2020-2021厦门双十中学初中部初二数学上期末模拟试题(及答案)

合集下载

2020-2021学年福建省厦门市八年级(上)期末数学试卷(答案+解析)

2020-2021学年福建省厦门市八年级(上)期末数学试卷(答案+解析)

2020-2021学年福建省厦门市八年级(上)期末数学试卷一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.(4分)计算20的结果是()A.0B.1C.2D.2.(4分)计算6m÷3m的结果是()A.2B.2m C.3m D.2m23.(4分)在平面直角坐标系xOy中,点(2,1)关于y轴对称的点在()A.第一象限B.第二象限C.第三象限D.第四象限4.(4分)若AD是△ABC的中线,则下列结论正确的是()A.AD⊥BC B.BD=CD C.∠BAD=∠CAD D.AD=BC5.(4分)如图,点B,C分别在∠EAF的边AE,AF上,点D在线段AC上,则下列是△ABD的外角的是()A.∠BCF B.∠CBE C.∠DBC D.∠BDF6.(4分)整式n2﹣1与n2+n的公因式是()A.n B.n2C.n+1D.n﹣17.(4分)运用公式a2+2ab+b2=(a+b)2直接对整式4x2+4x+1进行因式分解,公式中的a可以是()A.2x2B.4x2C.2x D.4x8.(4分)如图,已知△ABC与△BDE全等,其中点D在边AB上,AB>BC,BD=CA,DE∥AC,BC与DE交于点F,下列与AD+AC相等的是()9.(4分)如图,直线AB,CD交于点O,若AB,CD是等边△MNP的两条对称轴,且点P在直线CD上(不与点O重合),则点M,N中必有一个在()A.∠AOD的内部B.∠BOD的内部C.∠BOC的内部D.直线AB上10.(4分)在平面直角坐标系xOy中,点A(0,2),B(a,0),C(m,n),其中m>a,a<1,n>0,若△ABC 是等腰直角三角形,且AB=BC,则m的取值范围是()A.0<m<2B.2<m<3C.m<3D.m>3二、填空题(本大题有6小题,每小题4分,共24分)11.(4分)计算:(1)x2•x5=;(2)(x3)2=.12.(4分)五边形的外角和的度数是.13.(4分)计算:﹣=.14.(4分)如图,CE是△ABC外角的平分线,且AB∥CE,若∠ACB=36°,则∠A等于度.15.(4分)如图,△ABC与△BED全等,点A,C分别与点B,D对应,点C在BD上,AC与BE交于点F.若∠ABC=90°,∠D=60°,则AF:BD的值为.16.(4分)如图1,在一个大正方形纸板中剪下边长为acm和边长为bcm的两个正方形,剩余长方形①和长方形②的面积和为8cm2.若将剩余的长方形①和②平移进边长为acm的正方形中(如图2),此时该正方形未被覆盖的面积为6cm2,则原大正方形的面积为.三、解答题(本大题有9小题,共86分)17.(12分)计算:(1)2a2•(3a2﹣5b);(2)(2a+b)•(2a﹣b).18.(7分)如图,点B,F,C,E在一条直线上,AB=DE,FB=CE,AB∥ED.求证:AC∥FD.19.(7分)先化简,再求值:(+)•,其中m=1.20.(8分)甲乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等.求甲、乙每小时各做多少个零件?21.(8分)如图,已知锐角∠APB,M是边PB上一点,设∠APB=α,(1)尺规作图:在边P A上作点N,使得∠ANM=2α;(不写作法,保留作图痕迹)(2)在(1)的条件下,若边P A上存在点Q,使得∠QMB=3α,①证明△MNQ是等腰三角形;②直接写出α的取值范围.22.(10分)将一个三角形沿着其中一个顶点及其对边上的一点所在的直线折叠,若折叠后原三角形的一边垂直于(1)如图1,AD是等边△ABC的对垂线,把△ABC沿直线AD折叠后,点B落在点B'处,求∠BAD的度数;(2)如图2,在△ABC中,∠BAC=90°,点D在边BC上,且AB=AD,若∠B=2∠DAC,判断直线AD是否是△ABC的对垂线,并说明理由.23.(10分)观察下列等式:第1个等式:×(1+)=1+;第2个等式:×(1+)=1+;第3个等式:×(1+)=1+;第4个等式:×(1+)=1+;…根据你观察到的规律,解决下列问题:(1)写出第5个等式;(2)写出第n个等式,并证明;(3)计算:××××…×.24.(10分)某国家5A级景区开展一年一度的旅游主题活动,活动将持续两周.景区内某餐厅今年活动期间推出“精品套餐”,在午餐和晚餐时间只出售该套餐,且定价相同.活动开始后,该套餐的销售情况如下:第一天,午餐、晚餐时间均按定价出售,当天销售总收入为30000元;第二天,午餐时间按定价共售出100份;晚餐时间按定价打九五折出售(即按定价的95%出售),当天销售总收入为37650元,且全天销售量比第一天多30%(销售量指售出的套餐的份数).(1)若第一天的全天销售量为m,请用含m的代数式表示第二天晚餐时间该套餐的销售量;(2)该套餐的定价为多少元?第四天,午餐和晚餐时间均按定价打九折出售,全天销售量比第一天多1倍.根据该餐厅往年活动期间的销售数据,午餐时间套餐的销售量和晚餐时间套餐的销售量有如下规律:①若套餐价格不变,则二者分别保持基本稳定;②若套餐按定价打折,折扣相同,则二者的增长率也会大致相同.参考前四天该套餐按定价所打折扣与销售量增长率之间的关系,若第五天午餐与晚餐时间均按定价打八八折出售该套餐,你认为全天销售量会是多少?请说明理由.25.(14分)在四边形ABCD中,∠ABC=90°,AC⊥BD,垂足为E.(1)如图1,若BC=DC,求证:∠ADC=90°;(2)如图2,过点C作CG∥AB,分别与BD,AD交于点F,G,点M在边AB上,连接MC并延长,交BD于点N,过D作DH⊥MC于H,∠BCG=2∠DCG,且∠BMC=∠BDC+45°.①证明NM=NB;②若BD=AE+CH,探究AB与BC的数量关系.2020-2021学年福建省厦门市八年级(上)期末数学试卷试题解析一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.【解答】解:20=1,故选:B.2.【解答】解:6m÷3m=2,故选:A.3.【解答】解:由题意,得点P(2,1)关于y轴对称的点的坐标是(﹣2,1),它在第二象限.故选:B.4.【解答】解:∵AD是△ABC的中线,∴BD=DC,故选:B.5.【解答】解:△ABD的一个外角是∠BDF,故选:D.6.【解答】解:n2﹣1=(n+1)(n﹣1),n2+n=n(n+1),所以整式n2﹣1与n2+n的公因式是(n+1),故选:C.7.【解答】解:∵4x2+4x+1=(2x)2+2×2x+1=(2x+1)2,∴对上式进行因式分解,公式中的a可以是:2x.故选:C.8.【解答】解:∵DE∥AC,∴∠A=∠EDB,∵△ABC与△BDE全等,∴BC=BE,AC=DB,AB=DE,∴AC+AD=DB+AD=AB=DE,9.【解答】解:∵△PMN是等边三角形,∴△PMN的对称轴经过三角形的顶点,∵直线CD,AB是△PMN的对称轴,又∵直线CD经过点P,∴直线AB一定经过点M或N,故选:D.10.【解答】解:如图,过点C作CD⊥x轴于D,∵点A(0,2),∴AO=2,∵△ABC是等腰直角三角形,且AB=BC,∴∠ABC=90°=∠AOB=∠BDC,∴∠ABO+∠CBD=90°=∠ABO+∠BAO,∴∠BAO=∠CBD,在△AOB和△BDC中,,∴△AOB≌△BDC(AAS),∴AO=BD=2,BO=CD=n=a,∵OD=OB+BD=2+a=m,∴2<m<3,故选:B.二、填空题(本大题有6小题,每小题4分,共24分)11.【解答】解:(1)x2•x5=x2+5=x7;(2)(x3)2=x3×2=x6.故答案为:(1)x7;(2)x6.12.【解答】解:五边形的外角和是360度.13.【解答】解:原式==1.故答案为:1.14.【解答】解:∵∠ACB=36°,∴∠ACD=180°﹣∠ACB=180°﹣36°=144°,∵CE是△ABC外角的平分线,∴∠ACE=,∵AB∥CE,∴∠A=∠ACE=72°,故答案为:72.15.【解答】解:如图,根据题意知,△ABC≌△BED,则∠ACB=∠D=60°,∠ABC=∠BED=90°,AC=BD,∴AC∥ED.∴∠AFB=∠E=90°.∵∠A=∠A,∠AFB=∠ABC,∴△AFB∽△ABC.∴=.∵=sin∠ACB=sin60°=.∴=.∴AF=AB.∵AC=BD,∴===×=.∴AF:BD=3:4.故答案是:3:4.16.【解答】解:根据图①可知2ab=8cm2,根据图②可知(a﹣b)2=6cm2,则(a+b)2=(a﹣b)2+4ab=6+2×8=22(cm2).故原大正方形的面积为22cm2.故答案为:22cm2.三、解答题(本大题有9小题,共86分)17.【解答】解:(1)原式=2a2•3a2﹣2a2•5b =6a4﹣10a2b;(2)原式=(2a)2﹣b2=4a2﹣b2.18.【解答】证明:AB∥DE,∴∠B=∠E,∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴AC∥FD.19.【解答】解:原式=•==3(m+2)+(m﹣2)=3m+6+m﹣2=4m+4,当m=1时,原式=4+4=8.20.【解答】解:设乙每小时做x个零件,甲每小时做(x+6)个零件,根据题意得:,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+6=18.答:乙每小时做12个零件,甲每小时做18个零件.21.【解答】解:(1)如图1,作PM的垂直平分线交P A于点N,即点N即为所求点(2)①证明:点Q在P A上,且存在以M,N,Q为顶点的三角形时,有如下情况,当点Q在射线NA上(不含端点N)时,如图2,∵∠PQM=∠QMB﹣∠APB=3α﹣α=2α,由(1)得∠ANM=2α,∴∠ANM=∠PQM,∴NM=QM,即△MNQ是等腰三角形;当点Q在线段PN上(不含端点P)时,如图3,同理可得∠PQM=2α,由(1)得∠ANM=2α,∴180°﹣∠ANM=180°﹣∠PQM,∴∠MNQ=∠MQN,∴NM=QM,即△MNQ是等腰三角形;当点Q在点P处,3α=180°,即α=60°,此时△MNQ是等边三角形.②由①可知点Q与点P重合时,α=60°,∴α的取值范围是0°<α≤60°.22.【解答】解:(1)∵AD是等边△ABC的对垂线,把△ABC沿直线AD折叠后,点B落在点B'处,∴AB'⊥BC,△ABD≌△AB'D,∴∠BAD=∠B'AD,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,又∵AB'⊥BC,∴∠BAB'=∠BAC=30°,∴∠BAD=∠BAB'=°=15°;(2)直线AD是△ABC的对垂线.理由如下:∵AB=AD,∴∠B=∠BDA,∵∠B=2∠DAC,∠BDA=∠DAC+∠C,∴∠DAC=∠C=∠B,∵△ABC中,∠BAC=90°,∴∠B+∠C=90°,∴∠B+∠B=90°,∴∠B=60°=∠BDA,∠DAC=∠C=30°,把△ADC沿直线AD折叠,设点C落在C'处,直线AC'交BC于点F,则△ACD≌△AC'D,∴∠DAC'=∠DAC=30°,∴△AFD中,∠AFD=180°﹣30°﹣60°=90°,即AC'⊥BC,∴AD是△ABC的对垂线.23.【解答】解:(1)根据已知等式可知:第5个等式:×(1+)=1+;(2)根据已知等式可知:第n个等式:×(1+)=1+;证明:左边=×==1+=右边;(3)××××…×=×××…×=2×=.24.【解答】解:(1)第一天的全天销售量为m,第二天晚餐套餐的销售量为:(1+30%)m﹣100份.(2)套餐定价为:.则:[(1+30%)m﹣100]=37650.解得:m=250.经检验:m=250符合题意.套餐定价为:=120元.答:该套餐定价为120元.(3)第一天午餐卖100份,晚餐买250﹣100=150份.第二天午餐卖100份,全天卖250×1.3=325份,晚上卖325﹣100=225份.打折后的增长率为:×100%=50%.第三天晚餐卖150份,午餐卖:250×(1+32%)﹣150=180份.打折后的增长率为:%=80%.第四天销售量为:250×2=500.增长率为:1×100%=100%.由此可知打x折后的销售量的增长率y是一次函数.设这个函数为:y=kx+b.则:①0.5=0.95k+b.②0.8=0.92k+b.③1=0.9k+b.解得:k=﹣10,b=10.∴y=﹣10x+10.当x=0.88时,y=1.2.第5天全天的销售量为:250×(1+120%)=550份.答:第5天的销售量为550份.25.【解答】(1)证明:∵BC=DC,AC⊥BD,∴AC平分∠BCD,∴∠ACB=∠ACD,在△ACB和△ACD中,,∴△ACB≌△ACD(SAS),∴∠ADC=∠ABC=90°;(2)①证明:过点D作DQ⊥BC交BC延长线于Q,如图2所示:∵CG∥AB,∴∠BCG+∠ABC=180°,∴∠BCG=90°=2∠DCG,∴∠DCG=45°,∵CG∥AB,∴∠BMC=∠MCF,∠MBF=∠BFC,∵∠BFC是△CDF的外角,∴∠BFC=∠BDC+∠DCG=∠BDC+45°,∵∠BMC=∠BDC+45°,∴∠BMC=∠BFC=∠MBF,∴NM=NB;②解:AB=2BC,理由如下:由①知:∠BMC=∠MBF,在Rt△MBC中,∠BMC+∠BCM=90°,∠MBF+∠CBN=90°,∴∠BCM=∠CBN,∴∠DNC=∠BCM+∠CBN=2∠CBN=2∠BCM,∵AC⊥BD,∴∠MBF+∠BAC=90°,∴∠BAC=∠CBN=∠BCM=∠ACG,∵∠BCG=90°=∠QCG,且∠DCG=45°,∴∠QCD=45°,∴△QCD是等腰直角三角形,∴CQ=DQ,在△BCD中,∠BDC=180°﹣∠BCG﹣∠DCG﹣∠CBN=45°﹣∠CBN,∴∠DCH=∠BDC+∠DNC=45°﹣∠CBN+2∠CBN=45°+∠CBN,∵∠DCE=∠DCG+∠ACG=45°+∠CBN,∴∠DCH=∠DCE,∵DH⊥MC,∴∠H=∠DEC=90°,又∵∠DCH=∠DCE,CD=CD,∴△DCH≌△DCE(AAS),∴CH=CE,∵BD=AE+CH=AE+CE,∴BD=AC,又∵∠ABC=∠Q,∠BAC=∠QBD,∴△ABC≌△BQD(AAS),∴BC=QD=QC,AB=BQ,∵BQ=BC+QC=2BC,∴AB=2BC.。

