2.3解二元一次方程组(2)
浙教版数学七年级下册2.3《解二元一次方程组》(第2课时)教学设计
浙教版数学七年级下册2.3《解二元一次方程组》(第2课时)教学设计一. 教材分析《解二元一次方程组》是浙教版数学七年级下册第2.3节的内容,主要介绍了解二元一次方程组的基本方法和技巧。
本节课的内容是学生在学习了二元一次方程的基础上进行的,是进一步学习更复杂方程组的基础。
教材通过具体的例子引导学生掌握解二元一次方程组的方法,并能够灵活运用。
二. 学情分析七年级的学生已经掌握了二元一次方程的基本知识,对于解方程有一定的了解。
但是,解二元一次方程组相对于单个方程来说更加复杂,需要学生能够将两个方程结合起来进行求解。
因此,学生在学习本节课的内容时可能会感到有一定的困难,需要通过大量的练习来掌握解题方法。
三. 教学目标1.让学生掌握解二元一次方程组的基本方法。
2.培养学生解决实际问题的能力。
3.提高学生合作交流的能力。
四. 教学重难点1.重难点:解二元一次方程组的方法和技巧。
2.难点:如何将实际问题转化为二元一次方程组,并灵活运用解题方法。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过解决问题来学习解二元一次方程组的方法。
2.使用多媒体辅助教学,通过动画和例子来形象地展示解题过程。
3.分组讨论,让学生在合作中学习,提高学生的合作交流能力。
4.大量的练习,让学生在实践中掌握解题方法。
六. 教学准备1.准备相关的教学多媒体材料,如动画、例子等。
2.准备练习题,包括基础题和提高题。
3.准备黑板和粉笔,用于板书解题过程。
七. 教学过程1.导入(5分钟)通过一个实际问题引入二元一次方程组的概念,激发学生的学习兴趣。
2.呈现(15分钟)使用多媒体展示二元一次方程组的解法,引导学生理解解题思路。
3.操练(15分钟)让学生分组讨论,每组解决一个二元一次方程组的问题,并展示解题过程。
4.巩固(10分钟)让学生独立解决一些基础的二元一次方程组问题,巩固所学知识。
5.拓展(10分钟)引导学生思考如何将实际问题转化为二元一次方程组,并灵活运用解题方法。
2.3.2 加减消元法 浙教版七年级数学下册同步练习(含解析)
2.3 解二元一次方程组第2课时 加减消元法基础过关全练知识点 加减消元法1.(2022浙江杭州余杭期中)观察下列二元一次方程组,最适合采用加减消元法求解的是 ( )A.{3x −2y =11y =16−2x B.{2x +3y =−15x −3y =15C.{x =−32y2x +y =2D.{2x −5=y 3x −2y =42.(2020浙江嘉兴中考)用加减消元法解二元一次方程组{x +3y =4①,2x −y =1②时,下列方法中无法消元的是 ( )A.①×2-②B.②×3+①C.①-②×3D.①×(-2)+②3.【一题多解】(2021天津中考)方程组{x +y =2,3x +y =4的解是( ) A.{x =0y =2 B.{x =1y =1 C.{x =2y =−2 D.{x =3y =−3 4.二元一次方程组{x +2y =2,x −4y =−16的解是 .5.(2022湖北随州中考)已知二元一次方程组{x +2y =4,2x +y =5,则x-y 的值为 .6.(2022浙江台州中考)解方程组:{x +2y =4,x +3y =5.7.【教材变式·P43T2变式】解方程组:(1){4a +b =15,3b −4a =13; (2){6(x +y)−4(2x −y)=16,2(x−y)3−x+y 4=−1.能力提升全练8.(2022浙江丽水青田二中月考,6,)用加减消元法解方程组{x +3y =5,2x −y =4时,要使方程组中同一个未知数的系数相等或互为相反数,必须适当变形.以下四种变形中正确的是 ( )(1){2x +6y =5,2x −y =4;(2){2x +6y =10,2x −y =4;(3){x +3y =5,6x −3y =4;(4){x +3y =5,6x −3y =12.A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)9.(2022浙江嘉兴期中,9,)解关于x,y 的方程组{(a +2)x +(3b +2)y =3①,(5b −1)x −(4a −b)y =7②,可以用①×3-②,消去未知数x,也可以用①+②×4消去未知数y,则a,b 的值分别为( )A.1,-2B.-1,-2C.1,2D.-1,2 10.(2022浙江宁波鄞州期中,8,)若|x+2y-3|+|x-y+3|=0,则x y 的值是( )A.-1B.1C.12 D.211.【一题多变】已知关于a,b 的方程组{a −2b =6,3a −b =m 中,a,b 互为相反数,则m 的值是 .[变式] (2022浙江衢州龙游月考,15,)定义运算“*”,规定x*y=ax 2+by,其中a,b 为常数,且3*2=6,4*1=7,则5*3= . 12.【新独家原创】已知关于m,n 的二元一次方程组{2 024m +2 023n =19,506m +505n =7,则n 2= . 13.【新独家原创】已知关于x,y 的二元一次方程组{3(x +2 023)−2(y −⊕)=1,3(x +2 023)+2(y −⊕)=5,则x= . 14.(2019山东枣庄中考,21,)对于实数a 、b,定义关于“⊗”的一种运算:a ⊗b=2a+b,例如3⊗4=2×3+4=10. (1)求4⊗(-3)的值;(2)若x ⊗(-y)=2,(2y)⊗x=-1,求x+y 的值.15.已知关于x 、y 的二元一次方程组{3x −5y =2a,2x +7y =a −18.(1)若x,y 的值互为相反数,求a 的值; (2)若2x+y+35=0,解这个方程组.素养探究全练16.【运算能力】(2022浙江金华兰溪二中月考)阅读下列解方程组的方法,然后回答问题.解方程组:{19x +18y =17,①17x +16y =15.②解:①-②,得2x+2y=2,∴x+y=1.③ ③×16,得16x+16y=16.④②-④,得x=-1,将x=-1代入③,得-1+y=1,解得y=2. ∴原方程组的解是{x =−1,y =2.(1)请你仿照上面的解法解方程组{2 021x +2 020y =2 019,①2 019x +2 018y =2 017;②(2)请大胆猜想关于x,y 的方程组{(a +2)x +(a +1)y =a,(b +2)x +(b +1)y =b (a≠b)的解,并验证你的猜想.答案全解全析基础过关全练1.B 选项B 的两个方程中y 的系数互为相反数,故最适合用加减消元法求解,故选B.2.C ①×2-②,得7y=7,能消元;②×3+①,得7x=7,能消元;①-②×3,得-5x+6y=1,不能消元;①×(-2)+②,得-7y=-7,能消元.故选C.3.B 解法一:{x +y =2①,3x +y =4②,②-①,得2x=2,解得x=1,把x=1代入①,得1+y=2,解得y=1,所以原方程组的解为{x =1,y =1.故选B.解法二:{x +y =2①,3x +y =4②,把4个选项分别代入方程①,知A 、B 均符合,排除C 、D,再把A 、B 代入方程②,知B 符合,故选B. 4.答案 {x =−4y =3解析 {x +2y =2①,x −4y =−16②,①-②,得6y=18,解得y=3,把y=3代入①,得x+6=2,解得x=-4,则原方程组的解是{x =−4,y =3.5.答案 1解析 {x +2y =4①,2x +y =5②,由②-①可得x-y=1.6.解析 {x +2y =4,①x +3y =5,②②-①得y=1,把y=1代入①得x+2=4,解得x=2, 则原方程组的解为{x =2,y =1.7.解析 (1){4a +b =15,①3b −4a =13,②①+②得4b=28,解得b=7, 把b=7代入①得4a+7=15, 解得a=2.所以方程组的解是{a =2,b =7.(2)方程组整理得{−x +5y =8,①5x −11y =−12,②①×5+②得14y=28,解得y=2, 把y=2代入①得-x+10=8,解得x=2. 所以方程组的解是{x =2,y =2.能力提升全练8.D {x +3y =5①,2x −y =4②,①×2,得2x+6y=10,∴{2x +6y =10,2x −y =4,故(2)正确;②×3,得6x-3y=12, ∴{x +3y =5,6x −3y =12,故(4)正确,故选D. 9.C 由①×3-②,消去未知数x,可知3(a+2)-(5b-1)=0;由①+②×4消去未知数y,可知3b+2-4(4a-b)=0.∴{3(a +2)−(5b −1)=0,3b +2−4(4a −b)=0,化简得{3a −5b =−7,16a −7b =2,解得{a =1,b =2,故选C.10.B ∵|x+2y-3|+|x-y+3|=0,∴x+2y-3=0且x-y+3=0,即{x +2y =3,①x −y =−3,②①-②,得3y=6,解得y=2,把y=2代入②,得x-2=-3,解得x=-1, ∴这个方程组的解为{x =−1,y =2.∴x y =(-1)2=1,故选B. 11.答案 8解析 因为a,b 互为相反数, 所以a+b=0,即b=-a,将b=-a 代入方程组得{3a =6,4a =m,解得{a =2,m =8.[变式] 答案 13解析 ∵x*y=ax 2+by,∴5*3=25a+3b, ∵3*2=6,4*1=7,∴{9a +2b =6,①16a +b =7,②①+②得25a+3b=13,∴5*3=25a+3b=13. 12.答案 9解析 {2 024m +2 023n =19,①506m +505n =7,②①-②×4得3n=-9,解得n=-3,∴n 2=(-3)2=9. 13.答案 -2 022解析 {3(x +2 023)−2(y −⊕)=1,①3(x +2 023)+2(y −⊕)=5,②①+②,得6(x+2 023)=6,解得x=-2 022.14.解析 (1)根据题意得4 (-3)=2×4+(-3)=8-3=5. (2)根据题意得{2x −y =2①,4y +x =−1②,①+②,得3x+3y=1,∴x+y=13.15.解析 (1){3x −5y =2a①,2x +7y =a −18②,②×2得4x+14y=2a-36③,③-①得x+19y=-36④,∵x,y 的值互为相反数,∴x=-y,将x=-y 代入④,得-y+19y=-36,解得y=-2,∴x=2,将{x =2,y =−2代入①,得3×2-5×(-2)=2a,解得a=8.(2){3x −5y =2a①,2x +7y =a −18②,②×2-①得x+19y=-36③,将2x+y+35=0与③联立得{x +19y =−36,2x +y +35=0,解得{x =−17,y =−1.素养探究全练16.解析 (1)①-②,得2x+2y=2, ∴x+y=1③, ①-③×2 020,得x=-1.把x=-1代入③,得-1+y=1,解得y=2. ∴原方程组的解为{x =−1,y =2.(2)猜想:方程组{(a +2)x +(a +1)y =a,(b +2)x +(b +1)y =b (a≠b)的解为{x =−1,y =2.验证:当x=-1,y=2时,(a+2)x+(a+1)y=-(a+2)+2(a+1)=a, (b+2)x+(b+1)y=-(b+2)+2(b+1)=b,∴{x =−1,y =2是方程组的解.。
