最优二叉查找树_动态规划

合集下载

算法分析与设计教案

算法分析与设计教案

算法分析与设计课程教案课程编号:50c24037-01总学时:51 周学时:4适用年级专业(学科类):2007级计科专业开课时间:2010-2011 学年第1 学期使用教材:王晓东编著计算机算法设计与分析第3版章节第1章1.1~ 1.2 第2 章2.1 课时 2教学目的理解程序与算法的概念、区别与联系;掌握算法在最坏情况、最好情况和平均情况下的计算复杂性概念;掌握算法复杂性的渐近性态的数学表述;理解递归的概念。

教学重点及突出方法重点:程序与算法的概念、算法的时间复杂性、算法复杂性的渐近性态的数学表述以及递归的概念。

通过讲解、举例方法。

教学难点及突破方法难点:算法复杂性与递归通过讲解、举例、提问与引导方法。

相关内容此部分内容基础知识可参考清华大学出版社出版严蔚敏编著的《数据结构》教学过程(教师授课思路、设问及讲解要点)回顾数据结构课程中的算法概念、排序算法等知识,从而引出本课程内容。

提问算法与程序的区别、联系以及算法具有的特性。

讲解算法的复杂性,主要包括时间复杂性与空间复杂性。

讲解最坏情况、最好情况与平均情况的时间复杂性。

讲解算法复杂性在渐近意义下的阶,主要包括O、Ω、θ与o,并通过具体例子说明。

通过具体例子说明递归技术。

主要包括阶乘函数、Fibonacci数列、Ackerman函数、排列问题、整数划分问题、Hanoi塔问题等。

第页章节第2 章2.2~2.5 课时 2 教学目的掌握设计有效算法的分治策略,并掌握范例的设计技巧,掌握计算算法复杂性方法。

教学重点及突出方法重点:分治法的基本思想及分治法的一般设计模式。

通过讲解、举例方法。

教学难点及突破方法难点:计算算法复杂性。

通过讲解、举例、提问与引导方法。

相关内容素材教(教师授课思路、设问及讲解要点)学过程通过生活中解决复杂问题的分解方法,引出分治方法。

讲解分治法的基本思想及其一般算法的设计模式,介绍分治法的计算效率。

通过具体例子采用分治思想来设计有效算法。

动态规划算法

动态规划算法
3级 28 20 7 2 8 3 f(i, j) —— 从第 i 堆到第 j 堆的代价和。 g(i, j) —— 从第 i 堆到第 j 堆的重量和。 f(1, 3) = 20 + 28 = 48 1级 13 序号 1 = f(1, 2) + g(1, 3)
2级
n=4时:有3大类归并法。前1堆后3堆、前2堆后2堆、前3堆后1堆。
因3堆有2种归并法,所以一共5小类归并法。前1堆第1种情况:
4级 3级 2级 1级 13 序号 1
44 31 15 7
2
f(1, 4) = 15 + 31 + 44 = 90 = f(2, 4) + g(1, 4) w不变 = f(2, 3) + g(2, 4) + g(1, 4)
若f(2,4)越小,则f(1,4)就越小。 8
3
16
4
n=4 时:前1堆的第2种情况。
4级 44 31 24 7 2 8 3 f(1, 4) = 24 + 31 + 44 = 99 = f(2, 4) + g(1, 4) w不变 = f(3, 4) + g(2, 4) + g(1, 4) 若f(2,4)越小,则f(1,4)就越小。 16 4 f(1, 4) = 20 + 24 + 44 = 88
的一种通用方法,对最优化问题提出最优性原则,从而创建最优化问题
的一种新算法设计技术——动态规划,它是一种重要的应用数学工具。 至少在计算机科学圈子里,人们不仅用它解决特定类型的最优化问题, 而最终把它作为一种通用的算法设计技术,即包括某些非最优化问题。 多阶段决策过程最优化: 现实世界里有许多问题属于这种情况:它有很多解,应用要求最优解。 穷举法通过找出全部解,再从中选出最优解。这种方法对于那些计算

动态规划-最优二叉搜索树

动态规划-最优二叉搜索树

动态规划-最优⼆叉搜索树摘要: 本章介绍了⼆叉查找树的概念及操作。

主要内容包括⼆叉查找树的性质,如何在⼆叉查找树中查找最⼤值、最⼩值和给定的值,如何找出某⼀个元素的前驱和后继,如何在⼆叉查找树中进⾏插⼊和删除操作。

在⼆叉查找树上执⾏这些基本操作的时间与树的⾼度成正⽐,⼀棵随机构造的⼆叉查找树的期望⾼度为O(lgn),从⽽基本动态集合的操作平均时间为θ(lgn)。

1、⼆叉查找树 ⼆叉查找树是按照⼆叉树结构来组织的,因此可以⽤⼆叉链表结构表⽰。

⼆叉查找树中的关键字的存储⽅式满⾜的特征是:设x为⼆叉查找树中的⼀个结点。

如果y是x的左⼦树中的⼀个结点,则key[y]≤key[x]。

如果y是x的右⼦树中的⼀个结点,则key[x]≤key[y]。

根据⼆叉查找树的特征可知,采⽤中根遍历⼀棵⼆叉查找树,可以得到树中关键字有⼩到⼤的序列。

介绍了⼆叉树概念及其遍历。

⼀棵⼆叉树查找及其中根遍历结果如下图所⽰:书中给出了⼀个定理:如果x是⼀棵包含n个结点的⼦树的根,则其中根遍历运⾏时间为θ(n)。

问题:⼆叉查找树性质与最⼩堆之间有什么区别?能否利⽤最⼩堆的性质在O(n)时间内,按序输出含有n个结点的树中的所有关键字?2、查询⼆叉查找树 ⼆叉查找树中最常见的操作是查找树中的某个关键字,除了基本的查询,还⽀持最⼤值、最⼩值、前驱和后继查询操作,书中就每种查询进⾏了详细的讲解。

(1)查找SEARCH 在⼆叉查找树中查找⼀个给定的关键字k的过程与⼆分查找很类似,根据⼆叉查找树在的关键字存放的特征,很容易得出查找过程:⾸先是关键字k与树根的关键字进⾏⽐较,如果k⼤⽐根的关键字⼤,则在根的右⼦树中查找,否则在根的左⼦树中查找,重复此过程,直到找到与遇到空结点为⽌。

例如下图所⽰的查找关键字13的过程:(查找过程每次在左右⼦树中做出选择,减少⼀半的⼯作量)书中给出了查找过程的递归和⾮递归形式的伪代码:1 TREE_SEARCH(x,k)2 if x=NULL or k=key[x]3 then return x4 if(k<key[x])5 then return TREE_SEARCH(left[x],k)6 else7 then return TREE_SEARCH(right[x],k)1 ITERATIVE_TREE_SEARCH(x,k)2 while x!=NULL and k!=key[x]3 do if k<key[x]4 then x=left[x]5 else6 then x=right[x]7 return x(2)查找最⼤关键字和最⼩关键字 根据⼆叉查找树的特征,很容易查找出最⼤和最⼩关键字。

