半导体物理考试重点
半导体物理试卷知识点
一、名词解释(本大题共5题 每题4分,共20分)1. 受主能级:通过受主掺杂在半导体的禁带中形成缺陷能级。
正常情况下,此能级为空穴所占据,这个被受主杂质束缚的空穴的能量状态称为受主能级。
2. 直接复合:导带中的电子越过禁带直接跃迁到价带,与价带中的空穴复合,这样的复合过程称为直接复合。
3. 空穴:当满带顶附近产生P 0个空态时,其余大量电子在外电场作用下所产生的电流,可等效为P 0个具有正电荷q 和正有效质量m p ,速度为v (k )的准经典粒子所产生的电流,这样的准经典粒子称为空穴。
4. 过剩载流子:在光注入、电注入、高能辐射注入等条件下,半导体材料中会产生高于热平衡时浓度的电子和空穴,超过热平衡浓度的电子△n=n-n 0和空穴△p=p-p 0称为过剩载流子。
5.费米能级与化学势:费米能级表示等系统处于热平衡状态,也不对外做功的情况下,系统中增加一个电子所引起系统自由能的变化,等于系统的化学势。
处于热平衡的系统有统一的化学势。
这时的化学势等于系统的费米能级。
费米能级和温度、材料的导电类型杂质含量、能级零点选取有关。
费米能级标志了电子填充能级水平。
费米能级位置越高,说明较多的能量较高的量子态上有电子。
随之温度升高,电子占据能量小于费米能级的量子态的几率下降,而电子占据能量大于费米能级的量子态的几率增大。
二、选择题(本大题共5题 每题3分,共15分)1.对于大注入下的直接辐射复合,非平衡载流子的寿命与(D )A. 平衡载流子浓度成正比B. 非平衡载流子浓度成正比C. 平衡载流子浓度成反比D. 非平衡载流子浓度成反比2.有3个硅样品,其掺杂情况分别是:含铝1×10-15cm -3 乙.含硼和磷各1×10-17cm -3 丙.含镓1×10-17cm -3室温下,这些样品的电阻率由高到低的顺序是(C ) A.甲乙丙 B. 甲丙乙 C. 乙甲丙 D. 丙甲乙3.有效复合中心的能级必靠近( A ) A.禁带中部 B.导带 C.价带 D.费米能级4.当一种n 型半导体的少子寿命由直接辐射复合决定时,其小注入下的少子寿命正比于(C ).A.1/n0B.1/△nC.1/p0D.1/△p5.以下4种半导体中最适合于制作高温器件的是( D ). A. Si B. Ge C. GaAs D. GaN三、填空:(每空2分,共20分)(1)半导体的晶格结构式多种多样的,常见的Ge 和Si 材料,其原子均通过共价键四面体相互结合,属于 金刚石 结构;与Ge 和Si 晶格结构类似,两种不同元素形成的化合物半导体通过共价键四面体还可以形成 闪锌矿 和 纤锌矿 等两种晶格结构。
半导体物理学复习提纲(重点)教学提纲
第一章 半导体中的电子状态§1.1 锗和硅的晶体结构特征 金刚石结构的基本特征§1.2 半导体中的电子状态和能带 电子共有化运动概念绝缘体、半导体和导体的能带特征。
几种常用半导体的禁带宽度; 本征激发的概念§1.3 半导体中电子的运动 有效质量导带底和价带顶附近的E(k)~k 关系()()2*2nk E k E m 2h -0=; 半导体中电子的平均速度dEv hdk=; 有效质量的公式:222*11dk Ed h m n =。
§1.4本征半导体的导电机构 空穴空穴的特征:带正电;p n m m **=-;n p E E =-;p n k k =-§1.5 回旋共振§1.6 硅和锗的能带结构 导带底的位置、个数; 重空穴带、轻空穴第二章 半导体中杂质和缺陷能级§2.1 硅、锗晶体中的杂质能级基本概念:施主杂质,受主杂质,杂质的电离能,杂质的补偿作用。
§2.2 Ⅲ—Ⅴ族化合物中的杂质能级 杂质的双性行为第三章 半导体中载流子的统计分布热平衡载流子概念§3.1状态密度定义式:()/g E dz dE =;导带底附近的状态密度:()()3/2*1/232()4ncc m g E VE E h π=-;价带顶附近的状态密度:()()3/2*1/232()4p v Vm g E V E E hπ=-§3.2 费米能级和载流子的浓度统计分布 Fermi 分布函数:()01()1exp /F f E E E k T =+-⎡⎤⎣⎦;Fermi 能级的意义:它和温度、半导体材料的导电类型、杂质的含量以及能量零点的选取有关。
1)将半导体中大量的电子看成一个热力学系统,费米能级F E 是系统的化学势;2)F E 可看成量子态是否被电子占据的一个界限。
3)F E 的位置比较直观地标志了电子占据量子态的情况,通常就说费米能级标志了电子填充能级的水平。
半导体物理复习提纲
基础知识1.导体,绝缘体和半导体的能带结构有什么不同?并以此说明半导体的导电机理(两种载流子参与导电)与金属有何不同?导体能带中一定有不满带;绝缘体能带中只有满带和空带,禁带宽度较宽一般大于2eV ;半导体T=0 K 时,能带中只有满带和空带,T>0 K 时,能带中有不满带,禁带宽度较小,一般小于2eV 。
(能带状况会发生变化)半导体的导带没有电子,但其价带中电子吸收能量,会跃迁至导带,价带中也会剩余空穴。
在外电场的情况下,跃迁到导带中的电子和价带中的空穴都会参与导电。
而金属中价带电子是非满带,在外场的作用下直接产生电流。
2.什么是空穴?它有哪些基本特征?以硅为例,对照能带结构和价键结构图理解空穴概念。
当满带附近有空状态k’时,整个能带中的电流,以及电流在外场作用下的变化,完全如同存在一个带正电荷e 和具有正有效质量|m n * | 、速度为v (k’)的粒子的情况一样,这样假想的粒子称为空穴。
3.半导体材料的一般特性。
(1)电阻率介于导体与绝缘体之间(2)对温度、光照、电场、磁场、湿度等敏感(3)性质与掺杂密切相关4.费米统计分布与玻耳兹曼统计分布的主要差别是什么?什么情况下费米分布函数可以转化为玻耳兹曼函数?为什么通常情况下,半导体中载流子分布都可以用玻耳兹曼分布来描述?麦克斯韦-玻尔兹曼统计的粒子是可分辨的;费米-狄拉克统计的粒子不可分辨,而且每个状态只可能占据一个粒子。