2.3解二元一次方程组(2)加减消元法
四、已知a、b满足方程组
a 2b 1.007 2a b 1.993
则a+b= 5
5x-2y=4 ① 例2 解方程组 2x-3y=-5 ②
课堂小结
将方程组的两个方程(或先作适当变形)相加或相 减,消去一个未知数,把解二元一次方程组转化为 解一元一次方程。这种解方程组的方法称为加减消 元法,简称为加减法。
1。加减消元法
2。加减法的基本思想:消元。 3。加减法解二元一次方程组主要步骤:
一加减,二消元,三求解,四再代,五总结
1.解方程组
拓展提高
( x 1) ( y 1) 5 ( x 1) ( y 1) 1
2.已知二元一次方程 ax by 4 的两 x 1 x 2 个解为 和 , y 1 y3
求
a, b
的值。
补充练习:
用加减消元法解方程组:
x 1 y 1① 3 2 x 1 y 2 ② 2 4
25x+6y=10 分别相减 就可以消去未知数 x 只要两边
二.选择题
1. 用加减法解方程组
6x+7y=-19①
6x-5y=17②
应用( B )
A.①-②消去y B.①-②消去x B. ②- ①消去常数项 D. 以上都不对
3x+2y=13
2.方程组
3x-2y=5
消去y后所得的方程是(B )
A.6x=8 B.6x=18 C.6x=5 D.x=18
3X+5y +2x - 5y=10 5x+0y =10 5x=10
2.3.2解二元一次方程组
2.3解二元一次方程(2)教学目标:1.进一步认识解二元一次方程组的思想方法是通过消元,转化为一元一次方程组求解。
2.会用加减消元法解二元一次方程组。
重点:解二元一次方程组的加减消元法。
难点:例2的消元过程较为复杂。
教学过程:一.复习引入1.用代入消元法解方程组:25x y x y +=⎧⎨-=⎩ 方程解好后,出示问题:除了用带入消元法解此方程外,还有其它的消元方法吗?2.自学引导:自学书本P 41,完成书本填空。
二.新课1.引入加减消元法:像这样通过两式相加(减)消去一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法。
2.练习:(1)已知方程组317236x y x y +=⎧⎨-=⎩,两个方程只要两边,就可消去未知数 ,得。
(2)已知方程组2571625610x y x y -=⎧⎨+=-⎩,两个方程只要两边,就可消去未知数,得。
归纳小结:同一个未知数的系数互为相反数时,两方程相加消元;同一个未知数的系数互相同时,两方程相减消元。
3.用加减消元法解下列方程组232(1)261s t s t +=⎧⎨-=-⎩3313(2)235x y x y +=⎧⎨-=⎩先引导学生观察系数,再决定是把两个方程相加还是相减。
叫学生到上面板演。
三.例题讲解例1 用加减消元罚解方程组3297x y x y -=⎧⎨-=⎩ 思考:(1)本题与上面刚刚所做的两道题有什么区别?(2)本题能否用加减法?(3)如何使x 或y 的系数变相等例2 解方程组3292316x y x y -=⎧⎨+=⎩ 思考:刚才我们是消去y ,如果要消去x ,那么如何将方程变形?小结:用加减法解二元一次方程组的一般步骤:让学生根据上述解方程的过程,总结用加减法解二元一次方程组的一般步骤。
四.巩固练习用加减法解下列方程组:223(1)419x y x y +=⎧⎨-=⎩3213(2)325x y x y +=⎧⎨-=⎩329(3)7x y x y -=⎧⎨-=⎩231(4)322x y x y -=⎧⎨-=⎩ 五.课堂小结由学生自己完成六.作业 完成作业本。
[K12学习]2019年春七年级数学下册第2章二元一次方程2.3第1课时代入消元法练习新版浙教版
2.3 解二元一次方程组第1课时 代入消元法知识点1 代入消元法将方程组一个方程中的某个未知数用含有另一个未知数的代数式表示,并代入另一个方程,从而消去一个未知数,把解二元一次方程组转化为解一元一次方程.这种解方程组的方法称为代入消元法,简称代入法.1.用代入法解二元一次方程组⎩⎪⎨⎪⎧x =2y ,①2x +y =10,②可将①代入②,得一元一次方程:____________.知识点2 代入法解二元一次方程组用代入法解二元一次方程组的一般步骤:(1)从方程组中选取一个未知数系数比较简单的方程;(2)将选取的方程变形,变成用一个未知数表示另一个未知数的形式; (3)用这个代数式代替另一个方程中相应的未知数,得到一个一元一次方程,求得一个未知数的值;(4)把这个未知数的值代入变形后的方程,求得另一个未知数的值; (5)写出方程组的解.2.用代入法解下列方程组:⎩⎪⎨⎪⎧2x +3y =16,x +4y =13.一 代入消元法解二元一次方程组教材例2变式题解方程组: ⎩⎪⎨⎪⎧x 2-y 3=7,2x +y =14.[归纳总结] (1)解二元一次方程组的基本思路是“消元”,也就是把二元一次方程组化为一元一次方程;(2)二元一次方程组的解是一对数值,需用大括号将这对数值上下排列;(3)当方程组中某一个未知数的系数的绝对值等于1时,用代入法解方程组比较简单;(4)不能把变形后方程代入变形前的原方程中,否则只能得到一个恒等式,应将变形后的方程代入另一个方程中求解.二 利用整体思想解二元一次方程组教材补充题 解方程组:⎩⎪⎨⎪⎧x +13=2y ,2(x +1)-y =11.[归纳总结] 有时用传统的代入法可能比较烦琐,此时可以考虑用整体代入法.运用整体代入法时,重点是观察,对比系数间的关系.三 方程组的解的综合应用教材补充题若关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =3,x -y =1与方程组⎩⎪⎨⎪⎧mx +ny =8,mx -ny =4的解相同,求m ,n 的值.[归纳总结] 综合性应用题的解题重点为转化思想,根据题意把题目转化成二元一次方程组.[反思] 解方程组:⎩⎪⎨⎪⎧2x -7y =8,①3x -8y =10.②解:由①,得x =8+7y2,③将③代入①,得8=8,所以原方程组无解. 这种解法是否正确?若不正确,请改正.一、选择题1.已知3x -11y =5,用含x 的代数式表示y ,下列正确的是( )A .y =5-3x 11B .y =3x -511 C .x =11y +53 D .x =-11y +532.用代入法解方程组⎩⎪⎨⎪⎧y =2x -3,①3x -2y =8②时,将方程①代入方程②中,所得的方程是( )A .3x +4x -3=0B .3x -4x -6=8C .3x -4x +6=8D .3x +2x -6=83.用代入法解方程组⎩⎪⎨⎪⎧3x +4y =2,①2x -y =5②时,使得代入后化简比较简单的变形是( )A .由①,得x =2-4y 3B .由①,得y =2-3x 4C .由②,得x =y +52D .由②,得y =2x -5 4.二元一次方程组⎩⎪⎨⎪⎧x +y =2,2x -y =1的解是( )A .⎩⎪⎨⎪⎧x =0,y =2B .⎩⎪⎨⎪⎧x =1,y =1 C .⎩⎪⎨⎪⎧x =-1,y =-1 D .⎩⎪⎨⎪⎧x =2,y =0 5.已知关于x ,y 的二元一次方程y =mx +n ,当x =2时,y =-1;当x =-1时,y =5,则( )A .m =2,n =3B .m =-2,n =3C .m =2,n =-3D .m =-2,n =-36.若⎩⎪⎨⎪⎧x =1,y =1是关于x ,y 的方程组⎩⎪⎨⎪⎧ax +by =1,bx -ay =-7的解,则(a +b)(a -b)的值为( ) A .-16 B .-7 C .7 D .167.解二元一次方程组⎩⎪⎨⎪⎧2017x +4y =11,2017x =19-2y ,得y =( )A .-4B .-43C .53D .5二、填空题8.用代入法解方程组⎩⎪⎨⎪⎧3x -y =8,2x +3y =5,选择消去未知数________比较方便.9.已知方程组⎩⎪⎨⎪⎧x =3y -5,y =2x +3,用代入法消去x ,可得方程______________(不用化简).10.若⎩⎪⎨⎪⎧x =2,y =1是关于x ,y 的方程组⎩⎪⎨⎪⎧kx -my =1,mx +ky =8的解,则k =________,m =________.11.若⎩⎪⎨⎪⎧x =1,y =-1和⎩⎪⎨⎪⎧x =2,y =3是关于x ,y 的方程y =kx +b 的两个解,则k =________,b =________. 三、解答题12.用代入法解下列方程组:(1)⎩⎪⎨⎪⎧x =y +1,2x +y =8;(2)2016·无锡⎩⎪⎨⎪⎧2x =3-y ,3x +2y =2.13.解方程组:⎩⎪⎨⎪⎧x -y =3,2y +3(x -y )=11.14.已知二元一次方程:①y=4-x ,②2x -y =2,③x -2y =1.请你从这三个方程中选择你喜欢的两个方程组成一个方程组,并求出这个方程组的解.15.