最新七年级数学单项式练习题
七年级上册数学单项式试卷
一、选择题(每题3分,共15分)1. 下列单项式中,系数为负数的是:A. 3xB. -5yC. 7zD. 2a2. 下列各数中,哪个不是单项式?A. 3x²B. 2xyC. 4x - 3yD. 53. 下列各式中,哪个是单项式的乘法?A. (2x + 3y)(4x - 5y)B. (3x - 2y)²C. 5x(2x - 3y)D. 2x² + 3xy4. 下列各式中,哪个是单项式的除法?A. 6x ÷ 2xB. 4y ÷ 2yC. 5z ÷ zD. 7x² ÷ 3x5. 下列各式中,哪个是单项式的合并?A. 3x + 2y - 5zB. 4x² - 3x + 2C. 5x(2x - 3y) + 7xyD. 6x - 4x + 2x二、填空题(每题5分,共25分)6. 单项式-2ab的系数是______,字母因数是______。
7. 单项式3x²y的次数是______。
8. 单项式5x - 3y + 2的次数是______。
9. 若单项式2x³y的系数是8,则x的指数是______。
10. 若单项式-4a²b的字母因数是-2ab,则该单项式的系数是______。
三、解答题(每题10分,共30分)11. 列出单项式3x²y - 4xy + 5y的系数、字母因数和次数。
12. 简化单项式5x(2x - 3y) + 7xy。
13. 计算单项式2x³y ÷ 4xy的值。
四、应用题(每题15分,共30分)14. 小明家养了x只鸡,每只鸡重y千克。
若鸡的总重量为10千克,请列出表示鸡的总重量的单项式。
15. 小华有a个苹果,b个香蕉,c个橘子。
若小华的水果总重量为10千克,请列出表示水果总重量的单项式。
注意:本试卷满分为100分,考试时间为60分钟。
请认真审题,仔细计算,祝您考试顺利!。
七年级数学单项式与多项式例题及练习
单项式与多项式例题及练习例: 试用尽可能多的方法对下列单项式进行分类: 3a3x, bxy, 5x2, -4b2y, a3, -b2x2, axy2解: (1)按单项式的次数分: 二次式有5x;三次式有bxy, -4b2y, a3;四次式有3a3x, •-b2x2, axy2。
(2)按字母x的次数分: x的零次式有-4b2y, a3;x的一次式有3a3x, bxy, axy2;x的二次式有5x2, -b2x2。
(3)按系数的符号分:系数为正的有3a3x, bxy, 5x2, a3, axy2;系数为负的有-4b2y, -b2x2。
(4)按含有字母的个数分: 只含有一个字母的有5x2, a3;•含有两个字母的有3a3x, •-4b2y, -b2x2;含有三个字母的有bxy, axy2。
评析: 对单项式进行分类的关键在于选择一个恰当的分类角度。
如按单项式的次数、按式中某个字母的次数、按系数的符号、按含有字母的个数等等。
1、把代数式和的共同点填在下列横线上, 例如:都是代数式。
①都是式;②都是。
2.写出一个系数为-1, 含字母、的五次单项式。
3、如果是关于x的五次四项式, 那么p+q= 。
4、若(4 -4)x2yb+1是关于x, y的七次单项式, 则方程ax-b=x-1的解为。
5.下列说法中正确的是()A. 的次数为0 B、的系数为C.-5是一次单项式D. 的次数是3次6.若是关于x, y的一个单项式, 且系数是, 次数是5, 则和b的值是多少7、已知:是关于a、b的五次单项式, 求下列代数式的值, 并比较(1)、(2)两题结果:(1), (2)●体验中考1.(2008年湖北仙桃中考题改编)在代数式, , , , , 中单项式有个。
2、(2009年江西南昌中考题改编)单项式xy2z 的系数是__________, 次数是__________。
3.(2008年四川达州中考题改编)代数式和的共同点是。
4、(2009年山东烟台中考题改编)如果是六次单项式, 则的值是( )A.1B.2C.3D.5参考答案:◆随堂检测1. , 32.—63.C4.D5.①×;②√;③×;④×◆课下作业●拓展提高1.①单项式;②5次2.3.94.x=5.D6. 7、由题意可知: , 解得 。
人教版七年级数学第二章 2.1.2单项式 同步测试题
人教版七年级数学第二章 2.1.2单项式 同步测试题一、选择题1.在式子1x ,2x +5y ,0.9,-2a ,-3x 2y ,x +13中,单项式有(C) A .5个 B .4个 C .3个 D .2个①x +12;②abc ;③b 2;④-5ab 2;⑤y +x ;⑥-xy 2;⑦-12;⑧c. 2.下列单项式中,次数是5的是(C )A .55B .22x 3C .x 2y 3D .y 3x3.已知一个单项式的系数是2,次数是3,则这个单项式可以是(B)A .2x 3yB .2x 2yC .3x 2D .-2x 2y4.下列各组单项式中,次数相同的是(D )A .3ab 与-4xy 2B .3π与aC .-13x 2y 2与xy D .a 3与xy 2 5.单项式-xy 3z 4的系数及次数分别是(D )A .系数是0,次数是7B .系数是1,次数是8C .系数是-1,次数是7D .系数是-1,次数是86.下列说法正确的是(D )A .10不是单项式B .-abc 2的系数是-1 C .xy 2的系数是0,次数是-2 D .-23x 2y 的系数是-23,次数是3 7.某种股票原价格为a 元,连续两天上涨,每次涨幅10%,则该股票两天后的价格为(A )A .1.21a 元B .1.1a 元C .1.2a 元D .(a +0.2)元二、填空题8.下列各式是单项式的有(填序号):②③④⑥⑦⑧.9.-12x 2y 是3次单项式.10.填表:11.若一个圆柱形蓄水池,底面半径为r ,高为h ,则这个蓄水池最多可蓄水πr 2h .12.在式子:①3x 2-1;②xyz ;③12b ;④3x +y 2中,单项式有②. 13.(1)单项式πa 2b 3的系数是π,次数是5;(2)单项式-32x 2yz 的系数是-9,次数是4.14.今年五月份,由于H 7N 9禽流感的影响,我市鸡肉的价格下降了10%,设鸡肉原来的价格为a 元/千克,则五月份的价格为0.9a 元/千克.15.用单项式填空,并指出它们的次数和系数:(1)一台电脑原价a 元,现在加价20%出售,这台电脑现在的售价为65a 元,次数为1,系数为65; (2)一个长方体的长、宽、高分别是x ,x ,y ,则它的体积是x 2y ,次数为3,系数为1.16.已知(m -2)x 4y |m|+1是关于x ,y 的七次单项式,则m =-2.17.下面是按一定规律排列的式子:a 2,3a 4,5a 6,7a 8……则第8个式子是15a 16.三、解答题18.列出单项式,并指出它们的系数和次数.(1)某班总人数为m 人,女生人数是男生人数的35,那么该班男生人数为多少? (2)长方形的长为x ,宽为y ,则长方形的面积为多少?解:(1)58m ,系数是58,次数是1. (2)xy ,系数是1,次数是2.。
七年级数学上册《单项式》同步练习题(附答案解析)
七年级数学上册《单项式》同步练习题(附答案解析)一、选择题1、下列说法正确的个数是( ) ①单项式a 的系数为0,次数为0. ②ab−12是单项式.③−3xy4的系数为3,次数为1.④6πx 3的系数为6,次数为4. A .0B .1C .3D .42、下列语句中,错误的( ) A .数字0也是单项式 B .单项式a -的系数与次数都是1 C .12xy 是二次单项式D .23ab -的系数是−23 3、下列代数式中,为单项式的是( ) A .5xB .aC .a+b3aD .x 2+y 24、下列各式a 2b 2,13x −1,−25,a+b 2,a 2−2ab +b 2中单项式的个数有( )A .4个B .3个C .2个D .1个5、下列代数式中,全是单项式的一组是( ) A .1a ,2,3ab B .2,a ,12abC .2a b-,1,π D .x +y ,-1,13(x -y)6、下列说法正确的是( ) A .3πxy 的系数是3B .3πxy 的次数是3C .223xy -的系数是−23D .223xy -的次数是27、下列说法中,正确的是( ) A .0.3不是单项式 B .单项式3x 3y 的次数是3 C .单项式﹣2πx 2y 3的系数是﹣2D .4次单项式2234x y -的系数是﹣348、已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.2x2y B.3x2q C.2xy3D.−2xy2二、填空题9、单项式−2a2b3的系数是________,次数是_______.10、在1x ,12π,−5,a,−2x+y2中,是单项式的为_______.11、写出一个系数为−12,次数为3的单项式_______.12、单项式232x yz是______次单项式,系数是______,若(a−2)x2y|a|+1是x,y五次单项式,则a的值为_______.13、下列式子①-1,②−23a2,③16x2y,④−ab2π,⑤abc,⑥3a+b,⑦0,⑧m中,是单项式的是____________________ .(只填序号)14、单项式−ab33的系数为x,次数为y,则xy的值为________.15、若﹣(a﹣1)x2y b+1是关于字母x,y的五次单项式,且系数是﹣12,则a=_____,b=_____.16、填表:三、简答题17、一个含有字母x,y的五次单项式,x的指数为3,且当x=2,y=-1时,这个单项式的值是32,求这个单项式.18、如果|a+1|+(b-2)2=0,那么单项式-x a+b y b-a的次数是多少?19、观察下列单项式:−x,3x2,−5x3,7x4,…,−37x19,39x20,…写出第n个单项式.为解决这个问题,特提供下面的解题思路:通过观察单项式的结构特征,分三步确定:先确定符号,再确定系数的绝对值,最后确定次数.(1)这组单项式系数的符号规律是________系数的绝对值规律是________;(2)这组单项式的次数的规律是________;第六个单项式是________;(3)根据上面的归纳,可以猜想第n个单项式是________;(4)请你根据猜想,写出第2019个单项式.20、分别写出下列各项的系数与次数(1)2x3;(2)−x2y;xy;(3)35x2y3.(4)−81521、观察下列单项式:−x,3x2,−5x3,7x4,⋯−37x19,39x20,…(1)根据规律,写出第99个单项式,第100个单项式,第n个单项式;(2)当x=1时,求出上述题中第1个到第100个单项式和的值.(3)当x=1时,直接写出上述题中第1个到第n个单项式和的值.(提示:n要分奇数,偶数讨论)参考答案与解析一、选择题1、A【分析】根据单项式的定义以及单项式的系数、次数定义判断即可.【详解】解:①单项式a的系数为1,次数为1,故本项错误;②ab−12不是单项式,故本项错误;③−3xy4的系数为−34,次数为2,故本项错误;④6πx3的系数为6π,次数为3,故本项错误.所以正确的个数是0.故选:A.【点睛】本题考查了单项式的系数、次数的定义,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.2、B【分析】根据单项式系数、次数的定义来求解;单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数;单独一个数字也是单项式.