计算机算法试题(含答案)

计算机算法试题(含答案)

算法设计与分析试卷一、填空题(20分,每空2分)1、算法的性质包括输入、输出、___、有限性。

2、动态规划算法的基本思想就将待求问题_____、先求解子问题,然后从这些子问题的解得到原问题的解。

3、设计动态规划算法的4个步骤:(1)找出____,并刻画其结构特征。

(2)_______。

(3)_______。

(4)根据计算最优值得到的信息,_______。

4、流水作业调度问题的johnson算法:(1)令N1=___,N2={i|ai>=bj};(2)将N1中作业依ai的___。

5、对于流水作业高度问题,必存在一个最优调度π,使得作业π(i)和π(i+1)满足Johnson不等式_____。

6、最优二叉搜索树即是___的二叉搜索树。

二、综合题(50分)1、当(a1,a2,a3,a4,a5,a6)=(-2,11,-4,13,-5,-2)时,最大子段和为∑ak(2<=k<=4)____(5分)2、由流水作业调度问题的最优子结构性质可知,T(N,0)=______(5分)3、最大子段和问题的简单算法(10分)int maxsum(int n,int *a,int & bestj){intsum=0;for (int i=1;i<=n;i++)for (int j=i;j<=n;j++)int thissum=0;for(int k=i;k<=j;k++)_____;if(thissum>sum){sum=thissum;______;bestj=j;}} return sum;}4、设计最优二叉搜索树问题的动态规划算法OptimalBinarysearchTree? (15分)Void OptimalBinarysearchTree(int a,int n,int * * m, int* * w){for(int i=0;i<=n;i++) {w[i+1][i]=a[i]; m[i+1][i]=____;}for(int r=0;r<n;r++)for(int i=1;i<=n-r;i++){int j=i+r;w[i][j]=w[i][j-1]+a[j]+b[j];m[i][j]=______;s[i][j]=i;for(int k=i+1;k<=j;k++){int t=m[i][k-1]+m[k+1][j];if(_____) {m[i][j]=t; s[i][j]=k;}}m[i][j]=t; s[i][j]=k;}}5、设n=4, (a1,a2,a3,a4)=(3,4,8,10), (b1,b2,b3,b4)=(6,2,9,15) 用两种方法求4个作业的最优调度方案并计算其最优值?(15分)三、简答题(30分)1、将所给定序列a[1:n]分为长度相等的两段a[1:n/2]和a[n/2+1:n],分别求出这两段的最大子段和,则a[1:n]的最大子段和有哪三种情形?(10分)答:2、由0——1背包问题的最优子结构性质,可以对m(i,j)建立怎样的递归式? (10分)3、0——1背包求最优值的步骤分为哪几步?(10分)参考答案:填空题:确定性分解成若干个子问题最优解的性质递归地定义最优值以自底向上的方式计算出最优值构造最优解 {i|ai<bi} ai的非减序排序;将N2中作业依bi的非增序排序min{bπ(i),aπ(i+1)}≥min{bπ(i+1),aπ(i)}最小平均查找长度综合题:20 min{ai+T(N-{i},bi)}(1=<i<=n) thissum+=a[k] besti=i 0 m[i+1][j] t<m[i][j]法一:min(ai,bj)<=min(aj,bi)因为 min(a1,b2)<=min(a2,b1)所以 1→2 (先1后2)由 min(a1,b3)<=min(a3,b1)得 1→3 (先1后3)同理可得:最后为1→3→4→2法二:johnson算法思想N1={1,3,4} N2={2}N¹1={1,3,4} N¹2={2}所以 N¹1→N¹2得:1→3→4→2简答题:1 、(1)a[1:n]的最大子段和与a[1:n/2]的最大子段和相同。

算法设计与分析复习题目及答案 (3)

算法设计与分析复习题目及答案 (3)

分治法1、二分搜索算法是利用(分治策略)实现的算法。

9. 实现循环赛日程表利用的算法是(分治策略)27、Strassen矩阵乘法是利用(分治策略)实现的算法。

34.实现合并排序利用的算法是(分治策略)。

实现大整数的乘法是利用的算法(分治策略)。

17.实现棋盘覆盖算法利用的算法是(分治法)。

29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。

不可以使用分治法求解的是(0/1背包问题)。

动态规划下列不是动态规划算法基本步骤的是(构造最优解)下列是动态规划算法基本要素的是(子问题重叠性质)。

下列算法中通常以自底向上的方式求解最优解的是(动态规划法)备忘录方法是那种算法的变形。

(动态规划法)最长公共子序列算法利用的算法是(动态规划法)。

矩阵连乘问题的算法可由(动态规划算法B)设计实现。

实现最大子段和利用的算法是(动态规划法)。

贪心算法能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题,不能解决的问题:N皇后问题,0/1背包问题是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。

回溯法回溯法解旅行售货员问题时的解空间树是(排列树)。

剪枝函数是回溯法中为避免无效搜索采取的策略回溯法的效率不依赖于下列哪些因素(确定解空间的时间)分支限界法最大效益优先是(分支界限法)的一搜索方式。

分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。

分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆)优先队列式分支限界法选取扩展结点的原则是(结点的优先级)在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( 分支限界法).从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( 栈式分支限界法)之外都是最常见的方式.(1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。

(2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。

算法设计与分析考试题及答案-算法设计与优化答案

算法设计与分析考试题及答案-算法设计与优化答案

1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。

2.算法的复杂性有_____________和___________之分,衡量一个算法好坏的标准是______________________。

3.某一问题可用动态规划算法求解的显著特征是____________________________________。

4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y的一个最长公共子序列_____________________________。

5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。

6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。

7.以深度优先方式系统搜索问题解的算法称为_____________。

8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。

9.动态规划算法的两个基本要素是___________和___________。

10.二分搜索算法是利用_______________实现的算法。

二、综合题(50分)1.写出设计动态规划算法的主要步骤。

2.流水作业调度问题的johnson算法的思想。

3.若n=4,在机器M1和M2上加工作业i所需的时间分别为a i和b i,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。