已知关于x ,y 的方程组⎩⎪⎨⎪⎧4x -3y =2,kx +(k -1)y =6 的解中x 与y 的值相等,则k 的值为多少?16.已知方程组⎩⎪⎨⎪⎧2x +3y =7,5x -y =9的解是关于x ,y 的方程3x +my =8的一个解,求m 的值.17.已知(2a -b -4)2+|a +b +1|=0,求a ,b 的值.[创新题] 甲、乙两人同求方程ax -by =7的整数解,甲求出一组解为⎩⎪⎨⎪⎧x =3,y =4;而乙把ax-by =7中的7错看成1,求得一组解为⎩⎪⎨⎪⎧x =1,y =2,试求a ,b 的值.详解详析【预习效果检测】 1.[答案] 4y +y =10[解析] 将②式中的x 用2y 代替,可得2×2y +y =10,即为4y +y =10.2.[解析] 把方程组⎩⎪⎨⎪⎧2x +3y =16,①x +4y =13②的两个方程进行比较,发现把方程②变成用含y的代数式表示x 比较容易.解:⎩⎪⎨⎪⎧2x +3y =16,①x +4y =13,②由②,得x =13-4y ,③把③代入①,得2(13-4y)+3y =16, 即-5y =-10,所以y =2.把y =2代入③,得x =13-4×2=5.故原方程组的解为⎩⎪⎨⎪⎧x =5,y =2.【重难互动探究】例1 解:原方程组可整理为⎩⎪⎨⎪⎧3x -2y =42,①2x +y =14,②由②,得y =14-2x ,③把③代入①,得3x -2(14-2x)=42, 即7x =70,所以x =10.把x =10代入③,得y =-6.故原方程组的解为⎩⎪⎨⎪⎧x =10,y =-6.例2 [解析] 本题可用整体代入法求解.解:⎩⎪⎨⎪⎧x +13=2y ,①2(x +1)-y =11,②由①,得x +1=6y ,③ 把③整体代入②,得 12y -y =11,y =1.把y =1代入③,得x =5.所以原方程组的解为⎩⎪⎨⎪⎧x =5,y =1.例3 [解析] 把方程组的解代入含m ,n 的方程组中即可求出m ,n 的值.解:方程组⎩⎪⎨⎪⎧x +y =3,x -y =1的解为⎩⎪⎨⎪⎧x =2,y =1. 把⎩⎪⎨⎪⎧x =2,y =1代入含m ,n 的方程组中, 得⎩⎪⎨⎪⎧2m +n =8,2m -n =4, 解得⎩⎪⎨⎪⎧m =3,n =2.【课堂总结反思】[反思] 这种解法不正确,改正如下:⎩⎪⎨⎪⎧2x -7y =8,①3x -8y =10,② 由①,得x =8+7y 2,③把③代入②,得3×8+7y 2-8y =10,解得y =-45.把y =-45代入③,得x =65.所以原方程组的解是⎩⎪⎨⎪⎧x =65,y =-45.【作业高效训练】[课堂达标]1.[解析] B 移项得11y =3x -5,两边同除以11,得y =3x -511.故选B .2.C 3.D 4.B5.[解析] B 由题意可得方程组⎩⎪⎨⎪⎧2m +n =-1,-m +n =5,解得⎩⎪⎨⎪⎧m =-2,n =3.6.[解析] C 因为⎩⎪⎨⎪⎧x =1,y =1是方程组⎩⎪⎨⎪⎧ax +by =1,bx -ay =-7的解,所以把⎩⎪⎨⎪⎧x =1,y =1代入方程组⎩⎪⎨⎪⎧ax +by =1,bx -ay =-7,得⎩⎪⎨⎪⎧a +b =1,b -a =-7.以下有两种解法:解法一:解方程组⎩⎪⎨⎪⎧a +b =1,b -a =-7,得⎩⎪⎨⎪⎧a =4,b =-3,则(a +b)(a -b)=(4-3)×(4+3)=7.解法二:方程组⎩⎪⎨⎪⎧a +b =1,b -a =-7可变形为⎩⎪⎨⎪⎧a +b =1,a -b =7,所以(a +b)(a -b)=1×7=7.7.[解析] A 将2017x =19-2y 整体代入2017x +4y =11,得19-2y +4y =11,解得y =-4.故选A .8.[答案] y[解析] 因为方程3x -y =8化为用含x 的代数式表示y 较为简捷,故应选择消去未知数y.9.[答案] y =2(3y -5)+3 10.[答案] 2 3[解析] 把⎩⎪⎨⎪⎧x =2,y =1代入方程组⎩⎪⎨⎪⎧kx -my =1,mx +ky =8中,得⎩⎪⎨⎪⎧2k -m =1,2m +k =8,解得⎩⎪⎨⎪⎧k =2,m =3.11.[答案] 4 -5[解析] 把⎩⎪⎨⎪⎧x =1,y =-1和⎩⎪⎨⎪⎧x =2,y =3分别代入y =kx +b 中,用代入法求解. 把两组值代入后的方程组是⎩⎪⎨⎪⎧-1=k +b ,①3=2k +b ,②由①,得b =-1-k ,③把③代入②,得3=2k -1-k. 所以k =4,b =-5.12.解:(1)⎩⎪⎨⎪⎧x =y +1,①2x +y =8,②把①代入②,得2(y +1)+y =8,解得y =2,把y =2代入①,得x =3.所以原方程组的解为⎩⎪⎨⎪⎧x =3,y =2.(2)⎩⎪⎨⎪⎧2x =3-y ,①3x +2y =2,② 由①,得y =3-2x ,③把③代入②,得3x +2(3-2x)=2, 解得x =4,把x =4代入③,得y =-5.所以原方程组的解是⎩⎪⎨⎪⎧x =4,y =-5.13.[解析] 本题的两个方程中都含有x -y ,所以可采用整体代入法.解:⎩⎪⎨⎪⎧x -y =3,①2y +3(x -y )=11,②将①代入②,得2y +3×3=11,解得y =1, 将y =1代入①,得x =4.所以原方程的解为⎩⎪⎨⎪⎧x =4,y =1.14.[解析] 此题的答案不唯一,只要从三个方程中选两个方程组成二元一次方程组求解即可.解:若取方程①和②,可得⎩⎪⎨⎪⎧y =4-x ,2x -y =2,解得⎩⎪⎨⎪⎧x =2,y =2;同理,若取方程①和③,可得⎩⎪⎨⎪⎧y =4-x ,x -2y =1,解得⎩⎪⎨⎪⎧x =3,y =1;若取方程②和③,可得⎩⎪⎨⎪⎧2x -y =2,x -2y =1,解得⎩⎪⎨⎪⎧x =1,y =0.15.解:由x 与y 的值相等,得4x -3x =2,即x =y =2,所以2k +2(k -1)=6,解得k =2.16.[解析] 把方程组⎩⎪⎨⎪⎧2x +3y =7,5x -y =9的解代入方程3x +my =8,即可求得m 的值.解:解方程组⎩⎪⎨⎪⎧2x +3y =7,5x -y =9,得⎩⎪⎨⎪⎧x =2,y =1.把⎩⎪⎨⎪⎧x =2,y =1代入方程3x +my =8, 解得m =2.17.解:因为(2a -b -4)2是一个非负数,|a +b +1|也是一个非负数,两个非负数之和等于0,则每一个非负数都等于0,即⎩⎪⎨⎪⎧2a -b -4=0,a +b +1=0,解得⎩⎪⎨⎪⎧a =1,b =-2.[数学活动][解析] 由方程组的定义可知甲求得的解⎩⎪⎨⎪⎧x =3,y =4满足原方程,代入后,可得a ,b 之间的关系式3a -4b =7;乙求出的解不满足原方程,而满足方程ax -by =1,代入后可得a ,b 的另一个关系式a -2b =1,从而可求出a ,b 的值.解:把x =3,y =4代入ax -by =7中,得3a -4b =7,① 把x =1,y =2代入ax -by =1中, 得a -2b =1,② 由①②组成方程组⎩⎪⎨⎪⎧3a -4b =7,a -2b =1,解得⎩⎪⎨⎪⎧a =5,b =2.。
2.3解二元一次方程组(2)
2.3解二元一次方程组(2)课型:新授课 主备人: 审核人:班级: 姓名:【学习目标】1、解二元一次方程组的基本思想是消元,化二元为一元;2、能说出加减消元法解二元一次方程组的一般步骤.3、会解一般的二元一次方程组【学习重、难点】用加减法解二元一次方程组的关键是必须使两个方程中同一个未知数的系数的绝对值相等.【学习过程】一、加减消元法通过上一节的学习,我们已经知道用代入法可以达到消元的目的,那么还有没有其它的消元方法吗?请你认真观察下面的图片,理解图片中的表达的意思.如图4-5,图4-6所示的天平处于平衡状态.设每个“量为x(g)y(g),你能根据图示列出求x ,y 的方程组吗?(1)如果从图4-6的天平左盘拿掉2个“3右盘拿掉100g 的砝码,如图4-7,此时天平还平衡吗?如果平衡,写出图4-7所示的方程;图4-5所表达的方程是 ,图4-6所表达的方程是 .图4-7所表达的方程是 .(2)图4-7表示的方程是由方程组中两个方程进行怎样的等式变形得到的?由此你得到什么结论?二、用加减消元法解方程组1、模仿课本例3,解方程组⎩⎨⎧-=-=+②①563323y x y x整理栏2、模仿例4(解法一、二),模仿例2(解法三)完成下面题目2.解方程组⎩⎨⎧=+=-②①134743y x y x解法一:(先消去x) 解法二:(先消去y)解法三:(用代入消元法,并比较哪种解法比较方便)通过将方程组中的两个方程 ,消去 ,转化为 方程.这种解二元一次方程组的方法叫做加减消元法,简称 .加减法也是解二元一次方程组常用的方法之一.用加减法解二元一次方程组的一般步骤是:1.2.3.4.5.三、巩固练习1.用加减消元法解下列方程组:(1)⎩⎨⎧=-=+5231323y x y x (2)⎩⎨⎧-=+=-2341252v u v u整理栏(3)⎪⎩⎪⎨⎧=-+=-75223y x yx yx (4)()()⎩⎨⎧=+-+=210352y x x y x x2.已知2v +t =3v -2t =3,求v ,t 的值.3.若(3x -2y +4)2与⎪4x -y -3⎪互为相反数,则x = ,y = .4.一个两位数,十位上的数是个位上数字的2倍.如果交换十位数与个位数的位置,那么所得的数就比原数小36,求原来的两位数.请你尝试列二元一次方程组来解决这个问题。
浙教版数学七年级下册课件2.3解二元一次方程组(2)
7.解下列方程组: x+2y=8,
(1)3x-2y=4. 解:x3+ x-2y2=y=8, 4.②① ①+②,得 4x=12,解得 x=3. 把 x=3 代入①,得 3+2y=8,解得 y=52.
x=3, ∴原方程组的解为y=52.
3x+12y=8, (2)2x-12y=2. 解:3x+12y=8,①
5.方程组x3- x+y=y=17,的解为__xy_==__12_,___.
【解析】
x-y=1,① 3x+y=7.②
①+②,得 4x=8,解得 x=2.
把 x=2 代入①,得 y=1.