【详解】A:数字0也是单项式是正确的,不符合题意;B:单项式-a的系数是-1,次数都是1,不正确的,符合题意;C:12xy是二次单项式,不符合题意;D:−2ab3的系数是−23是正确的,不符合题意;故选:B.【点睛】此题考查单项式,解题关键在于掌握其定义.3、B【分析】根据单项式的定义判断即可得出答案.【详解】解:A. 5x为分式不是整式,错误;B. a是单项式,正确;C. a+b3a是分式,错误;D. x2+y2是多项式,错误;故答案选B.【点睛】本题考查单项式的定义:数字与字母的乘积组成的代数式为单项式,需要特别注意的是,单独的一个数字或一个字母也是单项式.4、C【分析】根据单项式的定义进行解答即可.【详解】解:a2b2,是数与字母的积,故是单项式;1 3x−1,a+b2,a2−2ab+b2是单项式的和,故是多项式;-25是单独的一个数,故是单项式.故共有2个.故选:C.【点睛】本题考查的是单项式,熟知数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式是解答此题的关键.5、B【分析】根据单项式的定义,从独数,独字母,数与字母三种形式去判断即可.【详解】∵1a 不是单项式,2是单项式,3ab是单项式 ∴选项A 不符合题意;∵12ab 是单项式,2是单项式,a 是单项式, ∴选项B 符合题意; ∵2a b-是多项式,1是单项式,π是单项式, ∴选项C 不符合题意;∵x +y 是多项式,-1是单项式,13(x -y)是多项式, ∴选项D 不符合题意; 故选B .【点睛】本题考查了单项式的定义,熟练掌握单独的数,单独的字母,数与字母的积是单项式的三种基本表现形式是解题的关键. 6、C【分析】分析各选项中的系数或者次数,即可得出正确选项 【详解】A. 3πxy 的系数是3π,π是数字,不符合题意, B. 3πxy 的次数是2,x,y 指数都为1,不符合题意C. 223xy -的系数是−23,符合题意 D. 223xy -的次数是3,不符合题意故选C【点睛】本题考查了单项式的系数:单项式的系数是单项式字母前的数字因数,单项式的次数,单项式的次数是单项式所有字母指数的和,正确理解和运用该知识是解题的关键. 7、D【分析】根据单项式的有关概念即可求出答案. 【详解】解:A 、0.3是单项式,故此选项错误;B 、单项式3x 3y 的次数是4,故此选项错误;C 、单项式﹣2πx 2y 3的系数是﹣2π,故此选项错误;D 、4次单项式2234x y -的系数是﹣34,故此选项正确.故选:D .【点睛】本题考查单项式的相关知识,是基础题,熟练掌握单项式的相关知识是解题关键.8、A【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】解:A、2x2y系数是2,次数是3,故本选项符合题意;B、3x2q系数是3,次数是3,故本选项不符合题意;C、2xy3系数是2,次数是4,故本选项不符合题意;D、−2xy2系数是-2,次数是3,故本选项不符合题意;故选:A.【点睛】此题考查单项式问题,解答此题需灵活掌握单项式的系数和次数的定义.二、填空题9、−233【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数进行分析即可.【详解】解:单项式−2a2b3的系数是−23,次数是3,故答案为:−23,3.【点睛】本题考查了单项式的系数与次数的定义,需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.10、12π,−5,a【分析】根据单项式的定义逐个判断即可.【详解】解:在1x ,12π,−5,a,−2x+y2中,单项式有:12π,−5,a,故答案为:12π,−5,a.【点睛】本题考查了单项式,注意:表示数或数与字母的积,叫单项式.11、−12x3【分析】根据单项式的系数次数,可得答案【详解】解:系数为−12,次数为3的单项式为−12x 3, 故答案为:−12x 3.【点睛】本题考查了单项式,熟练掌握单项式的系数、次数的定义是解题的关键. 12、六 −12 -2【分析】根据单项式及其系数和次数的定义求解即可.【详解】解:单项式232x yz 是六次单项式,系数是−12,∵(a −2)x 2y |a |+1是x ,y 五次单项式, ∴|a |+1=3且a -2≠0, 解得:a =-2,故答案为:六,−12,-2.【点睛】此题主要考查了单项式,关键是掌握单项式相关定义. 13、①②③④⑦⑧【分析】根据单项式的定义进行判断即可.【详解】解:⑤中分母上含有字母,不是单项式;⑥是多项式,不是单项式; 而①②③④⑦⑧均是单项式, 故答案为:①②③④⑦⑧.【点睛】本题考查了单项式的定义:由任意个字母和数字的积所组成的代数式叫做单项式(单独的一个数字或字母也是单项式). 14、−43【分析】利用单项式的次数与系数的定义得出答案. 【详解】解:∵单项式−ab 33的系数为−13,次数为1+3=4,∴x=−13,y=4, ∴xy=−13×4=−43, 故答案为:−43.【点睛】此题主要考查了单项式的次数与系数,正确把握相关定义是解题关键. 15、32 2.【分析】直接根据单项式的概念即可求解.【详解】解:∵﹣(a ﹣1)x 2y b +1是关于字母x ,y 的五次单项式,且系数是﹣12, ∴﹣(a ﹣1)=﹣12,2+b +1=5,∴a =32,b =2. 故答案为:32,2.【点睛】此题主要考查多项式的概念,正确理解概念是解题关键. 16、见解析【分析】根据单项式系数和次数的概念求解.三、简答题 17、4x 3y 2 .【解析】首先根据题目的条件设出单项式,然后代入x 、y 的值求解即可. 【详解】解答:∵ 这一个含有字母x ,y 的五次单项式,x 的指数为3, ∴ y 的指数为2,∴ 设这个单项式为:ax 3y 2 ,∵ 当x=2,y=-1时,这个单项式的值是32, ∴ 8a=32 解得:a=4.故这个单项式为:4x 3y 2 .【点睛】本题考查了单项式的知识,了解单项式的次数和系数是解决本题的关键. 18、4【详解】试题分析:先根据非负数之和为0的特点求得a ,b 的值,再求算单项的指数和,求单项式的次数.试题解析:因为|a +1|+(b -2)2=0, 所以a +1=0,b -2=0, 即a =-1,b =2.所以-x a +b y b -a =-xy 3.所以单项式-x a +b y b -a 的次数是4.点睛:此题主要考查绝对值的性质和单项式次数的求法,要掌握单项式的次数是所有字母的指数的和.19、(1)(-1)n ,2n-1;(2)从1开始的连续自然数,11x 6;(3)(-1)n (2n-1)x n ;(4)-4037x 2019 【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律; (2)根据已知数据次数得出变化规律; (3)根据(1)(2)中数据规律得出即可; (4)利用(3)中所求即可得出答案.【详解】解:(1)根据各项系数的符号以及系数的值得出:这组单项式的系数的符号规律是(-1)n ,系数的绝对值规律是2n-1. 故答案为:(-1)n ,2n-1;(2)这组单项式的次数的规律是从1开始的连续自然数.第6个单项式为:11x 6 故答案为:从1开始的连续自然数,11x 6. (3)第n 个单项式是:(-1)n (2n-1)x n . 故答案为:(-1)n (2n-1)x n ; (4)第2019个单项式是-4037x 2019. 故答案为:-4037x 2019.【点睛】此题主要考查了单项式变化规律,得出次数与系数的变化规律是解题关键. 20、(1)系数:2,次数:3;(2)系数:-1,次数:3;(3)系数:35,次数:2;(4)系数:−815,次数:5【分析】根据单项式的系数是数字因数,单项式的次数是各字母的次数之和做答即可. 【详解】解:(1)2x 3的系数:2,次数:3; (2)−x 2y 系数:-1,次数:3; (3)35xy 系数:35,次数:2; (4)−815x 2y 3系数:−815,次数:5.【点睛】本题只要考查单项式的系数和次数的知识,根据其定义作答即可.21、(1)−197x99,199x100,(−1)n(2n−1)x n;(2)100;(3)n为奇数时,值为-n;n为偶数时,值为n【分析】(1)观察总结出规律:单项式的系数-1,3,-5,7,…,从1开始的连续的奇数,奇数项为负,偶数项为正,次数的规律是从1开始的连续的整数,从而可得结果;(2)将x=1代入可得−1+3−5+7+...+199,计算即可;(3)分n为奇数和n为偶数,分别将x=1代入计算即可.【详解】解:(1)由题目找出规律,可得第n个单项式为(−1)n(2n−1)x n,当n=99时,(−1)99×(2×99−1)×x99=−197x99,当n=100时,(−1)100×(2×100−1)×x100=199x100;(2)当x=1时,第1个到第100个单项式的和为:−1+3−5+7+...+199=2+2+...+2=2×50=100;(3)当n为奇数时,第1个到第n个单项式的和为:−1+3−5+7−...−(2n−1)−(2n−1)=2×n−12=-n;当n为偶数时,第1个到第n个单项式的和为:−1+3−5+7−...+(2n−1)=2×n2=n【点睛】本题考查单项式的规律,解答本题的关键是明确题意,发现单项式的变化特点,写出相应的单项式.第11页共11页。
七年级数学单项式类习题精选
定义题1. 单项式: 由____与____的积组成的代数式。
单独的一个___或_____也是单项式。
2.练习:判断下列各代数式哪些是单项式?(1) x 3 (2)abc; (3) 2.6h (4) a+b+c (5)y (6)-3a 2b (7)-5 。
3.单项式系数: 单项式中的___因数叫这个单项式的系数,对应单项式中的数字(包括数字符号)部分。
如x 3,π,ab , 2.6h ,-m 它们都是单项式,系数分别为____________________________________4、单项式次数:一个单项式中,______的指数的和叫这个单项式的次数。
只与字母指数有关。
如x 3,ab ,2.6h ,-m, 它们都是单项式,次数分别为______分别叫做三次单项式,二次单项式,一次单项式。
二、巩固练习1、单项式-a 2b 3c () A.系数是0次数是3 B.系数是1次数是5 C.系数是-1次数是6 D.系数是1次数是62.判断下列代数式是否是单项式。
如不是,请说明理由;如是,请指出它的系数和次数。