4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。

算法分析与设计-屈婉玲-第6周

算法分析与设计-屈婉玲-第6周

时间复杂度:O(n)
10
小结
• • • • • • 图像变位存储问题的建模 子问题边界的界定 递推方程及初值 伪码 标记函数与解的追踪 时间复杂度
最大子段和
最大子段和
问题:给定n个数(可以为负数)的序列
(a1, a2, ... , an) j ak } 求 max{0, 1max k i i jn
1
L0
4 2 3
L3
6 5
L4 L6 L5
2
L1 L2
二叉树的检索方法
1. 初始,x与根元素比较; 2. x < 根元素,递归进入左子树; 3. x > 根元素,递归进入右子树; 4. x = 根元素,算法停止,输出 x; 5. x 到叶结点算法停止,输出 x不在数组.
4 2 1
L0
x=3.5 6
255 255 255 255 255 255
1
2
S[5]=50 S[4]=42 S[3]=23
10
1×2+11
1 1 2
63 57 58
2
2×2+11
2
3×8+11
1
S[2]=19
10
4×8+11
1 1 2
62 66
2
S[1]=15
10
5×8+11
6×8+11
59
9
追踪解
算法 Traceback ( n , l ) 输入:数组 l 输出:数组 C 1. j ← 1 // j 为正在追踪的段数 2. while n ≠ 0 do 第 j段 3. C[ j ] ← l [n] 长度 4. n ← n- l [n] 5. j ← j + 1 C[ j ]:从后向前追踪的第 j段的长度

《计算机算法设计与分析》课程设计

《计算机算法设计与分析》课程设计

《计算机算法设计与分析》课程设计用分治法解决快速排序问题及用动态规划法解决最优二叉搜索树问题及用回溯法解决图的着色问题一、课程设计目的:《计算机算法设计与分析》这门课程是一门实践性非常强的课程,要求我们能够将所学的算法应用到实际中,灵活解决实际问题。

通过这次课程设计,能够培养我们独立思考、综合分析与动手的能力,并能加深对课堂所学理论和概念的理解,可以训练我们算法设计的思维和培养算法的分析能力。

二、课程设计内容:1、分治法:(2)快速排序;2、动态规划:(4)最优二叉搜索树;3、回溯法:(2)图的着色。

三、概要设计:分治法—快速排序:分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。

递归地解这些子问题,然后将各个子问题的解合并得到原问题的解。

分治法的条件:(1) 该问题的规模缩小到一定的程度就可以容易地解决;(2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;(3) 利用该问题分解出的子问题的解可以合并为该问题的解;(4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

抽象的讲,分治法有两个重要步骤:(1)将问题拆开;(2)将答案合并;动态规划—最优二叉搜索树:动态规划的基本思想是将问题分解为若干个小问题,解子问题,然后从子问题得到原问题的解。

设计动态规划法的步骤:(1)找出最优解的性质,并刻画其结构特征;(2)递归地定义最优值(写出动态规划方程);(3)以自底向上的方式计算出最优值;(4)根据计算最优值时得到的信息,构造一个最优解。

●回溯法—图的着色回溯法的基本思想是确定了解空间的组织结构后,回溯法就是从开始节点(根结点)出发,以深度优先的方式搜索整个解空间。

这个开始节点就成为一个活结点,同时也成为当前的扩展结点。

在当前的扩展结点处,搜索向纵深方向移至一个新结点。

这个新结点就成为一个新的或节点,并成为当前扩展结点。

算法设计与分析复习题目及答案

算法设计与分析复习题目及答案

分治法1、二分搜索算法是利用(分治策略)实现的算法。

9. 实现循环赛日程表利用的算法是(分治策略)27、Strassen矩阵乘法是利用(分治策略)实现的算法。

34.实现合并排序利用的算法是(分治策略)。

实现大整数的乘法是利用的算法(分治策略)。

17.实现棋盘覆盖算法利用的算法是(分治法)。

29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。

不可以使用分治法求解的是(0/1背包问题)。

动态规划下列不是动态规划算法基本步骤的是(构造最优解)下列是动态规划算法基本要素的是(子问题重叠性质)。

下列算法中通常以自底向上的方式求解最优解的是(动态规划法)备忘录方法是那种算法的变形。

(动态规划法)最长公共子序列算法利用的算法是(动态规划法)。

矩阵连乘问题的算法可由(动态规划算法B)设计实现。

实现最大子段和利用的算法是(动态规划法)。

贪心算法能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题,不能解决的问题:N皇后问题,0/1背包问题是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。

回溯法回溯法解旅行售货员问题时的解空间树是(排列树)。

剪枝函数是回溯法中为避免无效搜索采取的策略回溯法的效率不依赖于下列哪些因素(确定解空间的时间)分支限界法最大效益优先是(分支界限法)的一搜索方式。

分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。

分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆)优先队列式分支限界法选取扩展结点的原则是(结点的优先级)在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( 分支限界法).从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( 栈式分支限界法)之外都是最常见的方式.(1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。

(2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。

算法设计与分析考试题及答案

算法设计与分析考试题及答案

1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。

2.算法的复杂性有_____________和___________之分,衡量一个算法好坏的标准是______________________。

3.某一问题可用动态规划算法求解的显著特征是____________________________________。

4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y的一个最长公共子序列_____________________________。

5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。

6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。

7.以深度优先方式系统搜索问题解的算法称为_____________。

8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。

9.动态规划算法的两个基本要素是___________和___________。

10.二分搜索算法是利用_______________实现的算法。

二、综合题(50分)1.写出设计动态规划算法的主要步骤。

2.流水作业调度问题的johnson算法的思想。

3.若n=4,在机器M1和M2上加工作业i所需的时间分别为a i和b i,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。