∴原方程组的解为xy==12.,
6.已知 x,y 满足方程组x2+x+3yy==3-,1,则 x+y 的值为_____1____. 【解析】 解方程组x2+x+3yy==3-.②1,① ①×2-②,得 5y=-5,解得 y=-1. 把 y=-1 代入①,得 x+3×(-1)=-1,解得 x=2. ∴x+y=2-1=1.
11.解下列方程组: 3(x-1)=y+5,
(1)5(y-1)=3(x+5).
解:原方程组可化为35xy--3y=x=8,20.①② ①+②,得 4y=28,解得 y=7. 把 y=7 代入①,得 3x-7=8,解得 x=5. ∴原方程组的解为xy==75.,
23u+34v=12, (2)45u+56v=175.
∴原方程组的解为xy==21,,
2.用加减消元法解二元一次方程组x2+x-3yy==41,②①时,下列方法中,无法消元 的是( D ) A.①×2-② B.②×(-3)-① C.①×(-2)+② D.①-②×3
3.已知二元一次方程组23xx+ -57yy= =1-3, 7,①②用加减消元法解方程组,正确的是 (C )
2.3二元一次方程组的应用(2)课件 课件(七年级湘教版下册)
二元一次方程组的应用
(第2课时)
新邵县酿溪镇中学
目录 首页 上一页 下一页 末页
宇轩图书
列二元一次方程组解实际问题的步骤? (1)审题(找等量关系); (2)设元(两个); (3)列方程组; (3)解方程组; (4)检验作答。
目录
首页
上一页
下一页
末页
宇轩图书
动脑筋
从夏令营营地到学校要先下山再走一段平 路,一学生骑车以每小时12千米的速度下山, 再以每小时9千米的速度通过平路,到学校共 用了55分钟,原路返回时,若通过平路的速度 不变,但以每小时6千米的速度上山回到营地, 要花1小时10分钟时间,求夏令营营地到学校 的距离.
目录 首页 上一页 下一页 末页
宇轩图书
这节课你有何收获? 1.列方程组解应用题应注意那几个问题? 列方程组解应用题,它的关键是把已知量和未知 量联系起来,找出题目中的相等关系.一般来说 ,有几个未知量就必须列出几个方程,所列方程 必须满足: (1)方程两边表示的是同类量; (2)同类量的单位要统一; (3)方程两边所表示的数量要相等. 2.列方程组解应用题的一般步骤是什么? ①审题, ②设未知数 , ③找相等关系 , ④列方程组,⑤解方程组 ,⑥检验, ⑦答题
目录 首页 上一页 下一页 末页
反思小结
宇轩图书
五 作业 P 18 A组 3,4
目录
首页
上一页
下一页
末页
目录 首页 上一页 下一页 末页
宇轩图书
拓展练习: 1、甲火车长92米,乙火车长84米, 若相向而行相遇后经过 1.5 秒两车错开; 若两车同向而行,相遇后经过 6 秒两车 错开,求甲、乙两火车的速度。
目录
首页
2.3解二元一次方程组(2)
当有一个未知数的系数绝对值相等时,则直接加减消元.
1.已知方程组
x+3y=17
2x3x=23 3y=6 y ,得方程___________. 就可以消去未知数_____
25x-7y=16
分别相加 . 两个方程只要两边_____________
2.已知方程组
25x+6y= 10 x 13y=- . 就可以消去未知数_____,得方程___________
把二元转 化为一元
消元 。 解二元一次方程组的基本思路是______ 代入 法解二元一次方程组。 已学过用______
用代入法解方程组
2x 3y 1 3x 2 y 2
【例1】解下列方程组
2s 3t 2 (1) 2s 6t 1
2 x y 23 (2) 4 x y 19
两个方程只要两边分别相减 ____________,
6
【例2】解方程组
3x 2 y 3 (1) 2x y 1
3x 2 y 11 (2) 2 x 3 y 16
小结:同一未知数的系数都 不成倍,先把某未知数的系 数化成最小公倍数,再加减 消元.
反思:某未知数的系 数成倍数,先乘“小” 化“大”,再加减消 元.
3x 2 y 7 (1) (1)2,( 2)3 6 x 4 y 14 (3) (3)( 4) 13y 13 2 x 3 y 9 (2) 步骤 (1) 6 x 9 y 27 (4) 步骤 (2)
x3 y 1 x 3 步骤 (3) 步骤 (4) 步骤 (5) y 1
3、下列方程组各选择哪种消元法来解比较简便?
(1) y=2x 3x-4y=5 (2) x=3y+1 2x-3y=10
2019年春七年级数学下册第7章一次方程7.2二元一次方程组的解法7.2.3用加减法解二元一次方程组
A )
x=2, D. y=8
x+y=10,① 【解析】 ②-①,得 x=6.把 x=6 代入①,得 y=4.故原 2 x + y = 16. ② x=6, 方程组的解为 y=4.
2x-3y=4,① 3.已知方程组 用加减消去 x 的方法是_____________ ②×2-①×3 , 3x+2y=1.②
解:设一盒牛奶 x 元,一瓶冰茶 y 元.
3x+4y=29, x=5, 由题意,得 解得 x + y = 8.5 , y=3.5.
答:一盒牛奶 5 元,一瓶冰茶 3.5 元.
【点悟】 本题考查了二元一次方程组的应用,解答本题的关键是读懂 题意,设出未知数,找出合适的等量关系,列方程组求解.
由①,得 x=-2y.③ 把③代入②,得 3×(-2y)+4y=6, 解得 y=-3. 将 y=-3 代入③,得 x=6.
x=6, 故原方程组的解为 y=-3.
①+②,得 3x=6,解得 x=2. 将 x=2 代入①,得 y=-1.
x=2, 故原方程组的解为 y=-1.
x=2, ax+by=7, 7.[2018· 随州]已知 是关于 x、y 的二元一次方程组 y=1 ax-by=1
用加减消去 y 的方法是①× _____________ 2+②×3 .
分层作业
[学生用书P34]
3x-2y=5,① 1.用加减法解二元一次方程组 下列四种解法中,正确 3x+4y=-1.②
的是( C ) A.①+②,得 6x-2y+(-4y)=5-1 B.②-①,得 4y-2y=-1+5,所以 y=2 C.②-①,得 4y+2y=-1-5,所以 y=-1 2 D.②-①,得 4y+2y=1-5,所以 y=-3
(1) 你从表格中获取了什么信息? ( 请用自己的语言描述,写出一条即
2.3.1 代入消元法 浙教版七年级数学下册同步练习(含解析)
2.3 解二元一次方程组第1课时 代入消元法基础过关全练知识点 代入消元法1.(2022湖南株洲中考)对于二元一次方程组{y =x −1,①x +2y =7,②将①式代入②式,消去y 可以得到( ) A.x+2x-1=7 B.x+2x-2=7C.x+x-1=7D.x+2x+2=72.四名学生利用代入法解二元一次方程组{3x −4y =5,①x −2y =3②时,提出四种不同的解法,其中解法不正确的是( ) A.由①得x=5+4y 3③,将③代入② B.由①得y=3x−54③,将③代入② C.由②得y=-x−32③,将③代入①D.由②得x=3+2y ③,将③代入①3.(2022江苏无锡中考)二元一次方程组{3x +2y =12,2x −y =1的解为 .4.【新独家原创】 已知关于a,b 的二元一次方程组{a +m =3,b −3=m,则-a-b 的值为 .5.(2021浙江丽水中考)解方程组:{x =2y,x −y =6.6.【易错题】下面是老师在铭铭的数学作业本上截取的部分内容:解方程组{2x −y =3,①x +y =−12.②解:方程①变形,得y=2x-3③, 第一步把方程③代入方程①,得2x-(2x-3)=3, 第二步整理,得3=3, 第三步因为x 可以取任意实数,所以原方程组有无数个解.问题:这种解方程组的方法叫 ;铭铭的解法正确吗?如果不正确,错在哪一步?并求出正确的解.能力提升全练7.已知单项式-3x m-1y 3与52x n y m+n 是同类项,那么m,n 的值分别是 ( )A.2,1B.1,2C.0,-1D.-1,28.小明说{x =−1,y =2为方程ax+by=10的解,小惠说{x =2,y =−1为方程ax+by=10的解,两人谁也不能说服对方.若他们的说法都正确,则a,b 的值分别为 ( )A.12,10B.9,10C.10,11D.10,109.(2022浙江杭州西湖期中,9,)在解关于x,y 的方程组{ax −2by =8①,2x =by +2②时,小明将方程①中的“-”看成了“+”,得到的解为{x =2,y =1,则原方程组的解为 ( ) A.{a =2b =2 B.{x =2y =2 C.{x =−2y =−3 D.{x =2y =−110.如果|x-2y+1|+|x+y-5|=0,那么x= .11.(2022浙江杭州期中改编,15,)若 1 314x+17y=2y+x-5=2x-3,则2(x-2y)= .12.(2022浙江杭州萧山期中,14,)对于有理数x,y,定义一种新运算:x ⊕y=ax+by-5,其中a,b 为常数.已知1⊕2=9,(-3)⊕3=-2,则2a+b= .13.(2022浙江杭州余杭月考,15,)已知关于x,y 的二元一次方程(3x-2y+9)+m(2x+y-1)=0,无论m 取何值,方程总有一个固定不变的解,这个解是 .14.【一题多解】当关于x,y 的二元一次方程组{2x −y −4m =0,14x −3y −20=0中y 的值是x 值的3倍时,求x,y 的值.15.已知关于x,y 的二元一次方程组{ax +5y =4,5x +y =3与{x −2y =5,5x +by =1的解相同,求a,b 的值.素养探究全练16.【运算能力】材料:解方程组{x −y −1=0①,4(x −y)−y =5②时,可由①得x-y=1③,然后将③代入②得4×1-y=5,解得y=-1,将y=-1代入③,得x-(-1)=1,解得x=0,∴方程组的解为{x =0,y =−1,这种方法被称为“整体代入法”.请用这样的方法解方程组{2x −y −2=0,6x−3y+45+2y =12.17.【运算能力】三个同学对问题“若关于x,y 的二元一次方程组{a 1x +b 1y =c 1,a 2x +b 2y =c 2的解是{x =3,y =4,求关于x,y 的二元一次方程组{3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2的解”提出各自的想法.甲说:“这个题目条件不够,不能求解.”乙说:“它们的系数有一定的规律,可以试试.”丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元的方法来解决?”参考他们的讨论,解决上述问题.答案全解全析基础过关全练1.B 将①式代入②式,得x+2(x-1)=7,∴x+2x-2=7,故选B.2.C C 中,应该由②得y=x−32,故选项C 解法错误,符合题意,故选C.3.