低掺杂半导体中载流子遵循玻尔兹曼分布,称为非简并性系统;高掺杂半导体中载流子遵循费米分布,称为简并性系统。
费米分布:f (f )=ff +fff (f −f ff f f ) 玻尔兹曼分布:f (f )=ⅇ−f −f f f f f 空穴分布函数:f V (E )=1−f (E )=1exp (−E −E F k 0T )+1 (能态E 不被电子占据的几率) 当E-E F fk 0T 时有exp (E −EF k 0T )≫1,所以1+exp (E −E F k 0T )≈exp (E −E F k 0T ),则费米分布函数转化为f (E )=ⅇ−E −E Fk 0T ,即玻尔兹曼分布。
复习题半导体物理学
复习题:半导体物理学引言:半导体物理学是研究半导体材料的电学和光学性质的科学学科。
半导体材料由于其特殊的能带结构,介于导体和绝缘体之间。
在半导体物理学中,我们研究电子行为、能带理论、掺杂效应和半导体器件等方面的内容。
本文将通过一系列复习题来回顾半导体物理学的相关知识。
一、电子行为:1. 什么是载流子?在半导体中有哪两种类型的载流子?在半导体中,带有电荷的粒子称为载流子。
一种是带负电荷的电子,另一种是带正电荷的空穴。
2. 什么是能带?能带理论是用来描述什么的?能带是指具有一定能量范围的电子能级分布。
能带理论用于描述电子在半导体中的分布和运动行为。
3. 什么是禁带宽度?它对半导体的导电性质有什么影响?禁带宽度是指能带中能量差最小的范围,该范围内的能级没有允许态。
禁带宽度决定了半导体的导电性能。
能带中存在禁带宽度时,半导体表现出绝缘体的性质;当禁带宽度足够小的时候,允许电子状态穿越禁带,半导体表现出导体的性质。
二、掺杂效应:1. 什么是掺杂?常见的掺杂元素有哪些?掺杂是指向纯净的半导体中引入少量杂质元素,以改变半导体的导电性质。
常见的掺杂元素有磷、锑、硼等。
2. 控制掺杂浓度的方法有哪些?掺杂浓度可以通过掺杂杂质元素的量来控制。
掺杂浓度越高,半导体的导电性越强。
3. P型和N型半导体有什么区别?P型半导体是指通过掺杂三价元素使半导体中存在过剩的空穴,空穴是主要的载流子。
N型半导体是指通过掺杂五价元素使半导体中存在过剩的电子,电子是主要的载流子。
三、半导体器件:1. 什么是PN结?它的主要作用是什么?PN结是由P型半导体和N型半导体组成的结构。
PN结的主要作用是将半导体材料的导电性质从P型区域传导到N型区域,形成电子流和空穴流。
2. 什么是二极管?它的特点是什么?二极管是PN结的一种常见应用。
它具有单向导电性,允许电流从P区域流向N区域,而阻止电流从N区域流向P区域。
3. 什么是晶体管?它的工作原理是怎样的?晶体管是由三个掺杂不同类型的半导体构成的器件。
半导体物理重点
半导体物理复习重点第一章1. 某一维晶体的电子能带为[])sin(3.0)cos(1.01)(0ka ka E k E --=其中E 0=3eV ,晶格常数a =5х10-11m 。
求:(1) 能带宽度;(2)能带底和能带顶的有效质量。
(1) 解答要点:由题意得:[][])sin(3)cos(1.0)cos(3)sin(1.002220ka ka E a kd dEka ka aE dk dE +=-=eVE E E E a kd dEa k E a k d dEa k a k a k ka tg dkdE o ooo1384.1min max ,01028.2)4349.198sin 34349.198(cos 1.0,4349.198,01028.2)4349.18sin 34349.18(cos 1.0,4349.184349.198,4349.1831,04002222400222121=-=∆<⨯-=+==>⨯=+====∴==--则能带宽度对应能带极大值。
当对应能带极小值;当)(得令(2)()()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧⨯-=⎥⎥⎦⎤⎢⎢⎣⎡⨯⨯-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛=⨯=⎥⎥⎦⎤⎢⎢⎣⎡⨯⨯=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛=----------kg k d dE h m kg k d dE h m k n k n 271234401222*271234401222*10925.110625.61028.2110925.110625.61028.2121带顶带底则答:能带宽度约为1.1384eV ,能带顶部电子的有效质量约为1.925x10-27kg ,能带底部电子的有效质量约为-1.925x10-27kg 。
2. 试用能带理论解释导体、半导体、绝缘体的导电性。
解答要点:固体按其导电性分为导体、半导体、绝缘体,其机理可以根据电子填充能带的情况来说明。
固体能够导电,是固体中的电子在外场的作用下定向运动的结果。
801半导体物理 西电 西安电子科技大学 2022年硕士研究生招生考试自命题科目考试大纲
801半导体物理考试大纲一、总体要求“半导体物理”要求学生熟练掌握半导体的相关基础理论,了解半导体性质以及受外界因素的影响及其变化规律。
重点掌握半导体的晶体结构、半导体中的电子状态和带、半导体中的杂质和缺陷能级、半导体中载流子的统计分布、半导体的导电性、半导体中的非平衡载流子等相关知识、基本概念及相关理论,掌握半导体中载流子浓度计算、电阻(导)率计算以及运用连续性方程解决载流子浓度随时间或位置的变化及其分布规律的计算等。
“801半导体物理”研究生招生考试是所学知识的总结性考试,考试水平应达到或超过本科专业相应的课程要求水平。
二、知识要点(一)半导体晶体结构和缺陷1.主要内容半导体的分类及其特点,半导体的性质及导电能力对外界因素的依赖性,半导体化学键的性质和半导体的晶体结构,金刚石与闪锌矿结构的特点及其各向异性。
