工程热力学复习2 传热学8 -11章
工程热力学与传热学第二章稳态热传导基本概念
2. 常温边界
系统边界温度恒定,即 (T = T_b)
3. 周期性边界
系统边界温度呈周期性变化, 即 (T(x, y, z, t) = T(x + L, y,
z, t))
求解方法
有限差分法
将导热微分方程转化为差 分方程,通过迭代求解温 度分布。
有限元法
将导热微分方程转化为变 分形式,利用有限元离散 化求解温度分布。
在稳态热传导过程中,导热系数和热 阻共同决定了物体内部温度分布的特 性。
当材料的导热系数越大,其对应的热 阻就越小,表示热量传递越容易;反 之,导热系数越小,热阻越大,热量 传递越困难。
04 稳态热传导的实例分析
一维稳态热传导
总结词
一维稳态热传导是热传导在单一方向上的情况,常见于细长物体或薄层材料。
三维稳态热传导
要点一
总结词
三维稳态热传导涉及三个方向的热量传递,常见于球体或 立方体。
要点二
详细描述
在三维稳态热传导中,热量在三个相互垂直的方向上传递 ,常见于球体或立方体等三维物体。三维稳态热传导的温 度分布在不同方向上都是稳定的,其数学模型比一维和二 维情况更为复杂,需要考虑三个方向的热量传递。三维稳 态热传导在解决实际问题时具有重要意义,如地球内部的 热量传递、建筑物的散热分析等。
稳态热传导的重要性
01
02
03
工程应用广泛
稳态热传导在许多工程领 域都有广泛应用,如建筑、 机械、航空航天等。
基础理论支撑
稳态热传导是传热学的基 础理论之一,对于理解更 复杂的传热过程和现象至 关重要。
节能减排
通过掌握稳态热传导规律, 有助于优化能源利用,实 现节能减排。
稳态热传导的应用场景
工程热力学与传热学概念整理
工程热力学与传热学概念整理工程热力学第一章、基本概念1.热力系:根据研究问题的需要,人为地选取一定范围内的物质作为研究对象,称为热力系(统),建成系统。
热力系以外的物质称为外界;热力系与外界的交界面称为边界。
2.闭口系:热力系与外界无物质交换的系统。
开口系:热力系与外界有物质交换的系统。
绝热系:热力系与外界无热量交换的系统。
孤立系:热力系与外界无任何物质和能量交换的系统3.工质:用来实现能量像话转换的媒介称为工质。
4.状态:热力系在某一瞬间所呈现的物理状况成为系统的状态,状态可以分为平衡态和非平衡态两种。
5.平衡状态:在没有外界作用的情况下,系统的宏观性质不随时间变化的状态。
实现平衡态的充要条件:系统内部与外界之间的各种不平衡势差(力差、温差、化学势差)的消失。
6.强度参数:与系统所含工质的数量无关的状态参数。
广延参数:与系统所含工质的数量有关的状态参数。
比参数:单位质量的广延参数具有的强度参数的性质。
基本状态参数:可以用仪器直接测量的参数。
7.压力:单位面积上所承受的垂直作用力。
对于气体,实际上是气体分子运动撞击壁面,在单位面积上所呈现的平均作用力。
8.温度T:温度T是确定一个系统是否与其它系统处于热平衡的参数。
换言之,温度是热力平衡的唯一判据。
9.热力学温标:是建立在热力学第二定律的基础上而不完全依赖测温物质性质的温标。
它采用开尔文作为度量温度的单位,规定水的汽、液、固三相平衡共存的状态点(三相点)为基准点,并规定此点的温度为273.16K。
10状态参数坐标图:对于只有两个独立参数的坐标系,可以任选两个参数组成二维平面坐标图来描述被确定的平衡状态,这种坐标图称为状态参数坐标图。
11.热力过程:热力系从一个状态参数向另一个状态参数变化时所经历的全部状态的总和。
12.热力循环:工质由某一初态出发,经历一系列状态变化后,又回到原来初始的封闭热力循环过程称为热力循环,简称循环。
13.准平衡过程:由一系列连续的平衡状态组成的过程称为准平衡过程,也成准静态过程。
传热学-第八章
2. 传热学与工程热力学的关系
(1) 热力学 + 传热学 = 热科学(Thermal Science)
关心的是热量传 递的过程,即热 量传递的速率。
铁块, M1 300oC
系统从一个平衡态到 另一个平衡态的过程 中传递热量的多少。
热力学: tm
Φ
传热学: t ( x, y, z , )
Φ f ( )
空间飞行器重返大气层冷却;超高音速飞行器 (Ma=10)冷却;核热火箭、电火箭;微型火箭(电 火箭、化学火箭);太阳能高空无人飞机
b c d
微电子: 电子芯片冷却 生物医学:肿瘤高温热疗;生物芯片;组织与器 官的冷冻保存 军 事:飞机、坦克;激光武器;弹药贮存
e
f
制
冷:跨临界二氧化碳汽车空调/热泵;高温
G.
B.
J.
Fourier , 1822 年)
F. B. Jaeger/ M.
Riemann/ H. S. Jakob
Carslaw/ J.