厦门市2020—2021学年初二上期末质检数学试题含答案

厦门市2020—2021学年初二上期末质检数学试题含答案

厦门市2020—2021学年初二上期末质检数学试题含答案数学试题一、选择题(本大题有7小题,每题3分,共21分) 1、下列交通标志属于轴对称图形的是A B C D 2、化简23·a a 的结果是A.a B,5a C 。

6a D. 8a 3.下列运算中,正确的是A.|3|3--= B 。

030= C.1133-=- D 、1133-=4.下列长度的三条线段,能构成三角形的是 A.1,2,6 B.1,2,3 C.2,3,4 D.2,2,45、若等腰三角形底角为72︒,则顶角为A.2B.3C. 4D.\66.如图1,在ABC ∆中,AB=AC,AD 是BC 边上的高,点E 、F 是A 、D 的三等分点若ABC ∆的面积为12,则图中BEF ∆的面积为 A 、2 B 、3 C 、4 D 、67、如图1,是一个长为2a 宽为2()b a b >的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图2拼成一个新的正方形,则中间空白部分的面积是A.ab B 。

2)a b +( C 。

2()a b - D 、22a b - 二、填空题8、如图,ABC DEF ∆≅∆,请依照图中提供的信息,写出_______x =9.一个多边形的每个外角都等于72︒,则那个多边形的边数是10、分解因式:221____a a ++= 22x x -=________11、如图,在ABC ∆中,D 是BC 边延长线上一点,40B ∠=︒, 120ACD ∠=︒,则=A ∠_______12、若等腰三角形的两条边长分别为4cm 和9cm ,则等腰三角形的周长为__________13、如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原先完全一样的玻璃,正确的方法是带来第______块去配,其依据是依照定理________(能够用字母简写)14、已知,a b 满足3,2,a b ab +==则22a b +=________15、已知分式211x x -+的值为零,那么x 的值是___________16、如图,ABC ∆中,AB=AC, =30C ∠︒,DA BA ⊥与A ,BC=4.2cm ,则DA=_______17、如图,ABC ∆是等边三角形,AE=CD,AD 、BE 相交于点P ,BQ DA ⊥于Q ,BPQ ∠的度数是______;若PQ=3,EP=1,则DA 的长是_______. 三、解答题18.在图的方格纸中画出ABC ∆关于y 轴对称的,并写出点B 的对称点1B 的坐标19、先化简,再求值:2)(23)a b a b a -+-(,其中1,32a b =-=20、化简:35(2)362m m m m m -÷+---21、解方程:21124x x x -=--22、姐妹两人加工同一种服饰品,姐姐比妹妹每小时多加工30个,姐姐加工900个饰品的时刻与妹妹加工600个饰品的时刻相同,求姐妹每小时分别能加工多少个服装饰品?23.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特点三角形”,其中α称为“特点角”。

2020-2021厦门市八年级数学上期末模拟试卷(带答案)

2020-2021厦门市八年级数学上期末模拟试卷(带答案)

2020-2021厦门市八年级数学上期末模拟试卷(带答案)一、选择题1.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上( )根木条.A .1B .2C .3D .42.如图,Rt △ABC 中,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E ,若AB=10cm ,AC=6cm ,则BE 的长度为( )A .10cmB .6cmC .4cmD .2cm 3.如果a c b d =成立,那么下列各式一定成立的是( ) A .a d c b = B .ac c bd b = C .11a c b d ++= D .22a b c d b d++= 4.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别一点M N 、为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P . 若点P 的坐标为11,423a a ⎛⎫ ⎪-+⎝⎭,则a 的值为( )A .1a =-B .7a =-C .1a =D .13a = 5.下列计算正确的是( )A .2236a a b b ⎛⎫= ⎪⎝⎭B .1a b a b b a -=--C .112a b a b +=+D .1x y x y --=-+ 6.如果一个正多边形的一个外角为30°,那么这个正多边形的边数是( ) A .6 B .11 C .12 D .187.在平面直角坐标系中,点A 坐标为(2,2),点P 在x 轴上运动,当以点A ,P 、O 为顶点的三角形为等腰三角形时,点P 的个数为( )A .2个B .3个C .4个D .5个8.如图,△ABC 的顶点A 、B 、C 都在小正方形的顶点上,在格点F 、G 、H 、I 中选出一个点与点D 、点E 构成的三角形与△ABC 全等,则符合条件的点共有( )A .1个B .2个C .3个D .4个9.下列各式中不能用平方差公式计算的是( )A .()2x y)x 2y -+( B .() 2x y)2x y -+--( C .()x 2y)x 2y ---( D .() 2x y)2x y +-+( 10.若实数m 、n 满足 402n m -+=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8或10D .611.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?A .5B .6C .7D .1012.下列条件中,不能作出唯一三角形的是( )A .已知三角形两边的长度和夹角的度数B .已知三角形两个角的度数以及两角夹边的长度C .已知三角形两边的长度和其中一边的对角的度数D .已知三角形的三边的长度二、填空题13.已知23a b =,则a b a b -+=__________. 14.分解因式:39a a -= __________15.把0.0036这个数用科学记数法表示,应该记作_____.16.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.17.若分式21x x -+的值为0,则x=____. 18.分解因式:x 2-16y 2=_______.19.如图,△ABC 中,∠C=90°,∠ABC=60°,BD 平分∠ABC ,若AD=6,则CD=_______.20.若分式的值为零,则x 的值为________. 三、解答题21.共有1500kg 化工原料,由A ,B 两种机器人同时搬运,其中,A 型机器人比B 型机器每小时多搬运30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等,问需要多长时间才能运完?22.先化简再求值:(a +2﹣52a -)•243a a --,其中a =12-. 23.化简分式:2222334424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭,并从1,2,3,4这四个数中取一个合适的数作为x 的值代入求值.24.已知a=2014m +2012,b=2014m +2013,c=2014m +2014,求a 2+b 2+c 2-ab-bc-ca 的值. 25.“2017年张学友演唱会”于6月3日在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】从一个多边形的一个顶点出发,能做(n-3)条对角线,把三角形分成(n-2)个三角形.【详解】解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条;要使一个n 边形木架不变形,至少再钉上(n-3)根木条.故选:C.【点睛】本题考查了多边形以及三角形的稳定性;掌握从一个顶点把多边形分成三角形的对角线条数是n-3.2.C解析:C【解析】试题解析:∵AD 是∠BAC 的平分线,∴CD=DE ,在Rt △ACD 和Rt △AED 中,{CD DE AD AD==, ∴Rt △ACD ≌Rt △AED (HL ),∴AE=AC=6cm ,∵AB=10cm ,∴EB=4cm .故选C .3.D解析:D【解析】 已知a c b d=成立,根据比例的性质可得选项A 、B 、C 都不成立;选项D ,由2a b b +=2c d d +可得22a c b d +=+,即可得a c b d=,选项D 正确,故选D. 点睛:本题主要考查了比例的性质,熟练运用比例的性质是解决问题的关键.4.D解析:D【分析】根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得11=423a a-+,再根据P点所在象限可得横纵坐标的和为0,进而得到a的数量关系.【详解】根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故11+423a a-+=0,解得:a=1 3 .故答案选:D.【点睛】本题考查的知识点是作图—基本作图, 坐标与图形性质, 角平分线的性质,解题的关键是熟练的掌握作图—基本作图, 坐标与图形性质, 角平分线的性质作图—基本作图, 坐标与图形性质, 角平分线的性质.5.D解析:D【解析】【分析】根据分式的乘方、分式的加减运算法则及分式的性质逐一判断即可得答案.【详解】A.22222()3(3)9a a ab b b==,故该选项计算错误,不符合题意,B.a b a b a ba b b a a b a b a b+-=+=-----,故该选项计算错误,不符合题意,C.11b a a ba b ab ab ab++=+=,故该选项计算错误,不符合题意,D.()1x y x yx y x y---+==-++,故该选项计算正确,符合题意,故选:D.【点睛】本题考查分式的运算,分式的乘方,要把分式的分子、分母分别乘方;同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减;熟练掌握分式的运算法则是解题关键.6.C【解析】试题分析:这个正多边形的边数:360°÷30°=12,故选C.考点:多边形内角与外角.7.C解析:C【解析】【分析】先分别以点O、点A为圆心画圆,圆与x轴的交点就是满足条件的点P,再作OA的垂直平分线,与x轴的交点也是满足条件的点P,由此即可求得答案.【详解】如图,当OA=OP时,可得P1、P2满足条件,当OA=AP时,可得P3满足条件,当AP=OP时,可得P4满足条件,故选C.【点睛】本题考查了等腰三角形的判定和坐标与图形的性质,正确的分类并画出图形是解题的关键. 8.B解析:B【解析】分析:根据全等三角形的判定解答即可.详解:由图形可知:AB5AC=3,BC2,GD5DE2,GE=3,DI=3,EI5G,I两点与点D、点E构成的三角形与△ABC全等.故选B.点睛:本题考查了全等三角形的判定,关键是根据SSS证明全等三角形.9.A解析:A【解析】【分析】根据公式(a+b)(a-b)=a2-b2的左边的形式,判断能否使用.【详解】解:A、由于两个括号中含x、y项的系数不相等,故不能使用平方差公式,故此选项正确;B、两个括号中,含y项的符号相同,1的符号相反,故能使用平方差公式,故此选项错误;C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,故此选项错误;D、两个括号中,y相同,含2x的项的符号相反,故能使用平方差公式,故此选项错误;故选:A.【点睛】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.10.B解析:B【解析】【分析】根据绝对值和二次根式的非负性得m、n的值,再分情况讨论:①若腰为2,底为4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.【详解】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m、n恰好是等腰△ABC的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去,②若腰为4,底为2,则周长为:4+4+2=10,故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质,根据非负数的性质求出m、n的值是解题的关键.11.C解析:C【解析】依题意可得,当其中一个夹角为180°即四条木条构成三角形时,任意两螺丝的距离之和取到最大值,为夹角为180°的两条木条的长度之和.因为三角形两边之和大于第三边,若长度为2和6的两条木条的夹角调整成180°时,此时三边长为3,4,8,不符合;若长度为2和3的两条木条的夹角调整成180°时,此时三边长为4,5,6,符合,此时任意两螺丝的距离之和的最大值为6;若长度为3和4的两条木条的夹角调整成180°时,此时三边长为2,6,7,符合,此时任意两螺丝的距离之和的最大值为7;若长度为4和6的两条木条的夹角调整成180°时,此时三边长为2,3,10,不符合.综上可得,任意两螺丝的距离之和的最大值为7,故选C12.C解析:C【解析】【分析】看是否符合所学的全等的公理或定理即可.【详解】A、符合全等三角形的判定SAS,能作出唯一三角形;B、两个角对应相等,夹边确定,如这样的三角形可作很多则可以依据ASA判定全等,因而所作三角形是唯一的;C、已知两边和其中一边的对角对应相等,也不能作出唯一三角形,如等腰三角形底边上的任一点与顶点之间的线段两侧的三角形;D、符合全等三角形的判定SSS,能作出唯一三角形;故选C.【点睛】本题主要考查由已知条件作三角形,可以依据全等三角形的判定来做.二、填空题13.【解析】【分析】由已知设a=2t则b=3t代入所求代数式化简即可得答案【详解】设a=2t∵∴b=3t∴==故答案为:【点睛】本题考查了代数式的求值把a=b代入后计算比较麻烦采用参数的方法使运算简便灵解析:1 5【解析】【分析】由已知设a=2t,则b=3t,代入所求代数式化简即可得答案.【详解】设a=2t , ∵23a b =, ∴b=3t ,∴a b a b -+=2323t t t t -+=15-. 故答案为:15- 【点睛】 本题考查了代数式的求值,把a=23b 代入后,计算比较麻烦,采用参数的方法,使运算简便,灵活运用参数方法是解题关键. 14.【解析】分解因式的方法为提公因式法和公式法及分组分解法原式==a(3+a)(3-a)解析:(3)(3)a a a +-【解析】分解因式的方法为提公因式法和公式法及分组分解法.原式==a(3+a)(3-a). 15.6×10﹣3【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解析:6×10﹣3【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】16.30【解析】【分析】根据角平分线的定义可得∠PBC=20°∠PCM=50°根据三角形外角性质即可求出∠P 的度数【详解】∵BP 是∠ABC 的平分线CP 是∠ACM 的平分线∠ABP=20°∠ACP=50°∴解析:30【解析】【分析】根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P 的度数.【详解】∵BP 是∠ABC 的平分线,CP 是∠ACM 的平分线,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案为:30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.17.2【解析】【分析】根据分式的值为零的条件得到x-2=0且x≠0易得x=2【详解】∵分式的值为0∴x−2=0且x≠0∴x=2故答案为2【点睛】本题考查了分式的值为零的条件解题的关键是熟练的掌握分式的值解析:2【解析】【分析】根据分式的值为零的条件得到x-2=0且x≠0,易得x=2.【详解】∵分式21xx-+的值为0,∴x−2=0且x≠0,∴x=2.故答案为2.【点睛】本题考查了分式的值为零的条件,解题的关键是熟练的掌握分式的值为零的条件. 18.(x+4y)(x-4y)【解析】试题解析:x2-16y2=x2-(4y)2=(x+4y)(x-4y)解析:(x+4y) (x-4y)【解析】试题解析:x2-16y2=x2-(4y)2=(x+4y) (x-4y).19.3【解析】【分析】由于∠C=90°∠ABC=60°可以得到∠A=30°又由BD平分∠A BC可以推出∠CBD=∠ABD=∠A=30°BD=AD=6再由30°角所对的直角边等于斜边的一半即可求出结果【详解析:3【解析】【分析】由于∠C=90°,∠ABC=60°,可以得到∠A=30°,又由BD平分∠ABC,可以推出∠CBD=∠ABD=∠A=30°,BD=AD=6,再由30°角所对的直角边等于斜边的一半即可求出结果.【详解】∵∠C=90°,∠ABC=60°,∴∠A=30°.∵BD平分∠ABC,∴∠CBD=∠ABD=∠A=30°,∴BD=AD=6,∴CD=12BD=6×12=3.故答案为3.【点睛】本题考查了直角三角形的性质、含30°角的直角三角形、等腰三角形的判定以及角的平分线的性质.解题的关键是熟练掌握有关性质和定理.20.1【解析】试题分析:根据题意得|x|-1=0且x-1≠0解得x=-1考点:分式的值为零的条件解析:1【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.考点:分式的值为零的条件.三、解答题21.两种机器人需要10小时搬运完成【解析】【分析】先设两种机器人需要x小时搬运完成,然后根据工作效率=工作总量÷工作时间,结合A型机器人比B型机器每小时多搬运30kg,得出方程并且进行解方程即可.【详解】解:设两种机器人需要x小时搬运完成,∵900kg+600kg=1500kg,∴A型机器人需要搬运900kg,B型机器人需要搬运600kg.依题意,得:900600-x x=30,解得:x=10,经检验,x=10是原方程的解,且符合题意.答:两种机器人需要10小时搬运完成.【点睛】本题主要考察分式方程的实际应用,根据题意找出等量关系,正确列出分式方程是解题的关键.22.﹣2a﹣6,-5【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,然后约分得到最简结果,再把a 的值代入计算即可.【详解】解:(a +2﹣52a -)•243a a -- =(2)(2)52(2)×223-a a a a a a +--⎡⎤-⎢⎥--⎣⎦ =(3)(3)2(2)×23-a a a a a +--⎡⎤⎢⎥-⎣⎦=﹣2a ﹣6,当a =12-时,原式=﹣2a ﹣6=﹣5. 【点睛】 本题考查了分式的化简求值,熟练掌握分式的运算法则是解本题的关键.23.x+2;当x=1时,原式=3.【解析】【分析】先把分子分母因式分解,约分,再计算括号内的减法,最后算除法,约分成最简分式或整式;再选择使分式有意义的数代入求值即可.【详解】 解:2222334424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭ 22(2)33[](2)24x x x x x x --=-÷--- 233224x x x x x -⎛⎫=-÷ ⎪---⎝⎭ 3(2)(2)23x x x x x -+-=⨯-- =x+2,∵x 2-4≠0,x-3≠0,∴x≠2且x≠-2且x≠3,∴可取x=1代入,原式=3.【点睛】本题主要考查分式的化简求值,熟悉掌握分式的运算法则是解题的关键,注意分式有意义的条件.24.3【解析】【分析】由已知可得a-b=-1,b-c=-1,c-a=2,所求式子提取12,利用完全平方公式变形后,代入计算即可求出值.【详解】解:∵a=2014m +2012,b=2014m +2013,c=2014m +2014, ∴a-b=-1,b-c=-1,c-a=2,∴a 2+b 2+c 2-ab-bc-ca =12(2a 2+2b 2+2c 2-2ab-2bc-2ca ) =12[(a-b )2+(b-c )2+(c-a )2] =12×(1+1+4) =3.【点睛】本题考查因式分解的应用.25.(1)小张跑步的平均速度为210米/分钟.(2)小张不能在演唱会开始前赶到奥体中心.【解析】试题分析:(1)设小张跑步的平均速度为x 米/分钟,则小张骑车的平均速度为1.5x 米/分钟,根据时间=路程÷速度结合小张骑车的时间比跑步的时间少用了4分钟,即可得出关于x 的分式方程,解之并检验后即可得出结论;(2)根据时间=路程÷速度求出小张跑步回家的时间,由骑车与跑步所需时间之间的关系可得出骑车的时间,再加上取票和寻找“共享单车”共用的5分钟即可求出小张赶回奥体中心所需时间,将其与23进行比较后即可得出结论.试题解析:(1)设小张跑步的平均速度为x 米/分钟,则小张骑车的平均速度为1.5x 米/分钟, 根据题意得:252025201.5x x=4,解得:x=210, 经检验,x=210是原方程组的解,答:小张跑步的平均速度为210米/分钟; (2)小张跑步到家所需时间为2520÷210=12(分钟),小张骑车所用时间为12﹣4=8(分钟),小张从开始跑步回家到赶回奥体中心所需时间为12+8+5=25(分钟),∵25>23,∴小张不能在演唱会开始前赶到奥体中心.。