答案 {x =2y =3 解析 {3x +2y =12,①2x −y =1②,由②得y=2x-1③,将③代入①得3x+2(2x-1)=12,解得x=2,将x=2代入③得y=3,∴原方程组的解为{x =2,y =3. 4.答案 -6解析 {a +m =3①,b −3=m②,把②代入①,得a+b-3=3, ∴a+b=6,∴-a-b=-6.5.解析 {x =2y①,x −y =6②,把①代入②得,2y-y=6,解得y=6, 把y=6代入①得,x=12, 则原方程组的解为{x =12,y =6. 6.解析 代入消元法.铭铭的解法不正确,错在第二步,正确解法:将方程①变形,得y=2x-3③,把③代入②,得x+2x-3=-12,解得x=-3,把x=-3代入③,得y=-9,所以原方程组的解为{x =−3,y =−9.能力提升全练7.A 根据题意得{m −1=n,m +n =3,解得{m =2,n =1.故选A. 8.D 由{x =−1,y =2为方程ax+by=10的解,{x =2,y =−1为方程ax+by=10的解,得{−a +2b =10,2a −b =10,解得{a =10,b =10.故选D. 9.C 把{x =2,y =1代入{ax +2by =8,2x =by +2,得{2a +2b =8,4=b +2,解得{a =2,b =2, ∴原方程组为{2x −4y =8,2x =2y +2,解得{x =−2,y =−3.故选C. 10.答案 3解析 ∵|x-2y+1|+|x+y-5|=0,∴{x −2y +1=0,①x +y −5=0,②由①得x=2y-1③,把③代入②,得2y-1+y-5=0,解得y=2,把y=2代入③,得x=2×2-1=3,∴原方程组的解为{x =3,y =2.11.答案 -4解析 由2y+x-5=2x-3得2y+x-2x=-3+5,∴2y-x=2,∴x-2y=-2.∴2(x-2y)=2×(-2)=-4.12.答案 13解析 根据题中的新定义得{a +2b −5=9,−3a +3b −5=−2,整理得{a +2b =14,①−a +b =1,②由②得b=1+a ③,把③代入①,得a+2(1+a)=14,解得a=4,把a=4代入③,得b=1+4=5.则原方程组的解为{a =4,b =5,则2a+b=8+5=13.13.答案 {x =−1y =3解析 ∵无论m 取何值,方程总有一个固定不变的解,∴{2x +y −1=0,3x −2y +9=0,解得{x =−1,y =3. 14.解析 解法一:∵y 的值是x 值的3倍,∴y=3x,∴{2x −3x −4m =0,14x −9x −20=0,解得{x =4,m =−1, ∴y=3×4=12.故x 的值为4,y 的值为12.解法二:{2x −y −4m =0,①14x −3y −20=0,② 由①得,y=2x-4m,③把③代入②,得14x-3(2x-4m)-20=0,∴x=−3m+52,∴y=-7m+5,∵y 的值是x 值的3倍,∴y=3x,∴-7m+5=3×−3m+52,解得m=-1.∴x=4,y=12.故x 的值为4,y 的值为12.15.解析 ∵两个方程组的解相同,∴可用方程5x+y=3,x-2y=5组成新方程组,得{5x +y =3,①x −2y =5,②由①得,y=3-5x ③,把③代入②,得x-2(3-5x)=5,解得x=1,把x=1代入③得y=-2,∴此方程组的解为{x =1,y =−2,把{x =1,y =−2代入{ax +5y =4,5x +by =1,得{a −10=4,5−2b =1,解得{a =14,b =2.素养探究全练16.解析 {2x −y −2=0,①6x−3y+45+2y =12,② 由①得2x-y=2③,将③代入②得3×2+45+2y=12,解得y=5,把y=5代入③得2x-5=2,解得x=3.5.所以原方程组的解为{x =3.5,y =5.17.解析 方程组{3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2中的两个方程的两边都除以5,得{a 1(35x)+b 1(25y)=c 1,a 2(35x)+b 2(25y)=c 2, 因为方程组{a 1x +b 1y =c 1,a 2x +b 2y =c 2的解是{x =3,y =4,所以{35x =3,25y =4,解得{x =5,y =10.所以方程组{3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2的解是{x =5,y =10.。
[K12学习]2019年春七年级数学下册第2章二元一次方程2.3第2课时加减消元法练习新版浙教版
2.3 解二元一次方程组第2课时 加减消元法知识点 加减消元法解二元一次方程组对于二元一次方程组,当两个方程的同一个未知数的系数是互为相反数或相同时,可以通过把两个方程的两边相加或相减来消元,转化为一元一次方程求解.这种解二元一次方程组的方法叫做加减消元法,简称加减法.用加减法解二元一次方程组的一般步骤:(1)将其中一个未知数的系数化成相同(或互为相反数);(2)通过相减(或相加)消去这个未知数,得到一个一元一次方程(注意:一般在消去一个字母时,考虑用另一个字母系数大的式子减系数小的式子);(3)解这个一元一次方程,得到一个未知数的值;(4)将求得的未知数的值代入原方程组中的任一个方程,求得另一个未知数的值. (5)写出方程组的解.解方程组:⎩⎪⎨⎪⎧3x +2y =21,3x -4y =3.一 加减消元法解二元一次方程组教材例2变式题用加减法解方程组:⎩⎪⎨⎪⎧2x +3y =12,3x +4y =17.[归纳总结] 运用加减消元法解方程组时,首先要观察两个方程中同一个未知数的系数,若系数相等,则将这两个方程相减;若系数互为相反数,则将这两个方程相加,就可以消去该未知数.若系数既不相等也不互为相反数,我们应该设法使用等式的性质,将同一个未知数的系数化为相等或互为相反数.注意:(1)把某个方程乘一个数时,方程两边的每一项都要和这个数相乘;(2)把两个方程相加减时,一定要把两个方程两边分别相加减.二 灵活选择适当的方法解二元一次方程组教材补充题用适当的方法解下列方程组:(1)⎩⎪⎨⎪⎧6s +3t =13,3s -t =5;(2)⎩⎪⎨⎪⎧5x -6y =17,4x +3y =28.[归纳总结] 二元一次方程组解法的选取主要取决于未知数的系数,当方程组中某未知数的系数较简单,如系数为1或-1时,常选用代入消元法;当方程组中某未知数的系数相等或互为相反数或成倍数关系时,常选用加减消元法.[反思] 请观察下面解方程组⎩⎪⎨⎪⎧4x +3y =6,2x -y =4的过程,并判断该过程是否正确,若不正确,请写出正确的解法.解:⎩⎪⎨⎪⎧4x +3y =6,①2x -y =4,②②×2,得4x -2y =8.③ ①-③,得y =-2.把y =-2代入②,得2x -(-2)=4,x =1.∴原方程组的解是⎩⎪⎨⎪⎧x =1,y =-2.一、选择题1.将方程-12x +y =1中含x 的项的系数化为3,则以下结果中,正确的是( )A .3x +y =1B .3x +6y =1C .3x -6y =1D .3x -6y =-62.方程组⎩⎪⎨⎪⎧x +y =5,①2x +y =10,②由②-①得到的正确的方程是( )A .3x =10B .x =5C .3x =-5D .x =-53.用加减法解方程组⎩⎪⎨⎪⎧2x +3y =3,3x -2y =11时,有下列四种变形,其中正确的是( )A .⎩⎪⎨⎪⎧4x +6y =3,9x -6y =11 B .⎩⎪⎨⎪⎧6x +3y =9,6x -2y =22C .⎩⎪⎨⎪⎧4x +6y =6,9x -6y =33D .⎩⎪⎨⎪⎧6x +9y =3,6x -4y =11 4.方程组⎩⎪⎨⎪⎧8x -3y =9,8x +4y =-5消去x 后,得到的方程是( )A .y =4B .-7y =14C .7y =14D .y =145.2015·河北利用消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10,①5x -3y =6,②下列做法正确的是( )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×26.方程组⎩⎪⎨⎪⎧x +y =1,2x -y =5的解为( )A .⎩⎪⎨⎪⎧x =-1,y =2B .⎩⎪⎨⎪⎧x =-2,y =3 C .⎩⎪⎨⎪⎧x =2,y =1 D .⎩⎪⎨⎪⎧x =2,y =-17.已知方程组⎩⎪⎨⎪⎧2x +y =4,x +2y =5,则x +y 的值为( )A .-1B .0C .2D .38.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k 的解也是二元一次方程2x +3y =6的解,则k 的值为( )A .-34 B .34 C .43D .-43二、填空题9.用加减法解二元一次方程组⎩⎪⎨⎪⎧11x -3y =4,①13x -6y =-5,②将方程①两边乘________,再把得到的方程与方程②相__________,可以消去未知数________.10.2016·温州方程组⎩⎪⎨⎪⎧x +2y =5,3x -2y =7的解是________.11.已知二元一次方程组⎩⎪⎨⎪⎧3x +4y =28,①4x +3y =7,②不解方程组,直接求x +y 与x -y 的值,则x+y =________,x -y =________.12.2015·咸宁如果实数x ,y 满足方程组⎩⎪⎨⎪⎧x -y =-12,2x +2y =5,那么x 2-y 2的值为________. 13.已知方程3x2m +5n +9+4y4m -2n -7=2是关于x ,y 的二元一次方程,则m =________,n=________.三、解答题14.用加减法解方程组:(1)⎩⎪⎨⎪⎧3x -y =2,3x +2y =11;(2)⎩⎪⎨⎪⎧x 2-y +13=1,3x +2y =10.15.用适当的方法解下列方程组:(1)⎩⎪⎨⎪⎧x +2y =1,3x -2y =11; (2)⎩⎪⎨⎪⎧5x +3y =6,5x -2y =-4;(3)⎩⎪⎨⎪⎧4x -3y =39,7x +4y =-15; (4)⎩⎪⎨⎪⎧2(2x +5y )=3.6,5(3x +2y )=8.16.如果二元一次方程组⎩⎪⎨⎪⎧x +y =a ,x -y =5a 的解是二元一次方程3x -5y -38=0的一个解,请你求出a 的值.17.已知关于x ,y 的方程组⎩⎪⎨⎪⎧2x +5y =-6,3x -5y =16和方程组⎩⎪⎨⎪⎧ax -by =-4,bx +ay =-8的解相同,求代数式3a +7b 的值.1.[技巧性题目] 在解关于x ,y 的方程组⎩⎪⎨⎪⎧ax +by =2,cx -7y =8时,一位同学把c 看错而得到⎩⎪⎨⎪⎧x =-2,y =2,正确的解应是⎩⎪⎨⎪⎧x =3,y =-2,求a ,b ,c 的值.2.