对流换热 (Convection heat transfer) 不可压缩流动方程 (M.Navier,1823年) 流体流动Navier-Stokes基本方程 (G.G.Stokes,1845年) 雷诺数(O.Reynolds,1880年) 自然对流的理论解(L.Lorentz, 1881年) 管内换热的理论解(L.Graetz, 1885年;W.Nusselt,1916 年) 凝结换热理论解 (W.Nusselt, 1916年) 强制对流与自然对流无量纲数的原则关系 (W.Nusselt,1909年/1915年) 流体边界层概念 (L.Prandtl, 1904年) 热边界层概念 (E.Pohlhausen, 1921年) 湍流计算模型 (L.Prandtl,1925年;Th.Von Karman, 1939年;R.C. Martinelli, 1947年)
工程热力学与传热学复习资料
第一章基本概念及定义一、热力学系统1、热力系统热力学系统:人为划定的一定范围内的研究对象称为热力学系统,简称热力系或系统。
外界:系统以外的所有物质边界:系统与外界间的分界面2、热力系统的分类根据系统与外界的物质交换情况分类:1.开口系统:存在质量交换2.闭口系统:不存在质量交换根据系统与外界的能量交换情况分类:1.绝热系统:系统与外界无热量交换2.孤立系统:既无能量交换又无物质交换系统3.简单热力系统:只交换热量及一种形式的功4.复杂热力系统:交换热量及两种形式以上的功简单可压缩系统:在简单热力系统中,工质若是可压缩流体,并且系统与外界交换的功的形式是容积变化功(膨胀功或压缩功),则此热力系统称为简单可压缩系统。
(仅需两个状态参数就能确定系统的状态)3、工质与热源工质:实现热能和机械能之间转换的媒介物质。
热源:在能量交换中与工质有热量交换的物系。
分为高温热源和低温热源。
二、热力学系统的状态及基本状态参数1、定义平衡状态:指系统在不受外界影响的情况下,其本身宏观性质不随时间发生变化的状态。
平衡的本质:不存在不平衡势系统热力平衡状态的条件:热平衡(无温差)、力平衡(无压差)2、状态参数特点:1、状态确定,则状态参数也确定,反之亦然;2、状态参数具有积分特征:状态参数的变化量与路径无关,只与初终态有关;3、状态参数具有全微分特性: 3、基本状态参数1、比体积v :单位质量物质所拥有的容积。
2、压力(绝对压力):力学定义——3、温度T :俗称物体冷热程度的标志三、平衡状态和状态参数坐标图状态参数坐标图的说明:1)系统任何平衡态可表示在坐标图上。
2)图中的每一点都代表系统中的一个平衡状态。
3)不平衡态无法在图中表示。
dy yzdx x z dz x y )()(∂∂+∂∂=AF p =四、状态方程式1、理想气体模型气体分子是具有弹性但不占据体积的质点;除相互碰撞外无其它作用力。
2、摩尔气体常数R与气体常数RgR单位:J/(mol·K) Rg单位:J/(kg·K)五、热力过程和准静态过程1、热力过程处于平衡状态的工质,在受到外界作用时,从一个状态经过一系列的中间状态变化到另一个平衡状态所经历的全部状态的总和称为热力过程。
第11章辐射换热
随T的升高,Ebλ对应的波长λm向短波迁移。
11-2-2 维恩位移定律
光谱辐射力为 Ebλ,max时,λm和 T 之间的关系。
推导
可得: 并且:
当温度不变时:
dEb 0
d
m T 2 .8 9 1 3 7 0 2 .9 6 1 30 m K
E b ,m a1 x .1 0 1 5 6 T 0 5 W /m 3
玻璃
白漆和黑漆
物体的颜色对可见光 呈强烈选择性; 但对红外线的吸收率 均为0.9左右。
可见光,2.5m红外线, 很小,近乎透明体; 紫外线,3m红外线, 1 ,表现不透明性。
温室效应
11-3-3 基尔霍夫定律
1. 灰体
,
大多数工程材料 可作灰体处理。
温度近于太阳表面温度(5800K)时, 与Ebλ,max对应的λm位于可见光区段。
11-2-3 斯忒藩-波耳兹曼定律
1879年斯忒藩(实验),1884年波耳兹曼(理论)
确定了黑体的 Eb与 T的关系。
Eb 0T4
Eb
式中: 0 – 黑体辐射常数
0 5 .6 1 7 80 W /m (2K 4 ) 0
黑体表面温度为627℃时:
分析
E b 2 C 0 ( 1 T 2 ) 4 0 5 .6 0 ( 6 7 1 2 0 ) 4 7 3 0 .2 3 1 7 3 W 0 /m 2
T2 3, Eb2 81
T1
Eb1
说明 高温和低温两种情况下,
黑体的辐射能力有明显的差别。
波段内黑体辐射力:
举例 计算温度分别为2000K 和5800K的黑体 与Ebλ,max对应的λm。
解:由维恩位移公式:
工程热力学与传热学第十一章
在温度T2=627℃时,其辐射力
T2 627 273 2 Eb2 C0 5.67 37.2 W / m 100 100
T Eb C0 100
4
(11 6)
【例11-2】把一黑体表面置于室温为27℃的房间中,
问在热平衡条件下黑体表面的辐射力是多少?若将
黑体加热到627℃,其辐射力又为多少?