2020-2021厦门市双十中学初二数学上期末试卷(附答案)

2020-2021厦门市双十中学初二数学上期末试卷(附答案)

2020-2021厦门市双十中学初二数学上期末试卷(附答案)一、选择题1.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm.依题意,下面所列方程正确的是A .120100x x 10=-B .120100x x 10=+C .120100x 10x =-D .120100x 10x =+ 2.下列各因式分解的结果正确的是( ) A .()321a a a a -=-B .2()b ab b b b a ++=+C .2212(1)x x x -+=-D .22()()x y x y x y +=+-3.下列运算中,结果是a 6的是( )A .a 2•a 3B .a 12÷a 2C .(a 3)3D .(﹣a)64.等腰三角形一腰上的高与另一腰的夹角为60,则顶角的度数为( )A .30B .30或150C .60或150D .60或120 5.如图,在△ABC 中,∠C=90°,以点B 为圆心,任意长为半径画弧,分别交AB 、BC 于点M 、N 分别以点M 、N 为圆心,以大于12MN 的长度为半径画弧两弧相交于点P 过点P 作线段BD,交AC 于点D,过点D 作DE ⊥AB 于点E,则下列结论①CD=ED ;②∠ABD=12∠ABC ;③BC=BE ;④AE=BE 中,一定正确的是( )A .①②③B .① ② ④C .①③④D .②③④6.如果30x y -=,那么代数式()2222x y x y x xy y +⋅--+的值为( ) A .27- B .27 C .72- D .727.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( ) A .段① B .段② C .段③ D .段④8.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线; Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A .①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB .①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC .①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD .①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ 9.到三角形各顶点的距离相等的点是三角形( ) A .三条角平分线的交点B .三条高的交点C .三边的垂直平分线的交点D .三条中线的交点 10.若关于x 的方程244x a x x =+--有增根,则a 的值为( ) A .-4 B .2 C .0D .4 11.下列运算正确的是( ) A .236326a a a -⋅=-B .()632422a a a ÷-=-C .326()a a -=D .326()ab ab =12.如图,AB ∥CD ,BC ∥AD ,AB=CD ,BE=DF ,图中全等的三角形的对数是( )A .3B .4C .5D .6二、填空题13.等腰三角形的一个内角是100︒,则这个三角形的另外两个内角的度数是__________.14.分解因式:2a 2﹣8=_____.15.若分式21x x -+的值为0,则x=____. 16.若2x+5y ﹣3=0,则4x •32y 的值为________.17.记x=(1+2)(1+22)(1+24)(1+28)…(1+2n ),且x+1=2128,则n=______.18.因式分解:3a 2﹣27b 2=_____.19.已知a +b =5,ab =3,b a a b+=_____. 20.如图,B 处在A 处的南偏西45°方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东80°方向,则∠ACB= .三、解答题21.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等. (1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?22.如图,已知点B ,F ,E ,C 在同一条直线上,//AB CD ,且AB CD =,A D ∠=∠.求证:BE CF =.23.如图,在△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边的中线,过点C 作CF ⊥AE ,垂足为点F ,过点B 作BD ⊥BC 交CF 的延长线于点D .(1)试说明AE =CD ;(2)若AC =10cm ,求BD 的长.24.2018年8月中国铁路总公司宣布,京津高铁将再次提速,担任此次运营任务是最新的复兴号动车组,提速后车速是之前的1.5倍,100千米缩短了10分钟,问提速前后的速度分别是多少千米每小时?25.用A 、B 两种机器人搬运大米,A 型机器人比B 型机器人每小时多搬运20袋大米,A 型机器人搬运700袋大米与B 型机器人搬运500袋大米所用时间相等.求A 、B 型机器人每小时分别搬运多少袋大米.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】【详解】甲队每天修路xm,则乙队每天修(x-10)m,因为甲、乙两队所用的天数相同,所以,120100 x x10=-.故选A.2.C解析:C【解析】【分析】将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.【详解】()321a a a a-=-=a(a+1)(a-1),故A错误;2(1)b ab b b b a++=++,故B错误;2212(1)x x x-+=-,故C正确;22x y+不能分解因式,故D错误,故选:C.【点睛】此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.3.D解析:D【解析】【分析】分别利用幂的乘方运算和合并同类项法则分别化简求出答案.【详解】解:A、a2•a3=a5,故此选项错误;B、122a a÷= a10,故此选项错误;C、(a3)3=a9,故此选项错误;D、(-a)6=a6,故此选项正确.故选D.【点睛】此题主要考查了合并同类项法则以及幂的乘方运算等知识,正确运用相关法则是解题关键.4.B解析:B【解析】【分析】等腰三角形一腰上的高与另一腰的夹角为60,则顶角的度数为【详解】解:如图1,∵∠ABD=60°,BD是高,∴∠A=90°-∠ABD=30°;如图2,∵∠ABD=60°,BD是高,∴∠BAD=90°-∠ABD=30°,∴∠BAC=180°-∠BAD=150°;∴顶角的度数为30°或150°.故选:B.【点睛】本题主要考查了等腰三角形的性质及三角形内角和定理.此题难度适中,注意掌握分类讨论思想与数形结合思想的应用.5.A解析:A【解析】【分析】由作法可知BD是∠ABC的角平分线,故②正确,根据角平分线上的点到角两边的距离相等可得①正确,由HL可得Rt△BDC≌Rt△BDE,故BC=BE,③正确,【详解】解:由作法可知BD是∠ABC的角平分线,故②正确,∵∠C=90°,∴DC⊥BC,又DE⊥AB,BD是∠ABC的角平分线,∴CD=ED,故①正确,在Rt△BCD和 Rt△BED中,DE DC BD BD =⎧⎨=⎩, ∴△BCD≌△BED ,∴BC=BE ,故③正确.故选:A.【点睛】本题考查了角平分线的画法及角平分线的性质,熟练掌握相关知识是解题关键. 6.D解析:D【解析】【分析】先把分母因式分解,再约分得到原式=2x y x y+-,然后把x=3y 代入计算即可. 【详解】原式=()22x y x y +-•(x-y )=2x y x y+-, ∵x-3y=0,∴x=3y ,∴原式=63y y y y +-=72. 故选:D .【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.7.B解析:B【解析】【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x 为正整数,从所给图中可得正确答案.【详解】 解∵2222(2)1(2)1441(2)1x x x x x x x ++-=-=+++++1111x x x -=++. 又∵x 为正整数,∴121x x ≤+<1,故表示22(2)1441x x x x +-+++的值的点落在②. 故选B .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.解析:D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D .【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.9.C解析:C【解析】【分析】根据三角形外心的作法,确定到三定点距离相等的点.【详解】解:因为到三角形各顶点的距离相等的点,需要根据垂直平分线上的点到线段两端点的距离相等,只有分别作出三角形的两边的垂直平分线,交点才到三个顶点的距离相等. 故选:C .【点睛】本题考查了垂直平分线的性质和三角形外心的作法,关键是根据垂直平分线的性质解答.10.D解析:D【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.让最简公分母x-4=0,得到x=4.再将x=4代入去分母后的方程即可求出a=4.【详解】解:由分式方程的最简公分母是x-4,∵关于x 的方程244x a x x =+--有增根, ∴x-4=0,∴分式方程的增根是x=4. 关于x 的方程244x a x x =+--去分母得x=2(x-4)+a, 代入x=4得a=4 故选D .本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.11.C解析:C【解析】【分析】根据单项式的乘法和除法法则,以及幂的乘方法则即可作出判断.【详解】A、-3a2•2a3=-6a5,故A错误;B、4a6÷(-2a3)=-2a3,故B错误;C、(-a3)2=a6,故C正确;D、(ab3)2=a2b6,故B错误;故选:C.【点睛】本题考查了单项式的乘法、除法以及幂的乘方,正确理解幂的运算法则是关键.12.A解析:A【解析】解:∵AB∥CD,BC∥AD,∴∠ABD=∠CDB,∠ADB=∠CBD.在△ABD和△CDB中,∵,∴△ABD≌△CDB(ASA),∴AD=BC,AB=CD.在△ABE和△CDF中,∵,∴△ABE≌△CDF(SAS),∴AE=CF.∵BE=DF,∴BE+EF=DF+EF,∴BF=DE.在△ADE和△CBF中,∵,∴△ADE≌△CBF(SSS),即3对全等三角形.故选A.二、填空题13.40°40°【解析】【分析】因为等腰三角形的两个底角相等且三角形内角和为180°100°只能为顶角所以剩下两个角为底角且为40°40°【详解】解:∵三角形内角和为180°∴100°只能为顶角∴剩下两解析:40° 40°【解析】因为等腰三角形的两个底角相等,且三角形内角和为180°,100°只能为顶角,所以剩下两个角为底角,且为40°,40°.【详解】解:∵三角形内角和为180°,∴100°只能为顶角,∴剩下两个角为底角,且它们之和为80°,∴另外两个内角的度数分别为40°,40°.故答案为:40°,40°.【点睛】本题考查了等腰三角形的性质和三角形的内角和,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.14.2(a+2)(a﹣2)【解析】【分析】先提取公因式2再利用平方差公式继续分解【详解】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2)故答案为:2(a+2)(a﹣2)【点睛】本题考查了因式分解一解析:2(a+2)(a﹣2)【解析】【分析】先提取公因式2,再利用平方差公式继续分解.【详解】解:2a2﹣8=2(a2﹣4),=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【点睛】本题考查了因式分解,一般是一提二套,先考虑能否提公式式,再考虑能不能用平方差公式和完全平方公式继续分解,注意要分解彻底.15.2【解析】【分析】根据分式的值为零的条件得到x-2=0且x≠0易得x=2【详解】∵分式的值为0∴x−2=0且x≠0∴x=2故答案为2【点睛】本题考查了分式的值为零的条件解题的关键是熟练的掌握分式的值解析:2【解析】【分析】根据分式的值为零的条件得到x-2=0且x≠0,易得x=2.【详解】∵分式21xx-+的值为0,∴x−2=0且x≠0,故答案为2.【点睛】本题考查了分式的值为零的条件,解题的关键是熟练的掌握分式的值为零的条件.16.8【解析】∵2x+5y﹣3=0∴2x+5y=3∴4x•32y=(22)x·(25)y=22x·25y=22x+5y= 23=8故答案为:8【点睛】本题主要考查了幂的乘方的性质同底数幂的乘法转化为以2为解析:8【解析】∵2x+5y﹣3=0,∴2x+5y=3,∴4x•32y=(22)x·(25)y=22x·25y=22x+5y=23=8,故答案为:8.【点睛】本题主要考查了幂的乘方的性质,同底数幂的乘法,转化为以2为底数的幂是解题的关键,整体思想的运用使求解更加简便.17.64【解析】试题分析:先在前面添加因式(2﹣1)再连续利用平方差公式计算求出x然后根据指数相等即可求出n值解:(1+2)(1+22)(1+24)(1+28)…(1+2n)=(2﹣1)(1+2)(1+解析:64【解析】试题分析:先在前面添加因式(2﹣1),再连续利用平方差公式计算求出x,然后根据指数相等即可求出n值.解:(1+2)(1+22)(1+24)(1+28)…(1+2n),=(2﹣1)(1+2)(1+22)(1+24)(1+28)…(1+2n),=(22﹣1)(1+22)(1+24)(1+28)…(1+2n),=(2n﹣1)(1+2n),=22n﹣1,∴x+1=22n﹣1+1=22n,2n=128,∴n=64.故填64.考点:平方差公式点评:本题考查了平方差公式,关键是乘一个因式(2﹣1)然后就能依次利用平方差公式计算了.18.3(a+3b)(a﹣3b)【解析】【分析】先提取公因式3然后再利用平方差公式进一步分解因式【详解】3a2-27b2=3(a2-9b2)=3(a+3b)(a-3b)【点睛】本题考查了提公因式法和公式法解析:3(a+3b)(a﹣3b).【解析】【分析】先提取公因式3,然后再利用平方差公式进一步分解因式.【详解】3a2-27b2,=3(a2-9b2),=3(a+3b)(a-3b).【点睛】本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.19.【解析】【分析】将a+b=5ab=3代入原式=计算可得【详解】当a+b=5ab=3时原式====故答案为【点睛】本题主要考查分式的加减法解题的关键是熟练掌握分式的加减运算法则和完全平方公式解析:193.【解析】【分析】将a+b=5、ab=3代入原式=()2222a b abb aab ab+-+=,计算可得.【详解】当a+b=5、ab=3时,原式=22 b a ab+=()22 a b abab+-=25233-⨯=19 3.故答案为193.【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减运算法则和完全平方公式.20.85°【解析】试题分析:令A→南的方向为线段AEB→北的方向为线段BD 根据题意可知AEDB是正南正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°考点:1方向角2三角解析:85°.【解析】试题分析:令A→南的方向为线段AE ,B→北的方向为线段BD ,根据题意可知,AE ,DB 是正南,正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°.考点:1、方向角. 2、三角形内角和.三、解答题21.(1)文学书和科普书的单价分别是8元和12元.(2)至多还能购进466本科普书.【解析】【详解】(1)设文学书的单价为每本x 元,则科普书的单价为每本(x+4)元,依题意得: 8000120004x x =+ , 解得:x=8,经检验x=8是方程的解,并且符合题意.∴x+4=12.∴购进的文学书和科普书的单价分别是8元和12元.②设购进文学书550本后至多还能购进y 本科普书.依题意得550×8+12y≤10000, 解得24663y ≤, ∵y 为整数,∴y 的最大值为466∴至多还能购进466本科普书.22.证明见解析【解析】【分析】根据ASA 可判定ABF DCE ∆≅∆,可得BF CE =,即可得BE CF =.【详解】证明://AB CD ,B C ∴∠=∠, 在ABF ∆和DCE ∆中,B C AB CD A D ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABF DCE ASA ∴∆≅∆BF CE ∴=,BF EF CE EF ∴+=+,即BE CF =.【点睛】本题考查了三角形的全等的判定和性质,掌握三角形的全等的判定是解题的关键.23.(1)见解析;(2)5cm【解析】【详解】(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB+∠D=∠DCB+∠AEC=90°.∴∠D=∠AEC .又∵∠DBC=∠ECA=90°,且BC=CA ,∴△DBC ≌△ECA (AAS ).∴AE=CD .(2)解:由(1)得AE=CD ,AC=BC ,∴Rt △CDB ≌Rt △AEC (HL )∴BD=EC=12BC=12AC ,且AC=10cm . ∴BD=5cm .【点睛】 熟悉证明三角形全等的条件,并且能够灵活运用,具有多方面看问题的数学思维.24.提速前的速度为200千米/小时,提速后的速度为350千米/小时,【解析】【分析】设列车提速前的速度为x 千米每小时和列车提速后的速度为1.5千米每小时,根据关键语句“100千米缩短了10分钟”可列方程,解方程即可.【详解】设提速前后的速度分别为x 千米每小时和1.5x 千米每小时,根据题意得:100100101.560x x -= 解得:x=200,经检验:x=200是原方程的根,∴1.5x=300,答:提速前后的速度分别是200千米每小时和300千米每小时.【点睛】考查了分式方程的应用,解题关键是弄懂题意,找出等量关系,列出方程.25.A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.【解析】【分析】工作效率:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋;工作量:A型机器人搬运700袋大米,B型机器人搬运500袋大米;工作时间就可以表示为:A型机器人所用时间=700x,B型机器人所用时间=500x-20,由所用时间相等,建立等量关系.【详解】设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋,依题意得:700x=500x-20,解这个方程得:x=70经检验x=70是方程的解,所以x﹣20=50.答:A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.考点:分式方程的应用.。