2.具体要求固体的分类半导体性质化学键类型和晶体结构的规律性半导体晶体结构与半导体键的性质晶格、晶向与晶面半导体中常用的晶向与晶面金刚石结构和闪锌矿结构的特点及其各向异性砷化镓晶体的极性(二)半导体中的电子状态1.主要内容半导体中电子状态与能带,半导体中的电子运动与有效质量,空穴,回旋共振原理与作用,Si的回旋共振实验结果,常用元素半导体和典型化合物半导体的能带结构。
2.具体要求半导体中的电子状态、表征和能带半导体中电子的运动和有效质量,有效质量的意义本征半导体的导电机构,空穴的概念,空穴等效概念的作用与意义回旋共振原理、作用及其Si晶体的回旋共振实验结果Si、Ge和典型化合物半导体的能带结构(三)半导体中杂志和缺陷能级1.主要内容半导体中的杂质和缺陷,元素半导体中的杂质和缺陷能级,化合物半导体中的杂质能级、位错和缺陷能级。
2.具体要求Si和Ge晶体中的杂质和杂质能级杂质的补偿作用与应用深能级杂质Ⅲ-Ⅴ族化合物半导体中的杂质能级等电子杂质与等电子陷阱半导体中的缺陷与位错能级(四)半导体中载流子的统计分布1.主要内容状态密度,分布函数、Fermi能级,载流子统计分布,本征和杂质半导体的载流子浓度,补偿半导体的载流子浓度,简并半导体2.具体要求状态密度的定义与计算分布函数费米能级、费米能级意义非简并半导体载流子的统计分布本征半导体的载流子浓度杂质半导体的载流子浓度杂质补偿半导体的载流子浓度简并半导体及载流子浓度、简并化判据、简并半导体的特点与杂质带导电载流子浓度的分析计算方法及其影响载流子浓度的因素(五)半导体的导电性1.主要内容载流子的漂移运动,迁移率,载流子的散射,迁移率与杂质浓度和温度的关系,电阻率与杂质浓度和温度的关系,强场效应与热载流子2.具体要求漂移的概念与规律载流子漂移运动迁移率定义及物理意义载流子散射概念半导体中的主要散射机制、特点及其影响因素半导体中其它因素引起的散射迁移率与杂质浓度和温度的关系电阻率及其与杂质浓度和温度的关系载流子在强电场下的效应高场畴区与Gunn效应;(六)非平衡载流子1.主要内容非平衡状态,非平衡载流子的产生与复合,非平衡载流子寿命,准费米能级,复合理论,陷阱效应,非平衡载流子载流子的扩散与漂移,爱因斯坦关系,连续性方程2.具体要求非平衡状态及其特点非平衡载流子的注入与复合准费米能级概念与意义非平衡载流子的寿命及其影响因素直接复合与间接复合理论表面复合陷阱效应扩散概念与规律半导体中载流子的扩散运动Einstein关系半导体中的电流构成连续性方程的建立及意义连续性方程的典型应用三、考试形式1、考试时间:180分钟。
半导体物理学复习提纲(重点)
第一章 半导体中的电子状态§1.1 锗和硅的晶体结构特征 金刚石结构的基本特征§1.2 半导体中的电子状态和能带 电子共有化运动概念绝缘体、半导体和导体的能带特征。
几种常用半导体的禁带宽度; 本征激发的概念§1。
3 半导体中电子的运动 有效质量导带底和价带顶附近的E(k )~k 关系()()2*2nk E k E m 2h -0=; 半导体中电子的平均速度dEv hdk=; 有效质量的公式:222*11dk Ed h m n =。
§1。
4本征半导体的导电机构 空穴空穴的特征:带正电;p n m m **=-;n p E E =-;p n k k =-§1。
5 回旋共振§1.6 硅和锗的能带结构 导带底的位置、个数; 重空穴带、轻空穴第二章 半导体中杂质和缺陷能级§2。
1 硅、锗晶体中的杂质能级基本概念:施主杂质,受主杂质,杂质的电离能,杂质的补偿作用。
§2。
2 Ⅲ—Ⅴ族化合物中的杂质能级 杂质的双性行为第三章 半导体中载流子的统计分布热平衡载流子概念§3。
1状态密度定义式:()/g E dz dE =;导带底附近的状态密度:()()3/2*1/232()4ncc m g E VE E h π=-;价带顶附近的状态密度:()()3/2*1/232()4p v Vm g E V E E hπ=-§3.2 费米能级和载流子的浓度统计分布 Fermi 分布函数:()01()1exp /F f E E E k T =+-⎡⎤⎣⎦;Fermi 能级的意义:它和温度、半导体材料的导电类型、杂质的含量以及能量零点的选取有关.1)将半导体中大量的电子看成一个热力学系统,费米能级F E 是系统的化学势;2)F E 可看成量子态是否被电子占据的一个界限。
3)F E 的位置比较直观地标志了电子占据量子态的情况,通常就说费米能级标志了电子填充能级的水平。
半导体物理考试重点 (1)剖析
半导体物理考试重点题型:名词解释3*10=30分;简答题4*5=20分;证明题10*2=20分;计算题15*2=30分一.名词解释1、施主杂志:在半导体中电离时,能够释放电子而产生导电电子并形成正电中心的杂质称为施主杂质。
2、受主杂志:在半导体中电离时,能够释放空穴而产生导电空穴并形成负电中心的杂质称为受主杂质。
3、本征半导体:完全不含缺陷且无晶格缺陷的纯净半导体称为本征半导体。
实际半导体不可能绝对地纯净,本征半导体一般是指导电主要由本征激发决定的纯净半导体。
4、多子、少子(1)少子:指少数载流子,是相对于多子而言的。
如在半导体材料中某种载流子占少数,在导电中起到次要作用,则称它为少子。
(2)多子:指多数载流子,是相对于少子而言的。
如在半导体材料中某种载流子占多数,在导电中起到主要作用,则称它为多子。
5、禁带、导带、价带(1)禁带:能带结构中能量密度为0的能量区间。
常用来表示导带与价带之间能量密度为0的能量区间。
(2)导带:对于被电子部分占满的能带,在外电场作用下,电子可以从外电场中吸收能量跃迁到未被电子占据的能级去,形成电流,起导电作用,常称这种能带为导带(3)价带:电子占据了一个能带中的所有的状态,称该能带为满带,最上面的一个满带称为价带6、杂质补偿施主杂质和受主杂质有互相抵消的作用,通常称为杂质的补偿作用。
7、电离能:使多余的价电子挣脱束缚成为导电电子所需要的能量称为电离能8、(1)费米能级:费米能级是绝对零度时电子的最高能级。