解:在热平稳条件下黑体温度与室温相同。此 时其辐射力为
T 27 273 2 Eb1 C0 1 5.67 459 W / m 100 100
max T为6000K时,
热辐射的基本定律
2.斯蒂芬——玻耳兹曼定律 在计算辐射换热时,我们更关心的是黑体的辐 射力 Eb 与温度 T 的关系,即 Eb=f(T) ,由式 (11-2) 和 式 (11-3) 及图 11-3 可见, Eb 即为能量分布曲线与横 坐标所包围的面积,即
Eb
0
物体对热辐射能的吸收、反射和穿透
由此可见:若物体的吸收能力大,则其反射本领 就小,由于此类物体的吸收和反射均系在其表面 进行,故其表面状况对它们的有关特性影响甚大。 气体的情况则有别于此,因气体对辐射能几乎 没有反射能力,可认为ρ=0,此时 α+τ=1 显然,吸收性好的气体,其透射性就差,同时, 气体的辐射和吸收是在整个气体容积中进行的, 这一点和固、液体也不相同。
E C1 5 e
C2 T
(W / m 2 )
(11 3)
1
式中:
λ——波长,m T——黑体的热力学温度,K C1——常数,其值为3.743×10-16W· m2 C2——常数,其值为1.4387×10-2W· K
工程热力学与传热学总结与复习
工程热力学与传热学总结与复习一、工程热力学1.热力学基本概念:温度、压力、体积、能量、功、热量等。
2.热力学第一定律:能量守恒原理,能量的转化与传递。
3.热力学第二定律:熵增原理,能量转化的方向性和能量质量的评价。
4.热力学循环:热力学循环的性质和效率计算。
5.热力学性质:热容、比热、比容等,理想气体方程等。
6.相变与理想气体:气体的状态方程,相变的特性和计算。
7.热力学平衡与稳定性:热力学平衡条件和稳定性判据。
8.热力学性能分析:绝热效率、功率、热效率等。
二、传热学1.传热基本概念:传热方式(传导、对流、辐射)、传热热流量。
2.热传导:热传导过程的数学模型、导热系数、傅里叶热传导定律等。
3.对流传热:强制对流和自然对流,传热换热系数的计算和影响因素。
4.辐射传热:黑体辐射、斯特藩—玻尔兹曼定律、辐射传热换热系数等。
5.热传导与热对流的复合传热:壁面传热、换热器传热、管壳传热等。
6.传热器件性能:传热器件的热阻、效率、流动阻力等。
1.理解基本概念:温度、压力、体积、能量、功、热量等的概念和关系。
2.强化热力学基本定律:热力学第一定律和第二定律的应用,能量转化与传递的分析。
3.熟悉状态方程:理想气体方程等的使用,相变的特性和计算方法。
4.学会评价热力学性能:热力学循环的性质和效率计算,热力学性能分析的方法。
5.掌握传热方式和模型:传热方式的概念和特点,热传导、对流传热和辐射传热的数学模型。
6.熟练计算传热换热系数:热传导、对流传热和辐射传热的传热换热系数的计算方法。
7.理解传热过程中的复合传热:热传导与热对流的复合传热的分析和计算方法。
8.增强对传热器件性能的认识:传热器件性能评价的指标和计算方法。
在复习过程中,可以通过阅读教材和相关的参考书籍深入学习热力学和传热学的理论知识。
同时,要结合例题和习题进行练习,加强对概念和公式的运用和理解。
此外,可以通过查找工程实例和实验数据来应用所学知识,加深对热力学和传热学的认识和理解。
《工程热力学》热力学第八章
2s p2 p1
1
v
s
三种压气过程的参数关系
wtT wtn wts
qT qn qs 0
v2T v2n v2s
T1 T2T T2n T2s
p p2
2T
2n
2s
p1
T
2T 2n 1
2s p2 p1
1
v
s
三种压气过程功的计算
wtn
n
n
1
RT1[1
(
p2
)
n 1 n
]
p1
wtT
RT1 ln
Wt理论
k
k
1
g
m
RT1[1
(
p2
)
k -1 k
]
p1
Q H Wt
g
g
Wt理论 H m(h1 h2 ) m cp (T1 T2 )
实际过程有摩擦
T
机械效率 Wt理论
经验值70%
Wt实际
T2' T2
p2 p1
Wt实际
Wt理论
g
m cp (T1 T2' )
1
s
压气机的校核计算
p1 p2
wts
k
k
1
RT1[1
(
p2
)
k 1 k
]
p1
p p2
2T
2n
2s
T
2T
p1
1
最小 重要启示
2s p2 p1
2n
1
v
s
§8-2 活塞式压气机的余隙影响
避免活塞与进排气
p
阀碰撞,留有空隙
Clearance余v隙ol容um积eVC
清华大学热工基课件工程热力学加传热学第十一章-PPT精品文档
Gd
0
Gd
0
Gd
0
Gd
0
Gd
3
类、温度和表面状况,是波长的函数。 ,不仅取决于物体的性质,还与投射辐射能的波 , 长分布有关。 ( 2 )固体和液体对辐射能的吸收和反射基本上属 于表面效应 : 金属的表面层厚度小于 1m ;绝大多数 非金属的表面层厚度小于1mm。 (3)对于固体和液体, 。 0 , 1