4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。

算法设计与分析考试题目及答案

算法设计与分析考试题目及答案

算法设计与分析考试题目及答案Revised at 16:25 am on June 10, 2021I hope tomorrow will definitely be better算法分析与设计期末复习题一、 选择题1.应用Johnson 法则的流水作业调度采用的算法是DA. 贪心算法B. 分支限界法C.分治法D. 动态规划算法塔问题如下图所示;现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置;移动圆盘时遵守Hanoi 塔问题的移动规则;由此设计出解Hanoi 塔问题的递归算法正确的为:B3. 动态规划算法的基本要素为C A. 最优子结构性质与贪心选择性质 B .重叠子问题性质与贪心选择性质 C .最优子结构性质与重叠子问题性质 D. 预排序与递归调用4. 算法分析中,记号O 表示B , 记号Ω表示A , 记号Θ表示D ; A.渐进下界 B.渐进上界 C.非紧上界 D.紧渐进界 E.非紧下界5. 以下关于渐进记号的性质是正确的有:A A.f (n)(g(n)),g(n)(h(n))f (n)(h(n))=Θ=Θ⇒=Θ B. f (n)O(g(n)),g(n)O(h(n))h(n)O(f (n))==⇒= C. Ofn+Ogn = Omin{fn,gn} D. f (n)O(g(n))g(n)O(f (n))=⇔=Hanoi 塔A. void hanoiint n, int A, int C, int B { if n > 0 {hanoin-1,A,C, B; moven,a,b;hanoin-1, C, B, A; } B. void hanoiint n, int A, int B, int C { if n > 0 {hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; }C. void hanoiint n, int C, int B, int A { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; }D. void hanoiint n, int C, int A, int B { if n > 0 {hanoin-1, A, C, B; moven,a,b;hanoin-1, C, B, A; }6.能采用贪心算法求最优解的问题,一般具有的重要性质为:AA. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用7. 回溯法在问题的解空间树中,按D策略,从根结点出发搜索解空间树;广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分支限界法在问题的解空间树中,按A策略,从根结点出发搜索解空间树;A.广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块A是回溯法中遍历排列树的算法框架程序;A.B.C.D.10.xk的个数;11. 常见的两种分支限界法为DA. 广度优先分支限界法与深度优先分支限界法;B. 队列式FIFO分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式FIFO分支限界法与优先队列式分支限界法;12. k带图灵机的空间复杂性Sn是指BA.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最大方格数;B.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的方格数的总和;C.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的平均方格数;D.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最小方格数;13. N P类语言在图灵机下的定义为DA.NP={L|L是一个能在非多项式时间内被一台NDTM所接受的语言};B.NP={L|L是一个能在多项式时间内被一台NDTM所接受的语言};C.NP={L|L是一个能在多项式时间内被一台DTM所接受的语言};D.NP={L|L是一个能在多项式时间内被一台NDTM所接受的语言};14. 记号O的定义正确的是A;A.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ fn ≤cgn };B.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ cgn ≤fn };>0使得对所有n≥n0C.Ogn = { fn | 对于任何正常数c>0,存在正数和n有:0 ≤fn<cgn };>0使得对所有n≥n0D.Ogn = { fn | 对于任何正常数c>0,存在正数和n有:0 ≤cgn < fn };15. 记号Ω的定义正确的是B;A.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ fn ≤cgn };B.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ cgn ≤fn };>0使得对所有n≥n0有:C.gn = { fn | 对于任何正常数c>0,存在正数和n0 ≤fn<cgn };D.gn = { fn | 对于任何正常数c>0,存在正数和n0 >0使得对所有n≥n0有:0 ≤cgn < fn };二、 填空题1. 下面程序段的所需要的计算时间为 2O(n ) ;2.3.4. 5.6. 用回溯法解题的一个显着特征是在搜索过程中动态产生问题的解空间;在任何时刻,算法只保存从根结点到当前扩展结点的路径;如果解空间树 中从根结点到叶结点的最长路径的长度为hn,则回溯法所需的计算空间通常为Ohn ;7. 回溯法的算法框架按照问题的解空间一般分为子集树算法框架与排列树算法框架;8. 用回溯法解0/1背包问题时,该问题的解空间结构为子集树结构; 9.用回溯法解批处理作业调度问题时,该问题的解空间结构为排列树结构; 10.用回溯法解0/1背包问题时,计算结点的上界的函数如下所示,请在空格中填入合适的内容:11. n m12. 用回溯法解图的m着色问题时,使用下面的函数OK检查当前扩展结点的每一个儿子所相应的颜色的可用性,则需耗时渐进时间上限Omn;13.;设分分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用fn个单位时间;用Tn表示该分治法解规模为|P|=n的问题所需的计算时间,则有:(1)1 ()(/)()1O nT nkT n m f n n=⎧=⎨+>⎩通过迭代法求得Tn的显式表达式为:log1log()(/)nmk j jmjT n n k f n m-==+∑试证明Tn的显式表达式的正确性;2. 举反例证明0/1背包问题若使用的算法是按照p i/w i的非递减次序考虑选择的物品,即只要正在被考虑的物品装得进就装入背包,则此方法不一定能得到最优解此题说明0/1背包问题与背包问题的不同;证明:举例如:p={7,4,4},w={3,2,2},c=4时,由于7/3最大,若按题目要求的方法,只能取第一个,收益是7;而此实例的最大的收益应该是8,取第2,3 个;3. 求证:Ofn+Ogn = Omax{fn,gn} ;证明:对于任意f1n∈ Ofn ,存在正常数c1和自然数n1,使得对所有n≥n1,有f1n≤ c1fn ;类似地,对于任意g1n ∈ Ogn ,存在正常数c2和自然数n2,使得对所有n≥n2,有g1n ≤c2gn ;令c3=max{c1, c2}, n3 =max{n1, n2},hn= max{fn,gn} ;则对所有的 n ≥ n3,有f1n +g1n ≤ c1fn + c2gn≤c3fn + c3gn= c3fn + gn≤ c32 max{fn,gn} = 2c3hn = Omax{fn,gn} .4. 