(2)受主能级:被受主杂质所束缚的空穴的能量状态称为受主能级(3)施主能级:被施主杂质束缚的电子的能量状态称为施主能级9、功函数:功函数是指真空电子能级E0 与半导体的费米能级EF 之差。
10、电子亲和能:真空的自由电子能级与导带底能级之间的能量差,也就是把导带底的电子拿出到真空去而变成自由电子所需要的能量。
11、直/间接复合(1)直接复合:电子在导带和价带之间的直接跃迁,引起电子和空穴的复合,称为直接复合。
半导体物理知识点及重点习题总结周裕鸿
基本概念题:第一章 半导体电子状态 1.1 半导体通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。
例: 1简述Si Ge ,GaAs 的晶格结构。
2什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。
在一定温度下,价带电子获得足够的能量(≥Eg )被激发到导带成为导电电子的过程就是本征激发。
其结果是在半导体中出现成对的电子-空穴对。
如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。
对半导体的理解:半导体导体 半导体 绝缘体电导率ρ <310- 9310~10- 910> cm ∙Ω此外,半导体还有以下重要特性1、 温度可以显著改变半导体导电能力例如:纯硅(Si ) 若温度从 30C 变为C 20时,ρ增大一倍 2、 微量杂质含量可以显著改变半导体导电能力例如:若有100万硅掺入1个杂质(P . Be )此时纯度99.9999% ,室温(C27 300K )时,电阻率由214000Ω降至0.2Ω3、 光照可以明显改变半导体的导电能力例如:淀积在绝缘体基片上(衬底)上的硫化镉(CdS )薄膜,无光照时电阻(暗电阻)约为几十欧姆,光照时电阻约为几十千欧姆。
另外,磁场、电场等外界因素也可显著改变半导体的导电能力。
【补充材料】半导体中的自由电子状态和能态势场 → 孤立原子中的电子——原子核势场+其他电子势场下运动 ↘ 自由电子——恒定势场(设为0)↘ 半导体中的电子——严格周期性重复排列的原子之间运动 ⅰ.晶体中的薛定谔方程及其解的形势V(x)的单电子近似:假定电子是在①严格周期性排列②固定不动的原子核势场③其他大量电子的平均势场下运动。
↓ ↓(理想晶体) (忽略振动)意义:把研究晶体中电子状态的问题从原子核—电子的混合系统中分离出来,把众多电子相互牵制的复杂多电子问题近似成为对某一电子作用只是平均势场作用。
半导体物理学试题及答案
半导体物理学试题及答案半导体物理学试题及答案(一) 一、选择题1、如果半导体中电子浓度等于空穴浓度,则该半导体以( A )导电为主;如果半导体中电子浓度大于空穴浓度,则该半导体以( E )导电为主;如果半导体中电子浓度小于空穴浓度,则该半导体以( C )导电为主。
A、本征B、受主C、空穴D、施主E、电子2、受主杂质电离后向半导体提供( B ),施主杂质电离后向半导体提供( C ),本征激发向半导体提供( A )。
A、电子和空穴B、空穴C、电子3、电子是带( B )电的( E );空穴是带( A )电的( D )粒子。
A、正B、负C、零D、准粒子E、粒子4、当Au掺入Si中时,它是( B )能级,在半导体中起的是( D )的作用;当B掺入Si中时,它是( C )能级,在半导体中起的是( A )的作用。
A、受主B、深C、浅D、复合中心E、陷阱5、 MIS结构发生多子积累时,表面的导电类型与体材料的类型( A )。
A、相同B、不同C、无关6、杂质半导体中的载流子输运过程的散射机构中,当温度升高时,电离杂质散射的概率和晶格振动声子的散射概率的变化分别是( B )。
A、变大,变小 ;B、变小,变大;C、变小,变小;D、变大,变大。
7、砷有效的陷阱中心位置(B )A、靠近禁带中央B、靠近费米能级8、在热力学温度零度时,能量比EF小的量子态被电子占据的概率为( D ),当温度大于热力学温度零度时,能量比EF小的量子态被电子占据的概率为( A )。
A、大于1/2B、小于1/2C、等于1/2D、等于1E、等于09、如图所示的P型半导体MIS结构的C-V特性图中,AB段代表( A),CD段代表( B )。
A、多子积累B、多子耗尽C、少子反型D、平带状态10、金属和半导体接触分为:( B )。
A、整流的肖特基接触和整流的欧姆接触B、整流的肖特基接触和非整流的欧姆接触C、非整流的肖特基接触和整流的欧姆接触D、非整流的肖特基接触和非整流的欧姆接触11、一块半导体材料,光照在材料中会产生非平衡载流子,若光照忽然停止t??后,其中非平衡载流子将衰减为原来的( A )。
半导体物理知识点及重点习题总结
半导体物理知识点及重点习题总结半导体物理是现代电子学中的重要领域,涉及到半导体材料的电学、热学和光学等性质,以及半导体器件的工作原理和应用。
本文将对半导体物理的一些重要知识点进行总结,并附带相应的重点习题,以帮助读者更好地理解和掌握相关知识。
一、半导体材料的基本性质1. 半导体材料的能带结构半导体材料的能带结构决定了其电学性质。
一般而言,半导体材料具有禁带宽度,可以分为导带(能量较高)和价带(能量较低)。
能量在禁带内的电子处于被限制的状态,称为束缚态,能量在导带中的电子可以自由移动,称为自由态。
2. 掺杂和杂质掺杂是将少量的杂质原子引入纯净的半导体材料中,以改变其导电性质。
掺入价带原子的称为施主杂质,掺入导带原子的称为受主杂质。
施主杂质会增加导电子数,受主杂质会增加载流子数。
3. P型和N型半导体掺入施主杂质的半导体为P型半导体,施主杂质的电子可轻易地跳出束缚态进入导带,形成载流子。
掺入受主杂质的半导体为N型半导体,受主杂质的空穴可轻易地跳出束缚态进入价带,形成载流子。
二、PN结和二极管1. PN结的形成和特性PN结是P型和N型半导体的结合部分,形成的原因是P型半导体中的空穴与N型半导体中的电子发生复合。
PN结具有整流作用,使得电流在正向偏置时能够通过,而在反向偏置时被阻止。
2. 二极管的工作原理二极管是基于PN结的器件,正向偏置时,在PN结处形成正电压,使得电子流能够通过。