厦门双十中学初中部八年级上册压轴题数学模拟试卷含详细答案

厦门双十中学初中部八年级上册压轴题数学模拟试卷含详细答案

厦门双十中学初中部八年级上册压轴题数学模拟试卷含详细答案一、压轴题1.某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC 中,∠ABC 与∠ACB 的平分线交于点P ,∠A =64°,则∠BPC = ;(2)如图2,△ABC 的内角∠ACB 的平分线与△ABC 的外角∠ABD 的平分线交于点E .其中∠A =α,求∠BEC .(用α表示∠BEC );(3)如图3,∠CBM 、∠BCN 为△ABC 的外角,∠CBM 、∠BCN 的平分线交于点Q ,请你写出∠BQC 与∠A 的数量关系,并说明理由;(4)如图4,△ABC 外角∠CBM 、∠BCN 的平分线交于点Q ,∠A=64°,∠CBQ ,∠BCQ 的平分线交于点P ,则∠BPC= ゜,延长BC 至点E ,∠ECQ 的平分线与BP 的延长线相交于点R ,则∠R= ゜.2.已知在△ABC 中,AB =AC ,射线BM 、BN 在∠ABC 内部,分别交线段AC 于点G 、H . (1)如图1,若∠ABC =60°,∠MBN =30°,作AE ⊥BN 于点D ,分别交BC 、BM 于点E 、F .①求证:∠1=∠2;②如图2,若BF =2AF ,连接CF ,求证:BF ⊥CF ;(2)如图3,点E 为BC 上一点,AE 交BM 于点F ,连接CF ,若∠BFE =∠BAC =2∠CFE ,求ABFACF S S 的值.3.问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC 是等边三角形,点D 是BC 的中点,且满足∠ADE =60°,DE 交等边三角形外角平分线于点E .试探究AD 与DE 的数量关系.操作发现:(1)小明同学过点D 作DF ∥AC 交AB 于F ,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD 与DE 的数量关系,并进行证明.类比探究:(2)如图2,当点D 是线段BC 上任意一点(除B 、C 外),其他条件不变,试猜想AD 与DE 之间的数量关系,并证明你的结论.拓展应用:(3)当点D 在线段BC 的延长线上,且满足CD =BC ,在图3中补全图形,直接判断△ADE 的形状(不要求证明).4.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF 的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.5.学习了三角形全等的判定方法(即“SAS ”、“ASA ”、“AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.(初步思考)我们不妨将问题用符号语言表示为:在△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分类,可分为“∠B 是直角、钝角、锐角”三种情况进行探究.(深入探究)第一种情况:当∠B 是直角时,△ABC ≌△DEF .(1)如图①,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E =90°,根据______,可以知道Rt △ABC ≌Rt △DEF .第二种情况:当∠B 是钝角时,△ABC ≌△DEF .(2)如图②,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是钝角.求证:△ABC ≌△DEF .第三种情况:当∠B 是锐角时,△ABC 和△DEF 不一定全等.(3)在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角.请你用直尺在图③中作出△DEF ,使△DEF 和△ABC 不全等,并作简要说明.6.阅读并填空:如图,ABC 是等腰三角形,AB AC =,D 是边AC 延长线上的一点,E 在边AB 上且联接DE 交BC 于O ,如果OE OD ,那么CD BE =,为什么?解:过点E 作EF AC 交BC 于F所以ACB EFB ∠=∠(两直线平行,同位角相等)D OEF ∠=∠(________)在OCD 与OFE △中()________COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩所以OCD OFE △≌△,(________)所以CD FE =(________)因为AB AC =(已知)所以ACB B =∠∠(________)所以EFB B ∠=∠(等量代换)所以BE FE =(________)所以CD BE =7.在ABC ∆中,若存在一个内角角度,是另外一个内角角度的n 倍(n 为大于1的正整数),则称ABC ∆为n 倍角三角形.例如,在ABC ∆中,80A ∠=︒,75B ∠=︒,25C ∠=︒,可知3∠=∠B C ,所以ABC ∆为3倍角三角形.(1)在ABC ∆中,55A ∠=︒,25B ∠=︒,则ABC ∆为________倍角三角形;(2)若DEF ∆是3倍角三角形,且其中一个内角的度数是另外一个内角的余角的度数的13,求DEF ∆的最小内角. (3)若MNP ∆是2倍角三角形,且90M N P ∠<∠<∠<︒,请直接写出MNP ∆的最小内角的取值范围.8.如图(1),AB =4cm ,AC ⊥AB ,BD ⊥AB ,AC =BD =3cm .点 P 在线段 AB 上以 1/cm s 的速度由点 A 向点 B 运动,同时,点 Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为 t (s ).(1)若点 Q 的运动速度与点 P 的运动速度相等,当t =1 时,△ACP 与△BPQ 是否全等,请说明理由, 并判断此时线段 PC 和线段 PQ 的位置关系;(2)如图(2),将图(1)中的“AC ⊥AB ,BD ⊥AB”为改“∠CAB =∠DBA =60°”,其他条件不变.设点 Q 的运动速度为x /cm s ,是否存在实数x ,使得△ACP 与△BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.9.如图,Rt ACB △中,90ACB ∠=︒,AC BC =,E 点为射线CB 上一动点,连结AE ,作AF AE ⊥且AF AE =.(1)如图1,过F 点作FD AC ⊥交AC 于D 点,求证:FD BC =;(2)如图2,连结BF 交AC 于G 点,若3AG =,1CG =,求证:E 点为BC 中点. (3)当E 点在射线CB 上,连结BF 与直线AC 交于G 点,若4BC =,3BE =,则AG CG=______.(直接写出结果) 10.如图,△ABC 是等边三角形,△ADC 与△ABC 关于直线AC 对称,AE 与CD 垂直交BC 的延长线于点E ,∠EAF =45°,且AF 与AB 在AE 的两侧,EF ⊥AF .(1)依题意补全图形.(2)①在AE 上找一点P ,使点P 到点B ,点C 的距离和最短;②求证:点D 到AF ,EF 的距离相等.11.对x y 、定义一种新运算T ,规定:()()(),2T x y mx ny x y =++(其中mn 、均为非零常数).例如:()1,133T m n =+.(1)已知()()1,10,0,28T T -==.①求mn 、的值; ②若关于p 的不等式组()()2,244,32T p p T p p a⎧->⎪⎨-≤⎪⎩恰好有3个整数解,求a 的取值范围; (2)当22x y ≠时,()(),,T x y T y x =对任意有理数,x y 都成立,请直接写出mn 、满足的关系式.学习参考:①()a b c ab ac +=+,即单项式乘以多项式就是用单项式去乘多项式的每一项,再把所得的结果相加;②()()a b m n am an bm bn ++=+++,即多项式乘以多项式就是用一个多项式的每一项去乘另一个多项式的每一项,再把所得的结果相加.12.数学活动课上,老师出了这样一个题目:“已知:MF NF ⊥于F ,点A 、C 分别在NF 和MF 上,作线段AB 和CD (如图1),使90FAB MCD ∠-∠=︒.求证://AB CD ”.(1)聪聪同学给出一种证明问题的辅助线:如图2,过A 作//AG FM ,交CD 于G .请你根据聪聪同学提供的辅助线(或自己添加其它辅助线),给出问题的证明. (2)若点E 在直线CD 下方,且知30BED ∠=︒,直接写出ABE ∠和CDE ∠之间的数量关系.13.现给出一个结论:直角三角形斜边的中线等于斜边的一半;该结论是正确的,用图形语言可以表示为:如图1在ABC ∆中,90︒∠=C ,若点D 为AB 的中点,则12CD AB =. 请结合上述结论解决如下问题:已知,点P 是射线BA 上一动点(不与A,B 重合)分别过点A,B 向直线CP 作垂线,垂足分别为E,F,其中Q 为AB 的中点(1)如图2,当点P 与点Q 重合时,AE 与BF 的位置关系____________;QE 与QF 的数量关系是__________(2)如图3,当点P 在线段AB 上不与点Q 重合时,试判断QE 与QF 的数量关系,并给予证明.(3)如图4,当点P 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.14.(阅读材料):(1)在ABC ∆中,若90C ∠=︒,由“三角形内角和为180°”得1801809090A B C ∠︒+∠=-∠︒︒-=︒=.(2)在ABC ∆中,若90A B ∠+∠=︒,由“三角形内角和为180°”得180()1809090C A B ∠=︒-∠+∠=︒-︒=︒.(解决问题):如图①,在平面直角坐标系中,点C 是x 轴负半轴上的一个动点.已知//AB x 轴,交y 轴于点E ,连接CE ,CF 是∠ECO 的角平分线,交AB 于点F ,交y 轴于点D .过E 点作EM 平分∠CEB ,交CF 于点M .(1)试判断EM 与CF 的位置关系,并说明理由;(2)如图②,过E 点作PE ⊥CE ,交CF 于点P .求证:∠EPC=∠EDP ;(3)在(2)的基础上,作EN 平分∠AEP ,交OC 于点N ,如图③.请问随着C 点的运动,∠NEM 的度数是否发生变化?若不变,求出其值:若变化,请说明理由.15.已知:MN ∥PQ ,点A ,B 分别在MN ,PQ 上,点C 为MN ,PQ 之间的一点,连接CA ,CB .(1)如图1,求证:∠C=∠MAC+∠PBC ;(2)如图2,AD ,BD ,AE ,BE 分别为∠MAC ,∠PBC ,∠CAN ,∠CBQ 的角平分线,求证:∠D+∠E=180°;(3)在(2)的条件下,如图3,过点D 作DA 的垂线交PQ 于点G ,点F 在PQ 上,∠FDA=2∠FDB ,FD 的延长线交EA 的延长线于点H ,若3∠C=4∠E ,猜想∠H 与∠GDB 的倍数关系并证明.16.如图,在ABC 中,D 为AB 的中点,10AB AC cm ==,8BC cm =.动点P 从点B 出发,沿BC 方向以3/cm s 的速度向点C 运动;同时动点Q 从点C 出发,沿CA 方向以3/cm s 的速度向点A 运动,运动时间是ts .(1)在运动过程中,当点C 位于线段PQ 的垂直平分线上时,求出t 的值;(2)在运动过程中,当BPD CQP ≌时,求出t 的值;(3)是否存在某一时刻t ,使BPD CPQ ≌?若存在,求出t 的值;若不存在,请说明理由.17.(1)如图1,ABC 和DCE 都是等边三角形,且B ,C ,D 三点在一条直线上,连接AD ,BE 相交于点P ,求证:BE AD =.(2)如图2,在BCD 中,若120BCD ∠<︒,分别以BC ,CD 和BD 为边在BCD 外部作等边ABC ,等边CDE △,等边BDF ,连接AD 、BE 、CF 恰交于点P . ①求证:AD BE CF ==;②如图2,在(2)的条件下,试猜想PB ,PC ,PD 与BE 存在怎样的数量关系,并说明理由.18.直线MN 与PQ 相互垂直,垂足为点O ,点A 在射线OQ 上运动,点B 在射线OM 上运动,点A 、点B 均不与点O 重合.(1)如图1,AI 平分BAO ∠,BI 平分ABO ∠,若40BAO ∠=︒,求AIB ∠的度数; (2)如图2,AI 平分BAO ∠,BC 平分ABM ∠,BC 的反向延长线交AI 于点D . ①若40BAO ∠=︒,则ADB =∠______度(直接写出结果,不需说理);②点A 、B 在运动的过程中,ADB ∠是否发生变化,若不变,试求ADB ∠的度数:若变化,请说明变化规律.(3)如图3,已知点E 在BA 的延长线上,BAO ∠的角平分线AI 、OAE ∠的角平分线AF 与BOP ∠的角平分线所在的直线分别相交于的点D 、F ,在ADF 中,如果有一个角的度数是另一个角的4倍,请直接写出ABO ∠的度数.19.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠A CB=α,求∠BFE的大小.(用含α的代数式表示).20.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,BP= cm,CQ= cm.(2)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(4)若点Q以(3)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次相遇?