[技巧性题目] 如果关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x -ay =16,2x +by =15的解是⎩⎪⎨⎪⎧x =7,y =1,那么关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3(x +y )-a (x -y )=16,2(x +y )+b (x -y )=15的解是什么?详解详析【预习效果检测】[解析] 解方程组⎩⎪⎨⎪⎧3x +2y =21,①3x -4y =3,②两个方程中x 的系数相等,因此,可直接由①-②消去未知数x .解:⎩⎪⎨⎪⎧3x +2y =21,①3x -4y =3,②①-②,得6y =18,解得y =3. 把y =3代入方程②,得 3x -4×3=3,解得x =5.所以原方程组的解是⎩⎪⎨⎪⎧x =5,y =3.【重难互动探究】例1 [解析] 方程组中两个方程的同一未知数的系数均不成倍数关系,则需选定一个系数相对简单的未知数,将两个方程通过变形使其绝对值相等,再进行消元.解:⎩⎪⎨⎪⎧2x +3y =12,①3x +4y =17,②①×3,得6x +9y =36,③ ②×2,得6x +8y =34,④③-④,得y =2,把y =2代入①,得x =3.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =2.例2 [解析] 用适当的方法解方程组要求同学们能认真观察方程组中各项系数的特征,根据代入消元法和加减消元法的解题思路选择简捷的方法求解.故(1)可选择代入法求解,(2)可选择加减法求解.解:(1)⎩⎪⎨⎪⎧6s +3t =13,①3s -t =5,②由②,得t =3s -5,③把③代入①,得6s +3(3s -5)=13, 解得s =2815.把s =2815代入③,得t =35.所以原方程组的解为⎩⎪⎨⎪⎧s =2815,t =35.(2)⎩⎪⎨⎪⎧5x -6y =17,①4x +3y =28,② ②×2,得8x +6y =56,③ ①+③,得13x =73,所以x =7313.把x =7313代入②,得4×7313+3y =28,所以y =2413. 所以原方程组的解为⎩⎪⎨⎪⎧x =7313,y =2413.【课堂总结反思】[反思] 该过程不正确.正确的解法如下:⎩⎪⎨⎪⎧4x +3y =6,①2x -y =4,②②×2,得4x -2y =8.③ ①-③,得5y =-2,y =-25.把y =-25代入②,得2x -⎝ ⎛⎭⎪⎫-25=4,x =95. ∴原方程组的解是⎩⎪⎨⎪⎧x =95,y =-25.【作业高效训练】[课堂达标] 1.D 2.B3.[解析] C 根据等式的基本性质进行检验,发现正确答案为C . 4.B 5.D 6.D7.[解析] D 两式相加,可得3x +3y =9,故x +y =3.8.[解析] B 解方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k ,得⎩⎪⎨⎪⎧x =7k ,y =-2k. 把x ,y 的值代入二元一次方程2x +3y =6,得2×7k +3×(-2k)=6,解得k =34.9.[答案] 2 减 y[解析] ①×2,得22x -6y =8,③ ③-②可消去y.10.[答案] ⎩⎪⎨⎪⎧x =3,y =111.[答案] 5 -21[解析] ①+②,得7x +7y =35,即x +y =5.②-①,得x -y =-21. 12.[答案] -5413.[答案] 1 -2[解析] 根据二元一次方程的定义可知,x ,y 的次数都是1,所以得方程组:⎩⎪⎨⎪⎧2m +5n +9=1,4m -2n -7=1, 解方程组,得⎩⎪⎨⎪⎧m =1,n =-2.14.[解析] 方程组(2)较复杂,可先通过化简,将其变形为二元一次方程组的一般形式后再消元.解:(1)⎩⎪⎨⎪⎧3x -y =2,①3x +2y =11,②②-①,得3y =9,解得y =3.把y =3代入①,得3x -3=2,解得x =53.所以原方程组的解是⎩⎪⎨⎪⎧x =53,y =3.(2)原方程组可化简为⎩⎪⎨⎪⎧3x -2y =8,①3x +2y =10,②①+②,得6x =18,解得x =3.将x =3代入①,得 9-2y =8,解得y =12.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =12.15.[解析] 认真观察每个方程组,发现方程组(1)用加减法求解比较简便;(2)未知数x的系数相同,可通过相减消去“x”,用加减法比较简便;(3)是一个较复杂的方程组,用加减法求解较合适;(4)需先将此方程组化简,再确定求解方法.解:(1)⎩⎪⎨⎪⎧x +2y =1,①3x -2y =11,②①+②,得4x =12,解得x =3.把x =3代入①,得3+2y =1, 解得y =-1.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =-1.(2)⎩⎪⎨⎪⎧5x +3y =6,①5x -2y =-4,② ①-②,得5y =10,解得y =2. 把y =2代入①,得5x +3×2=6, 解得x =0.所以原方程组的解是⎩⎪⎨⎪⎧x =0,y =2.(3)⎩⎪⎨⎪⎧4x -3y =39,①7x +4y =-15,② ①×4,得16x -12y =156,③ ②×3,得21x +12y =-45,④ ③+④,得37x =111, 解得x =3.把x =3代入①,得4×3-3y =39, 解得y =-9.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =-9.(4)将原方程组化简为⎩⎪⎨⎪⎧4x +10y =3.6,①15x +10y =8,②②-①,得11x =4.4,解得x =0.4.把x =0.4代入①,得1.6+10y =3.6, 解得y =0.2.所以原方程组的解为⎩⎪⎨⎪⎧x =0.4,y =0.2.16.[解析] 用方程组中的a 分别表示x ,y ,再把x ,y 的值代入3x -5y -38=0,即可求得a 的值.解:解方程组⎩⎪⎨⎪⎧x +y =a ,x -y =5a ,得⎩⎪⎨⎪⎧x =3a ,y =-2a. 把⎩⎪⎨⎪⎧x =3a ,y =-2a代入方程3x -5y -38=0, 得3×3a-5×(-2a)-38=0, 解得a =2.17.解:⎩⎪⎨⎪⎧2x +5y =-6,①3x -5y =16,②①+②,得5x =10,x =2.把x =2代入①,得2×2+5y =-6,y =-2.将⎩⎪⎨⎪⎧x =2,y =-2代入方程组⎩⎪⎨⎪⎧ax -by =-4,bx +ay =-8,得 ⎩⎪⎨⎪⎧2a +2b =-4,2b -2a =-8, 解这个方程组,得⎩⎪⎨⎪⎧a =1,b =-3,所以3a +7b =3×1+7×(-3)=-18.[数学活动]小初高学习+K12小初高学习+K12 1.[解析] 根据题意,把⎩⎪⎨⎪⎧x =-2,y =2代入方程ax +by =2,得关于a ,b 的一个方程,再把⎩⎪⎨⎪⎧x =3,y =-2代入方程ax +by =2,得关于a ,b 的另一个方程,组成方程组,求得a ,b 的值.把⎩⎪⎨⎪⎧x =3,y =-2代入方程cx -7y =8,即可求得c 的值. 解:把⎩⎪⎨⎪⎧x =-2,y =2,⎩⎪⎨⎪⎧x =3,y =-2分别代入方程ax +by =2, 得⎩⎪⎨⎪⎧-2a +2b =2,3a -2b =2, 解得⎩⎪⎨⎪⎧a =4,b =5. 把⎩⎪⎨⎪⎧x =3,y =-2代入方程cx -7y =8, 得3c +14=8,解得c =-2.即a =4,b =5,c =-2.2.解:设x +y =m ,x -y =n ,所求方程组可变形为⎩⎪⎨⎪⎧3m -an =16,2m +bn =15.由题意,可得该方程组的解为⎩⎪⎨⎪⎧m =7,n =1,由此可得到关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =7,x -y =1,解得⎩⎪⎨⎪⎧x =4,y =3.故所求方程组的解是⎩⎪⎨⎪⎧x =4,y =3.。
【最新】浙教版七年级数学下册第二章《解二元一次方程组(第二课时)》精品课件
x=3, y=2.
∴{
{
探究
解方程组
3x + 5y = 5,
3x - 4y =23.
①
②
解:
① - ②, 得
(2)怎么样才能把这个未知数y消去?
(3)你的根据是什么?
用代入法解方程组
引入
3x +2y =13, 3x -2y =5.
①
②
解:①+②, 得(3x +2y )+( 3x -2y) =13 + 5, 3x +2y +3x -2y =18, 6 x=18, x=3.
谢谢观看
THE END
归纳
谈谈你对解二元一次方程组的认识.
请同学们归纳一下: 什么样的方程组用“代入法”? 什么样的方程组用“加减法”?
小结
布置作业 1、作业本 2、课后练习
春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜人的志向通常和他们的能力成正比例夫学须志也,才须学也,非学无以广才,非志无以成学志不立,天下无可成之事Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about. 会当凌绝顶,一览众山小 如果一个人不知道他要驶向哪头,那么任何风都不是顺风 一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣
2.3解二元一次方程组 课件2(数学浙教版七年级下册)
(4)已知
2007x 2008y 2006 x 2007y 2009 2008
求(x-y)4-(x+y)2008的值。
zxxkw
2u 5v 12 4uபைடு நூலகம்3v 2
思考:在用加减消元法解二元一次方程组时, 如何根据系数特征选择相加或相减?
(1)
3 x 2 y 11 2 x 3 y 16
(2)
x y 1 3 7 2 x y 1 3 7 3
(3).已知2v+t=3v-2t=3,求v 、t的值。
2(1)已知方程组
,把两个方程的左右两边分别___________,
就可消去未知数_______,得一元一次方程:___________________________。
归纳:通过将方程组中的两个方程 ,消去其中的 ,转
化为一元一次方程,这种解二元一次方程组的方法叫做加减消元法(简称加减法)
(3)解方程组:
1.
1) x y 2.......( 观察方程组,它的系数有什么特点?你会用什么方法消元? 2) x y 5.......(
解:把方程(1),(2)的左右两边分别相加, 得___________,(依据:____________) 解得x=__________.把解得x的值代入(1),得____________ 解得y=_______________.所以原方程组的解是_________________. 思考:把上述过程中(1)+(2)改为(1)-(2)。 结果将如何?