-3, a 2b ,, a 2-b 2 y x 42 , 2x 2+3x+5 πR 23.制造一种产品,原来每件成本a 元,先提价5%,后降价5%,则此时该产品的成本价为( )A.不变B.a(1+5%)2C.a(1+5%)(1-5%)D.a(1-5%)24.(1)若长方形的长与宽分别为 a 、b ,则长方形的面积为_________.(2)若某班有男生x 人,每人捐款21元,则一共捐款__________元.(3)某次旅游分甲、乙两组,已知甲组有a 名队员,平均门票m 元,乙组有b 名队员,平均门票n 元,则一共要付门票_____元.5.某公司职员,月工资a 元,增加10%后达到_____元.6.如果一个两位数,十位上数字为x ,个位上数字为y ,则这个两位数为_____.7.有一棵树苗,刚栽下去时,树高2米,以后每年长0.3米,则n 年后树高___米_基础题1.单项式﹣32xy的次数是()A.﹣3次B.2次 C.4次 D.9次2.单项式﹣25ab3的系数、次数分别为()A.﹣2,8 B.﹣2,9 C.﹣25,4 D.﹣25,33.单项式23abc2的次数是()A.7 B.5 C.4 D.24.已知单项式3x a﹣1y的次数是3,则a的值为()A.2 B.3 C.4 D.55.代数式﹣的系数是()A.﹣B.C.﹣D.6.下列说法正确的是()A.不是单项式B.是单项式C.x的系数是0 D.是整式7.整式﹣3.5x3y2,﹣1,,﹣32xy2z,﹣x2﹣y,﹣a2b﹣1中单项式的个数有()A.2个 B.3个 C.4个 D.5个8.在下列代数式①﹣a;②;③0;④;⑤﹣2π;⑥x2+y;⑦;⑧中,单项式共有()个.A.4 B.5 C.6 D.79.如果﹣c是六次单项式,则n的值是()A.1 B.2 C.3 D.410.在代数式9ab,3xy,a+1,3ax2y2,1﹣y,,x2+xy+y2中,单项式共有()A.3个 B.4个 C.5个 D.6个二.填空题1.代数式﹣的系数是,次数是.2.的次数是.3.单项式﹣的系数是,次数是.4.的系数是.5.把代数式2a2b2c和a3b2的共同点写在横线上.6.单项式﹣3m2n的系数为.7.单项式﹣的系数是,次数是.8.单项式﹣πa2b3c的系数为,次数为拔高题选择题1.单项式是六次单项式,则a的值为()A.3 B.15 C.﹣3 D.﹣152.下列语句中错误的是()A.数字0也是单项式B.单项式a的系数与次数都是1C.的系数是D.是二次单项式3.下列代数式中,①﹣8a3;②xy;③p﹣1;④0;⑤﹣是单项式的有()A.1个 B.2个 C.3个 D.4个4.在式子a+b,3xy,,n,﹣8,,中,单项式的个数是()A.4 B.5 C.6 D.75.单项式,的系数和次数分别是()A.,三次B.,四次C.,四次D.,三次6.如果﹣ax2y b(a,b为常数)是四次单项式,那么b的值是()A.1 B.2 C.3 D.47.若(1﹣a)xy n﹣1是关于x、y的一个单项式,系数为2,次数为4,则|n﹣2a2|的值为()A.1 B.2 C.3 D.48.观察下列单项式的排列规律:3x,﹣7x2,11x3,﹣15x4,19x5,…,照这样排列第10个单项式应是()A.39x10B.﹣39x10C.﹣43x10D.43x109.下列各式:﹣,﹣25,,π,,中单项式的个数有()A.1个 B.2个 C.3个 D.4个10.代数式、﹣3xy4、4ab、3x2﹣4、n、0、中单项式的个数有()A.4个 B.5个 C.6个 D.3个填空题1.观察下列单项式:a,2a2,4a3,8a4…根据你发现的规律,写出第n个式子是.2.观察下面的一列单项式:2x,﹣4x2,8x3,﹣16x4…根据规律,第6个单项式为.3.如果﹣axy m是关于x,y的单项式,且系数是﹣6,次数是5,m ,a4.单项式﹣x a•y b+1是关于x、y的五次单项式,且a、b是不相等的正整数,求ab .简答题1.观察下列单项式:﹣x,3x2,﹣5x3,7x4,…,﹣37x19,39x20,…写出第n个单项式.为了解决这个问题,特提供下面的解题思路:(1)这组单项式的系数的符号、绝对值规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么(只能填写一个代数式)?(4)请你根据猜想,请写出第2013个、第2014个单项式.2.观察下列各式:﹣a,a2,﹣a3,a4,﹣a5,a6,…(1)写出第2014个和2015个单项式;(2)写出第n个单项式.3.观察下列单项式:x2,﹣3x4,5x6,﹣7x8,…回答下列问题(1)这组单项式的系数的符号规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是(只能填写一个式子)什么?(4)请你根据猜想,请写出第2014,2015个单项式.4.要对一组对象进行分类,关键是要选定一个分类标准,不同的分类标准有不同的结果.如对下面给出的七个单项式:2x3z,xyz,3y3,﹣5y2x,﹣z2x2,x2yz,z3进行分类,若按单项式的次数分类:二次单项式有3y2;三次单项式有:xyz,﹣5y2x,z3;四次单项式有2x3z,﹣z2x2,x2yz.请你用两种不同的分类方法对上面的七个单项式进行分类.5.观察下列单项式:﹣2x,22x2,﹣23x3,24x4…﹣25x5,26x6,…请观察它们的构成规律,用你发现的规律①写出第2015个单项式,并②写出第n个单项式.。
人教版七年级上册数学2.1.2单项式练习题
2019年12月01日初中数学组卷参考答案与试题解析一.选择题(共50小题)1.单项式的系数与次数分别是()A.和3 B.﹣5和3 C.和2 D.﹣5和2【分析】根据单项式的系数和次数的定义分别求解即可.【解答】解:∵单项式为,∴其系数为单项式中的数字因式,所以为﹣,次数为所有字母指数的和,故其次数为3,故选A.【点评】本题主要考查单项式,掌握单项式的系数为数字因式、次数为所有字母指数之和是解题的关键.2.在代数式a+b,x2,,﹣m,0,,中,单项式的个数是()A.6 B.5 C.4 D.3【分析】根据单项式的概念判断即可.【解答】解:x2,﹣m,0是单项式,故选:D.【点评】本题考查的是单项式的概念,数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.3.下面关于单项式﹣a3bc2的系数与次数叙述正确的是()A.系数是,次数是6 B.系数是,次数是5C.系数是,次数是5 D.系数是,次数是6【分析】根据单项式的定义解答可得.【解答】解:单项式﹣a3bc2的系数为﹣,次数为6,故选:D.【点评】本题主要考查单项式,解题的关键是熟练掌握单项式的相关概念.4.单项式2xy3的次数是()A.1 B.2 C.3 D.4【分析】根据一个单项式中所有字母的指数的和叫做单项式的次数可得答案.【解答】解:单项式2xy3的次数是1+3=4,故选:D.【点评】此题主要考查了单项式,关键是掌握单项式次数的计算方法.5.在式子,2x+5y,0.9,﹣2a,﹣3x2y,中,单项式的个数是()A.5个 B.4个 C.3个 D.2个【分析】根据单项式的定义进行解答即可.【解答】解:0.9是单独的一个数,故是单项式;﹣2a,﹣3x2y是数与字母的积,故是单项式.故选C.【点评】本题考查的是单项式,熟知数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式是解答此题的关键.6.下列各整式中,次数为3次的单项式是()A.xy2B.xy3C.x+y2 D.x+y3【分析】根据单项式中,所有字母的指数和叫做这个单项式的次数对各选项分析判断即可得解.【解答】解:A、xy2的次数是1+2=3,故本选项正确;B、xy3的次数是4,故本选项错误;C、x+y2是多项式,故本选项错误;D、x+y3是多项式,故本选项错误.故选A.【点评】本题考查了单项式,主要是次数的确定,熟记单项式中,所有字母的指数和叫做这个单项式的次数是解题的关键.7.单项式4xy2z3的次数是()A.3 B.4 C.5 D.6【分析】单项式的次数是指各字母的指数之和【解答】解:该单项式的次数为:1+2+3=6,故选(D)【点评】本题考查单项式的概念,解题的关键是正确理解单项式的次数概念,本题属于基础题型.8.下列代数式中,是4次单项式的为()A.4abc B.﹣2πx2y C.xyz2D.x4+y4+z4【分析】根据单项式的定义进行选择即可.【解答】解:xyz2是4次单项式,故选C.【点评】本题考查了单项式,掌握单项式的次数是解题的关键.9.一组按规律排列的式子:a2,,,,…,则第2017个式子是()A.B.C.D.【分析】根据观察,可发现规律:分子式a的2n次方,分母是2n﹣1,可得答案.【解答】解:由题意,得分子式a的2n次方,分母是2n﹣1,第2017个式子是,故选:C.【点评】本题考查了单项式,发现规律是解题关键.10.下列关于单项式的说法中,正确的是()A.系数、次数都是3 B.系数是,次数是3C.系数是,次数是2 D.系数是,次数是3【分析】根据单项式系数、次数的定义:单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数先求出单项式的系数和次数,然后确定正确选项.【解答】解:根据单项式系数、次数的定义可知:单项式的系数是﹣,次数是2+1=3,只有D正确,故选:D.【点评】此题考查的知识点是单项式,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.11.下面说法正确的是()A.的系数是B.的系数是C.﹣5x2的系数是5 D.3x2的系数是3【分析】根据单项式系数的定义求解.【解答】解:A、的系数是π,故本选项错误;B、的系数是,故本选项错误;C、﹣5x2的系数是﹣5,故本选项错误;D、3x2的系数是3,故本选项正确.故选D.【点评】本题考查了单项式的系数,单项式中的数字因数叫做这个单项式的系数.12.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,6【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣3πxy2z3的系数是:﹣3π,次数是:6.故选:D.【点评】此题主要考查了单项式的次数与系数,正确把握定义是解题关键.13.下列说法正确的是()A.x的指数是0 B.x的系数是0C.﹣3是一次单项式D.﹣ab的系数是﹣【分析】根据单项式的定义对各选项进行逐一分析即可.【解答】解:A、x的指数是1,故本选项错误;B、x的系数是1,故本选项错误;C、﹣3是0次单项式,故本选项错误;D、﹣ab的系数是﹣,故本选项正确.故选D.【点评】本题考查的是单项式系数及次数的定义,即项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.14.单项式﹣ab2的系数是()A.1 B.﹣1 C.2 D.3【分析】根据单项式的系数是数字部分,可得答案.【解答】解:单项式﹣ab2的系数是﹣1,故选:B.【点评】本题考查了单项式,注意单项式的系数包括符号.15.下列关于单项式﹣3x5y2的说法中,正确的是()A.它的系数是3 B.它的次数是5 C.它的次数是2 D.它的次数是7【分析】根据单项式、多项式的概念及单项式的次数、系数的定义解答.【解答】解:单项式﹣3x5y2的系数是﹣3,次数是7.故选D.【点评】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.16.下列说法中错误的是()A.的系数是 B.0是单项式C.的次数是1 D.﹣x是一次单项式【分析】根据单项式系数及次数的定义对各选项进行逐一分析即可.【解答】解:A、﹣x2y的系数是﹣,故本选项正确;B、0是单独的一个数,是单项式,故本选项正确;C、xy的次数是2,故本选项错误;D、﹣x是数与字母的积,故是单项式,故本选项正确.故选C.【点评】本题考查的是单项式,熟知单项式系数及次数的定义是解答此题的关键.17.观察下列关于x的单项式,探究其规律:2x,4x2,6x3,8x4,10x5,12x6,…,按照上述规律,第2016个单项式是()A.2016x2015B.2016x2016C.4032x2015D.4032x2016【分析】根据观察,可发现规律:第n项的系数是2n,字母及指数是x n,可得答案.【解答】解:第2016个单项式为4032x2016,故选D.