【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1) 122°;(2)12BECα∠=;(3)01902BQC A;(4)119,29 ;【解析】【分析】(1)根据三角形的内角和角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用A ∠与1∠表示出2∠,再利用E ∠与1∠表示出2∠,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出EBC ∠与ECB ∠,然后再根据三角形的内角和定理列式整理即可得解;(4)根据(1),(3)的结论可以得出∠BPC 的度数;根据(2)的结论可以得到∠R 的度数.【详解】解:(1)BP 、CP 分别平分ABC ∠和ACB ∠, 12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠11180()22ABC ACB =︒-∠+∠, 1180()2ABC ACB =︒-∠+∠, 1(180180)2A =︒-︒-∠, 1180902A =-︒+︒∠, 9032122,故答案为:122︒;(2)如图2示,CE 和BE 分别是ACB ∠和ABD ∠的角平分线,112ACB ∴∠=∠,122ABD ∠=∠, 又ABD ∠是ABC ∆的一外角,ABD A ACB ∴∠=∠+∠,112()122A ABC A ∴∠=∠+∠=∠+∠, 2∠是BEC ∆的一外角,112111222BEC A A α∴∠=∠-∠=∠+∠-∠=∠=; (3)1()2QBC A ACB ∠=∠+∠,1()2QCB A ABC ∠=∠+∠, 180BQC QBC QCB ∠=︒-∠-∠,11180()()22A ACB A ABC =︒-∠+∠-∠+∠, 11180()22A A ABC ACB =︒-∠-∠+∠+∠, 结论1902BQC A ∠=︒-∠. (4)由(3)可知,119090645822BQCA , 再根据(1),可得180()BPCPBC PCB 1118022QBC QCB 1180902Q 118090582119; 由(2)可得:11582922R Q ;故答案为:119,29.【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.2.(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF =∠1+∠BAF =60°即可解决问题;②只要证明△BFC ≌△ADB ,即可推出∠BFC =∠ADB =90°;(2)在BF 上截取BK =AF ,连接AK .只要证明△ABK ≌CAF ,可得S △ABK =S △AFC ,再证明AF =FK =BK ,可得S △ABK =S △AFK ,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE =∠2+∠BAF ,∠CFE =∠4+∠1,∴∠CFB =∠2+∠4+∠BAC ,∵∠BFE =∠BAC =2∠EFC ,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB =AC ,∴△ABK ≌CAF ,∴∠3=∠4,S △ABK =S △AFC ,∵∠1+∠3=∠2+∠3=∠CFE =∠AKB ,∠BAC =2∠CEF ,∴∠KAF =∠1+∠3=∠AKF ,∴AF =FK =BK ,∴S △ABK =S △AFK , ∴ABF AFCS 2S ∆∆=. 【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.3.(1)AD =DE ,见解析;(2)AD =DE ,见解析;(3)见解析,△ADE 是等边三角形,【解析】【分析】(1)根据题意,通过平行线的性质及等边三角形的性质证明ADF EDC ∆∆≌即可得解; (2)根据题意,通过平行线的性质及等边三角形的性质证明AFD DCE ∆∆≌即可得解; (3)根据垂直平分线的性质及等边三角形的判定定理进行证明即可.【详解】(1)如下图,数量关系:AD =DE .证明:∵ABC ∆是等边三角形∴AB =BC ,60B BAC BCA ∠∠∠︒===∵DF ∥AC∴BFD BAC ∠∠=,∠BDF =∠BCA∴60B BFD BDF ∠∠∠︒===∴BDF ∆是等边三角形,120AFD ∠︒=∴DF =BD∵点D 是BC 的中点∴BD =CD∴DF =CD∵CE 是等边ABC ∆的外角平分线∴120DCE AFD ∠︒∠== ∵ABC ∆是等边三角形,点D 是BC 的中点∴AD ⊥BC∴90ADC ∠︒=∵60BDF ADE ∠∠︒==∴30ADF EDC ∠∠︒==在ADF ∆与EDC ∆中AFD ECD DF CDADF EDC ∠∠⎧⎪⎨⎪∠∠⎩=== ∴()ADF EDC ASA ∆∆≌∴AD =DE ;(2)结论:AD =DE .证明:如下图,过点D 作DF ∥AC ,交AB 于F∵ABC ∆是等边三角形∴AB =BC ,60B BAC BCA ∠∠∠︒===∵DF ∥AC∴BFD BAC BDF BCA ∠∠∠∠=,=∴60B BFD BDF ∠∠∠︒===∴BDF ∆是等边三角形,120AFD ∠︒=∴BF =BD∴AF =DC∵CE 是等边ABC ∆的外角平分线∴120DCE AFD ∠︒∠== ∵∠ADC 是ABD ∆的外角∴60ADC B FAD FAD ∠∠∠︒∠=+=+∵60ADC ADE CDE CDE ∠∠∠︒∠=+=+∴∠FAD =∠CDE在AFD ∆与DCE ∆中AFD DCE AF CDFAD EDC ∠∠⎧⎪⎨⎪∠∠⎩=== ∴()AFD DCE ASA ∆∆≌∴AD =DE ;(3)如下图,ADE ∆是等边三角形.证明:∵BC CD =∴AC CD =∵CE 平分ACD ∠∴CE 垂直平分AD∴AE =DE∵60ADE ∠=︒∴ADE ∆是等边三角形.【点睛】本题主要考查了等边三角形的性质及判定,三角形全等的判定及性质,平行线的性质,垂直平分线的性质等相关内容,熟练掌握三角形综合解决方法是解决本题的关键.4.90︒,45︒;20︒,30︒;2a γβ+=,2a γβ-=.【解析】【分析】(1)①如图①知1112EMC BMC ∠=∠,1112C MF C MC ∠=∠得 ()1112EMF BMC C MC ∠=∠+∠可求出解. ②由图②知111111,22EBA ABC C BF C BC ∠=∠∠=∠得()1112EBF ABC C BC ∠=∠+∠可求出解.(2)①由图③折叠知11,CMF FMC BME EMB ∠=∠∠=∠,可推出11()BMC EMF EMF C MB ∠-∠-∠=∠,即可求出解.②由图④中折叠知11,CMF C MF ABE A BE ∠=∠∠=∠,可推出()112906090A MC ︒︒︒-+∠=,即可求出解.(3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.【详解】解:(1)①如图①中,1112EMC BMC ∠=∠,1112C MF C MC ∠=∠, ()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=∠⨯=+∠=, 故答案为90︒. ②如图②中,111111,22EBA ABC C BF C BC ∠=∠∠=∠, ()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=∠+∠=⨯=, 故答案为45︒.(2)①如图③中由折叠可知,11,CMF FMC BME EMB ∠=∠∠=∠,1111C MF EMB EMF C MB ∠+∠-∠=∠,11CMF BME EMF C MB ∴∠+∠-∠=∠,11()BMC EMF EMF C MB ∴∠-∠-∠=∠,111808020C MB ︒︒︒∴-=∠=;②如图④中根据折叠可知,11,CMF C MF ABE A BE ∠=∠∠=∠,112290CMF ABE AMC ︒∠+∠+∠=,112()90CMF ABE AMC ︒∴∠+∠+∠=,()1129090EMF A MC ︒︒∴-∠+∠=, ()112906090A MC ︒︒︒∴-+∠=, 1130AMC ︒∴∠=;(3)如图⑤-1中,由折叠可知,a ββγ-=-,2a γβ∴+=;如图⑤-2中,由折叠可知,a ββγ-=+,∴-=.aγβ2【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.5.(1)HL;(2)见解析;(3)如图②,见解析;△DEF就是所求作的三角形,△DEF和△ABC不全等.【解析】【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.【详解】(1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL.(2)证明:如图①,分别过点C、F作对边AB、DE上的高CG、FH,其中G、H为垂足.∵∠ABC、∠DEF都是钝角∴G、H分别在AB、DE的延长线上.∵CG⊥AG,FH⊥DH,∴∠CGA=∠FHD=90°.∵∠CBG=180°-∠ABC,∠FEH=∠180°-∠DEF,∠ABC=∠DEF,∴∠CBG=∠FEH.在△BCG和△EFH中,∵∠CGB=∠FHE,∠CBG=∠FEH,BC=EF,∴△BCG≌△EFH.∴CG=FH.又∵AC=DF.∴Rt△ACG≌△DFH.∴∠A=∠D.在△ABC 和△DEF 中,∵∠ABC =∠DEF ,∠A =∠D ,AC =DF ,∴△ABC ≌△DEF .(3)如图②,△DEF 就是所求作的三角形,△DEF 和△ABC 不全等.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.6.见解析【解析】【分析】先根据平行线的性质,得到角的关系,然后证明OCD OFE △≌△,写出证明过程和依据即可.【详解】解:过点E 作//EF AC 交BC 于F ,∴ACB EFB ∠=∠(两直线平行,同位角相等),∴D OEF ∠=∠(两直线平行,内错角相等),在OCD 与OFE △中()()()COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩对顶角相等已知已证,∴OCD OFE △≌△,(ASA )∴CD FE =(全等三角形对应边相等)∵AB AC =(已知)∴ACB B =∠∠(等边对等角)∴EFB B ∠=∠(等量代换)∴BE FE =(等角对等边)∴CD BE =;【点睛】本题考查了全等三角形的判定和性质,平行线的性质,解题的关键是由平行线的性质正确找到证明三角形全等的条件,从而进行证明.7.(1)4;(2)DEF ∆的最小内角为15°或9°或180()11︒;(3)30°<x <45°. 【解析】【分析】(1)根据三角形内角和定理求出∠C 的度数,再根据n 倍角三角形的定义判断即可得到答案;(2) 根据△DEF 是3倍角三角形,必定有一个内角是另一个内角的3倍,然后根据这两个角之间的关系,分情况进行解答即可得到答案;(3) 可设未知数表示2倍角三角形的各个内角,然后列不等式组确定最小内角的取值范围.【详解】解:(1)∵在ABC ∆中,55A ∠=︒,25B ∠=︒,∴∠C=180°-55°-25°=100°,∴∠C=4∠B,故ABC ∆为4倍角三角形;(2) 设其中一个内角为x °,3倍角为3x °,则另外一个内角为:1804x ︒-①当小的内角的度数是3倍内角的余角的度数的13时, 即:x=13(90°-3x ), 解得:x=15°, ②3倍内角的度数是小内角的余角的度数的13时, 即:3x=13(90°-x ),解得:x=9°, ③当()11804903x x ︒-=︒-时, 解得:45011x ⎛⎫=︒ ⎪⎝⎭,此时:4501804180411x ⎛⎫︒-=︒-⨯︒ ⎪⎝⎭=180()11︒,因此为最小内角, 因此,△DEF 的最小内角是9°或15°或180()11︒. (3) 设最小内角为x ,则2倍内角为2x ,第三个内角为(180°-3x ),由题意得: 2x <90°且180°-3x <90°,∴30°<x <45°,答:△MNP 的最小内角的取值范围是30°<x <45°.8.(1)全等,垂直,理由详见解析;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩【解析】【分析】(1)在t =1的条件下,找出条件判定△ACP 和△BPQ 全等,再根据全等三角形的性质和直角三角形的两个锐角互余的性质,可证∠CPQ= 90°,即可判断线段 PC 和线段 PQ 的位置关系;(2)本题主要在动点的条件下,分情况讨论,利用三角形全等时对应边相等的性质进行解答即可.【详解】(1)当t=1时,AP= BQ=1, BP= AC=3,又∠A=∠B= 90°,在△ACP 和△BPQ 中,{AP BQA B AC BP=∠=∠=∴△ACP ≌△BPQ(SAS).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP = 90*.∴∠CPQ= 90°,即线段PC 与线段PQ 垂直;(2)①若△ACP ≌△BPQ ,则AC= BP ,AP= BQ ,34t t xt =-⎧⎨=⎩解得11t x =⎧⎨=⎩; ②若△ACP ≌△BQP ,则AC= BQ ,AP= BP ,34xt t t =⎧⎨=-⎩解得:232t x =⎧⎪⎨=⎪⎩ 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题主要考查三角形全等与动点问题,熟练掌握三角形全等的性质与判定定理,是解决本题的关键.9.