0%v V V E V -=
⨯=-理
实理
(3)(4)(5)同上
结果分析:
(1) 实验误差主要由电源电压的输入阻抗引起,输入阻抗越大,误差越小,结果越好。
(2) 等势面由人工拟合,因此半径的计算较粗糙,估计至少0.2r cm ∆=,分析对第一
组的影响,
由ln
ln
A r
b V V a b
=知,8.00.2
1.090.406 1.1ln ln
2.145A V V r V r V a r r b ∂∆∆=∆=⋅=⋅=∂
1.09100%12%8
Ev =⨯≈
说明在确定数据点时,一定要保证装置以及操作的稳定性,另外数据尽量多,以减少实验值的波动性。