反向偏置时,PN结处形成反电压,使得电流无法通过。
3. 二极管的应用二极管广泛用于整流电路、电压稳压器、振荡器和开关等领域。
三、晶体管和放大器1. 晶体管的结构和工作原理晶体管是一种三端器件,由三个掺杂不同的半导体构成。
其中,NPN型晶体管由N型掺杂的基区夹在两个P型掺杂的发射极和集电极之间构成。
PNP型晶体管的结构与之类似。
晶体管的工作原理基于控制发射极和集电极之间电流的能力。
2. 放大器和放大倍数晶体管可以作为放大器来放大电信号。
考试大纲-半导体物理
半导体物理考试大纲第一部分:半导体中的电子状态一.理解下列基本概念能级,能级简并化,共有化运动,能带(导带,价带,满带,空带),禁带,有效质量,纵向(横向)有效质量,k空间等能面,本征半导体,本征激发,空穴(重空穴,轻空穴),载流子。
二.分析掌握下列基本问题1.能带的特点,能带的杂化,能带的描述。
2.导体,半导体,绝缘体能带结构的区别。
3.本征半导体的导电原理。
4.Si,Ge,GaAs能带结构的异同点。
第二部分:半导体中杂质和缺陷能级一.理解下列基本概念杂质,替位式杂质,间隙式杂质,杂质能级施主杂质,施主能级,正电中心,施主电离,电离能,n型半导体受主杂质,受主能级,负电中心,受主电离,P型半导体浅能级杂质,深能级杂质,杂质补偿,中性杂质二.分析掌握下列基本问题1.N型半导体和p型半导体的导电原理2.某些杂质在半导体中产生若干个能级的原理3.杂质的补偿原理及其利弊4.位错在Si(Ge)中起施主或受主作用的原理,及其对Eg的影响第三部分:半导体中载流子的统计分布一.理解下列基本概念热平衡状态,热平衡载流子,费米能级非简化性系统,非简并半导体,简并性系统,简并半导体有效状态密度,状态密度有效质量,多数载流子,少数载流子二.分析掌握下列基本问题1.费米分布函数的性质2.玻氏分布代替费米分布的条件3.导带电子浓度和价带空穴浓度表示式分析推导的思想方法4.杂质半导体EF随杂质浓度变化关系,随温度的变化关系5.载流子浓度随温度的变化关系6.区分半导体载流子出现非简并,弱简并,简并的标准5.各种热平衡状态下半导体电中性条件三.熟识公式并运用1.费米分布函数表示式2.玻氏分布函数表示式3.导带电子浓度,价带空穴浓度表示式4.本征载流子浓度表示式,本征费米能级表示式5.载流子浓度乘积表示式,及其与本征载流子浓度的关系6.饱和电离温度区载流子浓度及EF的表示式(n型和p型半导体)7.过渡温度区载流子浓度表示式(n-s 和p-s)8.简并半导体载流子浓度表示式9.已电离杂质浓度表示式第四部分:半导体的导电性一.理解下列基本概念电流密度,漂移运动,平均漂移速度,迁移率自由时间,平均自由时间,电导有效质量载流子散射,散射几率,格波,声子,弹性散射,非弹性散射热载流子二.分析掌握下列基本问题1.迁移率概念的引进,迁移率简单理论分析的思想方法2.电离杂质散射机理3.迁移率与杂质和温度的关系4.电阻率与杂质和温度的关系5.波尔兹曼方程建立的思想方法6.统计理论分析与简单理论分析得到半导体电导率结果比较7.强电场作用下半导体发生欧姆定律偏离的原因,热载流子产生三.熟识公式并运用1.欧姆定律的微分形式2.电导率表示式(混合型,n型,p型,本征型半导体)3.迁移率表示式4.电离杂质散射和晶格散射几率与温度关系5.电阻率表示式(混合型,n型,p型,本征型半导体)6.波尔兹曼方程表示式7.电导率统计理论的结果表示式第五部分:非平衡载流子一.理解下列基本概念载流子的产生率,复合率,净复合率电子—空穴对的复合几率,半导体非平衡态;非平衡载流子非平衡载流子的复合率,复合几率,积累率准费米能级,非平衡载流子寿命,有效寿命(表观寿命)直接复合,简介复合,表面复合,复合截面,复合中心,复合中心能级陷阱效应,陷阱,陷阱中心扩散系数,扩散长度,扩散速度,牵引长度二.分析掌握下列基本问题1.半导体热平衡态和非平衡态特点的比较2.非平衡载流子的注入与检验的方法的原理3.非平子随时间衰减规律,及其推证思想方法,寿命τ的物理意义4.准费米能级的特点5.复合过程的性质6.直接复合过程分析7.间接复合的特点,间接复合过程的分析8.金在Si中如何起复合中心作用9.表面复合存在的依据及解释10.杂质在半导体中的作用,杂质能级在怎样情况下才有明显的陷阱效应作用,怎样分析最有效的陷阱11.一维稳定扩散的特点,一维稳定扩散的分析思想方法12.爱恩斯坦关系推证的思想方法13.非平载流子既漂移又扩散时的非平子浓度分析14.连续性方程的意义以及具体情况下的求解三.熟识公式并运用1.非平衡载流子随时间衰减规律表示式2.非平衡载流子复合率与非平衡载流子浓度关系表示式3.非平衡导体电子浓度(价带空穴浓度)表示式4.直接复合机构决定的非平衡载流子寿命表示式(大,中,小信号)5.间接复合理论分析得到的非平衡载流子寿命表示式6.连续性方程表示式第六部分:金属和半导体接触一.理解下列基本概念半导体表面,空间电荷区,表面势,表面势垒,表面势垒高度功函数,接触电势垒,接触势垒,高阻区(阻挡层),高电导区(反阻挡层)耗尽层,少子注入,欧姆接触,肖特基势垒二.分析掌握下列基本问题1.外电场作用下半导体表面空间电荷区的形成,表面层电场,电势,电势能的分布及能带图。
半导体物理总复习
f外 m a
* n
(3)电子的有效质量与晶体的能带结构有关
h2 m 2 d E dk 2
* n
利用有效质量可以对半导体的能带结构进 行研究 (4)有效质量可以通过回旋共振实验测得,并 椐此推出半导体的能带结构
4.空穴:空穴是几乎被电子填满的能带中未被电子占据的
少数空量子态,这少量的空穴总是处于能带顶附近。是价
高温本征激发区
n0= p0=ni
EF=Ei
费米能级仍用前面的公式得到EF=Ei
例题1 (同类型题103页1题)
导出能量在Ec和Ec+kT之间时,导带上的有效状 态总数(状态数/cm3)的表达式, 是任意常数。
例题2
(a)在热平衡条件下,温度T大于0K,电子能量位于费米 能级时,电子态的占有几率是多少?