【点评】本题考查了单项式,观察发现规律是解题关键.18.单项式2a2b的系数和次数分别是()A.2,2 B.2,3 C.3,2 D.4,2【分析】根据单项式的次数是字母指数和,单项式的系数是数字因数,可得答案.【解答】解:2a2b的系数和次数分别是2,3.故选:B.【点评】本题考查了单项式,单项式是数与字母的乘积,单项式的次数是字母指数和,单项式的系数是数字因数,注意π是常数不是字母.19.下列说法正确的是()A.不是整式B.是单项式C.单项式:﹣3x3y的次数是4 D.x2yz的系数是0【分析】根据单项式的定义可得是单项式;是分式,不是单项式;﹣3x3y的次数是4;x2yz的系数为1,即可得到正确选项.【解答】解:A、是单项式,所以A选项不正确;B、是分式,不是单项式,所以B选项不正确;C、﹣3x3y的次数是4,所以C选项正确;D、x2yz的系数为1,所以D选项不正确.故选C.【点评】本题考查了单项式的定义:由数字与字母或字母与字母的相乘组成的代数式叫做单项式(单独的一个数字或字母也是单项式).单项式中的数字因数叫做这个单项式的个系数,各字母的指数和叫这个单项式的次数.20.下列关于单项式的说法中,正确的是()A.系数是3,次数是2 B.系数是,次数是2C.系数是,次数是3 D.系数是,次数是3【分析】根据单项式的概念即可判断.【解答】解:单项式的系数为﹣,次数为3,故选(D)【点评】本题考查单项式的概念,属于基础题型.21.一组按规律排列的式子:a2,,,,…,则第2016个式子是()A.B.C.D.【分析】分母的变化规律是1、2、3、4…,指数的变化规律四2、4、6、8…,根据此规律即可求出第2016个式子.【解答】解:由a2,,,,…,可知第n个式子为:∴第2016个式子为故选(D)【点评】本题考查数字规律问题,解题的关键是根据题意找出规律,本题属于基础题型.22.单项式﹣的系数是()A.B.﹣ C.D.﹣【分析】根据单项式的概念即可求出答案.【解答】解:﹣的系数是,故选(B)【点评】本题考查单项式的概念,属于基础题型.23.下列单项式系数相同的是()①2x2②﹣2y2③x2④2x3y4z.A.①②B.②③C.①④D.①③【分析】单项式的系数是指数字因数.【解答】解:①的系数为2,②的系数为﹣2,③的系数为,④系数为2,故选(C)【点评】本题考查单项式的概念,解题的关键是正确理解单项式的系数概念,本题属于基础题型.24.下列代数式中,单项式的个数是①2x﹣3y;②;③;④﹣a;⑤;⑥;⑦﹣7x2y;⑧0()A.3个 B.4个 C.5个 D.6个【分析】根据单项式的概念即可判断.【解答】解:③;④﹣a;⑥;⑦﹣7x2y;⑧0是单项式,故选(C)【点评】本题考查单项式的概念,属于基础题型.25.下列关于单项式﹣的说法中,正确的是()A.系数是﹣,次数是2 B.系数是,次数是2C.系数是﹣,次数是3 D.系数是﹣3,次数是3【分析】根据单项式的概念即可求出答案.【解答】解:该单项式的系数为:﹣,次数为:3,故选(C)【点评】本题考查单项式的概念,属于基础题型.26.下列说法正确的是()A.没有加减运算的代数式是单项式B.单项式的系数是3,次数是2C.单项式x既没有系数,也没有次数D.单项式﹣a2bc的系数是﹣1,次数是4【分析】根据单项式的概念即可判断.【解答】解:(A)没有加减运算,但不是单项式,故A错误;(B)单项式的系数是,次数是3,故B错误;(C)单项式x的系数和次数都为1,故C错误;故选(D)【点评】本题考查单项式的概念,属于基础题型.27.单项式﹣的系数与次数分别是()A.﹣5,2 B.﹣,3 C.﹣,2 D.﹣,3【分析】根据单项式的次数和系数即可判断.【解答】解:单项式﹣的系数与次数分别是﹣,3故选(D)【点评】本题考查单项式的概念,属于基础题型.28.下列四个判断,其中错误的是()A.数字0也是单项式B.单项式a的系数与次数都是1C.x2y2是二次单项式D.﹣的系数是﹣【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.【解答】解:A、数字0也是单项式是正确的,不符合题意;B、单项式a的系数与次数都是1是正确的,不符合题意;C、x2y2是四次单项式,原来的说法错误,符合题意;D、﹣的系数是﹣是正确的,不符合题意.故选C.【点评】考查了单项式,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.注意单项式的系数包括前面的符号.29.单项式﹣3πxy2x3的系数是()A.﹣πB.﹣1 C.﹣3πD.﹣3【分析】单项式是数字与字母的积,其中数字因数为单项式的系数.【解答】解:由于π不是字母,故选(C)【点评】本题考查单项式的概念,属于基础题型.30.整式m2,﹣abc,x+y,x,0,x2+4x,0.3,a2﹣b2,中单项式的个数是()A.4 B.5 C.6 D.7【分析】直接利用单项式的定义分析得出答案.【解答】解:整式m2,﹣abc,x+y,x,0,x2+4x,0.3,a2﹣b2,中单项式有:m2,﹣abc,x,0,0.3,,故单项式的个数是:6.故选:C.【点评】此题主要考查了单项式,正确把握单项式的定义是解题关键.31.单项式的次数是()A.5 B.4 C.3 D.2【分析】根据单项式次数的定义进行解答即可.【解答】解:∵单项式中所有字母指数的和=1+2=3,∴此单项式的次数是3.故选C.【点评】本题考查的是单项式,熟知一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键.32.单项式﹣a2b的系数和次数分别是()A.,2 B.,3 C.﹣,2 D.﹣,3【分析】根据单项式的系数定义:字母前面的数字,和次数定义:所有字母指数之和,即可求出答案.【解答】解:根据系数和次数的定义得:﹣a2b的系数是﹣,次数是:3.故选:D.【点评】此题考查了单项式;根据单项式的系数和次数的定义,找出得数是解题的关键.33.观察下列一列单项式的特点:4xy,﹣x2y,﹣5x3y,﹣4x4y,…按此规律排列的第7个单项式为()A.5x7y B.﹣x7y C.4x7y D.﹣4x7y【分析】这一组单项式的规律为:系数是后面的系数减去前一个的系数等于再后面的系数,x的次数是n,y的次数是1,据此写出第7个单项式.【解答】解:第7个单项式为:4x7y.故选C.【点评】本题考查了单项式的知识,解答本题的关键是根据题目所给的式子找出规律.34.下列说法正确的是()A.23x5的系数是1,次数是8 B.若x2+mx是单项式,则m=0C.若﹣x m y3的次数是5,则m=5 D.0不是单项式【分析】根据单项式的系数和次数的定义解答即可.【解答】解:A、23x5的系数是8,次数是5,故此选项错误,B、若x2+mx是单项式,则m=0,故此选项正确,C、若﹣x m y3的次数是5,则m=2,故此选项错误,D、0是单项式,故此选项错误,故选B.【点评】本题考查了单项式的定义,单项式的系数和次数,熟记概念是解题的关键.35.下列语句①0是单项式;②a的相反数是单项式,它的系数与次数都是1;③是二次单项式;④﹣ab的系数是﹣,其中正确的有()A.1个 B.2个 C.3个 D.4个【分析】分别利用单项式的定义以及单项式的次数与系数的定义分析得出答案.【解答】解:①0是单项式,正确;②a的相反数是单项式,它的系数是﹣1,次数是1,故此选项错误;③是四次单项式,故此选项错误;④﹣ab的系数是﹣,正确.故选:B.【点评】此题主要考查了单项式以及单项式的次数与系数的定义,正确把握相关定义是解题关键.36.在式子,4t2,0,,3.5x,m+1,2(a+1),中,单项式有()A.3个 B.4个 C.5个 D.6个【分析】根据单项式的定义,数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可做出选择.【解答】解:根据单项式中只能含有乘法运算,不能含有加法、减法或除法运算,则在,4t2,0,,3.5x,m+1,2(a+1),中,单项式有,4t2,0,3.5x,共5个,故选C.【点评】本题考查了单项式的定义,较为简单,要准确掌握定义.37.在代数式5mxy2,3mn+5m2,x+1,ab﹣x2,﹣x,2x2﹣x+3,中,单项式有()A.1个 B.2个 C.3个 D.4个【分析】根据单项式的定义:数字与字母的积叫做单项式,单个的数字或字母也叫单项式解答.【解答】解:5mxy2是单项式,3mn+5m2是多项式,x+1是多项式,ab﹣x2是多项式,﹣x是单项式,2x2﹣x+3是多项式,既不是单项式也不是多项式,所以,共有2个单项式.故选B.【点评】本题考查了单项式的定义,是基础题,熟记概念是解题的关键.38.代数式2abc,﹣3x2+x,﹣,2中,单项式的个数是()A.1个 B.2个 C.3个 D.4个【分析】根据单项式的定义:数字与字母的积叫做单项式,单个的数字或字母也叫单项式解答.【解答】解:2abc是单项式,﹣3x2+x是多项式,﹣既不是单项式也不是多项式,2是单项式,所以,单项式有2个.故选B.【点评】本题考查了单项式的定义,是基础题,熟记概念是解题的关键.39.如果﹣a2b2n﹣1c是六次单项式,则n的值是()A.1 B.2 C.3 D.5【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:由﹣a2b2n﹣1c是六次单项式,得2+2n﹣1+1=6.解得n=2,故选:B.【点评】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.40.下列说法中正确的是()A.单项式﹣x的系数和次数都是1B.34x3是7次单项式C.2πR的系数是2D.0是单项式【分析】根据单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数,可得答案.【解答】解:A、单项式﹣x的系数是﹣1,次数是1,故A错误;B、34x3是3次单项式,故B错误;C、2πR的系数是2π,故C错误;D、0是单项式,故D正确.故选:D.【点评】本题考查单项式的系数,单项式中的数字因数叫做这个单项式的系数,单项式中,所有字母的指数和叫做这个单项式的次数.41.下列各式的结果为单项式的是()A.a的5倍的相反数B.a的5倍与b的和C.a的5倍与b的相反数之和D.a的5倍与b的倒数的乘积【分析】根据单项式的概念求解.【解答】解:A、a的5倍的相反数为﹣5a,为单项式,故本选项正确;B、a的5倍与b的和为5a+b,不是单项式,故本选项错误;C、a的5倍与b的相反数之和为5a﹣b,不是单项式,故本选项错误;D、a的5倍与b的倒数的乘积为,不是单项式,故本选项错误.故选A.【点评】本题考查了单项式的知识,数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.42.下列单项式书写不规范的有()①3a3b;②2x3y2;③﹣x2;④﹣1a2b.A.1个 B.2个 C.3个 D.4个【分析】根据单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式,求解即可.【解答】解:②③书写规范,只有①④书写不规范.故选B.【点评】本题考查了单项式的知识,解答本题的关键是掌握单项式的概念:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.43.