E E d b b 1 2
1
2
d d b b E E
9
Hale Waihona Puke 定向辐射力与辐射力之间的关系:
E
2
Ed
定向辐射力与辐射强度之间的关系:
E L o s c
辐射力与辐射强度之间的关系:
E
2
L c o s d
10
11-2 黑体辐射的基本定律
1.普朗克(Planck)定律 2.斯忒藩-玻耳兹曼(Stefan-Boltzmann)定律 3.兰贝特(Lambert)定律
注意: , (1) , 属于物体的辐射特性,取决于物体的种
镜反射与漫反射:
产生何种反射决于物体表 面的粗糙程度和投射辐射能 的波长 。
4
2. 灰体与黑体
灰体: 光谱辐射特性不随波长而变化的假想物体,即 , , 分别等于常数。
0
G d
0
G d
G G
G G
G 透射比 G 1
G G
如果投入辐射是某一波长的辐射能G ,则
工程热力学复习资料
工程热力学复习资料工程热力学复习资料工程热力学是工程学中的重要学科,它研究能量转换和传递的基本原理,对于工程领域的学生来说,掌握热力学的基本概念和原理是非常重要的。
在这篇文章中,我们将回顾一些工程热力学的基本知识,并提供一些复习资料。
热力学是研究能量转换和传递的学科,它的基本概念包括能量、热量、功和热力学系统等。
能量是物质具有的能够产生变化和引起工作的属性,它可以以多种形式存在,如热能、机械能、电能等。
热量是能量的一种形式,它是由于温度差异而引起的能量传递。
功是由力对物体做的功,它是能量的一种转化形式。
热力学系统是指被研究的物质或物体,它可以是封闭系统、开放系统或孤立系统。
在热力学中,有一些基本定律和原理需要掌握。
其中之一是热力学第一定律,它是能量守恒定律的具体表述。
根据热力学第一定律,能量既不能被创造也不能被销毁,只能从一种形式转化为另一种形式。
热力学第二定律是关于能量转化方向的定律,它指出热量只能从高温物体传递到低温物体,而不能反向传递。
此外,热力学第三定律是关于温度的定律,它指出在绝对零度时,所有物质的熵为零。
工程热力学中还有一些重要的概念和循环过程需要了解。
例如,热力学循环是指一系列能量转化的过程,如卡诺循环和布雷顿循环等。
这些循环过程在能源转换和工程设计中起着重要作用。
此外,还有一些热力学性质需要熟悉,如温度、压力、体积和熵等。
这些性质在工程计算和分析中经常用到。
为了更好地复习工程热力学,我们可以参考一些经典的教材和学习资料。
例如,《工程热力学》是一本经典的教材,它详细介绍了热力学的基本概念和原理,并提供了丰富的例题和习题。
此外,还有一些在线教育平台提供了热力学的课程和学习资源,如Coursera和edX等。
这些资源可以帮助我们更好地理解和掌握工程热力学的知识。
在复习过程中,我们可以通过做习题来加深对热力学知识的理解。
习题可以帮助我们巩固概念和原理,并提供实际应用的机会。
此外,还可以参考一些热力学的应用案例和工程实例,了解热力学在工程领域中的应用和意义。
工程热力学与传热学与复习总结
一、基本要求严格遵守考试纪律,绝不做任何有作弊嫌疑的动作。
二、考试需要携带的物品相关身份证件、笔、计算器三、复习要点(一)基本概念(红色粗体部分是热力学与传热学最基本的概念,要求掌握其定义、物理意义、表达式、单位)第一章基本概念工质:热能与机械能之间转换的媒介物质。
热源:热容量很大、并且在吸收或放出有限热量时自身温度及其他的热力学参数无明显变化的物体。
热力系统:人为选取的研究对象(空间或工质)。
外界(环境):系统以外的所有物质。
闭口系统:与外界无物质交换的系统。
开口系统:与外界有物质交换的系统。
绝热系统:与外界无热量交换的系统。
孤立系统:与外界既无热量交换又无物质交换的系统。
平衡状态:在不受外界影响(重力场作用除外)的条件下,工质或系统的状态参数不随时间而变化的状态。
热力状态:工质在某一瞬间所呈现的宏观物理状况。
状态参数:压力、温度、比体积、热力学能、焓、熵等。
基本状态参数:压力、温度、比体积压力(Pa ,mmH 2O ,mmHg ,atm, at 换算):1 bar = 105 Pa 1 MPa = 106 Pa1 atm = 760 mmHg = 1.013105 Pa 1 mmHg =133.3 Pa 1 at=735.6 mmHg = 9.80665104 Pa1 psi=0.006895MPa温度:处于同一热平衡状态的各个热力系,必定有某一宏观特征彼此相同,用于描述此宏观特征的物理量。
(标志冷热程度的物理量) 比体积:单位质量的工质所占有的体积。
密度:单位体积工质的质量。
ρν=1。
状态公理:对组元一定的闭口系,独立状态参数个数 N =n +1 状态方程式:Ϝ(p ,ν,T)=0。
独立参数数目N =不平衡势差数=能量转换方式的数目=各种功的方式+热量= n +1准平衡过程:系统所经历的每一个状态都无限接近平衡态的过程。