n p 中处于准平衡分布,可以有各自的费米能级 E F 和E F
称为准费米能级,准费米能级分离的程度,即
n p 的大小,反映了与平衡态分离的程度 EF EF
4. 解释载流子的产生和复合,直接复合,间接复合,复合率
产 生:电子和空穴被形成的过程,如电子从价带跃迁到导 带,或 电子从杂质能级跃迁到导带的过程或空穴从 杂质能级跃迁到价带的过程 复 合:电子和空穴被湮灭或消失的过程
MIN
0
所以布里渊区边界为
k (2n 1)
a
(n=0,1,2……)
1.能带宽度为
E(k ) MAX E (k ) MIN
2 2 ma 2
2电子在波矢k状态的速度
1 dE 1 v (sin ka sin 2ka) dk ma 4
3、电子的有效质量 能带底部
半导体物理复习
《半导体物理》课程考试大纲 .doc
《半导体物理》课程考试大纲一、适用专业:集成电路工程二、参考书目:1.刘恩科朱秉升编,半导体物理学,国防工业出版社三、考试内容与基本要求:第一章绪论[考试要求]本章要求学生掌握本课程研究的对象和内容,了解半导体材料及器件的应用,了解本课程的基本要求;了解与半导体晶体相关的概念,重点掌握倒格子、布里渊区的概念,重点了结晶体中的缺陷、晶格振动和晶体中的电子运动。
[考试内容]①晶格、格点、基矢、布里渊区、倒格子等概念②晶体中的缺陷、晶格振动③晶体中的电子运动第二章半导体中的电子状态[考试要求]本章要求学生掌握电子、空穴和有效质量的概念,重点了解和掌握半导体的能带结构,了解半导体中的杂质和缺陷能级。
[考试内容]①电子、空穴和有效质量的概念②能带论,并用能带理论解释半导体物理学中的一些现象③常用半导体的能带结构④半导体中的杂质和缺陷第三章热平衡状态下载流子的统计分布[考试要求]本章要求学生掌握状态密度及费米能级的概念,掌握热平衡状态下本征半导体及杂质半导体的载流子浓度,了解非简并情况下费米能级和载流子浓度随温度的变化。
[考试内容]①状态密度及费米能级的概念以及它们的表达式②热平衡状态下本征及杂质半导体的载流子浓度③非简并情况下费米能级和载流子浓度随温度的变化④简并半导体第四章载流子的漂移和扩散[考试要求]本章要求学生掌握半导体中载流子的各种散射机制,了解电阻率和迁移率与杂质浓度和温度的关系,掌握载流子的扩散和漂移运动、爱因斯坦关系。
[考试内容]①半导体中载流子的各种散射机制②电导率和迁移率③电阻率和迁移率与杂质浓度和温度的关系④载流子的扩散和漂移运动,爱因斯坦关系⑤强电场效应,热载流子第五章非平衡载流子[考试要求]本章要求学生掌握非平衡载流子的注入与复合,了解各种复合理论,连续性方程。
[考试内容]①非平衡载流子的注入与复合②各种复合理论③连续性方程第六章p-n结[考试要求]本章要求学生掌握p-n结概念及其能带图,掌握理想p-n结的电流电压关系,了解p-n 结电容,了解实际p-n结的电流电压关系、p-n结击穿、p-n结隧道效应等。
湖南大学半导体物理考试重点(全)
半导体物理第一章半导体中的电子状态单电子近似:即假设每个电子是在周期性排列且固定不动的原子核势场及其他电子的平均势场中运动。
该势场是具有与晶格同周期的周期性势场。
1.1半导体的晶格结构和结合性质1.大量的硅、锗原子组合成晶体靠的是共价键结合,他们的晶体结构与碳原子组成的一种金刚石晶格都属于金刚石型结构。
2.闪锌矿型结构(见课本8页)1.2半导体中电子的状态和能带1.Φ(r,t)=Ae i(k.r−wt) k为平面波的波数2.k=|k|=2л/λ波的传播方向为与波面法线平行3.在晶体中波函数的强度也随晶格周期性变化,所以在晶格中各点找到该电子的概率也具有周期性变化的性质。
这反映了电子不再完全局限在某一个原子上,而是可以从晶胞中某一点自由运动到其他晶胞内的对应点,因而电子可以在整个晶体中运动,这种运动称为电子在晶体内的公有化运动。
1.3半导体中的电子的运动有效质量1.导带低电子的有效能量1h2(d2Edk2)k=0=1m n∗2.引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中的电子外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
3.能量带越窄二次微商越小,有效质量越大。
内层电子的能量带越窄,有效质量大;外层电子的能量带宽,有效质量小。
1.4本征半导体的到点机构空穴1.可以认为这个空状态带有正电。
2.正电荷为空状态所有,它带的电荷是+q。
3.空穴:通常把价带中空着的状态看成是带正电的粒子,称为空穴。
.空穴不仅带有正电荷+q,而且还具有正的有效质量。
4引进空穴概念后,就可以把价带中大量电子对电流的贡献用少量的空穴表达出来。
半导体中除了导电带上电子导体作用外,价带中还有空穴的导电作用,这就是本征半导体的导电机构。
1.6 硅和锗的能带结构硅和锗的禁带宽度是随温度变化的,在T=0K时,硅和锗的禁带宽度E g分别趋近于1.70eV和0.7437eV.随着温度的升高,E g按如下规律减小E g(T)=E g(0)- -aT2T+β,式中E g(T)和E g(0)分别表示温度为T和0K时的禁带宽度,a,β为温度系数。
半导体物理 复习要点
一、填充题1. 两种不同半导体接触后, 费米能级较高的半导体界面一侧带正电达到热平衡后两者的费米能级相等。
2. 半导体硅的价带极大值位于k空间第一布里渊区的中央,其导带极小值位于【100】方向上距布里渊区边界约0.85倍处,因此属于N型半导体。
3. 晶体中缺陷一般可分为三类:点缺陷,如空位,间隙原子;线缺陷,如位错;面缺陷,如层错和晶粒间界。
4. 间隙原子和空位成对出现的点缺陷称为弗仓克耳缺陷;形成原子空位而无间隙原子的点缺陷称为肖特基缺陷。
5.体位式杂质可显著改变载流子浓度;深能级杂质可显著改变非平衡载流子的寿命,是有效的复合中心。
6. 硅在砷化镓中既能取代镓而表现为施主杂质,又能取代砷而表现为受主杂质,这种性质称为杂质的双性行为。
7.对于ZnO半导体,在真空中进行脱氧处理,可产生氧空位,从而可获得 N型 ZnO半导体材料。
8.在一定温度下,与费米能级持平的量子态上的电子占据概率为50% ,高于费米能级2kT能级处的占据概率为0.7% 。
9.本征半导体的电阻率随温度增加而单调的下降,杂质半导体的电阻率随温度增加,先下降然后增大,再单调下降。
10.n型半导体的费米能级在极低温(0K)时位于导带底和施主能级之间中线处,随温度升高,费米能级先上升至一极值,然后下降至(Ec+Ed)/2 。
11. 硅的导带极小值位于k空间布里渊区的【100】方向。
12. 受主杂质的能级一般位于离价带顶较近的禁带中。