2022-2023学年七年级数学下册课件之消元——解二元一次方程组 第二课时(人教版)
购买商品A的 购买商品B 数量/个 的数量/个
第一次购物
4
3
第二次购物
6
6
购买总 费用/元
93 162
若小丽需要购买3个商品A 和2个商品B,则她要花费( C )
A.64元 B.65元 C.66元 D.67元
4 选择适当的方法解方程组.
x-y=3,
x 3y=3,
(1)
2 y+(3 x-y)=11;
3x 2 y 1.
解:(1)
x+2y 9, ① 3x 2 y 1.②
①+②,得4x=8,
解这个方程,得x=2.
把x=2代入①,得y= 7
2
.
x=2,
因此,这个方程组的解是 y= 7 . 2
5x+2y 25, (2)
3x 4 y 15; 解:(2) 5x+2 y=25,①
3x+4 y=15.②
①×2,得10x+4y=50.③
C.要消去y,可以将①×5+②×3
D.要消去x,可以将①×(-5)+②×2
知识点 3 解方程组的应用
例4 2台大收割机和5台小收割机同时工作2 h共收割小麦3. 6 hm2 , 3台大收割机和2台小收割机同时工作5 h共收割小麦8 hm2. 1台 大收割机和1台小收割机每小时各收割小麦多少公顷?
导引: 如果1台大收割机和1台小收割机每小时各收割小麦x hm2和 y hm2,那么2台大收割机和5台小收割机同时工作1 h共收
去未知数___y__;也可以用 ①-②或②-① 消去
未知数___x___.
3 用加减法解方程组 2x 2x
3y 8y
5, 3
① ②
时,①-②得(
初中数学 二元一次方程组及其解法
二元一次方程组及其解法一、二元一次方程的概念1.二元一次方程:含有两个未知数,并且含未知数的项的最高次数是1的整式方程,叫做二元一次方程.二元一次方程的一般形式为:ax by c ++=0(,)a b ≠0≠0.【例】x y +2=5,x y 2=3,x y 3=-2,x y 2+3+6=0等都是二元一次方程. 2.二元一次方程的判定: 必须同时满足四个条件:(1)含有两个未知数——“二元”;(2)未知数项的最高次数为1——“一次”; (3)方程两边都是整式——整式方程; (4)未知数的系数不能为0.【例】x y +=1,()y x 1=+82,x y 3-1=2-5,x y 4=3等都是二元一次方程;y x 4+=5,x y z 2+3=,x y 21+=02,x x 2+3=-5等都不是二元一次方程. 3.二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解.【注】任何一个二元一次方程都有无数个解.【例】x y =1⎧⎨=2⎩和x y =3⎧⎨=1⎩是方程x y +2=5的解,可以看出x y +2=5有无数个解.二、二元一次方程组的概念和解法1.二元一次方程组:由几个一次方程组成并含有两个未知数的方程组,叫做二元一次方程组.【注意】(1)二元一次方程组不一定由几个二元一次方程合在一起.(2)方程可以超过两个.【例】x x y 2=6⎧⎨3-=1⎩,x x y 2=6⎧⎨3-=1⎩,x y x y =2⎧⎪=3⎨⎪+=4⎩等都是二元一次方程组.2.二元一次方程组的解:使二元一次方程组的几个方程左、右两边都相等的两个未知数的值(即几个方程的公共解),叫做二元一次方程组的解.【例】x x y 2=6⎧⎨3-=1⎩的解是x y =3⎧⎨=8⎩.3.二元一次方程组解的情况:一般情况下,一个二元一次方程组只有唯一一组解;但在特殊情况下,二元一次方程组也可能无解或有无数组解.【例】方程组x y x y +=1⎧⎨2+2=2⎩有无数组解,方程组x y x y +=2⎧⎨2+2=2⎩和x y x y =2⎧⎪=3⎨⎪+=4⎩无解.4.二元一次方程组的基本解法(1)代入消元法:①从方程组中选一个系数比较简单的方程,将该方程中的一个未知数用含另一未知数的式子表示出来,例如y ax b =+;②把y ax b =+代入另一个方程中,消去y ,得到一个关于x 的一元一次方程;③解这个一元一次方程,求出x 的值; ④把求得的x 的值代回y ax b =+中,求出y 的值,从而得出方程组的解;⑤把这个方程组的解写成x my n =⎧⎨=⎩的形式.解方程组:19,x y x y 3+4=⎧⎨-=4.⎩解:19,x y x y 3+4=⎧⎨-=4.⎩①②由②,得x y =4+,③ 把③代入①,()y y 34++4=19, ∴y y 12+3+4=19,得y =1. 把y =1代入③,得x =4+1=5.∴方程组的解为5x y =⎧⎨=1.⎩,(2)加减消元法:①把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数相反或相等;②把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中,求出另一个未知数的值,从而得出方程组的解;⑤把这个方程组的解写成x my n=⎧⎨=⎩的形式.解方程组:x y x y +2=1⎧⎨3-2=11⎩解:x y x y +2=1⎧⎨3-2=11⎩①②①+②,得x 4=12,解得:x =3.将x =3代入①,得y 3+2=1, 解得y =-1.∴方程组的解是x y =3⎧⎨=-1⎩.5.解方程组的三大解题思想(1)消元思想;(2)整体思想;(3)换元思想.(1)在下列方程中,①x 4+5=1;②x y 3-2=1;③x y1+=1;④xy y +=14;⑤x y =;⑥()y x 1=+82,其中是二元一次方程的是__________.(填序号)(2)已知方程||n m x y m -1-1+2=是关于x 、y 的二元一次方程,则m =_____,n =______.(3)若已知方程()()()k x k x k y k 22-1++1+-7=+2,当k =______时,方程为一元一次方程,当k =_______时,方程为二元一次方程.【解析】(1)②⑤⑥;(2)m =0或2,n =2.(3)-1,1.模块一 二元一次方程的概念例题1(1)已知x y =1⎧⎨=-1⎩是方程x ay 2-=3的一个解,那么a 的值是_________.(2)若x ky k =2⎧⎨=-3⎩是二元一次方程x y 2-=14的解,则k 的值是_________.【解析】(1)1;(2)2.(1)下列方程组中,是二元一次方程组的是( )A .x y y 2+=1⎧⎪1⎨=-1⎪⎩ B .x xy 2=1⎧⎨=-1⎩ C .x y y z 2+=1⎧⎨-=-1⎩D .x y =1⎧⎨=-1⎩(2)已知x y =-4⎧⎨=3⎩是方程组ax y x by +=-1⎧⎨-=2⎩的解,则()a b 6+=______.(3)已知x y =2⎧⎨=1⎩是二元一次方程组ax by bx ay +=1⎧⎨+=2⎩的解,则a b -的值为______.【解析】(1)D ;(2)由题意得a =1,b =-2,a b +=1,∴()a b 6+=1.(3)把解代入方程组得a b b a 2+=1⎧⎨2+=2⎩①②,①-②得a b -=-1.(1)用代入消元法解方程组:x y x y 3+4=2⎧⎨2-=5⎩.(2)用加减消元法解方程组:x y x y 4+3=5⎧⎨-2=4⎩.例题2模块二二元一次方程组的概念和解法例题3例题4【解析】(1)由题意得,x yx y3+4=2⎧⎨2-=5⎩①②由②,得y x=2-5,③把③代入①,得()x x3+42-5=2,∴x x3+8-20=2,得x11=22,解得x=2.把x=2代入③,得y=-1.∴方程组的解为xy=2,⎧⎨=-1.⎩(2)由题意得,x yx y4+3=5⎧⎨-2=4⎩①②①×2+②×3,得x x8+3=10+12,∴x11=22,解得x=2.将x=2代入①,得y8+3=5,解得y=-1.∴方程组的解为xy=2,⎧⎨=-1.⎩【提示】展示解二元一次方程组的基本解法.用合适的方法解下列二元一次方程组:(1)()()()x yy x3-1=+5⎧⎨5-1=3+5⎩(2)()()()x yx y+1=5+2⎧⎨32-5-43+4=5⎩(3)()()x y yx y4--1=31--2⎧⎪⎨+=2⎪23⎩(4)m n n mnm+-⎧-=2⎪⎪34⎨⎪4+=14⎪3⎩(5)x yx y3-22-1⎧+=2⎪⎪45⎨3+23+1⎪-=0⎪45⎩(6)...x yx y112⎧+=⎪535⎨⎪05-03=02⎩【解析】(1)由题意得,x yx y3-=8⎧⎨3-5=-20⎩①②①-②,得y4=28,解得y=7.将y=7代入①,得x3-7=8,解得x=5.∴方程组的解为xy=5⎧⎨=7⎩.(2)由题意得,x yx y-5=9⎧⎨-2=6⎩①②②-①,得y3=-3,解得y=-1.将y=-1代入①,得x+5=9,解得x=4.∴方程组的解为xy=4⎧⎨=-1⎩.(3)xy=2⎧⎨=3⎩.(4)mn18⎧=⎪⎪5⎨6⎪=-⎪5⎩.(5)xy=2⎧⎨=3⎩.(6)xy14⎧=⎪⎪17⎨12⎪=⎪17⎩.例题5【提示】练习解二元一次方程组的一般步骤:(1)去分母,去括号,最好转化为各项系数为整数的二元一次方程组; (2)多观察,系数为1±时优先使用代入消元法,其次才是加减消元法.解方程组:(1)x y x y 23+17=63⎧⎨17+23=57⎩(2)x y x y 2011-2013=4023⎧⎨2013-2011=4025⎩【解析】(1)两方程相加,得:x y 40+40=120,即x y +=3 ①两方程相减,得:x y 6-6=6,即x y -=1 ② ①+②得:x 2=4,解得x =2,①-②得:y 2=2,解得y =1,∴方程组的解为:x y =2⎧⎨=1⎩.(2)x y 3⎧=⎪⎪2⎨1⎪=-⎪⎩2.【提示】系数对称的二元一次方程组的特殊解法.(1)若方程组.a b a b 2-3=13⎧⎨3+5=309⎩的解是..a b =83⎧⎨=12⎩,则方程组()()()().x y x y 2+2-3-1=13⎧⎨3+2+5-1=309⎩的解是( )A ...x y =63⎧⎨=22⎩B ...x y =83⎧⎨=12⎩C ...x y =103⎧⎨=22⎩D ...x y =103⎧⎨=02⎩(2)用适当的方法解下列方程组:()()x y x y x y x y 3+-2-=-1⎧⎪⎨+-+=1⎪⎩24.