已知下列式子:xy2,a3,﹣5ab3,,a+b.a,,20%m,7,其中,单项式有()A.6个 B.7个 C.8个 D.9个【分析】直接利用单项式的定义分别判断得出答案.【解答】解:xy2,a3,﹣5ab3,,a+b.a,,20%m,7,其中,单项式有:xy2,a3,﹣5ab3,,a,20%m,7共7个.故选:B.【点评】此题主要考查了单项式的定义,正确把握定义是解题关键.44.下列各式中单项式的个数是(),x+1,﹣2,﹣,0.72xy.A.2个 B.3个 C.4个 D.5个【分析】根据单项式的定义进行判断即可.【解答】解:单项式包括,﹣2,﹣,0.72xy.故选:C.【点评】本题主要考查的是单项式的定义,掌握单项式的定义是解题的关键.45.在﹣a,,,,m3n2,xy=1,0,中,是单项式的有()A.6个 B.5个 C.4个 D.3个【分析】根据单项式的定义回答即可.【解答】解:在﹣a,,,,m3n2,xy=1,0,中,是单项式的有﹣a,,m3n2,0,,一共5个.故选:B.【点评】本题主要考查的是单项式的定义,掌握单项式的定义是解题的关键.46.若﹣是四次单项式,则m的值是()A.2 B.﹣2 C.4 D.﹣4【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:由﹣是四次单项式,得2m﹣1+1=4,解得m=2,故选:A.【点评】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.47.在代数式、﹣4x、﹣ab、a、0、a﹣b、中,单项式有()A.7个 B.6个 C.5个 D.4个【分析】利用数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,进而判断得出即可.【解答】解:由单项式的定义可知,在代数式、﹣4x、﹣ab、a、0、a﹣b、中,单项式有、﹣4x、﹣ab、a、0、中共6个.故选:B.【点评】此题主要考查了单项式的定义,正确把握定义是解题关键.48.下列代数式中,全是单项式的一组是()A.3x,x﹣,B.,,C.,﹣6,﹣D.x+y,xyz,3z 【分析】根据单项式的定义对各选项进行逐一分析即可.【解答】解:A、x﹣是多项式,故本选项错误;B、是分式,故本选项错误;C、三项都是单项式,故本选项正确;D、x+y是多项式,故本选项错误.故选C.【点评】本题考查的是单项式的定义,熟知数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式是解答此题的关键.49.单项式2x2y m的次数是3次,则m的值为()A.1 B.2 C.3 D.0【分析】单项式中所有字母的指数和叫做单项式的次数.【解答】解:由单项式的次数的定义可知:2+m=3.解得:m=1.故选:A.【点评】本题主要考查的是单项式的次数的定义,掌握单项式的次数的定义是解题的关键.50.代数式,4xy,,a,2016,a2b,﹣中,单项式的个数有()A.3个 B.4个 C.5个 D.6个【分析】数字或字母的积为单项式.【解答】解:单项式有:4xy,a,2016,a2b,﹣mn,故选(C)【点评】本题考查单项式的概念,属于基础题型.。
七年级_数学单项式多项式练习题
七年级_数学单项式多项式练习题四望中学七(3)单项式与多项式检测题四望中学严桂龙一(选择题:112122,ab,a,b,ab,b,1,,3,,,x,x,11.在下列代数式:中,多项式有() ,222(A)2个 (B)3个 (C)4个 (D)5个2.下列说法错误的是( )33222xy,xy,,,,x2233A(的系数是 B(数字0也是单项式C(的系数是 D(是一次单项式3.下列语句正确的是( )22(A)x,1是二次单项式 (B),m的次数是2,系数是12abc1(C)是二次单项式 (D)是三次单项式 23x22224.2a,3ab,2b,(2a,ab,3b)的值是( )2222(A)2ab,5b (B)4ab,5b (C),2ab,5b (D),4ab,5b25.减去,2x后,等于4x,3x,5的代数式是( )2222(A)4x,5x,5 (B),4x,5x,5 (C)4x,x,5 (D)4x,56( 下列说法正确的是( )55A(没有加、减运算的式子叫单项式; B(πab的系数是,次数是3 332C(单项式―1的次数是0 ; D(2ab―2ab+3是二次三项式7(如果一个多项式的次数是5,那么这个多项式的任何一项的次数( )A(都小于5 B. 都等于5 C.都不小于5 D.都不大于5第1页共4页8.下列多项式次数为3的是( )222222(A),5x,6x,1 (B)πx,x,1 (C)ab,ab,b (D)xy,2xy,1mnm,n9(设a=8,a=16,则a=( )A(24 B.32 C.64 D.128ab332mc10(在y+1,+1,―xy,―1,―8z,0中,整式的个数是( ) A. 6 B.3C.4D.5二、填空题:(本题共20分)2211( 单项式―xyz的系数、次数分别是241612(若x?x?( )=x,则括号内应填x的代数式为 13(如果一个多项式的次数是5,那么这个多项式的任何一项的次数3n,314.若单项式,2xy是一个关于x,y的5次单项式,则n=_________.223m,115.若多项式(m+2)y,3xy是五次二项式,则m=___________. x16.写出一个关于x的二次三项式,使得它的二次项系数为—6,则这个二次三项式是__________。
七年级上册数学2.1.2单项式与多项式课堂同步练习(含答案)
七年级数学上册同步练习2.1.2单项式与多项式时间:30分钟一、单选题1.代数式:①2a 3;①πr 2;①21x 12+;①﹣3a 2b ;①a bc +.其中整式的个数是( )A .2B .3C .4D .5 2.单项式﹣2πxy 2的系数和次数分别是( )A .﹣2和4B .2π和3C .2和4D .﹣2π和3 3.整式-0.3x 2y ,0,12x +,-22abc 2,13x 2,−14y ,−13ab 2-12a 2b 中单项式的个数有()A .6个B .5个C .4个D .3个 4.下列各式中不是单项式的是( )A .a +bB .-2aC .0D .π 5.多项式32281x x x -+-与多项式323253x mx x +-+的和不含二次项,则m 为( ) A .2 B .-2 C .4 D .-4 6.下列说法正确的是( )A .m 2+m ﹣1的常数项为1B .单项式32mn 3的次数是6次C .多项式5m n+的次数是1,项数是2D .单项式﹣12πmn 的系数是﹣127.下列判断中错误的是( )A .2a ab --是二次三项式B .3m n-是多项式C .22r π中,系数是2D .2020是单项式8.若(3x 3+M )(2x 2-1)是一个五次多项式,则下列说法中正确的是( ) A .M 是一个三次单项式 B .M 是一个三次多项式C .M 的次数不高于三D .M 不可能是一个常数9.下列说法正确的是( )A .﹣5,a 不是单项式B .﹣2abc的系数是﹣2C .223x y -的系数是﹣13,次数是4 D .x 2y 的系数为0,次数为210.下列各式是5次单项式的是( )A .45xy -B .32xyC .5x yD .32x x +二、填空题11.多项式112m x -﹣3x+7是关于x 的四次三项式,则m 的值是_____. 12.222324x y x y xy -+--的最高次项为_______.13.写出一个系数是﹣1,次数是3的单项式_____________.14.在112,,5,,22x y a x π+--中,是单项式的为_______. 15.在式子2a ,3a ,1+y x ,﹣12,1﹣x ﹣5xy 2,﹣x ,6xy+1,a 2+b 2中,多项式有_____个. 16.单项式317xy -的系数是____________,次数是____________. 17.写出系数为-1,含有字母x y 、的四次单项式___________.18.单项式212xy -的系数和次数的和为__________.三、解答题19.把下列各式式的序号分别填在相应的大括号内: ① 67ab -;① 23n p m -;① 1a +;① 2123xy xy +-;①3m y π;①2221352x y x y +-;①3. 单项式:{ };多项式:{ };20.分别写出下列各项的系数与次数(1)32x ;(2)2x y -;(3)35xy ; (4)23815x y -.21.已知多项式3322351x y x y x ---+.(1)求次数为3的项的系数和.(2)当1x =-,2y =-时,求该多项式的值.22.已知多项式2123536m x y xy x +-+--是六次四项式,且253n m x y -的次数跟它相同. (1)求m 、n 的值;(2)求多项式各项的系数和.23.把下列代数式的序号填入相应的集合括号里.A .3x 2+2y ;B .35x −x 2+1;C .2a b +;D .–23xy ;E .0;F .–x +3y ;G .2xy a . (1)单项式集合{____________________________…}(2)多项式集合{____________________________…}.24.若关于,x y 的多项式23m x nx y x --是一个三次三项式,且最高次项的系数是3-,求m n -的值. 25.一块原长分别为a 、b (1,1a b >>)的长方形,一边增加1,另一边减少1(1)当a b =时,变化后的面积是增加还是减少?(2)当a b >时,有两种方案,第一种方案如图1,第二种方案如图2,请你比较这两种方案,确定哪一种方案变化后的面积比较大.参考答案1.C【解析】①23a ;①πr 2;①12x 2+1;①﹣3a 2b ,都是整式, ①a b c+,分母中含有字母,不是整式,故选:C . 2.D【解析】解:单项式﹣2πxy 2的系数和次数分别是:﹣2π和3.故选:D .3.B【解析】根据单项式的定义:由数字和字母的积组成的代数式叫做单项式判断,有-0.3x 2y ,0,-22abc 2,13x 2,−14y 是单项式,共有5个,故选B. 4.A【解析】解:-2a ,0,π都是单项式,a +b 不是单项式,是多项式,故选A .5.C【解析】解:根据题意得:2x 3-8x 2+x -1+3x 3+2mx 2-5x +3=5x 3+(2m -8)x 2-4x +2, 由结果不含二次项,得到2m -8=0,解得:m =4.故选C .6.C【解析】解:A .m 2+m ﹣1的常数项为﹣1,故本选项错误;B .单项式32mn 3的次数是4次,故本选项错误;C .多项式5m n +的次数是1,项数是2,故本选项正确; D .单项式﹣12πmn 的系数是﹣12π,故本选项错误;故选:C .7.C【解析】解:A 、2a ab --是二次三项式,正确,不合题意;B 、3m n -是多项式,正确,不合题意;C 、22r π中,系数是2π,故此选项错误,符合题意;D 、2020是单项式,正确,不合题意.故选:C .8.C【解析】解:(3x 3+M )(2x 2-1)=6x 5-3x 3+2Mx 2-M ,因为结果是一个五次多项式,所以M 的次数不高于三,故选:C .9.C【解析】A 、﹣5,a 是单项式,故此选项错误;B 、2abc -的系数是12-,故此选项错误; C 、223x y -的系数是13-,次数是4,故此选项正确; D 、x 2y 的系数为1,次数为3,故此选项错误.