(1)见解析;(2)见解析;(3)113或53【解析】【分析】(1)证明△AFD ≌△EAC ,根据全等三角形的性质得到DF=AC ,等量代换证明结论; (2)作FD ⊥AC 于D ,证明△FDG ≌△BCG ,得到DG=CG ,求出CE ,CB 的长,得到答案;(3)过F 作FD ⊥AG 的延长线交于点D ,根据全等三角形的性质得到CG=GD ,AD=CE=7,代入计算即可.【详解】解:(1)证明:∵FD ⊥AC ,∴∠FDA=90°,∴∠DFA+∠DAF=90°,同理,∠CAE+∠DAF=90°,∴∠DFA=∠CAE ,在△AFD 和△EAC 中, AFD EAC ADF ECA AF AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AFD ≌△EAC (AAS ),∴DF=AC ,∵AC=BC ,∴FD=BC ;(2)作FD ⊥AC 于D ,由(1)得,FD=AC=BC ,AD=CE ,在△FDG 和△BCG 中,90 FDG BCG FGD BGCFD BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△FDG≌△BCG(AAS),∴DG=CG=1,∴AD=2,∴CE=2,∵BC=AC=AG+CG=4,∴E点为BC中点;(3)当点E在CB的延长线上时,过F作FD⊥AG的延长线交于点D,BC=AC=4,CE=CB+BE=7,由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,∴CG=GD,AD=CE=7,∴CG=DG=1.5,∴4 1.5111.53 AGCG+==,同理,当点E在线段BC上时,4 1.551.53 AGCG-==,故答案为:113或53.【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.10.(1)详见解析;(2)①详见解析;②详见解析.【解析】(1)本题考查理解题意能力,按照题目所述依次作图即可.(2)①本题考查线段和最短问题,需要通过垂直平分线的性质将所求线段转化为其他等量线段之和,以达到求解目的.②本题考查垂直平分线的判定以及全等三角形的证明,继而利用角的平分线性质即可得出结论.【详解】(1)补全图形,如图1所示(2)①如图2,连接BD,P为BD与AE的交点∵等边△ACD,AE⊥CD∴PC=PD,PC+PB最短等价于PB+PD最短故B,D之间直线最短,点P即为所求.②证明:连接DE,DF.如图3所示∵△ABC,△ADC是等边三角形∴AC=AD,∠ACB=∠CAD=60°∵AE⊥CD∴∠CAE=12∠CAD=30°∴∠CEA=∠ACB﹣∠CAE=30°∴∠CAE=∠CEA∴CA=CE∴CD垂直平分AE∴∠DAE=∠DEA∵EF⊥AF,∠EAF=45°∴∠FEA=45°∴∠FEA=∠EAF∴FA=FE,∠FAD=∠FED∴△FAD≌△FED(SAS)∴∠AFD=∠EFD∴点D到AF,EF的距离相等.【点睛】本题第一问作图极为重要,要求对题意有较深的理解,同时对于垂直平分线以及角平分线的定义要清楚,能通过题目文字所述转化为考点,信息转化能力需要多做题目加以提升.11.(1)①11mn=⎧⎨=⎩;②42≤a<54;(2)m=2n【解析】【分析】(1)①构建方程组即可解决问题;②根据不等式即可解决问题;(2)利用恒等式的性质,根据关系式即可解决问题.【详解】解:(1)①由题意得()0 88m nn⎧--=⎨=⎩,解得11mn=⎧⎨=⎩,②由题意得()()()() 222424 432464p p p pp p p p a ⎧+-+->⎪⎨+-+-≤⎪⎩,解不等式①得p>-1.解不等式②得p≤18 12a-,∴-1<p≤18 12a-,∵恰好有3个整数解,∴2≤1812a-<3.∴42≤a<54;(2)由题意:(mx+ny)(x+2y)=(my+nx)(y+2x),∴mx2+(2m+n)xy+2ny2=2nx2+(2m+n)xy+my2,∵对任意有理数x,y都成立,【点睛】本题考查一元一次不等式、二元一次方程组、恒等式等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.12.(1)见解析;(2)30ABE CDE ∠-∠=︒【解析】【分析】(1)根据聪聪提供的辅助线作法进行证明,先由平行线的性质得:AGC MCD ∠=∠,90F GAF ∠+∠=︒,再证明MCD BAG ∠=∠,可得结论;(2)根据平行线的性质和三角形的外角性质可得结论.【详解】解:(1)证明:如图2,过A 作//AG FM ,交CD 于G ,AGC MCD ∴∠=∠,90F GAF ∠+∠=︒,FN FM ⊥,90F ∴∠=︒,90GAF ∴∠=︒,90FAB MCD ∠-∠=︒,FAB GAF MCD BAG ∴∠-∠=∠=∠,//AB CD ∴;(2)解:30ABE CDE ∠-∠=︒,理由如下:如图3,//AB CD ,BPD ABE ∴∠=∠,BPD CDE BED ∠=∠+∠,30BED ∠=︒,30BPD CDE ∴∠-∠=︒,∴30ABE CDE ∠-∠=︒.【点睛】本题主要考查了平行线的性质和判定以及三角形外角性质的运用,熟练掌握平行线的性质和判定是解决问题的关键.13.(1)AE//BF;QE=QF ;(2)QE=QF ,证明见解析;(3)结论成立,证明见解析.【解析】【分析】(1)根据AAS 得到AEQ BFQ ∆≅∆,得到AEQ BFQ ∠=∠、QE=QF ,根据内错角相等两直线平行,得到AE//BF ;(2)延长EQ 交BF 于D ,根据AAS 判断得出AEQ BDQ ∆≅∆,因此EQ DQ =,根据直角三角形斜边的中线等于斜边的一半即可证明;(3)延长EQ 交FB 的延长于D ,根据AAS 判断得出AEQ BDQ ∆≅∆,因此EQ DQ =,根据直角三角形斜边的中线等于斜边的一半即可证明.【详解】(1)AE//BF ;QE=QF(2)QE=QF证明:延长EQ 交BF 于D ,,AE CP BF CP ⊥⊥//AE BF ∴AEQ BDQ ∴∠=∠AQE BQD AEQ BDQ AQ BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩, AEQ BDQ ∴∆≅∆EQ DQ ∴=90BFE ︒∠=QE QF ∴=(3)当点P 在线段BA 延长线上时,此时(2)中结论成立证明:延长EQ 交FB 的延长于D因为AE//BF所以AEQ BDQ ∠=∠AQE BQD AEQ BDQ AQ BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩AEQ BDQ ∴∆≅∆EQ=QF90BFE ︒∠=QE QF ∴=【点睛】本题考查了三角形全等的判定方法:AAS ,平行线的性质,根据P 点位置不同,画出正确的图形,找到AAS 的条件是解决本题的关键.14.(1)EM ⊥CF ,理由见解析;(2)证明见解析;(3)不变,且∠NEM=45°,理由见解析.【解析】【分析】(1)EM ⊥CF ,分别利用角平分线的性质、平行线的性质、三角形的内角和定理进行求证即可;(2)根据垂直定义和三角形的内角和定理证得∠DCO+∠CDO=90°,∠ECP+∠EPC=90°,再利用等角的余角相等和对顶角相等即可证得结论;(3)不变,且∠NEM=45°,先利用平行线的性质得到∠AEC=∠ECO=2∠ECP ,进而有∠AEP=∠CEP+∠AEC=90°+2∠ECP ,再由角平分线的定义∠NEP=∠AEN=45°+∠ECP ,再根据同角的余角相等得到∠ECP=∠MEP ,然后等量代换证得∠NEM=45°,是定值.【详解】解:(1)EM ⊥CF ,理由如下:∵CF 平分∠ECO ,EM 平分∠FEC ,∴∠ECF=∠FCO=12ECO ∠,∠FEM=∠CEM=12CEF ∠ ∵AB ∥x 轴 1111()180902222ECF CEM ECO CEF ECO CEF ∴∠+∠=∠+∠=∠+∠=⨯︒=︒ ∴∠ECO+∠CEF=180° ∴∠EMC=180°-(∠CEM+∠ECF )=180°-90°=90°∴EM ⊥CF(2)由题得,∠EOC=90°∴∠DCO+∠CDO=180°-∠EOC=180°-90°=90°∵PE ⊥CE∴∠CEP=90°∴∠ECP+∠EPC=180°-∠CEP=180°-90°=90°∵∠DCO=∠ECP∴∠CDO=∠EPC又∵∠CDO=∠EDP∴∠EPC=∠EDP(3)不变,且∠NEM=45°,理由如下:∵AB ∥x 轴∴∠AEC=∠ECO=2∠ECP∴∠AEP=∠CEP+∠AEC=90°+2∠ECP∵EN 平分∠AEP∴∠NEP=∠AEN=12AEP ∠=1(902)2ECP ︒+∠=45°+∠ECP ∵∠CEP=90°∴∠ECP+∠EPC=90°又∵∠EMC=90°∴∠MEP+∠EPC=90°∴∠ECP=∠MEP∴∠NEP=∠NEM+∠MEP=∠NEM+∠ECP又∵∠NEP=45°+∠ECP∴∠NEM=45°.【点睛】本题是一道综合探究题,涉及有平行线的性质、角平分线的定义、三角形的内角和定理、同(等)角的余角相等、对顶角相等、垂线性质等知识,解答的关键是认真审题,结合图形,寻找相关联信息,确定解题思路,进而探究、推理、论证.15.(1)见解析;(2)见解析;(3)猜想:∠H= 3∠GDB ,证明见解析.【解析】【分析】(1)作辅助线:过C 作EF ∥MN ,根据平行的传递性可知这三条直线两两平行,由平行线的性质得到内错角相等∠MAC=∠ACF ,∠BCF=∠PBC ,再进行角的加和即可得出结论;(2)根据角平分线线定理得知11,22MAD MAC NAE NAC ∠=∠∠=∠,利用平角为180°得到∠DAE=90°,同理得90DBE ∠=︒,再根据四边形内角和180°,得出结论;(3)由(1)(2)中的结论进行等量代换得到3∠ADB=2∠E ,并且两角的和为180°,由此得到两个角的度数分别为72°和108°,利用角的和与差得到∠HDA=36°,∠H=54°,由此得到倍数关系. 【详解】(1)如图:过C 作EF ∥MN ,∵MN ∥PQ , ∴MN ∥EF ∥PQ ,∴∠MAC=∠ACF ,∠BCF=∠PBC ,∴∠ACF+∠BCF=∠MAC+∠PBC ,即∠ACB=∠MAC+∠PBC .(2)∵AD ,AE 分别为∠MAC ,∠CAN 的角平分线,∴11,22MAD MAC NAE NAC ∠=∠∠=∠, ∴11118090222MAD NAE MAC NAC ∠+∠=∠+∠=⨯︒=︒,于是∠DAE=90°同理可得:90PBD QBE ∠+∠=︒,由(1)可得:∵ 180D E MAD PBD NAE QBE ∠+∠=∠+∠+∠+∠=︒.(3)猜想:∠H= 3∠GDB.理由如下:由(1)可知:2()2C MAC PBC MAD PBD ADB ∠=∠+∠=∠+∠=∠, ∵3∠C=4∠E ,∴6∠ADB=4∠E ,∴3∠ADB=2∠E ,∵∠ADB+∠E=180°,∴∠ADB=72°,∠E=108°,∵DG ⊥DA ,∴∠GDB=18°,∵∠FDA=2∠FDB ,∴∠ADF=144°,∴∠HDA=36°,∵DA ⊥AE ,∴∠H=54°,∴∠H=3∠GDB .【点睛】考查平行线中角度的关系,学生要熟悉掌握平行线的性质以及角平分线定理,结合角的和与差进行计算,本题的关键是平行线的性质.16.(1)43t =时,点C 位于线段PQ 的垂直平分线上;(2)1t =;(3)不存在,理由见解析.【解析】【分析】(1)根据题意求出BP ,CQ ,结合图形用含t 的代数式表示CP 的长度,根据线段垂直平分线的性质得到CP =CQ ,列式计算即可;(2)根据全等三角形的对应边相等列式计算;(3)根据全等三角形的对应边相等列式计算,判断即可.【详解】解:(1)由题意得3BP CQ t ==,则83CP t -=,当点C 位于线段PQ 的垂直平分线上时,CP CQ =,∴833t t -=, 解得,43t =, 则当43t =时,点C 位于线段PQ 的垂直平分线上; (2)∵D 为AB 的中点,10AB AC ==,∴5BD =,∵BPD CQP ≌,∴BD CP =,∴835t -=,解得,1t =, 则当BPD CQP ≌时,1t =; (3)不存在,∵BPD CPQ △≌△,∴BD CQ BP CP =,=,则35383t t t -=,=解得,53t =,43t =, ∴不存在某一时刻t ,使BPD CPQ △≌△.【点睛】本题考查的是几何动点运动问题、全等三角形的性质、线段垂直平分线的性质、等腰三角形的性质,掌握全等三角形的对应边相等是解题的关键.17.(1)详见解析;(2)①详见解析;②PB PC PD BE ++=,理由详见解析【解析】【分析】(1)根据等边三角形的性质得出BC=AC ,CE=CD ,∠ACB=∠DCE=60°,进而得出∠BCE=∠ACD ,判断出BCE ACD ≌(SAS ),即可得出结论;(2)①同(1)的方法判断出≌ACD BCE (SAS ),ABD CBF ≌(SAS ),即可得出结论; ②先判断出∠APB=60°,∠APC=60°,在PE 上取一点M ,使PM=PC ,证明CPM △是等边三角形, 进而判断出PCD MCE ≌(SAS ),即可得出结论.【详解】(1)证明:∵ABC 和DCE 都是等边三角形,∴BC=AC ,CE=CD ,∠ACB=∠DCE=60°,∴∠ABC+∠ACE=∠DCE+∠ACE ,即∠BCE=∠ACD ,∴BCE ACD ≌(SAS ),∴BE=AD ;(2)①证明:∵ABC 和DCE 是等边三角形,∴AC=BC ,CD=CE ,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD ,即∠ACD=∠BCE ,∴≌ACD BCE (SAS ),∴AD=BE ,同理:ABD CBF ≌(SAS ),∴AD=CF ,。