求证最优装载问题具有贪心选择性质;最优装载问题:有一批集装箱要装上一艘载重量为c 的轮船;其中集装箱i 的重量为Wi;最优装载问题要求确定在装载体积不受限制的情况下,将尽可能多的集装箱装上轮船; 设集装箱已依其重量从小到大排序,x 1,x 2,…,x n 是最优装载问题的一个最优解;又设1min{|1}i i nk i x ≤≤== ;如果给定的最优装载问题有解,则有1k n ≤≤;证明: 四、 解答题1. 机器调度问题;问题描述:现在有n 件任务和无限多台的机器,任务可以在机器上得到处理;每件任务的开始时间为s i ,完成时间为f i ,s i <f i ;s i ,f i 为处理任务i 的时间范围;两个任务i,j 重叠指两个任务的时间范围区间有重叠,而并非指i,j 的起点或终点重合;例如:区间1,4与区间2,4重叠,而与4,7不重叠;一个可行的任务分配是指在分配中没有两件重叠的任务分配给同一台机器;因此,在可行的分配中每台机器在任何时刻最多只处理一个任务;最优分配是指使用的机器最少的可行分配方案;问题实例:若任务占用的时间范围是{1,4,2,5,4,5,2,6,4,7},则按时完成所有任务最少需要几台机器提示:使用贪心算法画出工作在对应的机器上的分配情况;2. 已知非齐次递归方程:f (n)bf (n 1)g(n)f (0)c =-+⎧⎨=⎩ ,其中,b 、c 是常数,gn 是n 的某一个函数;则fn 的非递归表达式为:nnn i i 1f (n)cb b g(i)-==+∑;现有Hanoi 塔问题的递归方程为:h(n)2h(n 1)1h(1)1=-+⎧⎨=⎩ ,求hn 的非递归表达式;解:利用给出的关系式,此时有:b=2, c=1, gn=1, 从n 递推到1,有: 3. 单源最短路径的求解;问题的描述:给定带权有向图如下图所示G =V,E,其中每条边的权是非负实数;另外,还给定V 中的一个顶点,称为源;现在要计算从源到所有其它各顶点的最短路长度;这里路的长度是指路上各边权之和;这个问题通常称为单源最短路径问题;解法:现采用Dijkstra 算法计算从源顶点1到其它顶点间最短路径;请将此过程填入下表中;4. 请写出用回溯法解装载问题的函数; 装载问题:有一批共n 个集装箱要装上2艘载重量分别为c1和c2的轮船,其中集装箱i 的重量为wi,且121ni i w c c =≤+∑;装载问题要求确定是否有一个合理的装载方案可将这n 个集装箱装上这2艘轮船;如果有,找出一种装载方案;解:void backtrack int i{用分支限界法解装载问题时,对算法进行了一些改进,下面的程序段给出了改进部分;试说明斜线部分完成什么功能,以及这样做的原因,即采用这样的方式,算法在执行上有什么不同;初始时将;也就是说,重量仅在搜索进入左子树是增加,因此,可以在算法每一次进入左子树时更新bestw 的值;43 2 110030maxint10 - {1} 初始 dist5 dist4 dist3 dist2 u S 迭代7. 最长公共子序列问题:给定2个序列X={x 1,x2,…,xm }和Y={y 1,y2,…,yn },找出X 和Y 的最长公共子序列;由最长公共子序列问题的最优子结构性质建立子问题最优值的递归关系;用cij 记录序列Xi 和Yj 的最长公共子序列的长度;其中, Xi={x1,x2,…,xi};Y j={y1,y2,…,yj};当i=0或j=0时,空序列是Xi 和Yj 的最长公共子序列;故此时Cij=0;其它情况下,由最优子结构性质可建立递归关系如下:00,0[][][1][1]1,0;max{[][1],[1][]},0;i j i ji j c i j c i j i j x y c i j c i j i j x y ⎧==⎪=--+>=⎨⎪-->≠⎩在程序中,bij 记录Cij 的值是由哪一个子问题的解得到的;8.1.2.3.4.5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________;6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解;7.以深度优先方式系统搜索问题解的算法称为_____________;背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________;9.动态规划算法的两个基本要素是___________和___________;10.二分搜索算法是利用_______________实现的算法;二、综合题50分1.写出设计动态规划算法的主要步骤;2.流水作业调度问题的johnson算法的思想;3.若n=4,在机器M1和M2上加工作业i所需的时间分别为ai 和bi,且a 1,a2,a3,a4=4,5,12,10,b1,b2,b3,b4=8,2,15,9求4个作业的最优调度方案,并计算最优值;4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间从根出发,左1右0,并画出其解空间树,计算其最优值及最优解;5.设S={X1,X2,···,Xn}是严格递增的有序集,利用二叉树的结点来存储S中的元素,在表示S的二叉搜索树中搜索一个元素X,返回的结果有两种情形,1在二叉搜索树的内结点中找到X=Xi ,其概率为bi;2在二叉搜索树的叶结点中确定X∈Xi ,Xi+1,其概率为ai;在表示S的二叉搜索树T中,设存储元素Xi的结点深度为C i ;叶结点Xi,Xi+1的结点深度为di,则二叉搜索树T的平均路长p为多少假设二叉搜索树Tij={Xi ,Xi+1,···,Xj}最优值为mij,Wij= ai-1+bi+···+bj+aj,则mij1<=i<=j<=n递归关系表达式为什么6.描述0-1背包问题;三、简答题30分1.流水作业调度中,已知有n个作业,机器M1和M2上加工作业i所需的时间分别为ai 和bi,请写出流水作业调度问题的johnson法则中对ai和bi的排序算法;函数名可写为sorts,n2.最优二叉搜索树问题的动态规划算法设函数名binarysearchtree答案:一、填空1.确定性有穷性可行性 0个或多个输入一个或多个输出2.时间复杂性空间复杂性时间复杂度高低3. 该问题具有最优子结构性质4.{BABCD}或{CABCD}或{CADCD}5.一个最优解6.子问题子问题子问题7.回溯法8. on2n omin{nc,2n}9.最优子结构重叠子问题10.动态规划法二、综合题1.①问题具有最优子结构性质;②构造最优值的递归关系表达式;③最优值的算法描述;④构造最优解;2. ①令N1={i|ai<bi},N2={i|ai>=bi};②将N1中作业按ai的非减序排序得到N1’,将N2中作业按bi的非增序排序得到N2’;③N1’中作业接N2’中作业就构成了满足Johnson法则的最优调度;3.步骤为:N1={1,3},N2={2,4};N 1’={1,3}, N2’={4,2};最优值为:384.解空间为{0,0,0,0,1,0,0,0,1,1,0,0,0,1,1,1,0,1, 1,1,0,1,1,1}; 解空间树为:该问题的最优值为:16 最优解为:1,1,0 5.二叉树T 的平均路长P=∑=+ni 1Ci)(1*bi +∑=nj 0dj *aj{mij=0 i>j6.