可逆过程:系统经历某一过程后,如果再沿着原路径逆行而回到初始状态,外界也随之恢复到原来的状态,而不留下任何变化。
工程热力学与传热学复习资料
热工复习资料绪论热工学分为两部分:工程热力学和传热学二者区别:工程热力学主要研究能量(特别是热能)的性质与其与机械梦或其他形式能之间相互转换规律;传热学是研究热量传递规律的学科第一章复习重点1.边界(界面):热力系与外界的分界面特性:固定、活动、真实、虚构2.几种热力系统(1)闭口热力系统—与外界无物质交换的热力系统。
(2)开口热力系统—与外界有物质交换的热力系统。
(3)绝热热力系统—与外界无热量交换的热力系统。
(4)孤立热力系统—与外界无任何联系的热力系统。
(5简单可压缩系统—与外界只有热量和机械功交换的可压缩系统3.状态参数分类:(1)与质量无关不可相加的参数,称为强度参数如压力、温度、密度(2)与质量成正比可以相加的参数,广延参数。
如容积,内能、熵4.热工学中常用状态参数有六个:压力、比容、温度、内能、焓、熵基本状态参数:压力p(此处的压力是指绝对压力非表压力或真空度)、温度T、比容v5.绝对压力、环境压力和相对压力之间的关系,可写出如下3个关系式,从中整理出所求量。
当P>Pb时为表压力:P=Pg+Pb;当P<Pb时为真空度:P=Pb-Pv 6.平衡状态:指热力系在无外界影响的条件下,宏观性质不随时间变化的状态;要达到平衡状态必须满足热平衡和力平衡两个条件,若存在化学反应或相变包括化学平衡、相平衡7.引入平衡状态的目的:整个热力系统可用一组统一的并具有确定数值的状态参数来描述状态,便于分析热力学问题8.状态公理:对组成一定的闭口系,独立状态参数个数N=n+1独立参数数目N=不平衡势差数=各种功的方式+热量= n+1 简单可压缩系统独立状态参数个数:N = n + 1 = 29过程:热力系从一个状态变化到另一个状态所经历全部状态的集合10.准静态过程定义:在无限小势差的推动下,由一系列连续的平衡状态组成的过程称为准平衡过程,也称为准静态过程。
条件: 推动过程进行的势差无限小。
11.可逆过程A process that can reversed without leaving any trace on the surroundings. That is, both the system and the surroundings are returned to their initial states at the end of the reverse process 系统经历某一过程后,如果能使热力系沿相同的路径逆向回到原态,且相互作用中所涉与到的外界也回复原态,而不留下任何痕迹,则此过程为可逆过程。
工程热力学与传热学复习资料
热工复习资料绪论热工学分为两部分:工程热力学和传热学二者区别:工程热力学主要研究能量(特别是热能)的性质及其与机械梦或其他形式能之间相互转换规律;传热学是研究热量传递规律的学科第一章复习重点1.边界(界面):热力系与外界的分界面特性:固定、活动、真实、虚构2.几种热力系统(1)闭口热力系统—与外界无物质交换的热力系统。
(2)开口热力系统—与外界有物质交换的热力系统。
(3)绝热热力系统—与外界无热量交换的热力系统。
(4)孤立热力系统—与外界无任何联系的热力系统。
(5简单可压缩系统—与外界只有热量和机械功交换的可压缩系统3.状态参数分类:(1)与质量无关不可相加的参数,称为强度参数如压力、温度、密度(2)与质量成正比可以相加的参数,广延参数。
如容积,内能、熵4.热工学中常用状态参数有六个:压力、比容、温度、内能、焓、熵基本状态参数:压力 p(此处的压力是指绝对压力非表压力或真空度)、温度 T、比容 v5.绝对压力、环境压力和相对压力之间的关系,可写出如下3个关系式,从中整理出所求量。
当P>Pb时为表压力:P=Pg+Pb;当P<Pb时为真空度:P=Pb-Pv6.平衡状态:指热力系在无外界影响的条件下,宏观性质不随时间变化的状态;要达到平衡状态必须满足热平衡和力平衡两个条件,若存在化学反应或相变包括化学平衡、相平衡7.引入平衡状态的目的:整个热力系统可用一组统一的并具有确定数值的状态参数来描述状态,便于分析热力学问题8.状态公理:对组成一定的闭口系,独立状态参数个数 N=n+1独立参数数目N=不平衡势差数=各种功的方式+热量= n+1 简单可压缩系统独立状态参数个数:N = n + 1 = 29过程:热力系从一个状态变化到另一个状态所经历全部状态的集合10.准静态过程定义:在无限小势差的推动下,由一系列连续的平衡状态组成的过程称为准平衡过程,也称为准静态过程。
条件: 推动过程进行的势差无限小。
合工大热工基础期末复习
题
型
一、概念题(35分)(选择、填空、判断、
简答)
二、计算 (65分)
请考试时准备铅笔、橡皮、直尺、计算器!