2020-2021厦门市八年级数学上期末试题(附答案)

2020-2021厦门市八年级数学上期末试题(附答案)

2020-2021厦门市八年级数学上期末试题(附答案)一、选择题1.下列边长相等的正多边形能完成镶嵌的是( )A .2个正八边形和1个正三角形B .3个正方形和2个正三角形C .1个正五边形和1个正十边形D .2个正六边形和2个正三角形 2.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm.依题意,下面所列方程正确的是A .120100x x 10=-B .120100x x 10=+C .120100x 10x =-D .120100x 10x=+ 3.运用图腾解释神话、民俗民风等是人类历史上最早的一种文化现象. 下列图腾中,不是轴对称图形的是( )A .B .C .D .4.下列运算正确的是( )A .236326a a a -⋅=-B .()632422a a a ÷-=-C .326()a a -=D .326()ab ab = 5.如果一个多边形的每个内角的度数都是108°,那么这个多边形的边数是( ) A .3B .4C .5D .6 6.若(x ﹣1)0=1成立,则x 的取值范围是( ) A .x =﹣1B .x =1C .x≠0D .x≠1 7.如图,在△ABC 中,∠C=90°,AD 平分∠CAB,DE⊥AB 于E ,DE 平分∠ADB,则∠B=( )A .40°B .30°C .25°D .22.5〫8.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线; Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A .①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB .①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC .①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD .①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ 9.如图,在Rt△ABC 中,∠ACB=90°,∠B=30°,CD 是斜边AB 上的高,AD =3 cm ,则AB 的长度是( )A .3cmB .6cmC .9cmD .12cm10.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于点E ,交AC 于点F ,过点O 作OD AC ⊥于点D ,某班学生在一次数学活动课中,探索出如下结论,其中错误的是( )A .EF BE CF =+B .点O 到ABC ∆各边的距离相等 C .90BOC A ∠=+∠oD .设OD m =,AE AF n +=,则12AEF S mn ∆= 11.若正多边形的一个内角是150°,则该正多边形的边数是( )A .6B .12C .16D .1812.如图,在△ABC 中,AB=AC ,∠B=50°,P 是边 AB 上的一个动点(不与顶点 A 重合),则∠BPC 的度数可能是A .50°B .80°C .100°D .130°二、填空题13.如果24x kx ++是一个完全平方式,那么k 的值是__________.14.如图所示,在Rt △ABC 中,∠A=30°,∠B=90°,AB=12,D 是斜边AC 的中点,P 是AB 上一动点,则PC +PD 的最小值为_____.15.分解因式:2x2-8x+8=__________. 16.若a,b互为相反数,则a2﹣b2=_____.17.如果代数式m2+2m=1,那么22442m m mm m+++÷的值为_____.18.因式分解:3a2﹣27b2=_____.19.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.20.如图,边长为的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为三、解答题21.已知:如图,在△ABC中,AB=2AC,过点C作CD⊥AC,交∠BAC的平分线于点D.求证:AD=BD.22.如图,四边形ABCD中,∠B=90°, AB//CD,M为BC边上的一点,AM平分∠BAD,DM平分∠ADC,求证:(1) AM⊥DM;(2) M为BC的中点.23.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.24.“丰收1号”小麦的试验田是边长为a米(a>1)的正方形减去一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(1a-)米的正方形,两块试验田里的小麦都收获了500千克.(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?25.先化简,再求值:22211111x xx x x⎛⎫-++÷⎪-+⎝⎭,其中x=-2.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】只需要明确几个几何图形在一点进行平铺就是几个图形与这一点相邻的所有内角之和等于360°即可。

2020-2021厦门市初二数学上期末一模试卷(含答案)

2020-2021厦门市初二数学上期末一模试卷(含答案)

2020-2021厦门市初二数学上期末一模试卷(含答案)一、选择题1.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-32.如图,已知△ABC 中,∠A=75°,则∠BDE+∠DEC =( )A .335°B .135°C .255°D .150°3.下列判定直角三角形全等的方法,不正确的是( )A .两条直角边对应相等B .斜边和一锐角对应相等C .斜边和一直角边对应相等D .两个面积相等的直角三角形4.如图,在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,点E 、F 分别在AB 、AC 上,且90EDF ∠=︒,下列结论:①DEF ∆是等腰直角三角形;②AE CF =;③BDE ADF ∆∆≌;④BE CF EF +=.其中正确的是( )A .①②④B .②③④C .①②③D .①②③④ 5.若△ABC 三边分别是a 、b 、c ,且满足(b ﹣c )(a 2+b 2)=bc 2﹣c 3 , 则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰或直角三角形 6.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .11 7.若 x=3 是分式方程2102a x x --=- 的根,则 a 的值是 A .5 B .-5 C .3 D .-38.若数a 使关于x 的不等式组()3x a 2x 11x 2x 2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y 的分式方程y 51y --+3=a y 1-有整数解,则满足条件的所有整数a 的个数是( )A .5B .4C .3D .29.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?A .5B .6C .7D .10 10.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形 11.如图,Rt △ABC 中,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E ,若AB=10cm ,AC=6cm ,则BE 的长度为( )A .10cmB .6cmC .4cmD .2cm 12.下列运算正确的是( ) A .236326a a a -⋅=-B .()632422a a a ÷-=-C .326()a a -=D .326()ab ab =二、填空题13.如图所示,请将12A ∠∠∠、、用“>”排列__________________.14.关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是_____. 15.分解因式:2a 2﹣8=_____. 16.如图,在△ABC 中,AB=AC=24厘米,BC=16厘米,点D 为AB 的中点,点P 在线段BC 上以4厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.当点Q的运动速度为_______厘米/秒时,能够在某一时刻使△BPD与△CQP全等.17.如图,在△ABC中,AB = AC,BC = 10,AD是∠BAC平分线,则BD = ________.18.分解因式:x3y﹣2x2y+xy=______.19.若m为实数,分式()22x xx m++不是最简分式,则m=______.20.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于点E,且AB=6cm,则△DEB的周长是___;三、解答题21.已知:如图,在△ABC 中,AB=AC,∠BAC=90°,D 是BC 上一点,EC⊥BC,EC=BD,DF=FE.求证:(1)△ABD≌△ACE;(2)AF⊥DE.22.先化简再求值:(a+2﹣52a-)•243aa--,其中a=12-.23.如图,上午8时,一艘轮船从A处出发以每小时20海里的速度向正北航行,10时到达B处,则轮船在A处测得灯塔C在北偏西36°,航行到B处时,又测得灯塔C在北偏西72°,求从B到灯塔C的距离.24.如图,点B 、E 、C 、F 在同一条直线上,AB =DE ,AC =DF ,BE =CF ,求证:AB ∥DE .25.解下列分式方程 (1)2233111x x x x +-=-+- (2)32122x x x =---【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a 、b 即可.详解:(x+1)(x-3)=x 2-3x+x-3=x 2-2x-3所以a=2,b=-3,故选B .点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.2.C解析:C【解析】【分析】先由三角形内角和定理得出∠B+∠C=180°-∠A=105°,再根据四边形内角和定理即可求出∠BDE+∠DEC =360°-105°=255°.【详解】:∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°-∠A=105°,∵∠BDE+∠DEC+∠B+∠C=360°,∴∠BDE+∠DEC=360°-105°=255°;故答案为:C.【点睛】本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n-2)•180°(n≥3且n为整数)是解题的关键.3.D解析:D【解析】【分析】【详解】解:A、正确,利用SAS来判定全等;B、正确,利用AAS来判定全等;C、正确,利用HL来判定全等;D、不正确,面积相等不一定能推出两直角三角形全等,没有相关判定方法对应.故选D.【点睛】本题主要考查直角三角形全等的判定方法,关键是熟练掌握常用的判定方法有SSS、SAS、AAS、HL等.4.C解析:C【解析】【分析】根据等腰直角三角形的性质以及斜边上的中线的性质,易证得△CDF≌△ADE,即可判断①②;利用SSS即可证明△BDE≅△ADF,故可判断③;利用等量代换证得+=,从而可以判断④.BE CF AB【详解】∵△ABC为等腰直角三角形,且点在D为BC的中点,∴CD=AD=DB,AD⊥BC,∠DCF=∠B=∠DAE=45°,∵∠EDF=90︒,又∵∠C DF+∠FDA=∠CDA=90︒,∠EDA+∠EDA=∠EDF=90︒,∴∠C DF=∠EDA,在△CDF和△ADE中,DF DCF C EDA CD AD DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CDF ≌△ADE ,∴DF=DE ,且∠EDF=90︒,故①DEF n 是等腰直角三角形,正确;CF=AE ,故②正确;∵AB=AC ,又CF=AE ,∴BE=AB-AE=AC-CF=AF ,在△BDE 和△ADF 中,BE AF DE DF BD DC =⎧⎪=⎨⎪=⎩,∴△BDE ≅△ADF ,故③正确;∵CF=AE ,∴BE CF BE AE AB EF +=+=≠,故④错误;综上:①②③正确故选:C .【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.5.D解析:D【解析】试题解析:∵(b ﹣c )(a 2+b 2)=bc 2﹣c 3,∴(b ﹣c )(a 2+b 2)﹣c 2(b ﹣c )=0,∴(b ﹣c )(a 2+b 2﹣c 2)=0,∴b ﹣c=0,a 2+b 2﹣c 2=0,∴b=c 或a 2+b 2=c 2,∴△ABC 是等腰三角形或直角三角形.故选D .6.C解析:C【解析】【分析】【详解】试题分析:运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE ,然后证明△ACB ≌△DCE ,再结合全等三角形的性质和勾股定理来求解即可.解:由于a 、b 、c 都是正方形,所以AC=CD ,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,在△ABC和△CED中,,∴△ACB≌△CDE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S b=S a+S c=1+9=10,∴b的面积为10,故选C.考点:全等三角形的判定与性质;勾股定理;正方形的性质.7.A解析:A【解析】把x=3代入原分式方程得,21332a--=-,解得,a=5,经检验a=5适合原方程.故选A.8.D解析:D【解析】【分析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.【详解】不等式组整理得:13x ax≥-⎧⎨≤⎩,由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=22a-,由分式方程有整数解,得到a=0,2,共2个,故选:D.【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.9.C解析:C【解析】依题意可得,当其中一个夹角为180°即四条木条构成三角形时,任意两螺丝的距离之和取到最大值,为夹角为180°的两条木条的长度之和.因为三角形两边之和大于第三边,若长度为2和6的两条木条的夹角调整成180°时,此时三边长为3,4,8,不符合;若长度为2和3的两条木条的夹角调整成180°时,此时三边长为4,5,6,符合,此时任意两螺丝的距离之和的最大值为6;若长度为3和4的两条木条的夹角调整成180°时,此时三边长为2,6,7,符合,此时任意两螺丝的距离之和的最大值为7;若长度为4和6的两条木条的夹角调整成180°时,此时三边长为2,3,10,不符合.综上可得,任意两螺丝的距离之和的最大值为7, 故选C10.B解析:B【解析】【分析】n 边形的内角和是(n ﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】根据n 边形的内角和公式,得(n ﹣2)•180=1080,解得n=8,∴这个多边形的边数是8,故选B .【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.11.C解析:C【解析】试题解析:∵AD 是∠BAC 的平分线,∴CD=DE ,在Rt △ACD 和Rt △AED 中,{CD DE AD AD==, ∴Rt △ACD ≌Rt △AED (HL ),∴AE=AC=6cm ,∵AB=10cm ,∴EB=4cm .故选C .12.C解析:C【解析】【分析】根据单项式的乘法和除法法则,以及幂的乘方法则即可作出判断.【详解】A 、-3a 2•2a 3=-6a 5,故A 错误;B 、4a 6÷(-2a 3)=-2a 3,故B 错误;C 、(-a 3)2=a 6,故C 正确;D 、(ab 3)2=a 2b 6,故B 错误;故选:C .【点睛】本题考查了单项式的乘法、除法以及幂的乘方,正确理解幂的运算法则是关键.二、填空题13.【解析】【分析】根据三角形的外角的性质判断即可【详解】解:根据三角形的外角的性质得∠2>∠1∠1>∠A∴∠2>∠1>∠A 故答案为:∠2>∠1>∠A【点睛】本题考查了三角形的外角的性质掌握三角形的一个解析:21A ∠∠∠>>【解析】【分析】根据三角形的外角的性质判断即可.【详解】解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A∴∠2>∠1>∠A ,故答案为:∠2>∠1>∠A .【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.14.且【解析】【分析】直接解分式方程进而利用分式方程的解是正数得出的取值范围进而结合分式方程有意义的条件分析得出答案【详解】去分母得:解得:解得:当时不合题意故且故答案为:且【点睛】此题主要考查了分式方 解析:5a <且3a ≠【解析】【分析】直接解分式方程,进而利用分式方程的解是正数得出a 的取值范围,进而结合分式方程有意义的条件分析得出答案.【详解】去分母得:122a x -+=-,解得:5x a =-,50a ->,解得:5a <,当52x a =-=时,3a =不合题意,故5a <且3a ≠.故答案为:5a <且3a ≠.【点睛】此题主要考查了分式方程的解,注意分式的解是否有意义是解题关键.15.2(a+2)(a ﹣2)【解析】【分析】先提取公因式2再利用平方差公式继续分解【详解】解:2a2﹣8=2(a2﹣4)=2(a+2)(a ﹣2)故答案为:2(a+2)(a ﹣2)【点睛】本题考查了因式分解一解析:2(a+2)(a ﹣2)【解析】【分析】先提取公因式2,再利用平方差公式继续分解.【详解】解:2a 2﹣8=2(a 2﹣4),=2(a+2)(a ﹣2).故答案为:2(a+2)(a ﹣2).【点睛】本题考查了因式分解,一般是一提二套,先考虑能否提公式式,再考虑能不能用平方差公式和完全平方公式继续分解,注意要分解彻底.16.4或6【解析】【分析】求出BD 根据全等得出要使△BPD 与△CQP 全等必须B D=CP 或BP=CP 得出方程12=16-4x 或4x=16-4x 求出方程的解即可【详解】设经过x 秒后使△BPD 与△CQP 全等∵解析:4或6【解析】【分析】求出BD ,根据全等得出要使△BPD 与△CQP 全等,必须BD=CP 或BP=CP ,得出方程12=16-4x 或4x=16-4x ,求出方程的解即可.【详解】设经过x 秒后,使△BPD 与△CQP 全等,∵AB=AC=24厘米,点D 为AB 的中点,∴BD=12厘米,∵∠ABC=∠ACB ,∴要使△BPD 与△CQP 全等,必须BD=CP 或BP=CP ,即12=16-4x 或4x=16-4x ,x=1,x=2,x=1时,BP=CQ=4,4÷1=4;x=2时,BD=CQ=12,12÷2=6;即点Q的运动速度是4或6,故答案为:4或6【点睛】本题考查了全等三角形的判定的应用,关键是能根据题意得出方程.17.5【解析】【分析】由等腰三角形三线合一的性质得出AD⊥BCBD=CD=BC=5【详解】解:∵AB=ACAD是∠BAC平分线∴AD⊥BCBD=CD=BC=5故答案为:5【点睛】本题考查了等腰三角形的性解析:5【解析】【分析】由等腰三角形三线合一的性质得出AD⊥BC,BD=CD=12BC=5.【详解】解:∵AB=AC,AD是∠BAC平分线,∴AD⊥BC,BD=CD=12BC=5.故答案为:5.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解决问题的关键.18.xy(x﹣1)2【解析】【分析】原式提取公因式再利用完全平方公式分解即可【详解】解:原式=xy(x2-2x+1)=xy(x-1)2故答案为:xy(x-1)2【点睛】此题考查了提公因式法与公式法的综合解析:xy(x﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy(x2-2x+1)=xy(x-1)2.故答案为:xy(x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.0或-4【解析】【分析】由分式不是最简分式可得x或x+2是x2+m的一个因式分含x和x+2两种情况根据多项式乘以多项式的运算法则求出m的值即可【详解】∵分式不是最简分式∴x或x+2是x2+m的一个因解析:0或-4【解析】【分析】由分式()22x xx m++不是最简分式可得x或x+2是x2+m的一个因式,分含x和x+2两种情况,根据多项式乘以多项式的运算法则求出m的值即可.【详解】∵分式()22x xx m++不是最简分式,∴x或x+2是x2+m的一个因式,当x是x2+m的一个因式x时,设另一个因式为x+a,则有x(x+a)=x2+ax=x2+m,∴m=0,当x或x+2是x2+m的一个因式时,设另一个因式为x+a,则有(x+2)(x+a)=x2+(a+2)x+2a=x2+m,∴202am a+=⎧⎨=⎩,解得:24 am=-⎧⎨=-⎩,故答案为:0或-4.【点睛】本题考查最简分式的定义及多项式乘以多项式,根据题意得出x或x+2是x2+m的一个因式是解题关键.20.6cm【解析】【分析】先利用角角边证明△ACD和△AED全等根据全等三角形对应边相等可得AC=AECD=DE然后求出BD+DE=AE进而可得△DEB的周长【详解】解:∵DE⊥AB∴∠C=∠AED=9解析:6cm【解析】【分析】先利用“角角边”证明△ACD和△AED全等,根据全等三角形对应边相等可得AC=AE,CD=DE,然后求出BD+DE=AE,进而可得△DEB的周长.【详解】解:∵DE⊥AB,∴∠C=∠AED=90°,∵AD平分∠CAB,∴∠CAD=∠EAD,在△ACD和△AED中,C AEDCAD EADAD DA∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△AED(AAS),∴AC=AE,CD=DE,∴BD+DE=BD+CD=BC=AC=AE,BD+DE+BE=AE+BE=AB=6,所以,△DEB的周长为6cm.故答案为:6cm.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的性质,熟记性质并准确识图是解题的关键.三、解答题21.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据等腰三角形两底角相等求出∠B=∠BCA=45°,再求出∠ACE=45°,从而得到∠B=∠ACE,然后利用“边角边”即可证明△ABD≌△ACE;(2)根据全等三角形对应边相等可得AD=AE,然后利用等腰三角形三线合一的性质证明即可.【详解】(1)∵AB=AC,∠BAC=90°,∴∠B=∠BCA=45°,∵EC⊥BC,∴∠ACE=90°﹣45°=45°,∴∠B=∠ACE,在△ABD和△ACE中,AB ACB ACE BD EC=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△ACE(SAS);(2)由(1)知,△ABD≌△ACE,∴AD=AE,等腰△ADE中,∵DF=FE,∴AF⊥DE.【点睛】本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,熟练掌握三角形全等的判定方法以及等腰三角形的性质是解题的关键.22.﹣2a﹣6,-5【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,然后约分得到最简结果,再把a 的值代入计算即可.【详解】解:(a+2﹣52a-)•243aa--=(2)(2)52(2)×223-a a aa a a+--⎡⎤-⎢⎥--⎣⎦=(3)(3)2(2)×23-a a aa a+--⎡⎤⎢⎥-⎣⎦=﹣2a﹣6,当a=12-时,原式=﹣2a﹣6=﹣5.【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解本题的关键.23.从B到灯塔C的距离40海里【解析】【分析】易得AB长为40海里,利用三角形的外角知识可得△ABC为等腰三角形,那么BC=AB.【详解】解:由题意得:AB=(10-8)×20=40海里,∵∠C=72°-∠A=36°=∠A,∴BC=AB=40海里.答:从B到灯塔C的距离为40海里.【点睛】考查方向角问题;利用外角知识判断出△ABC的形状是解决本题的突破点.24.详见解析.【解析】【分析】利用SSS证明△ABC≌△DEF,根据全等三角形的性质可得∠B=∠DEF,再由平行线的判定即可得AB∥DE.【详解】证明:由BE=CF可得BC=EF,又AB=DE,AC=DF,故△ABC≌△DEF(SSS),则∠B=∠DEF,∴AB∥DE.考点:全等三角形的判定与性质.25.(1)无解.(2)x=7 6【解析】【分析】各分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】 (1)2233111x x x x +-=-+- 去分母得,2(x+1)-3(x-1)=x+3,解方程,得,x=1,经检验,x=1是原方程的增根,原方程无解. (2)32122x x x =--- 去分母得,2x=3-2(2x-2)解方程得,x=76, 经检验,x=76是原方程的解. 【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.。