已知一个背包的容量为C,有n 件物品,物品i 的重量为W i ,价值为V i ,求应如何选择装入背包中的物品,使得装入背包中物品的总价值最大; 三、简答题 1.void sortflowjope s,int n {int i,k,j,l;fori=1;i<=n-1;i++ag=0 k++; ifk>n break;ag==0ifsk.a>sj.a k=j; swapsi.index,sk.index; swapsi.tag,sk.tag;} }l=i;<sj.b k=j;swapsi.index,sk.index; ag,sk.tag; }mij=Wij+min{mik+mk+1j} 1<=i<=j<=n,mii-1=0}2.void binarysearchtreeint a,int b,int n,int m,int s,int w{int i,j,k,t,l;fori=1;i<=n+1;i++{wii-1=ai-1;mii-1=0;}forl=0;l<=n-1;l++Init-single-sourceG,s2. S=Φ3. Q=VGQ<> Φdo u=minQS=S∪{u}for each vertex 3do 4四、算法理解题本题10分根据优先队列式分支限界法,求下图中从v1点到v9点的单源最短路径,请画出求得最优解的解空间树;要求中间被舍弃的结点用×标记,获得中间解的结点用单圆圈○框起,最优解用双圆圈◎框起;五、算法理解题本题5分设有n=2k个运动员要进行循环赛,现设计一个满足以下要求的比赛日程表:①每个选手必须与其他n-1名选手比赛各一次;②每个选手一天至多只能赛一次;③循环赛要在最短时间内完成;1如果n=2k,循环赛最少需要进行几天;2当n=23=8时,请画出循环赛日程表;六、算法设计题本题15分分别用贪心算法、动态规划法、回溯法设计0-1背包问题;要求:说明所使用的算法策略;写出算法实现的主要步骤;分析算法的时间;七、算法设计题本题10分通过键盘输入一个高精度的正整数nn的有效位数≤240,去掉其中任意s个数字后,剩下的数字按原左右次序将组成一个新的正整数;编程对给定的n 和s,寻找一种方案,使得剩下的数字组成的新数最小;样例输入178543S=4样例输出13一、填空题本题15分,每小题1分1.规则一系列运算2. 随机存取机RAMRandom Access Machine;随机存取存储程序机RASPRandom Access Stored Program Machine;图灵机Turing Machine3. 算法效率4. 时间、空间、时间复杂度、空间复杂度5.2n6.最好局部最优选择7. 贪心选择最优子结构二、简答题本题25分,每小题5分1、分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同;对这k个子问题分别求解;如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止;将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解;2、“最优化原理”用数学化的语言来描述:假设为了解决某一优化问题,需要依次作出n个决策D1,D2,…,Dn,如若这个决策序列是最优的,对于任何一个整数k,1 < k < n,不论前面k个决策是怎样的,以后的最优决策只取决于由前面决策所确定的当前状态,即以后的决策Dk+1,Dk+2,…,Dn也是最优的;3、某个问题的最优解包含着其子问题的最优解;这种性质称为最优子结构性质;4、回溯法的基本思想是在一棵含有问题全部可能解的状态空间树上进行深度优先搜索,解为叶子结点;搜索过程中,每到达一个结点时,则判断该结点为根的子树是否含有问题的解,如果可以确定该子树中不含有问题的解,则放弃对该子树的搜索,退回到上层父结点,继续下一步深度优先搜索过程;在回溯法中,并不是先构造出整棵状态空间树,再进行搜索,而是在搜索过程,逐步构造出状态空间树,即边搜索,边构造;5、PPolynomial问题:也即是多项式复杂程度的问题;NP就是Non-deterministicPolynomial的问题,也即是多项式复杂程度的非确定性问题;NPCNP Complete问题,这种问题只有把解域里面的所有可能都穷举了之后才能得出答案,这样的问题是NP里面最难的问题,这种问题就是NPC问题;三、算法填空本题20分,每小题5分1、n后问题回溯算法1 Mj&&Li+j&&Ri-j+N2 Mj=Li+j=Ri-j+N=1;3 tryi+1,M,L,R,A4 Aij=05 Mj=Li+j=Ri-j+N=0 2、数塔问题; 1c<=r2trc+=tr+1c 3trc+=tr+1c+1 3、Hanoi 算法 1movea,c2Hanoin-1, a, c , b 3Movea,c 4、1pv=NIL 2pv=u3 v ∈adju 4Relaxu,v,w四、算法理解题本题10分五、18天2分;2当n=23=8时,循环赛日程表3分;六、算法设计题本题15分 1贪心算法 Onlogn ➢ 首先计算每种物品单位重量的价值Vi/Wi,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包;若将这种物品全部装入背包后,背包内的物品总重量未超过C,则选择单位重量价值次高的物品并尽可能多地装入背包;依此策略一直地进行下去,直到背包装满为止; ➢ 具体算法可描述如下:void Knapsackint n,float M,float v,float w,float x {Sortn,v,w; int i;for i=1;i<=n;i++ xi=0; float c=M;for i=1;i<=n;i++ {if wi>c break; xi=1; c-=wi; }if i<=n xi=c/wi; }2动态规划法 Oncmi,j 是背包容量为j,可选择物品为i,i+1,…,n 时0-1背包问题的最优值;由0-1背包问题的最优子结构性质,可以建立计算mi,j 的递归式如下;void KnapSackint v,int w,int c,int n,int m11 {int jMax=minwn-1,c;for j=0;j<=jMax;j++ /mn,j=0 0=<j<wn/ mnj=0;1 2 3 4 5 6 7 82 1 43 6 5 8 73 4 1 2 7 8 5 64 3 2 1 8 7 6 55 6 7 8 1 2 3 4 6 5 8 7 2 1 4 37 8 5 6 3 4 1 28 7 6 5 4 3 2 1for j=wn;j<=c;j++ /mn,j=vn j>=wn/mnj=vn;for i=n-1;i>1;i--{ int jMax=minwi-1,c;for j=0;j<=jMax;j++ /mi,j=mi+1,j 0=<j<wi/mij=mi+1j;for j=wi;j<=c;j++/mn,j=vn j>=wn/mij=maxmi+1j,mi+1j-wi+vi;}m1c=m2c;ifc>=w1m1c=maxm1c,m2c-w1+v1;}3回溯法 O2ncw:当前重量 cp:当前价值 bestp:当前最优值voidbacktrack int i//回溯法 i初值1{ifi>n //到达叶结点{ bestp=cp; return; }ifcw+wi<=c //搜索左子树{cw+=wi;cp+=pi;backtracki+1;cw-=wi;cp-=pi;}ifBoundi+1>bestp//搜索右子树backtracki+1;}七、算法设计题本题10分为了尽可能地逼近目标,我们选取的贪心策略为:每一步总是选择一个使剩下的数最小的数字删去,即按高位到低位的顺序搜索,若各位数字递增,则删除最后一个数字,否则删除第一个递减区间的首字符;然后回到串首,按上述规则再删除下一个数字;重复以上过程s次,剩下的数字串便是问题的解了;具体算法如下:输入s, n;while s > 0{ i=1; //从串首开始找while i < lengthn && ni<ni+1{i++;}deleten,i,1; //删除字符串n的第i个字符s--;}while lengthn>1&& n1=‘0’deleten,1,1; //删去串首可能产生的无用零输出n;。