13. 有效质量的意义在于它概括了半导体内部势场的作用。
14. 间隙原子和空位成对出现的点缺陷称为弗仓克耳缺陷。
15. 除了掺杂,引入局部能级也可改变半导体的导电类型。
16. 回旋共振实验是测量半导体内载流子有效质量的重要技术手段。
17. PN结电容可分为势垒电容和扩散电容两种。
18. PN结击穿的主要机制有雪崩击穿、隧道击穿和热击穿。
19. PN结的空间电荷区变窄,是由于PN结加的是正向电压。
20.能带中载流子的有效质量反比于能量函数对于波矢k的二次微商,引入有效质量的意义在于其反映了晶体材料的内部势场的作用。
半导体物理考试重点
半导体物理考试重点题型:名词解释 3*10=30 分;简答题 4*5=20 分;证明题 10*2=20 分;计算题 15*2=30 分名词解释施主杂志:在半导体中电离时,能够释放电子而产生导电电子并形成正电中心的杂质称为施主杂质。
受主杂志:在半导体中电离时,能够释放空穴而产生导电空穴并形成负电中心的杂质称为受主杂质。
3、本征半导体:完全不含缺陷且无晶格缺陷的纯净半导体称为本征半导体。
实际半导体不可能绝对地纯净,本征半导体一般是指导电主要由本征激发决定的纯净半导体。
多子、少子(1)少子:指少数载流子,是相对于多子而言的。
如在半导体材料中某种载流子占少数,在导电中起到次要作用,则称它为少子。
(2)多子:指多数载流子,是相对于少子而言的。
如在半导体材料中某种载流子占多数,在导电中起到主要作用,则称它为多子。
禁带、导带、价带(1)禁带:能带结构中能量密度为 0 的能量区间。
常用来表示导带与价带之间能量密度为 0 的能量区间。
(2)导带:对于被电子部分占满的能带,在外电场作用下,电子可以从外电场中吸收能量跃迁到未被电子占据的能级去,形成电流,起导电作用,常称这种能带为导带(3)价带:电子占据了一个能带中的所有的状态,称该能带为满带,最上面的一个满带称为价带杂质补偿施主杂质和受主杂质有互相抵消的作用,通常称为杂质的补偿作用。
7、电离能:使多余的价电子挣脱束缚成为导电电子所需要的能量称为电离能8、(1)费米能级:费米能级是绝对零度时电子的最高能级。
(2)受主能级:被受主杂质所束缚的空穴的能量状态称为受主能级(3)施主能级:被施主杂质束缚的电子的能量状态称为施主能级9、功函数:功函数是指真空电子能级 E0 与半导体的费米能级之差。
10、电子亲和能:真空的自由电子能级与导带底能级之间的能量差,也就是把导带底的电子拿出到真空去而变成自由电子所需要的能量。
直/间接复合( 1 ) 直接复合:电子在导带和价带之间的直接跃迁,引起电子和空穴的复合,称为直接复合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体物理考试重点题型:名词解释3*10=30分;简答题4*5=20分;证明题10*2=20分;计算题15*2=30分一.名词解释1、施主杂志:在半导体中电离时,能够释放电子而产生导电电子并形成正电中心的杂质称为施主杂质。
2、受主杂志:在半导体中电离时,能够释放空穴而产生导电空穴并形成负电中心的杂质称为受主杂质。
3、本征半导体:完全不含缺陷且无晶格缺陷的纯净半导体称为本征半导体。
实际半导体不可能绝对地纯净,本征半导体一般是指导电主要由本征激发决定的纯净半导体。
4、多子、少子(1)少子:指少数载流子,是相对于多子而言的。
如在半导体材料中某种载流子占少数,在导电中起到次要作用,则称它为少子。
(2)多子:指多数载流子,是相对于少子而言的。
如在半导体材料中某种载流子占多数,在导电中起到主要作用,则称它为多子。
5、禁带、导带、价带(1)禁带:能带结构中能量密度为0的能量区间。
常用来表示导带与价带之间能量密度为0的能量区间。
(2)导带:对于被电子部分占满的能带,在外电场作用下,电子可以从外电场中吸收能量跃迁到未被电子占据的能级去,形成电流,起导电作用,常称这种能带为导带(3)价带:电子占据了一个能带中的所有的状态,称该能带为满带,最上面的一个满带称为价带6、杂质补偿施主杂质和受主杂质有互相抵消的作用,通常称为杂质的补偿作用。
7、电离能:使多余的价电子挣脱束缚成为导电电子所需要的能量称为电离能8、(1)费米能级:费米能级是绝对零度时电子的最高能级。
(2)受主能级:被受主杂质所束缚的空穴的能量状态称为受主能级(3)施主能级:被施主杂质束缚的电子的能量状态称为施主能级9、功函数:功函数是指真空电子能级E0 与半导体的费米能级之差。
10、电子亲和能:真空的自由电子能级与导带底能级之间的能量差,也就是把导带底的电子拿出到真空去而变成自由电子所需要的能量。
11、直/间接复合(1)直接复合:电子在导带和价带之间的直接跃迁,引起电子和空穴的复合,称为直接复合。
(2)间接复合:电子和空穴通过禁带的能级(复合中心)进行的复合方式称为间接复合。
12、(1)非平衡载流子:半导体中比热平衡时所多出的额外载流子。
(2)非平衡载流子的寿命:非平衡载流子的平均生存时间。
13、载流子热运动14、小注入条件:当注入半导体材料的非平衡载流子的浓度远小于平衡时多数载流子的浓度时,满足这个条件的注入称为小注入。
15、(1)载流子迁移率:单位电场强度下载流子所获得的平均漂移速率。
(2)载流子产生率:单位时间内载流子的产生数量16、深/浅能级(1)浅能级杂质:在半导体中,能够提供能量靠近导带的电子束缚态或能量接近价带的空穴束缚态的杂质称为浅能级杂质。
(2)深能级杂质:在半导体中,能够提供能量接近价带的电子束缚态或能量接近导带的空穴束缚态的杂质称为深能级杂质。
17、同/异质结(1)同质结:由同一种半导体材料形成的结称之为同质结,包括结、结、结。
(2)异质结:由不同种半导体材料形成的结称之为异质结,包括结、结、结、结。
18、两性杂质在半导体中既起施主作用又起受主作用的杂质,称为两性杂质。
19、表面态与表面态密度钉扎(1)表面态:晶体的自由表面的存在,使得周期性势场在表面处发生中断,引起附加能级,电子被局域在表面附近,这种电子状态称为表面态,所对应的能级为表面能级。
(2)表面密度钉扎:在半导体表面,费米能级的位置由表面态决定,而与半导体掺杂浓度等因素无关的现象。
20、漂移运动:在外加电压时,导体内部的自由电子受到电场力的作用,沿着电场的反方向作定向移动构成电流。
电子在电场力作用下的这种运动称为漂移运动。
21、陷阱效应:杂质能级积累非平衡载流子的作用,被称为陷阱效应22、欧姆接触:指金属与半导体的接触,其接触面的电阻远小于半导体本身的电阻,实现的主要措施是在半导体表面层进行高参杂或引入大量的复合中心。