ቤተ መጻሕፍቲ ባይዱ
9
10
期末复习重点章节
绪论
能量与能源 热工基础的研究内容 第一篇 工程热力学 第一章 基本概念 1-1 热力系统 1-2 平衡状态及状态参数 1-3 状态方程与状态参数坐标图 1-4 准平衡过程与可逆过程 1-5 功量与热量
1
重点掌握:
(1)工程热力学的宏观研究方法。 ( 2 )热力系统、热力平衡状态、工质的 状态参数与状态参数坐标图、热力过程 与热力循环、准平衡过程、可逆过程与 不可逆过程、热量与功量等热力学基本 概念。
2
第二章 热力学第一定律
2-1 热力系统的储存能 2-2 热力学第一定律的实质 2-3 闭口系统的热力学第一定律表达式 2-4 开口系统的稳定流动能量方程式 2-5 稳定流动能量方程式的应用 重点掌握:
热力学第一定律的实质,热力学能、焓、膨胀 功、流动功、技术功等基本概念,掌握闭口系统的 热力学第一定律表达式、开口系统的稳定流动能量 方程式,并会用于简单热工设备的热力计算。
4
第四章 热力学第二定律
自发过程的方向性与热力学第二定 律的表述 4-2 卡诺循环与卡诺定理 4-3 熵 重点掌握: 热力学第二定律的实质,正向循环、逆向 循环、热机效率、工作系数等基本概念,卡 诺循环与卡诺定理,不可逆过程的熵变、熵 流与熵产,孤立系统的熵增原理及其与作功 能力损失之间的关系。
3
第三章 理想气体的性质与热力过程
工程热力学各章重点
第一章基本概念1.基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统.边界:分隔系统与外界的分界面,称为边界。
外界:边界以外与系统相互作用的物体,称为外界或环境.闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。
开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。
绝热系统:系统与外界之间没有热量传递,称为绝热系统。
孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。
单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。
复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。
单元系:由一种化学成分组成的系统称为单元系。
多元系:由两种以上不同化学成分组成的系统称为多元系.均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。
非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。
热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。
平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。
状态参数:描述工质状态特性的各种物理量称为工质的状态参数。
如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等.基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。
温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。
热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡.压力:垂直作用于器壁单位面积上的力,称为压力,也称压强.相对压力:相对于大气环境所测得的压力.如工程上常用测压仪表测定系统中工质的压力即为相对压力。
工程热力学第八章
稳定流动:
流体在流经空间任何一点时,其全部参数都不 随时间而变化的流动过程。
简化假设:
1、沿流动方向上的一维问题:取同一截面上某参 数的平均值作为该截面上各点该参数的值。 2、可逆绝热过程:流体流过管道的时间很短,与 外界换热很小,可视为绝热,另外,不计管道 摩擦。
8-1 稳定流动的基本方程式
一、连续性方程 稳定流动中,任一截面的所有参数均不随时 间而变,故流经一定截面的质量流量应为定值, 不随时间而变 。 如图取截面1-1 和2-2,两截面的质 量流量分别为qm1、 qm2,流速cf 1、cf 2, 比体积为v1和v2,截面 积A1、A2
pcr 2 k 1 cr ( ) p0 k 1
k
p0 vcr v0 ( ) pcr
过热蒸汽: k=1.3 γcr=0.546 干饱和蒸汽: k=1.135 γcr=0.577
结论:
临界压力比是分析管内流动的一个重要
数值,截面上工质的压力与滞止压力之 比等于临界压力比是气流速度从亚声速 到超声速的转折点; 以上分析在理论上只适用于定比容理想 气体的可逆绝热流动,对于水蒸气的可 逆绝热流动,k 为一经验值,不是比热 比。
c f 2 2(h0 h2 ) 2c p (T0 T2 ) T2 2 (1 ) k 1 T0 p2 2 [1 ( ) k 1 p0 kp0 v0 p2 2 [1 ( ) k 1 p0 kRg T0
k 1 k
kRg T0
]
k 1 k
]
在初态确定的条件下:
二、流量计算 根据连续方程,喷管各截面的质量流量 相等。但各种形式喷管的流量大小都受最小 截面控制,因而通常按最小截面(收缩喷管 的出口截面、缩放喷管的喉部截面)来计算 流量,即: A2 c f 2 收缩喷管: qm v2 缩放喷管:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二篇 传热学第八章 热量传递的基本方式热量传递有三种基本方式:热传导,热对流,热辐射。
8-1 热传导在物体内部或相互接触的物体表面之间,由于分子、原子及自由电子等微观粒子的热运动而产生的热量传递现象。
大平壁的一维稳态导热特点:1.平壁两表面维持均匀恒定不变温度;2.平壁温度只沿垂直于壁面的方向发生变化;3.平壁温度不随时间改变;4.热量只沿着垂直于壁面的方向传递。
【热流量】:单位时间导过的热量,Wδλ21w w t t A -=Φ λ: 材料的【热导率(导热系数)】:表明材料的导热能力,W/(m·K)。
【热流密度】 q :单位时间通过单位面积的热流量δλ21w w t t A q -=Φ=λλδλR t t A t t t t A w w w w w w 212121-=-=-=ΦλδλA R =称为平壁的【导热热阻】,表示物体对导热的阻力,单位为K/W 。
8-2 热对流热对流:由于流体的宏观运动使不同温度的流体相对位移而产生的热量传递现象。
【对流换热】:流体与相互接触的固体表面之间的热量传递现象,是导热和热对流两种基本传热方式共同作用的结果。
【牛顿冷却公式】:Φ = Ah (t w – t f ) q = h (t w – t f )h 称为对流换热的【表面传热系数】(习惯称为对流换热系数),单位为W/(m 2⋅K)。
【对流换热热阻:】hf w f w f w R t t Ah t t t t Ah -=-=-=Φ1)(Ah R h 1=称为对流换热热阻,单位为 W/K 。
表面传热系数的影响因素:h 的大小反映对流换热的强弱,与以下因素有关:(1)流体的物性(热导率、粘度、密度、比热容等);(2)流体流动的形态(层流、紊流);(3)流动的成因(自然对流或受迫对流);(4)物体表面的形状、尺寸;(5)换热时流体有无相变(沸腾或凝结)。
8-3 热辐射辐射现象的两种理论 电磁理论与量子理论 电磁波的数学描述:v c λ=c — 某介质中的光速, n c c 0=80103⨯=c m/s 为真空中的光速;n 为介质的折射率。
λ — 波长, 常用μm 为单位, 1μm = 10-6 m 。
ν — 频率, 单位 1/s 。
电磁波的波谱:γ 射线:λ < 5×10-5 μmX 射线: 5×10-7 < λ < 5×10-2 μm紫外线: 4×10-3 < λ < 0.38 μm可见光: 0.38 < λ < 0.76 μm红外线: 0.76 < λ < 103 μm无线电波: λ > 103 μm微波: 103<λ < 106 μm微波炉就是利用微波加热食物,因微波可穿透塑料、玻璃和陶瓷制品,但会被食物中水分子吸收,产生内热源,使食品均匀加热。
【热辐射】由于物体内部微观粒子的热运动而使物体向外发射辐射能的现象。
日常生活热辐射的波长主要在0.1μm 至100μm 之间,包括部分紫外线、可见光和部分红外线三个波段。
热辐射的主要特点:(1)所有温度大于0 K 的物体都具有发射热辐射的能力,温度愈高,发射热辐射的能力愈强。
(2)所有实际物体都具有吸收热辐射的能力,(3)热辐射不依靠中间媒介,可以在真空中传播;(4)物体间以热辐射的方式进行的热量传递是双向的。
【辐射换热】:以热辐射的方式进行的热量交换。
辐射换热的主要影响因素:(1)物体本身的温度、表面辐射特性; (2)物体的大小、几何形状及相对位置。
8-4 传热过程(1)左侧的对流换热1111111111)(Rh t t Ah t t t t Ah f w f w f w -=-=-=Φ(2)平壁的导热λλδδλR t t A t t t t A w w w w w w 212121-=-=-=Φ(3)右侧的对流换热2222222211)(Rh t t Ah t t t t Ah f w f w f w -=-=-=Φ在稳态情况下,以上三式的热流量相同,可得k f f h h f f f f R t t R R R t t Ah A Ah t t 212121212111-=++-==+-=Φλλδ式中21h h k R R R R ++=λ,R k称为【传热热阻】。
【传热系数】 21111h h k ++=λδ 单位为W/(m 2·K)通过单位面积平壁的【热流密度】为 21212111)(h h t t t t k q f f f f ++-=-=λδ第九章导热9-1导热理论基础1. 导热的基本概念(1)【温度场】在 时刻,物体内所有各点的温度分布称为该物体在该时刻的温度场。
一般温度场是空间坐标和时间的函数。
【非稳态温度场】:温度随时间变化的温度场,其中的导热称为非稳态导热。
【稳态温度场】:温度不随时间变化的温度场,其中的导热称为稳态导热。
t =f (x,y,z) 0一维温度场t =f(x,τ) t =f (x)二维温度场t =f(x,y,τ) t = f(x,y)三维温度场t =f (x,y,z,) t =f(x,y,z)(2)等温面与等温线在同一时刻,温度场中温度相同的点连成的线或面称为等温线或等温面。