最优二叉树(哈夫曼树)

最优二叉树(哈夫曼树)

第八节最优二叉树(哈夫曼树)一、概念在具有n个带权叶结点的二叉树中,使所有叶结点的带权路径长度之和(即二叉树的带权路径长度)为最小的二叉树,称为最优二叉树(又称最优搜索树或哈夫曼树),即最优二叉树使(W k—第k个叶结点的权值;P k—第k个叶结点的带权路径长度)达到最小。

二、最优二叉树的构造方法假定给出n个结点ki(i=1‥n),其权值分别为Wi(i=1‥n)。

要构造以此n个结点为叶结点的最优二叉树,其构造方法如下:首先,将给定的n个结点构成n棵二叉树的集合F={T1,T2,……,Tn}。

其中每棵二叉树Ti中只有一个权值为wi的根结点ki,其左、右子树均为空。

然后做以下两步⑴在F中选取根结点权值最小的两棵二叉树作为左右子树,构造一棵新的二叉树,并且置新的二叉树的根结点的权值为其左、右子树根结点的权值之和;⑵在F中删除这两棵二叉树,同时将新得到的二叉树加入F 重复⑴、⑵,直到在F中只含有一棵二叉树为止。

这棵二叉树便是最优二叉树。

三、最优二叉树的数据类型定义在最优二叉树中非叶结点的度均为2,为满二叉树,因此采用顺序存储结构为宜。

如果带权叶结点数为n个,则最优二叉树的结点数为2n-1个。

Const n=叶结点数的上限;m=2*n-1;{最优二叉树的结点数}Typenode=record{结点类型}data:<数据类型>;{权值}prt,lch,rch,lth:0‥m;{父指针、左、右指针和路径长度}end;wtype=array[1‥n] of <数据类型> ;{n个叶结点权值的类型}treetype=array[1‥m] of node;{最优二叉树的数组类型}Var tree:treetype;{其中tree [1‥n]为叶结点,tree [n+1‥2n-1]为中间结点,根为tree [2n-1]}四、构造最优二叉树的算法。

计算机算法面试题及答案

计算机算法面试题及答案

计算机算法面试题及答案1. 问题:请解释什么是时间复杂度,并给出一个例子。

答案:时间复杂度是衡量算法运行时间与输入规模之间关系的量度。

它通常用大O符号表示,例如O(n)、O(n^2)等。

一个例子是冒泡排序算法,其时间复杂度为O(n^2),因为当数组长度为n时,它需要进行n*(n-1)/2次比较。

2. 问题:描述快速排序算法的过程。

答案:快速排序是一种分治算法,它通过选择一个“基准”元素,将数组分为两部分,一部分包含小于基准的元素,另一部分包含大于基准的元素。

然后递归地对这两部分进行快速排序,直到每个子数组只有一个元素或者为空。

3. 问题:什么是动态规划?请给出一个应用实例。

答案:动态规划是一种通过将复杂问题分解为更小的子问题来解决的方法,并且通过记忆已解决的子问题的结果来避免重复计算。

一个典型的应用实例是斐波那契数列的计算,通过动态规划可以避免大量的重复计算,从而提高效率。

4. 问题:解释图的深度优先搜索(DFS)算法。

答案:深度优先搜索是一种用于遍历或搜索树或图的算法。

它从一个节点开始,尽可能深地搜索树的分支,直到达到一个叶节点,然后回溯到上一个节点,继续搜索下一个分支,直到所有节点都被访问过。

5. 问题:请描述堆排序算法的工作原理。

答案:堆排序是一种基于比较的排序算法,它利用了二叉堆的数据结构。

算法的核心是构建一个最大堆,然后不断移除堆顶元素(最大值),将其放置在数组的末尾,同时调整剩余元素以保持最大堆的性质,直到数组完全排序。

6. 问题:什么是哈希表?它有什么优点?答案:哈希表是一种通过哈希函数将键映射到表中一个位置来访问记录的数据结构。

它的优点包括高效的查找、插入和删除操作,平均时间复杂度为O(1),这使得哈希表在需要快速访问数据的场景中非常有用。

7. 问题:解释什么是递归算法,并给出一个递归函数的例子。

答案:递归算法是一种自我引用的算法,它通过重复调用自身来解决问题。

一个典型的递归函数例子是计算阶乘的函数,它定义为n! = n * (n-1)!,其中n!是n的阶乘。

3、最优二叉搜索树

3、最优二叉搜索树

像求矩阵相乘的最优序一样,子问 题可以用一个整数对(low,high)来唯一描 述。 子问题(low,high)表示一个检索开销最 小的二叉搜索树。 其存放的键值为: Klow ,…,Khigh ,
Ω( 2 n / 2 )
相应的权重为plow , …,phigh 改概率为权重,是由于plow , …,phigh 的
不要重复递归调用的递归,其实现参见P471。 θ(n3)
二叉搜索树中存有的单词及其使用频度如下: Key Probability(pi) and 0.3 come 0.15 said 0.05 the 0.3 time 0.15 talk 0.05 试构造一个最优二叉搜索树,使平均查找次数 最小。
A (T ) = ∑ p i c i
i =1 n
例 P466-468 , 计算平均查找次数
在 K1 ,K2 ,…,Kn 中,假设Ki , 为根结点,则K1,…,Ki-1 必须在左子树 中,而Ki+1 ,…,Kn 在右子树中 但是我们不能确定选择哪一个作为 根结点,才是最优的,所以必须在所有 的选择中间求一个开销A(T)最小的。
程序 P474
课堂作业
二叉搜索树中存有的单词及其使用频度如下: Key Probability(pi) and 0.3 come 0.15 said 0.05 the 0.3 time 0.15 talk 0.05 试构造一个最优二叉搜索树,使平均查找次数 最小。
The complexity of mmTry() T(n)=(n-1)T(n-1)+n θ((n-1)!)
How many subproblems are reachable from the initial problem, which is described by the index sequence 0, …,n ? Although subsequences start out as a few continuous subranges, they get more and more fragmented as the subproblem depth increases.