故选:C .10.A【解析】解:A 、单项式45xy -的次数是1+4=5次,符合题意;B 、单项式32xy 的次数是1+1=2次,不符合题意;C 、单项式5x y 的次数是5+1=6次,不符合题意;D 、32x x +是多项式不是单项式,其次数是3次,不符合题意;故选择:A11.5【解析】解:①多项式112m x -﹣3x+7是关于x 的四次三项式, ①m ﹣1=4,解得m =5,故答案为:5.12.222x y -.【解析】解:222324x y x y xy -+--的最高次项为:222x y -.故答案为:222x y -.13.3a -.【解析】解:系数是-1、次数是3的单项式,如:3a -.故答案为:3a -.14.1,5,2a π- 【解析】解:在112,,5,,22x y a x π+--中, 单项式有:1,5,2a π-, 故答案为:1,5,2a π-. 15.3【解析】根据多项式的定义可知,上述各式中属于多项式的有:1﹣x ﹣5xy 2、6xy+1、a 2﹣b 2,共3个.故答案为3.16.17- 4 【解析】解:单项式317xy -的系数是17-,次数是1+3=4, 故答案为:17-;4. 17.3-x y【解析】解:系数为-1,含有字母x y 、的四次单项式为:3-x y .故答案为:3-x y .18.52【解析】解:单项式212xy -的系数和次数分别是:-12和3, ①单项式212xy -的系数和次数的和为-12+3=52. 故答案为:52. 19.① ① ①,① ① ①【解析】单项式:{ ① ① ① };多项式:{ ① ① ① };20.(1)系数:2,次数:3;(2)系数:-1,次数:3;(3)系数:35,次数:2;(4)系数:815-,次数:5 【解析】解:(1)32x 的系数:2,次数:3;(2)2x y -系数:-1,次数:3;(3)35xy 系数:35,次数:2; (4)23815x y -系数:815-,次数:5. 21.(1)3;(2)15【解析】解:(1)多项式3322351x y x y x ---+中,次数为3的项是33x ,3y -和25x y -,系数分别是3,-1,-5,①和为3-1-5=-3;(2)当1x =-,2y =-时,3322351x y x y x ---+=15.22.(1)3m =,2n =;(2)-13【解析】解:(1)①多项式2123536m x y xy x +-+--是六次四项式,①216m ++=,解得,3m =,5-m=5-3=2,253n m x y -的次数与多项式的次数相同,226n +=,解得,2n =.(2)各项的系数之和为:51(3)(6)13-++-+-=-.23.(1)D ,E (2)B ,C ,F【解析】(1)单项式集合:{D ,E…};(2)多项式集合:{B ,C ,F…}.24.-1【解析】①关于x ,y 的多项式23m x nx y x --是一个三次三项式,且最高次项的系数是3,①m +1=3,﹣n =- 3,解得:m =2,n =3, ①231m n -=-=-.25.(1)减小(2)方案2变化后面积大【解析】解:(1)设原来长方形的面积是S 前,变化后的长方形的面积是S 后, 根据题意得:S 前=ab ,S 后=(a +1)(b −1)=ab +b −a −1, ①S 后−S 前=ab +b −a −1−ab =b −a −1, ①a =b ,①b −a −1=−1<0,①S 后<S 前,①变化后面积减小了.(2)方案1,S 1=(a +1)(b −1)=ab −a +b −1, 方案2,S 2=(a −1)(b +1)=ab +a −b −1, ①S 1−S 2=−2a +2b =−2(a −b ), ①a >b ,①S 1−S 2<0,①方案2变化后面积大.。
七年级数学上册单项式多项式与同类项问题习题
课堂检测一.选择题:1.下列单项式中,与-3a 2b 为同类项的是( )A.-3ab 3B.-41ba 2C.2ab 2D.3a 2b 22.下面各组式子中,是同类项的是( )A.2a 和a 2B.4b 和4aC.100和21D.6x 2y 和6y 2x 二、填空题:3.m+n -p 的相反数为__________.4.若 -31x 2a-1 y 4 与 3x 3y 4 是同类项,则 a 的值为 三. (1)-3x 2+8x-5 x 2-6x (2)xy xy wx xy 12587-+-(挑战自我)某商店以每件160元的价格进了10件衣服,加价四成后作为衣服的标价,然后打8折全部优惠卖出,试通过计算说明这家商店在这次生意中的赔赚情况.第4讲:整式的运算【考纲要求】本节课我们要体会用字母表示数的必要性,理解代数式的概念和意义,明确代数式的书写习惯,理解代数式的值的概念并能够计算代数式的值,理解代数式能够表达数字和图形中的普遍规律,体现了特殊与一般的辨证关系,体会代数式的优越性.【教学重难点】整式可以简洁地表明实际问题中的数量关系,它比只有具体数字表示的算式更有一般性.本讲主要复习列代数式、代数式求值及整式的相关概念.1.字母表示数:用字母表示数,渗透了从具体的数到字母的抽象概括的思维方式,它具有简明、普遍的优越性。
字母和数一样都可以参与运算,不同的是数的运算结果是一个数,字母运算的结果是一个式子。
字母可以表示任何数.2.代数式:用运算符号连接数与字母的式子是代数式,单独 也是代数式。
3.代数式的书写规则:(1)乘号写为“”或者省略, 数与字母相乘时放于之前(2)带分数与字母的积,要把带分数化为(3)除法运算一般写为的形式(4)单位问题:在代数式运算结果中,如有单位时,要正确地使用4.代数式求值:用代替代数式中的,就可以求出代数式的值5.整式:表示数与字母的乘积的式子叫做,单独一个数或字母单项式几个单项式的和叫做,单项式和多项式统称为单项式中的数字因数叫做这个单项式的,单项式中的叫做这个单项式的次数一个多项式中,每个叫做多项式的项,次数,叫做这个多项式的次数【本讲命题方向】选择题、填空题、简答题约5~8%【典型题例精讲】1.列代数式【例1】1.小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费()A.(3a+4b)元 B.(4a+3b)元 C.4(a+b)元 D.3(a+b)元2.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是米.3.吉林广播电视塔“五一”假期第一天接待游客m人,第二天接待游客n人,则这2天平均每天接待游客人4.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人。
七年级数学单项式与多项式例题及练习
单项式与多项式例题及练习例:试用尽可能多的方法对下列单项式进行分类:3a 3x ,bxy ,5x 2,-4b 2y ,a 3,-b 2x 2,12axy 2解:(1)按单项式的次数分:二次式有5x ;三次式有bxy ,-4b 2y ,a 3;四次式有3a 3x ,•-b 2x 2,12axy 2。
(2)按字母x 的次数分:x 的零次式有-4b 2y ,a 3;x 的一次式有3a 3x ,bxy ,12axy 2;x 的二次式有5x 2,-b 2x 2。
(3)按系数的符号分:系数为正的有3a 3x ,bxy ,5x 2,a 3,12axy 2;系数为负的有-4b 2y ,-b 2x 2。
(4)按含有字母的个数分:只含有一个字母的有5x 2,a 3;•含有两个字母的有3a 3x ,•-4b 2y ,-b 2x 2;含有三个字母的有bxy ,12axy 2。
评析:对单项式进行分类的关键在于选择一个恰当的分类角度。
如按单项式的次数、按式中某个字母的次数、按系数的符号、按含有字母的个数等等。
1、把代数式222a b c 和32a b 的共同点填在下列横线上,例如:都是代数式。
①都是 式;②都是 。
2、写出一个系数为-1,含字母x 、y 的五次单项式 。
3、如果52)2(4232+---+-x x q x xp 是关于x 的五次四项式,那么p+q= 。
4、若(4a -4)x 2y b+1是关于x ,y 的七次单项式,则方程ax -b=x -1的解为 。
5、下列说法中正确的是( ) A 、x -的次数为0 B 、x π-的系数为1- C 、-5是一次单项式D 、b a 25-的次数是3次6、若12--b y ax 是关于x ,y 的一个单项式,且系数是722,次数是5,则a 和b 的值是多少? 7、已知:12)2(+-m b a m 是关于a 、b 的五次单项式,求下列代数式的值,并比较(1)、(2)两题结果:(1)122+-m m ,(2)()21-m●体验中考1、(2008年湖北仙桃中考题改编)在代数式a ,12mn -,5,xy a ,23x y-,7y 中单项式有 个。
人教版七年级数学上册整式《单项式》练习题
2.1.1整式(单项式)一、列式表示数量关系例1、用含字母的式子填空(1)长方形的宽为3cm,长比宽多a cm,则长方形的周长,面积(2)一件寸衫的进价为2a元,售价是3a元,则每件寸衫的利润为元(3)一批服装原价是每套x元,若按原价的九折出售,则每套售价为元(4)一批运动衣服按原价的七五折出售,每套售价y元,则原价为元(5)某商品原价是a元,先提价10℅后,又降价5%,则现在的价钱是(6)一条河的水流速度是b千米∕小时,船在静水中的速度是a千米∕小时,则船在顺水行驶中的速度是,船在逆水行驶中的速度是(1)产量由m千克增长10℅,就达到;变式练习1:产量增长10℅后达到m千克,则原产量是(2)设字母a表示一个数,列式表示下列关系:1)这个数与5的和的3倍2)这个数与1的差的倒数3)这个数的5倍与7的和的一半4)这个数的平方与这个数的和(3)某企业今年3月份产值为a 万元,4月份比3月份减少10℅,5月份比4月份增加了25℅,则5月份的产量是(4)三个连续偶数,若2n 表示中间的一个偶数(其中n 为整数),则另外两个偶数表示为例2、规律探究题2345,2,3,4,5,......x x x x x --- (第41项)…… (第102项)……(第n 项)变式练习2:2342,4,8,16,......x x x x -- (第6项) (第7项)……(第n 项)二、单项式例1、下列各式中单项式有:21520,,,,,31,,()23x y mn a m a b h a ππ-+-+ 例2指出下列单项式的系数及次数例3写出系数为-2,且含有字母a,b 而不含其它字母的所有次数为5的单项式:例4、(1)若(2)n m x y +是五次单项式,则m ,n(2)若23(1)nn x y +是关于x,y 的次数为4的单项式,求n 得值(3)已知23m a x y --是关于x ,y 的单项式,且系数为59-,次数为4,求式子132a m +的值(4)已知12(2)m m a b +-是关于a,b 的五次单项式,求221m m -+(5)3(4)2a x x b --+-是关于x,y 的单项式,求a b -例5已知当x=1时,33ax bx ++的值是7,则当x=-1时,原代数式的值是?基础检测1.下列说法正确的是().A.a的系数是0 B.1y是一次单项式 C.-5x的系数是5 D.0是单项式2.下列单项式书写不正确的有().①312a2b;②2x1y2;③-32x2;④-1a2b.A.1个 B.2个 C.3个 D.4个3.“比a的32大1的数”用式子表示是().A.32a+1 B.23a+1 C.52a D.32a-14.