23、镜像力:在金属-真空系统中,一个在金属外面的电子,要在金属表面感应出正电荷,电子也受到感应的正电荷的吸引如负电荷距离金属表面为x,则它与感应出的金属表面的正电荷之间的吸引力,相当于在处有个等量的正电荷之间的作用力,即镜像力24、隧道(齐纳)击穿隧道击穿是在强电场作用下,有隧道效应,使大量电子从价带穿过禁带而进入到导带所引起的一种击穿现象。
因为最早是有齐纳提出来解释电解质击穿现象的,故叫齐纳击穿。
25、雪崩击穿雪崩击穿是结反向电压增大到一数值时,在反向强电场下的碰撞电离, 使载流子倍增就像雪崩一样,增加得多而快。
雪崩击穿一般发生在掺杂浓度较低、外加电压又较高的结中。
26、热电击穿:由于热不稳定性引起的击穿,称为热电击穿27、平均自由程与平均自由时间(1)平均自由程:载流子在相邻两次散射过程之间的平均距离。
(2)平均自由时间:载流子在两次散射之间经历的平均时间。
28、肖特基二极管金属与半导体接触时,若二者功函不同,载流子会在金属与半导体之间流动,稳定时系统费米能级统一,在半导体表面一层形成表面势垒,是一个高阻区域,称为阻挡层。
电子必须跨越的界面处势垒通常称为肖特基势垒。
29.扩散长度:非平衡载流子深入样品的平均距离。
30. 本征激发:当有能量大于禁带宽度的光子照射到半导体表面时,满带中的电子吸收这个能量,跃迁到导带产生一个自由电子和自由空穴,这一过程称为本征激发31.有效质量:电子受到原子核的周期性势场(这个势场和晶格周期相同)以及其他电子势场综合作用的结果。
二.简答题1结反向击穿的原理(雪崩效应、齐纳击穿、热电击穿)(183号)答:(1)雪崩击穿:半导体中,结反向电压增大时,势垒区中的电场很强,在势垒区内的电子和空穴由于受到强电场的漂移作用,具有很大的动能,它们与势垒区内的晶格原子发生碰撞时,能把价键上的电子和空穴碰撞出来,成为导电电子,同时产生一个空穴。
新产生的载流子在电场作用下碰撞出其他价电子产生新的自由电子和空穴对。
如此连锁反应,使得阻挡层中载流子数量急剧增加,流过结的电流急剧增加击穿结。
(2)齐纳击穿:当结加反向偏压时,势垒区能带发生倾斜;反向偏压越大,势垒越高,势垒区的内建电场也越强,势垒区能带也越加倾斜,甚至可以使n区的导带底比p区的价带顶还低。
内建电场E使p区的价带电子得到附加势能;当内建电场E大到某值以后,价带中的部分电子所得到的附加势能可以大于禁带宽度。
如图示,当点的水平禁带宽度随着偏压的继续增大而短到一定量度是时,p区价带中的电子将以一定的概率通过隧道效应穿过禁带而到达n区导带中。
并且,势垒区的电场越强,水平禁带宽度越窄,隧穿概率越大。
(3)热电击穿:当结施加反向电压时,流过结的反向电流要引起损耗。
反向电压逐渐增大时,对应于一定的反向电流所损耗的功率也增大,这将产生大量热量,进而导致结的温度上升,反向饱和电流密度增大。
如此反复循环下去,最后电流密度无限增大而发生击穿。
这种由于热不稳定性引起的击穿,称为热点击穿。
对于禁带宽度较小的半导体,由于反向饱和电流密度较大,在室温下这种击穿很重要。
2、导体、半导体、绝缘体能带的差别答:(1)在导体中,价带和导带是重叠的,它们之间没有禁带。
价电子所在的能带只有部分电子被充满,其余部分是空的。
因此即使在很低的温度下也会有大量的处于较高能级的价电子参与导电。
(2)半导体的价带充满了电子,而导带基本上是空的,在价带和导带之间有一个禁带。
由于禁带宽度较窄,所以在一定温度下(如室温),也会有一定数量的电子从价带跃迁到导带上,从而在电场的作用下参与导电。
(3)绝缘体的能带结构和半导体类似,只是它的禁带宽度比半导体宽得多,在一般情况下,依靠热激发很难将电子激发到导带上。
3、热电子发射理论与扩散理论(以N型或P型半导体为例)答:以N型半导体为例(1)热电子发射理论:当n型阻挡层很薄,以至于电子平均自由程远大于势垒宽度时,电子在势垒区的碰撞可以忽略,因此,这时起决定作用的是势垒高度。
半导体内部的电子只要有足够的能量越过势垒的顶点,就可以自由地通过阻挡层进入金属。
同样,金属中能超越势垒顶的电子也都能到达半导体内。
理论计算可以得出,这时的总电流密度与外加电压无关,是一个更强烈地依赖于温度的函数。
(2)扩散理论:对于n型阻挡层,当势垒宽度比电子平均自由程大得多时,电子通过势垒区将发生多次碰撞,这样的阻挡层称为厚阻挡层。
扩散理论正是适用于这样的厚阻挡层。
此时,总电流密度与外加电压有关。
4、结构能带图与反型层的简单解释(考N型)(211页)答:(1)结构反型层能带图(2)解释对于N性半导体,当加于金属和半导体间的反向电压达到一定值时,表面势为负值,表面处能带强烈地向上弯曲。
这时表面处费米能级位置可能低于禁带中央能级,也就是费米能级离价带顶比导带底还要更近一些,这意味着表面处空穴浓度将超过电子浓度,即形成与原来半导体衬底导电类型相反的一层,称作反型层。
在这种情况下,半导体空间电荷层内的正电荷由两部分组成,一部分是耗尽层中已电离的施主负电荷,另一部分是反型层中的空穴,后者主要堆积在近表面区。
5、结电容的起源(扩散电容和势垒电容)答:结的电容来源主要有势垒电容和扩散电容:(1)势垒电容:当结加正向电压时,势垒区的电场将随正向偏压的增加而减弱,势垒区宽度变窄,空间电荷数量减少。
因为空间电荷是由不可移动的杂质离子组成的,所以空间电荷的减少是由于n区的电子和p区的空穴过来中和了势垒区的一部分电离施主和电离受主。
结上外加电压的变化而引起的电子和空穴在势垒区的”存入“和”取出“作用,导致势垒区的空间电荷数量随外加电压而变化,这与一个电容器的充电盒放电作用相似。
这就是结的势垒电容。
(2)外加电压变化时,n区扩散区内积累的非平衡空穴也增加,与它保持电中性的电子也相应增加。
同样,p区扩散区内积累的非平衡电子和它保持电中性的空穴也要增加。
这种由于扩散区的电荷量随外加电压的变化所产生的电容效应,称为结的扩散电容。
6、金半接触如何形成欧姆接触?答:在不考虑表面态的时候,重掺杂的结可以产生显著的隧道电流。
金属和半导体接触时,如果半导体掺杂浓度很高,则势垒区宽度很薄,电子也要通过隧道效应贯穿势垒产生相当大的隧道电流,甚至超过热电子发射电流而成为电流的主要成分。
当隧道电流占主导地位时,它的接触电阻可以很小,可以用作欧姆接触。
所以,当半导体重掺杂时,它与金属的接触可以形成接近理想的欧姆接触。
7、试定性分析的电阻率与温度的变化关系答:的电阻率与温度的变化关系可以分为三个阶段:(1)温度很低时,电阻率随温度升高而降低。
因为这时本征激发极弱,可以忽略;载流子主要来源于杂质电离,随着温度升高,载流子浓度逐步增加,相应地电离杂质散射也随之增加,从而使得迁移率随温度升高而增大,导致电阻率随温度升高而降低。
(2)温度进一步增加(含室温),电阻率随温度升高而升高。