最优二叉树规则

最优二叉树规则

最优二叉树规则最优二叉树,也称为哈夫曼树,是一种特殊的二叉树结构,它的构建过程是基于一组权值的频率分布来进行的。

最优二叉树规则是指在构建最优二叉树时所遵循的一些基本规则,这些规则可以帮助我们更好地理解最优二叉树的构建过程,从而更好地应用它们来解决实际问题。

最优二叉树的构建过程最优二叉树的构建过程是基于一组权值的频率分布来进行的。

在构建最优二叉树时,我们需要按照以下步骤进行:1. 将所有的权值按照从小到大的顺序排列。

2. 选取两个权值最小的节点作为左右子节点,构建一个新的节点,其权值为这两个节点的权值之和。

3. 将新节点的权值插入到原来的序列中,并将原来的两个节点从序列中删除。

4. 重复步骤2和3,直到序列中只剩下一个节点为止。

最优二叉树规则在构建最优二叉树时,我们需要遵循以下规则:1. 权值越大的节点应该离根节点越近。

2. 在同一层次上,权值越小的节点应该在左边。

3. 在构建最优二叉树时,我们应该尽量使得树的深度最小。

这些规则的目的是为了使得最优二叉树的结构更加紧凑,从而减少树的深度,提高树的搜索效率。

在实际应用中,我们可以根据这些规则来构建最优二叉树,从而更好地解决实际问题。

最优二叉树的应用最优二叉树在实际应用中有着广泛的应用,例如在数据压缩、编码和解码、图像处理等领域中都有着重要的应用。

在数据压缩中,我们可以利用最优二叉树来构建哈夫曼编码,从而将数据压缩到最小的空间。

在编码和解码中,我们可以利用最优二叉树来实现高效的编码和解码算法。

在图像处理中,我们可以利用最优二叉树来实现图像的压缩和解压缩,从而减少图像的存储空间和传输带宽。

总结最优二叉树是一种特殊的二叉树结构,它的构建过程是基于一组权值的频率分布来进行的。

在构建最优二叉树时,我们需要遵循一些基本规则,例如权值越大的节点应该离根节点越近,权值越小的节点应该在左边等。

最优二叉树在实际应用中有着广泛的应用,例如在数据压缩、编码和解码、图像处理等领域中都有着重要的应用。

中科院陈玉福算法课件ch5ppt

中科院陈玉福算法课件ch5ppt

i
i
m[i][j]
s[i][j]
回溯过程
void Traceback(int i, int j, int * * s) { if (i= = j) return; Traceback(i, s[i][j], s); Traceback(s[i][j]+1, j, s); cout << “Multiply A” << i << “,” << s[i][j]; cout << “and A” <<(s[i][j] +1) << “,” << j << endl; } • 以s[i][j]为元素的2维数 组却给出了加括号的全部 的信息。因为s[i][j]=k说 明,计算连乘积A[i..j]的 最佳方式应该在矩阵Ak和 Ak+1之间断开,即最优加 括号方式为 (A[i..k])(A[k+1..j])。 可以从 s[1][n]开始,逐步 深入找出分点的位置,进 而得到所有括号。
V1 9 9 7 1 2 3 3 7 3 7 4
11
V2 2 2 4
V3 6 2 9
11
V4 9 4 13 3 5
10 14
V5
6 5
7
4 2 5
s
1
t
12 16
11
8
2 5
8
10
6
16
11
矩阵连乘积问题
• 给定n个数字矩阵A1,A2,…,An,其中Ai与Ai+1是可乘的, 设Ai是pi-1×pi矩阵, i=1,2,…,n。 • 求矩阵连乘A1A2⋅⋅⋅An的加括号方法,使得所用的数乘次数最少 • 三个矩阵连乘:(A1A2)A3和A1(A2A3) ,乘法次数分别为 p0p1p2+p0p2p3和p0p1p3+p1p2p3 • 例子:p0=10, p1=100, p2=5, p3=50, 两种方法:7500 和 75000 • 最优子结构性质:(A1…Ak)(Ak+1…An) m(1,n)=m(1,k) + m(k+1,n)+p0pkpn • 目标值递推关系式

4种常见的动态规划模型

4种常见的动态规划模型

例谈四种常见的动态规划模型动态规划是解决多阶段决策最优化问题的一种思想方法,本文主要结合一些例题,把一些常见的动态规划模型,进行归纳总结。

(一)、背包模型可用动态规划解决的背包问题,主要有01背包和完全背包。

对于背包的类型,这边就做个简单的描述:n个物品要放到一个背包里,背包有个总容量m,每个物品都有一个体积w[i]和价值v[i],问如何装这些物品,使得背包里放的物品价值最大。

这类型的题目,状态表示为:f[j]表示背包容量不超过j时能够装的最大价值,则状态转移方程为:f[j]:=max{f[j-w[i]]+v[i]},边界:f[0]:=0;简单的程序框架为:beginreadln(m,n);for i:=1 to n do readln(w[i],v[i]);f[0]:=0;for i:=1 to m dofor j:=1 to n dobeginif i>=w[j] then t:=f[i-w[j]]+v[j];if t>f[i] then f[i]:=t;end;writeln(f[m]);end.这类型的题目应用挺广的(noip1996提高组第4题,noip2001普及组装箱问题,noip2005普及组采药等),下面一个例子,也是背包模型的简单转化。

货币系统(money)【问题描述】母牛们不但创建了他们自己的政府而且选择了建立了自己的货币系统。

他们对货币的数值感到好奇。

传统地,一个货币系统是由1,5,10,20或25,50,100的单位面值组成的。

母牛想知道用货币系统中的货币来构造一个确定的面值,有多少种不同的方法。

使用一个货币系统{1,2,5,10,..}产生18单位面值的一些可能的方法是:18×1,9×2,8×2+2×1,3×5+2+1等等其它。

写一个程序来计算有多少种方法用给定的货币系统来构造一个确定的面值。

【输入格式】货币系统中货币的种类数目是v(1≤v≤25);要构造的面值是n(1≤n≤10,000);第1行:二个整数,v和n;第2..v+1行:可用的货币v个整数(每行一个)。

如果一个问题可以用动态规划算法解决,则总是可以在多项式时间内解决的.

如果一个问题可以用动态规划算法解决,则总是可以在多项式时间内解决的.

如果一个问题可以用动态规划算法解决,则总是可以在多项式时间内解决的.
如果一个问题可以用动态规划算法解决,则总是可以在多项式时间内解决的。

最优二叉搜索树的根结点一定存放的是搜索概率最高的那个关键字。

用动态规划而非递归的方法去解决问题时,关键是将子问题的计算结果保存起来,使得每个不同的子问题只需要被计算一次。

子问题的解可以被保存在数组或哈希散列表中。

切原木问题:给定一根长度为N米的原木;另有一个分段价格表,给出长度L=1,2,⋯,M对应的价格PL 。

要求你找出适当切割原木分段出售所能获得的最大收益RN 。

例如,根据下面给出的价格表,若要出售一段8米长的原木,最优解是将其切割为2米和6米的两段,这样可以获得最大收益R8 =P2 +P6=5+17=22。

而若要出售一段3米长的原木,最优解是根本不要切割,直接售出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最优二叉查找树
【源程序】
//本程序测试用例为课本例题
#include <stdio.h>
#define INF 1000000000
//将这两个二维数组定义为全局变量,从而可以避免在函数之间进行参数的传递double C[100][100];
int R[100][100];
double OptimalBST(double p[], int n)
{
int i, j, k, d;
int mink;
//注意这里min 和sum一定要定义成double类型,否则赋不上值!!
double min,sum;
for(i=1; i<=n; i++)
{
C[i][i-1]=0;
C[i][i]=p[i-1];
R[i][i]=i;
}
C[n+1][n]=0;
for(d=1; d<n; d++)
for(i=1; i<=n-d; i++)
{
j=i+d;
min=INF;
mink=i;
sum=0;
for(k=i; k<=j; k++)
{
sum+=p[k-1];
if (C[i][k-1]+C[k+1][j]<min)
{
min=C[i][k-1]+C[k+1][j];
mink=k;
}
}
C[i][j]=min+sum;
R[i][j]=mink;
}
return C[1][n];
}
int main()
{
int n;
double p[100];
printf("请输入字符个数:");
scanf("%d",&n);
printf("\n");
printf("请输入每个字符的查找概率:");
for(int i=0; i<n; i++)
{
scanf("%lf",&p[i]);
}
printf("\n");
printf("最少平均比较次数: %.2f",OptimalBST(p,n));
printf("\n");
printf("\n二维表C:\n");
for(int i=1; i<=n+1; i++)
{
for(int j=0; j<=n; j++)
printf("%.1f ",C[i][j]);
printf("\n");
}
printf("\n二维表R:\n");
for(int i=1; i<=n+1; i++)
{
for(int j=0; j<=n; j++)
printf("%d ",R[i][j]);
printf("\n");
}
return 0;
}
【运行结果】。

相关文档
最新文档