下列式子表示不正确的是().A.m与5的积的平方记为5m2 B.a、b的平方差是a2-b2C.比m除以n的商小5的数是mn-5D.加上a等于b的数是b-a5.目前,财政部将证券交易印花税税率由原来的1‰(千分之一)•提高到3‰.如果税率提高后的某一天的交易额为a亿元,则该天的证券交易印花税(•交易印花税=印花税率×交易额)比按原税率计算增加了()亿元. A.a‰ B.2a‰ C.3a‰ D.4a‰6.为了做一个试管架,在长为a(cm)(a>6)的木板上钻3个小孔(如图),每个小孔的直径为2cm ,则x 等于( ).A .3366 (4444)a a a a cm B cm C cm D -+-+cm 7.填写下表8.若x 2y n -1是五次单项式,则n=_______.9.针对药品市场价格不规范的现象,药监部门对部分药品的价格进行了调整,已知某药品原价为a 元,经过调整后,药价降低了60%,则该药品调整后的价格为_______元.10.某班a 名同学参加植树活动,其中男生b 名(b<a ),若只由男生完成,•每人需植树15株;若只由女生完成,则每人需植树________棵.11.小明在银行存a 元钱,银行的月利率为0.25%,利息税为20%,6个月后小明可得利息________元.12.某音像公司对外出租光盘的收费方法是:每张光盘出租后的前2•天每天收费0.8元,以后每天收费0.5元,那么一张光盘在出租后第n 天(n>•2,•且为整数)•应收费_______元.拓展提高13.写出所有的含字母a、b、c且系数和次数都是5的单项式.14.列式表示:多20%(1)某数x的平方的3倍与y的商;(2)比m的14的数.15.某种商品进价m元/件.在销售旺季,该商品售价较进价高30%;销售旺季过后,又以7折(70%)的价格开展促销活动,这时一件商品的售价是多少元?。
七年级数学单项式求值练习题(附答案)
七年级数学单项式求值练习题一、单选题1.下列代数式中属于单项式的是( )A. 8(5)xy +B. 3xC. 312y +D. x2.已知22b x -是关于x 的3次单项式,则b 的值为( )A.5B.4C.6D.7 3.下列各组单项式中,次数相同的是( )A. 3ab 与24xy -B. 3与aC. 22x y -与xyD. 3a 与2xy4.下列说法中正确的是( )A. 25xy π的系数是5B. a 的系数是0,次数也是0C. 12xy π的次数是3?D.325x y -的系数是5-,次数是55.下列四个判断中错误的是( )A.数字0也是单项式B.单项式a 的系数与次数都是1C.2212x y 是二次单项式 D.23ab -的系数是23-6.2225a b π是单项式,它的系数和次数是( )A.系数是225π,次数是9?B.系数是25,次数是9C.系数是25,次数是7D.系数是225π,次数是57.有一本书,每20页厚为1mm ,则从第1页到第x 页的厚度为() A. 120xmmB. 20xmmC. 1()20x mm +D. 20mm x 二、解答题8.列出单项式,并指出它们的系数和次数:1.一批电脑的价格为a 元,若打八五折出售,那么售价是多少元?2.一个圆柱体的高为,h 底面圆的半径是r ,那么该圆柱体的体积是多少?3.邮购一种图书,每册定价为a 元,另加价10%作为邮费,那么购书n 册需要费用多少元?9.已知()142m m x y +-是关于,x y 的七次单项式,试求223m m +-的值.10.用棋子摆出下列一组“口”字,按照这种方法摆下区,问摆第n 个“口”字需要棋子多少枚?11.观察下列单项式23451920:,2,3,4,5,19,20,.x x x x x x x ---⋯-⋯1.你能发现它们的排列规律吗?2.根据你发现的规律,写出第99个和第100个单项式.三、填空题 12.在代数式: 2332111,4,,,,1,,,32x y x a ab n ab m aπ----中,单项式是______________________________________.13.5225a b -的系数是____,次数是___. 14.23ab π-的系数是____,325x y 的次数是____. 15.如果32n x y +与6xz 的次数相等,则n 的值为____16.写出所有含有字母,a x 且系数为1-的三次单项式_____.17.若212n mx y z +是关于,,x y z 的一个单项式,且系数为3-,次数为8,则m =_________,n =__________.18.单项式321.210a b ⨯的系数是____次数是____.19.如果单项式22n x y -与单项式4a b 的次数相同,则n =___________.20.汛期来临前,滨海区决定实施“海堤加固”工程,某工程队承包了该项目,计划每天加固60米.在施工前,得到气象部门的预报,近期有“台风”袭击滨海区,于是工程队改变计划,每天加固的海堤长度是原计划的1.5倍,这样赶在“台风”来临前完成加固任务.设滨海区要加固的海堤长为a 米,则完成整个任务的实际时间比原计划时间少用了______天(用含a 的代数式表示).21.甲、乙、丙三家超市为了促销一种定价为m 元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是____.参考答案1.答案:D解析:2.答案:A解析:3.答案:D解析:4.答案:D解析:5.答案:C 解析:2212x y 是四次单项式,故C 的说错误. 6.答案:D解析:7.答案:A解析:8.答案:1. 0.85,0.85,1a2. 2,,3r ππ3. 1.1,1.1,2na解析:9.答案:-3解析:10.答案:4n解析:11.答案:1.第奇数个单项式的符号为负,偶数个单项式的符号为正2. 9910099,100x x-解析: 12.答案:23211,,,1,,32x y ab n ab π-- 解析:13.答案:52,35- 解析:14.答案:2,33π-解析:15.答案:2解析:16.答案:2a x -解析:17.答案:-3,3解析:18.答案:31.210⨯,3解析:19.答案:3 解析:20.答案:6090a a 解析:21.答案:乙 解析:。
七年级数学单项式多项式整式混合运算练习题(附答案)
七年级数学单项式多项式整式混合运算练习题一、单选题1.下列各式12mn -,m ,8,1a ,226x x ++,25x y -,24πx y +,1y 中,整式有( ) A.3个 B.4个 C.6个 D.7个2.下列说法正确的是( ) A.12不是单项式 B.b a 是单项式 C.x 的系数是0 D.322x y -是整式A.3个B.4个C.5个D.6个 4.下列式子22132,4,,5,07ab x x a ++-中,整式的个数是( ) A.6 B.5 C.4 D.3 5.下列式子()22122,,,,023a b a b x y a-+-中,整式的个数是( ) A.2 B.3 C.4 D.56.下列式子: 22132,?4,,,5,07ab ab x x a c ++-中,整式有( ) A.6个 B.5个 C.4个 D.3个7.下列式子: 2213,4,,,5,07ab ab x x a c +-中,整式的个数是: ( ) A.6 B.5 C.4 D.38.下列整式212a b -,227m n +,221x y ++,2x y -,332t 中,单项式有( ) A.2个 B.3个 C.4个 D.5个二、解答题9.下列代数式:a b -,15x ,13a,2xy ,17a -,,,5s x y m t +,23x x +-,23,1x y --.将它们按要求填入相应的横线内单项式: ;多项式: ;整式: 。
10.指出下列各式中哪些是单项式,哪些是多项式, 哪些是整式.222272112,,,10,61,,,25,,37a b x y x xy m n x x a x x x++-+--+. 11、化简求值::,其中12.先化简,再求值:()222213234322a b a b abc a c a c abc ⎡⎤-----⎢⎥⎣⎦,其中1a =-,3b =-,12c =. 三、填空题13.下列各式,221,,(),,3π15a x a b x y x x a b-+-+-有 .14、已知与 是同类项,则5m+3n 的值是 . 15、若单项式 与 的和仍为单项式,则16、已知: ,则代数式 的值为17.若21421242?n m a b a b a b ++-+=-, 则3?m n -=__________.参考答案1.答案:C解析:2.答案:D解析:3.答案:C式,共5个.4.答案:C解析:式子22132,4,,,5,07ab ab x x a c ++-符合整式的定义,都是整式;14,ab a c +这两个式子的分母中都含有字母,不是整式.故整式共有4个.故选C.5.答案:C解析:根据整式的定义可知其中()2212,,,023a b a b x y -+-是整式,共有4个,故选C. 6.答案:C 解析:整式有2232,,5,07ab x x +-,共4个. 7.答案:C解析:试题分析:根试题分析:根据整式的定义分析判断各个式子,即可得到结果.整式有223,,5,4,7ab x x -共4个,故选C. 点评:整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.判断整式时,式子中含有等号和分母中含有字母的式子一定不是整式8.答案:A解析:下列整式212a b -,227m n +,221x y ++,2x y -,332t 中,单项式有212a b -,332t 共2个. 故选:A.分析:利用单项式的定义求解即可.9.答案:单项式:231,2,,,15x xy m x y --; 多项式:2,,35x y a b x x +--; 整式:2321,2,,,1,,,355x y x xy m x y a b x x +---+-. 解析:10.答案:单项式有:271,10,,7x m n a -; 多项式有:222,,61,253a b x y xy x x +++--; 整式有:22227212,,,10,61,,25,,37a b x y x xy m n x x a x x++-+--+. 解析:答案: 11、解析: 本题的关键是化简,然后把给定的知代入求值.解:原式=6a-2-6+15a-9a 2=21a-9a 2-8,把a=- 代入,原式=21×(- )-9×(- ) 2-8=-7-1-8=-16. 12.答案:()222213234322a b a b abc a c a c abc ⎡⎤-----⎢⎥⎣⎦ 222213624322a b a b abc a c a c abc ⎛⎫=--+-- ⎪⎝⎭ 222213624322a b a b abc a c a c abc =-+-+- 2232a b abc a c =-++. 当11,3,2a b c =-=-=时, 原式()()()()()2211113313218222=--⨯-+⨯-⨯-⨯+⨯-⨯=. 解析:13.答案:22,1x a b x a b-+-,21,(),3,0π5a x y x +- 解析:21,(),3,0π5a x y x +-的分母中均不含有字母,因此它们是整式,而不是分式。
七年级数学同类项单项式专项练习题(附答案)
A. 与 B. 与 C. 与0D. 与
17.在下列单项式中,与 是同类项的是()