【解析】(1)A .比较两个方程组可知..x a y b +2==83⎧⎨-1==12⎩,解得..x y =63⎧⎨=22⎩.(2)令x y u +=,x y v -=,则u v u v 3-2=-1⎧⎪⎨+=1⎪⎩24,解得u v =1⎧⎨=2⎩,即x y x y +=1⎧⎨-=2⎩,解得x y 3⎧=⎪⎪2⎨1⎪=-⎪⎩2.【提示】整体换元法.例题6例题7解方程组:(1)x y z x y z x y z +-=0⎧⎪2-3+2=5⎨⎪+2+=13⎩ (2)x y z x y z x y z 2+3+=16⎧⎪-+2=-1⎨⎪+2-=5⎩【解析】(1)由题意得,x y z x y z x y z +-=0⎧⎪2-3+2=5⎨⎪+2+=13⎩①②③由①,得y z x =-,④把④代入②和③, 得x z x z 5-=5⎧⎨-+3=13⎩,解得x z =2⎧⎨=5⎩. 把x z =2⎧⎨=5⎩代入④得,y =3.∴方程组的解为x y z =2⎧⎪=3⎨⎪=5⎩.(2)由题意得,x y z x y z x y z 2+3+=16⎧⎪-+2=-1⎨⎪+2-=5⎩①②③③①+得,④x y 3+5=21, 2③②⨯+得,⑤x y 3+3=9,④﹣⑤得y 2=12,y =6,将y =6代入⑤得,x 3=-9,x =-3,将x =-3,y =6代入①得,()z =16-2⨯-3-3⨯6=4, ∴方程组的解为x y z =-3⎧⎪=6⎨⎪=4⎩.【提示】三元一次方程组的基本解法:(1)通过消元把三元一次方程组转化为二元一次方程组; (2)解二元一次方程组.模块三 多元一次方程组的解法例题8(1) x y zx y z ⎧==⎪234⎨⎪5+2-3=8⎩ (2) x y z x y z x y z 2++=2⎧⎪+2+=4⎨⎪++2=6⎩【解析】(1)令x y zk ===234,即x k =2,y k =3,z k =4, 代入②可求得k =2,所以x y z =4⎧⎪=6⎨⎪=8⎩.(2)①+②+③得x y z ++=3,用①、②、③分别减去此式得x y z =-1⎧⎪=1⎨⎪=3⎩.【提示】三元一次方程组的特殊解法:(1)连比设k 型;(2)对称轮换型,整体相加.解方程组:(1)pq p q pq p q1⎧=⎪+5⎪⎨1⎪=⎪-3⎩ (2)xyx y yz y z zx z x ⎧=1⎪+⎪⎪=2⎨+⎪⎪=3⎪+⎩【解析】(1)原方程组可化为p q q p 11⎧+=5⎪⎪⎨11⎪-=3⎪⎩,解得q p 1⎧=4⎪⎪⎨1⎪=1⎪⎩,∴q p 1⎧=⎪4⎨⎪=1⎩.(2)原方程组可化为,解得,∴.【提示】均为可以转化为二元一次方程组或者三元一次方程组的分式方程.11111121113x y y z z x ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩151217121112x y z ⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩12512712x y z ⎧=⎪⎪⎪=⎨⎪⎪⎪=-⎩例题9非常挑战(1)已知二元一次方程x y--1=023,下列用含x 的代数式表示y 正确的是( ). A .y x 3=-12 B .y x 3=+12 C .y x 3=-32 D .y x 3=+32(2)下列方程属于二元一次方程的是( )A .x y +=1B .xy +5=4C .y x 23-8=D .x y1+=2(3)已知方程||||()()a b a x b y -1-4-2-+5=3是关于x 、y 的二元一次方程,则a =________,b =__________.【解析】(1)C ;(2)A ;(3)根据题意可得:a -2≠0,b +5≠0,||a -1=1,||b -4=1,所以a =-2,b =5.(1)下列不是二元一次方程组的是( )A .x y =2⎧⎨=-1⎩B .m n n m =2+3⎧⎨3-=4⎩C .x y y z +=2⎧⎨+=3⎩D .(())a a b a b 4+2=5⎧⎨2-+1=2+-3⎩(2)二元一次方程ax by +=6有两组解是x y =2⎧⎨=-2⎩与x y =-1⎧⎨=-8⎩,求a 、b 的值.【解析】(1)C .(2)将两组解分别代入ax by +=6,可得a b a b 2-2=6⎧⎨--8=6⎩,解得a b =2⎧⎨=-1⎩.复习巩固演练1演练2解方程组:(1)m n m n 3+2=2⎧⎨5-4=7⎩(2)()()()()y x x y 3-1=4-4⎧⎨5-1=3+5⎩(3)()()y x x y y x -1⎧-=3⎪2⎨⎪2-+32-=-6⎩ (4)x y x y +1+2⎧=⎪⎪34⎨-3-31⎪-=⎪4312⎩【解析】(1)m n =1⎧⎪⎨1=-⎪⎩2. (2)x y =7⎧⎨=5⎩. (3)x y =2⎧⎨=-1⎩. (4)x y =2⎧⎨=2⎩.解下列方程组:(1)x y x y 21+23=243⎧⎨23+21=241⎩ (2)x y x y 2014+2013=2012⎧⎨2012+2011=2010⎩(3)x y x yx y x y 2+32-3⎧+=7⎪⎪43⎨2+32-3⎪+=8⎪32⎩【解析】(1)x y =5⎧⎨=6⎩.(2)x y =-1⎧⎨=2⎩.(3)设x y a 2+3=,x y b 2-3=,则原方程组可变为,,a ba b ⎧+=7⎪⎪43⎨⎪+=8⎪32⎩整理,得,,a b a b 3+4=84⎧⎨2+3=48⎩解得,.a b =60⎧⎨=-24⎩∴,,x y x y 2+3=60⎧⎨2-3=-24⎩解得,,x y =9⎧⎨=14⎩ ∴原方程组的解为,.x y =9⎧⎨=14⎩演练3演练4解方程组:(1)x z z y x y z -=4⎧⎪-2=-1⎨⎪+-=-1⎩(2)::::::x y z u x y z u =1234⎧⎨9+7+3+2=200⎩(3) x y z y z x z x y +-=11⎧⎪+-=3⎨⎪+-=1⎩(4)mn m n mn m n 1⎧=⎪⎪3+213⎨1⎪=⎪2+312⎩【解析】(1)x y z =-7⎧⎪=-5⎨⎪=-11⎩.(2)设x k =,y k =2,z k =3,u k =4,所以有k k k k 9+14+9+8=200, 即k =5,故x y z u =5⎧⎪=10⎪⎨=15⎪⎪=20⎩.(3)①+②+③得:x y z ++=15,分别去减①、②、③式可得:x y z =6⎧⎪=7⎨⎪=2⎩.(4)m n 1⎧=⎪⎪2⎨1⎪=⎪3⎩.演练5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试一试
用加减消元法解下列方程组.(你
可以选择你喜欢的一题解答)
7x-2y=3 9x+2y=-19
6x-5y=3 6x+y=-15
例4. 解方程组:
分析:
2x 3y 12 ① 当方程组中两方程未知数系数
3x 4 y 17 ②
不具备相同或互为相反数的特点时 要建立一个未知数系数的
①×3得 6x+9y=36 ③ 绝对值相等的,且与原方程组同解
3x-4y=14 ① 5x+4y=2 ② 解 ①-②,得
-2x=12 x =-6
解: ①+②,得 8x=16 x =2
上面这些方程组的特点是什么?
解这类方程组基本思路是A什么?
主要步骤有哪些?
特点: 同一个未知数的系数相同或互为相反数
基本思路: 加减消元: 二元
一元
主要步骤: 加减 求解 写解
消去一个元 分别求出两个未知数的值 写出方程组的解
x=2
把x=2代入①,得
y=3
所以原方程组的解是
x 3 y 2
参考小丽的思路, 怎样解下面的二元一次方程组呢?
2x-5y=7 ①
分析
2x+3y=-1 ②
观察方程组中的两个方程,未知数 x的系数相等,都是2。把两个方程 两边分别相减,就可以消去未知数 x,同样得到一个一元一次方程。
2x-5y=7 ①
1、解二元一次方程组的基本思路是什么?
基本思路: 消元: 二元
一元
2、用代入法解方程的步骤是什么一?元
主要步骤:
1.变
用一个未知数的代数式
表示另一个未知数
2.代
消去一个元
3.解
分别求出两个未知数的值
4.写解
写出方程组的解
怎样解下面的二元 一次方程组呢?
3x 5y 21 ① 2x 5y -11 ②
小丽
3x 5y 21 ① 2x 5y -11 ②
分析(:3x + 5y)+(2x - 5y)=21
+ (-11)
①左边 + ② 左边 = ① 右边 + ②右边
3X+5y +2x - 5y=10
5x =10 x=2
3x 5y 21 ① 2x 5y -11 ②
解:由①+②得: 5x=10
3x 5y 21 ① 2x 5y -11 ②
把②变形得:x 5 y 11 2
x 代入①,不就消去 了!
小明
3x 5y 21 ① 2x 5y -11 ②
把②变形得
5 y 2x 11
可以直接代入①呀!
小彬
5 y和 5 y
互为相反数……
按照小丽的思路, 你能消去一个未知数吗?
的新的方程组。
②×2得 6x+8y=34 ④
再用加减消元法解.
③-④得: y=2
把y =2代入①,
解得: x=3
x 3
所以原方程组的解是
y
2
练一练
用加减消元法解下列方程组.
(你可以选择你喜欢的一题解答)
4s+3t=5 2s-t=-5
5x-6y=9 7x-4y=-5பைடு நூலகம்
谈谈你对解二元一次方程组的认识
二元一次方程
消元 转化
一元一次方程
请同学们归纳一下: 什么样的方程组用“代入法”? 什么样的方程组用“加减法”?
主要步骤有哪些?
变形
加减 求解 写解
同一个未知数的系 数相同或互为相反数 消去一个元 分别求出两个未知数的值
写出方程组的解
2x+3y=-1 ②
解:把 ②-①得:8y=-8
y=-1
把y =-1代入①,得
2x-5×(-1)=7
解得:x=1
所以原方程组的解是
x=1
y=-1
指出下列方程组求解过程中有 错误步骤,并给予订正:
7x-4y=4 ①
5x-4y=-4 ② 解:①-②,得
2x=4-4, x=0
解: ①-②,得 2x=4+4, x=4