等温面上任何一条线都是等温线。
如果用一个平面和一组等温面相交, 就会得到一组等温线。
温度场可以用一组等温面或等温线表示。
等温面与等温线的特征:同一时刻,物体中温度不同的等温面或等温线不能相交;在连续介质的假设条件下,等温面(或等温线)或者在物体中构成封闭的曲面(或曲线),或者终止于物体的边界,不可能在物体中中断。
(3)温度梯度在温度场中,温度沿x方向的变化率(即偏导数)。
等温面法线方向的温度变化率最大,温度变化最剧烈。
gradt =(4)热流密度q =热流密度矢量的方向指向温度降低的方向。
在直角坐标系中,热流密度矢量可表示为q=j+k2. 导热的基本定律傅里叶定律,指出了导热热流密度矢量与温度梯度之间的关系。
对于各向同性物体, 付里叶定律表达式为q=-λgradt=-λn傅里叶定律表明, 导热热流密度的大小与温度梯度的绝对值成正比,其方向与温度梯度的方向相反。
标量形式的付里叶定律表达式为:q=-λ对于各向同性材料, 各方向上的热导率 相等。
傅里叶定律的适用条件:(1)傅里叶定律只适用于各向同性物体。
对于各向异性物体,热流密度矢量的方向不仅与温度梯度有关,还与热导率的方向性有关, 因此热流密度矢量与温度梯度不一定在同一条直线上。
(2)傅立叶定律适用于工程技术中的一般稳态和非稳态导热问题,对于极低温(接近于0K)的导热问题和极短时间产生极大热流密度的瞬态导热过程, 如大功率、短脉冲(脉冲宽度可达10-12~10-15s)激光瞬态加热等, 傅立叶定律不再适用。
3.热导率(导热系数)热导率物质导热能力的大小。
根据傅里叶定律表达式, λ=物质的热导率在数值上具有下述特点:(1) 对于同一种物质, 固态的热导率值最大,气态的热导率值最小;(2)一般金属的热导率大于非金属的热导率;(3)导电性能好的金属, 其导热性能也好;(4)纯金属的热导率大于它的合金;(5)对于各向异性物体, 热导率的数值与方向有关;(6)对于同一种物质, 晶体的热导率要大于非定形态物体的热导率。
温度对热导率的影响:纯金属的热导率随温度的升高而减小。
一般合金和非金属的热导率随温度的升高而增大。
大多数液体(水和甘油除外)的热导率随温度的升高而减小。
纯金属的热导率随温度的升高而减小。
在工业和日常生活中常见的温度范围内, 绝大多数材料的热导率可以近似地认为随温度线性变化, 表示为:λ=,λ0为按上式计算的0℃下的热导率值保温材料(或称绝热材料):用于保温或隔热的材料。
国家标准规定,温度低于350℃时热导率小于0.12 W/(m⋅K)的材料称为【保温材料】多孔材料的热导率随温度的升高而增大。
多孔材料的热导率与密度和湿度有关。
一般情况下密度和湿度愈大,热导率愈大。
α=称为热扩散率,也称导温系数,单位为m2/s。
其大小反映物体被瞬态加热或冷却时温度变化的快慢。
典型材料热导率的数值范围纯金属50--415 W/m·K合金12--120 W/m·K非金属固体1--40 W/m·K液体(非金属)0.17--0.7 W/m·K绝热材料0.03--0.12 W/m·K气体0.007--0.17 W/m·K4.导热问题的数学描述(数学模型)建立数学模型的目的:求解温度场 t =f(x,y,z,τ) 导热数学模型的组成:导热微分方程式+单值性条件(1)导热微分方程式的导出(2)依据:能量守恒和傅里叶定律。
假设:1)物体由各向同性的连续介质组成;2)有内热源,强度为Φ∙,表示单位时间、单位体积内的生成热,单位为W/m3。
步骤:1)根据物体的形状选择坐标系, 选取物体中的微元体作为研究对象;2)根据能量守恒, 建立微元体的热平衡方程式;3)根据傅里叶定律及已知条件, 对热平衡方程式进行归纳、整理,最后得出导热微分方程式。
单值性条件一般包括:几何条件、物理条件、时间条件、边界条件。
1)几何条件说明参与导热物体的几何形状及尺寸。
几何条件决定温度场的空间分布特点和分析时所采用的坐标系。
2)物理条件说明导热物体的物理性质, 例如物体有无内热源以及内热源的分布规律,给出热物性参数(λ、ρ、c、a等)的数值及其特点等。
3)时间条件说明导热过程时间上的特点, 是稳态导热还是非稳态导热。
对于非稳态导热, 应该给出过程开始时物体内部的温度分布规律(称为初始条件):t=f(x,y,z)4)边界条件(a) 第一类边界条件=f x,y,z)(b) 第二类边界条件=-(c) 第三类边界条件-λ=h(-)目前应用最广泛的求解导热问题的方法:(1)分析解法;(2)数值解法;(3)实验方法。
这也是求解所有传热学问题的三种基本方法。
第十章对流换热1. 牛顿冷却公式Φ = A hq = h( t w-t f)h—整个固体表面的平均表面传热系数;t w—固体表面的平均温度;t f—流体温度,对于外部绕流,t f 取远离壁面的流体主流温度;对于内部流动,t f 取流体的平均温度。
2.对流换热的影响因素对流换热是流体的导热和对流两种基本传热方式共同作用的结果,主要有以下五个方面:(1)流动的起因:影响流体的速度分布与温度分布。
强迫对流换热自然对流换热一般的说,自然对流的流速较低,因此自然对流换热通常要比强迫对流换热弱,表面传热系数要小。
(2) 流动的状态层流:流速缓慢,流体分层地平行于壁面方向流动,垂直于流动方向上的热量传递主要靠分子扩散(即导热)。