A. B. C. D.
18.如果代数式 的值是5,则 的值是()
A.3B.-3C.6D.-6
19.下列说法正确的是()
A.单项式 的系数是 ,次数是1B.单项式 的系数是 ,次数是6
C.单项式 的系数是1,次数是2D.多项式 叫三次四项式
4.答案:B
解析: 的系数为 ,次数为6.故选B.
5.答案:D
解析:由题意,得 .故选D.
6.答案:C
解析:A选项中, ,计算错误;B选项中, ,无法计算;C选项中, ,正确;D选项中, ,无法计算.故选C.
7.答案:C
解析:A选项中,不是同类项,不能合并,错误;B选项中,不是同类项,不能合并,错误;C选项中,原式 ,正确;D选项中,原式 ,错误.故选C.
解析: 是两个字母的商,不是单项式,更不是多项式,故选B.
22.答案:D
解析:单项式 的系数是 ,次数是6.故选D.
23.答案:D
解析:A项应为 ,B项应为 ,C应项为 ,故选D.
24.答案:(1)原式 ,当 时,原式 ;
(2)原式 ,
当 时,原式 .
解析:
25.答案:(1)原式 ,
当 时,原式 .
18.答案:C
解析:因为 ,所以 .所以 .故选C.
19.答案:C
解析:A选项中单项式 的系数是 ,次数是2,故A选项错误;B选项中单项式 的系数是 ,次数是5,故B选项错误;D选项中多项式 叫四次四项式,故D选项错误;故选C.
20.答案:C
解析:有4个单项式: ;2个多项式: , ..故选C.
七年级数学单项式与多项式例题及练习
单项式与多项式例题及练习例:试用尽可能多的方法对下列单项式进行分类:3a 3x ,bxy ,5x 2,-4b 2y ,a 3,-b 2x 2,12axy 2解:(1)按单项式的次数分:二次式有5x ;三次式有bxy ,-4b 2y ,a 3;四次式有3a 3x ,•-b 2x 2,12axy 2。
(2)按字母x 的次数分:x 的零次式有-4b 2y ,a 3;x 的一次式有3a 3x ,bxy ,12axy 2;x 的二次式有5x 2,-b 2x 2。
(3)按系数的符号分:系数为正的有3a 3x ,bxy ,5x 2,a 3,12axy 2;系数为负的有-4b 2y ,-b 2x 2。
(4)按含有字母的个数分:只含有一个字母的有5x 2,a 3;•含有两个字母的有3a 3x ,•-4b 2y ,-b 2x 2;含有三个字母的有bxy ,12axy 2。
评析:对单项式进行分类的关键在于选择一个恰当的分类角度。
如按单项式的次数、按式中某个字母的次数、按系数的符号、按含有字母的个数等等。
1、把代数式222a b c 和32a b 的共同点填在下列横线上,例如:都是代数式。
①都是 式;②都是 。
2、写出一个系数为-1,含字母x 、y 的五次单项式 。
3、如果52)2(4232+---+-x x q x xp 是关于x 的五次四项式,那么p+q= 。
4、若(4a -4)x 2y b+1是关于x ,y 的七次单项式,则方程ax -b=x -1的解为 。
5、下列说法中正确的是( ) A 、x -的次数为0 B 、x π-的系数为1- C 、-5是一次单项式D 、b a 25-的次数是3次6、若12--b y ax 是关于x ,y 的一个单项式,且系数是722,次数是5,则a 和b 的值是多少 7、已知:12)2(+-m ba m 是关于a 、b 的五次单项式,求下列代数式的值,并比较(1)、(2)两题结果:(1)122+-m m , (2)()21-m●体验中考1、(2008年湖北仙桃中考题改编)在代数式a ,12mn -,5,xy a ,23x y-,7y 中单项式有 个。
北师大版七年级数学下册《单项式除以单项式》典型例题
《单项式除以单项式》典型例题例1 计算:(1)223247173y x z y x ÷-; (2)()⎪⎭⎫ ⎝⎛-÷-2232232y x y x ; (3)()()26416b a b a -÷-.例2 计算:(1)33233212116⎪⎭⎫ ⎝⎛-⋅÷xy y x y x ; (2)32232512152⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛xy y x y x .例3 计算:(1)()()[]()()[]234564y x x y y x y x +⋅-÷+-; (2)()()[]()()[]235616b a b a a b a b a -+÷-+.参考答案例1 分析 :(1)题根据法则分三部分求商的因式:①37173-=÷⎪⎭⎫ ⎝⎛-作为商的系数;②224x x x =÷,1022==÷y y y ,同底数相除,作为商的因式;③3z ,只在被除式里含有的字母,则连同它的指数作为商的一个因式.(2)题应先算乘方,再算除法.(3)题应用()b a -作为整体进行运算.解:(1)223247173y x z y x ÷- ()()322247173z y y x x ⋅÷⋅÷⋅⎪⎭⎫ ⎝⎛÷-=323z x -= (2)()⎪⎭⎫ ⎝⎛-÷-2232232y x y x ⎪⎭⎫ ⎝⎛-÷=2236238y x y x ()()2226238y y x x ÷÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-÷= y x 4316-= (3)()()26416b a b a -÷- ()()()[]26416b a b a -÷-÷=()44b a -= 说明:在运算结果中要注意不多不漏,如(1)题1022==÷y y y ,商式里不能多出字母y ,被除式里3z 不能漏掉.例2 分析:此题是乘方、乘除混合运算,要注意运算顺序,有乘方有要先算乘方.解:(1)33233212116⎪⎭⎫ ⎝⎛-⋅÷xy y x y x ⎪⎭⎫ ⎝⎛-⋅=338132y x x 344y x -= (2)32232512152⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛xy y x y x ⎪⎭⎫ ⎝⎛-÷⋅=3324361251411258y x y x y x 272y x -=说明:(1)计算时一定要看清运算符号,正确计算.(2)法则熟练后,解题过程可以适当简化.例3 分析:(1)题的底数不同,首先应化为同底数幂,把()()y x y x +-视作整体进行计算,(2)题先对除式进行乘方,把()()b a b a -+视作整体运用法则运算.解:(1)()()[]()()[]234564y x x y y x y x +⋅-÷+- ()()[]()()[]234564y x y x y x y x +⋅--÷+-=()()2232y x y x +--= (2) ()()[]()()[]2356216b a b a b a b a -+÷-+()()[]()()[]2656416b a b a b a b a -⋅+÷-+=()34b a -=说明:多项式因式如果互为相反数时,注意符号.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《整式 单项式》 1 一、自主学习与合作探究: 2
(二)、知识点归纳: 3 叫做单项式, 叫做单项式的系4
数, 叫做单项式的次数。
5
特别注意:单独的 或 也叫单项式. 6
(一)、自学检测: 7
1.下列各式:(1) abc; (2) 2a-b; (3)b 2; (4)-5ab 2; (5) a (m+n ); (6)-xy 2; (7)8
-5;(8)12x (9)ab=ba;(10)b a ;(11)y 中,是 单项式(填序号) 9
2. 判断题(对的打√,错的打×) 10
(1)字母a 和数字1都不是单项式( ) 11
(2)x 3可以看作x 1与3的乘积,所以式子x 3是单项式( ) 12
(3)单项式xyz 的次数是3( )
13 (4)-323y x 这个单项式系数是2,次数是4( ) 14
(5)42的次数是4( ) 15
下列写法都不规范:①1x ,应为 ②-1x 应为 ③a ×3应为 ④a ÷2 ⑤ 16
31x 4应为 17
练习 18
1.填空题
19
(1)整式3x ,-53ab ,t +1,0.12h +b 中,单项式有_________, 20
(2)如图,长方形的宽为a ,长为b ,则周长为_________,面积为_________. 21 22
2.选择题 23
(1)下面说法中,正确的是( ) 24
A .x 的系数为0
B .x 的次数为0
C .3x 的系数为1
D .3
x 的次数为1 25
(2)下面说法中,正确的是( ) 26 A .xy +1是单项式 B .xy 1是单项式 C . 12
xy 是单项式 D .3xy 是单项式 27 (3)单项式-ab 2c 3的系数和次数分别是( ) 28
A .系数为-1,次数为3
B .系数为-1,次数为5 29
C .系数为-1,次数为6
D .以上说法都不对 30
31。