2020-2021厦门双十中学初中部初二数学上期末模拟试题(及答案)

2020-2021厦门双十中学初中部初二数学上期末模拟试题(及答案)

2020-2021厦门双十中学初中部初二数学上期末模拟试题(及答案)一、选择题1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( )A .5.6×10﹣1B .5.6×10﹣2C .5.6×10﹣3D .0.56×10﹣1 2.如图,将边长相等的正方形、正五边形、正六边形纸板,按如图方式放在桌面上,则a ∠的度数是( )A .42B .40C .36D .32 3.下列运算中,结果是a 6的是( )A .a 2•a 3B .a 12÷a 2C .(a 3)3D .(﹣a)6 4.如图,在△ABC 中,点D 在BC 上,AB=AD=DC ,∠B=80°,则∠C 的度数为( )A .30°B .40°C .45°D .60°5.2019年7月30日阳朔至鹿寨高速公路建成通车,已知从阳朔至鹿寨国道的路程为150km ,现在高速路程缩短了20km ,若走高速的平均车速是走国道的2.5倍,所花时间比走国道少用1.5小时,设走国道的平均车速为/xkm h ,则根据题意可列方程为( )A .15020150 1.52.5x x --=B .15015020 1.52.5x x--= C .15015020 1.52.5x x --= D .15020150 1.52.5x x--= 6.如果30x y -=,那么代数式()2222x y x y x xy y+⋅--+的值为( ) A .27- B .27 C .72- D .727.如图,在△ABC 中,AB =AC ,∠A =30°,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为( )A .30°B .45°C .50°D .75°8.如图,在ABC ∆中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,连接MN ,交BC 于点D ,连接AD ,若ADC ∆的周长为10,7AB =,则ABC ∆的周长为( )A .7B .14C .17D .20 9.一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是( ) A .3 B .4 C .6D .12 10.到三角形各顶点的距离相等的点是三角形( ) A .三条角平分线的交点 B .三条高的交点C .三边的垂直平分线的交点D .三条中线的交点 11.如图,Rt △ABC 中,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E ,若AB=10cm ,AC=6cm ,则BE 的长度为( )A .10cmB .6cmC .4cmD .2cm12.如图,以∠AOB 的顶点O 为圆心,适当长为半径画弧,交OA 于点C ,交OB 于点D .再分别以点C 、D 为圆心,大于12CD 的长为半径画弧,两弧在∠AOB 内部交于点E ,过点E 作射线OE ,连接CD .则下列说法错误的是A .射线OE 是∠AOB 的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称二、填空题13.腰长为5,高为4的等腰三角形的底边长为_____.14.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.15.把0.0036这个数用科学记数法表示,应该记作_____.16.已知m n ty z x z x y x y z==+-+-+-,则()()()y z m z x n x y t-+-+-的值为________.17.若分式21xx-+的值为0,则x=____.18.如图所示,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E,F为圆心,大于12EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为.19.若a,b互为相反数,则a2﹣b2=_____.20.如图,在△ABC中,BF⊥AC 于点F,AD⊥BC 于点D ,BF 与AD 相交于点E.若AD=BD,BC=8cm,DC=3cm.则 AE= _______________cm .三、解答题21.(1)分解下列因式,将结果直接写在横线上:x2+4x+4=,16x2+24x+9=,9x2﹣12x+4=(2)观察以上三个多项式的系数,有42=4×1×4,242=4×16×9,(﹣12)2=4×9×4,于是小明猜测:若多项式ax2+bx+c(a>0)是完全平方式,则实数系数a、b、c一定存在某种关系.①请你用数学式子表示a、b、c之间的关系;②解决问题:若多项式x2﹣2(m﹣3)x+(10﹣6m)是一个完全平方式,求m的值.22.如图,上午8时,一艘轮船从A 处出发以每小时20海里的速度向正北航行,10时到达B 处,则轮船在A 处测得灯塔C 在北偏西36°,航行到B 处时,又测得灯塔C 在北偏西72°,求从B 到灯塔C 的距离.23.如图,△ABC 中,AB=AC ,点E ,F 在边BC 上,BE=CF ,点D 在AF 的延长线上,AD=AC ,(1)求证:△ABE ≌△ACF ;(2)若∠BAE=30°,则∠ADC= °.24.如图所示,在△ABC 中,D 是BC 边上一点∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC 的度数.25.解下列分式方程(1)2233111x x x x +-=-+- (2)32122x x x =---【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【详解】2.A解析:A【解析】【分析】根据正多边形的内角,角的和差,可得答案.【详解】解:正方形的内角为90°,正五边形的内角为(52)1801085︒︒-⨯=,正六边形的内角为(62)1801206︒︒-⨯=,∠1=360°-90°-108°-120°=42°, 故选:A .【点睛】本题考查多边形的内角与外角,解题关键是利用正多边形的内角进行计算.3.D解析:D【解析】【分析】分别利用幂的乘方运算和合并同类项法则分别化简求出答案.【详解】解:A 、a 2•a 3=a 5,故此选项错误;B 、122a a ÷= a 10,故此选项错误;C 、(a 3)3=a 9,故此选项错误;D 、(-a )6=a 6,故此选项正确.故选D .【点睛】此题主要考查了合并同类项法则以及幂的乘方运算等知识,正确运用相关法则是解题关键.4.B解析:B【解析】【分析】先根据等腰三角形的性质求出∠ADB 的度数,再由平角的定义得出∠ADC 的度数,根据等腰三角形的性质即可得出结论.【详解】解:∵△ABD 中,AB=AD ,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD ,∴∠C=180********.22ADC -︒︒-=︒=︒∠ 故选B .考点:等腰三角形的性质. 5.C解析:C【解析】【分析】根据“走高速用的时间比走国道少花1.5小时”列出方程即可得出答案.【详解】 根据题意可得,走高速所用时间150202.5x -小时,走国道所用时间150x小时 即15015020 1.52.5x x--= 故答案选择C.【点睛】 本题考查的是分式方程在实际生活中的应用,根据公式“路程=速度×时间”及其变形列出等式是解决本题的关键.6.D解析:D【解析】【分析】先把分母因式分解,再约分得到原式=2x y x y +-,然后把x=3y 代入计算即可. 【详解】原式=()22x y x y +-•(x-y )=2x y x y+-, ∵x-3y=0,∴x=3y ,∴原式=63y y y y +-=72. 故选:D .【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.7.B解析:B【解析】试题解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.8.C解析:C【解析】【分析】本题主要涉及到了线段垂直平分线性质,代入题目相关数据,即可解题.【详解】解:在△ABC中,以点A和点B为圆心,大于二分之一AB的长为半径画弧,两弧相交与点M,N,则直线MN为AB的垂直平分线,则DA=DB,△ADC的周长由线段AC,AD,DC组成,△ABC的周长由线段AB,BC,CA组成而DA=DB,因此△ABC的周长为10+7=17.故选C.【点睛】本题考察线段垂直平分线的根本性质,解题时要注意数形结合,从题目本身引发思考,以此为解题思路.9.B解析:B【解析】【分析】首先设正多边形的一个外角等于x°,由在正多边形中,一个内角的度数恰好等于它的外角的度数,即可得方程:x+x=180,解此方程即可求得答案.【详解】设正多边形的一个外角等于x°,∵一个内角的度数恰好等于它的外角的度数,∴这个正多边形的一个内角为: x°,∴x+x=180,解得:x=900,∴这个多边形的边数是:360°÷90°=4.故选B.【点睛】此题考查了多边形的内角和与外角和的知识.此题难度不大,方程思想的应用是解题的关键.10.C解析:C【解析】【分析】根据三角形外心的作法,确定到三定点距离相等的点.【详解】解:因为到三角形各顶点的距离相等的点,需要根据垂直平分线上的点到线段两端点的距离相等,只有分别作出三角形的两边的垂直平分线,交点才到三个顶点的距离相等. 故选:C .【点睛】本题考查了垂直平分线的性质和三角形外心的作法,关键是根据垂直平分线的性质解答.11.C解析:C【解析】试题解析:∵AD 是∠BAC 的平分线,∴CD=DE ,在Rt △ACD 和Rt △AED 中,{CD DE AD AD==, ∴Rt △ACD ≌Rt △AED (HL ),∴AE=AC=6cm ,∵AB=10cm ,∴EB=4cm .故选C .12.D解析:D【解析】试题分析:A 、连接CE 、DE ,根据作图得到OC=OD ,CE=DE .∵在△EOC 与△EOD 中,OC=OD ,CE=DE ,OE=OE ,∴△EOC ≌△EOD (SSS ).∴∠AOE=∠BOE ,即射线OE 是∠AOB 的平分线,正确,不符合题意.B 、根据作图得到OC=OD ,∴△COD 是等腰三角形,正确,不符合题意.C 、根据作图得到OC=OD ,又∵射线OE 平分∠AOB ,∴OE 是CD 的垂直平分线.∴C 、D 两点关于OE 所在直线对称,正确,不符合题意.D 、根据作图不能得出CD 平分OE ,∴CD 不是OE 的平分线,∴O 、E 两点关于CD 所在直线不对称,错误,符合题意.故选D .二、填空题13.6或或【解析】【分析】根据不同边上的高为4分类讨论即可得到本题的答案【详解】解:①如图1当则∴底边长为6;②如图2当时则∴∴∴此时底边长为;③如图3:当时则∴∴∴此时底边长为故答案为:6或或【点睛】 解析:6或25或45.【解析】【分析】根据不同边上的高为4分类讨论即可得到本题的答案.【详解】解:①如图1当5AB AC ==,4AD =,则3BD CD ==,∴底边长为6;②如图2.当5AB AC ==,4CD =时,则3AD =,∴2BD =,∴222425BC =+=,∴此时底边长为25;③如图3:当5AB AC ==,4CD =时,则223AD AC CD -=,BD=,∴8BC=,∴45∴此时底边长为45.故答案为:6或25或45.【点睛】本题考查了勾股定理,等腰三角形的性质,解题的关键是分三种情况分类讨论.14.40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数进而得出答案【详解】如图所示:∠1+∠2+∠6=180°∠3+∠4+∠7=180°∵∠1+∠2+∠3+∠4=220°∴∠1+∠2+∠解析:40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.15.6×10﹣3【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解析:6×10﹣3【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.16.0【解析】【分析】令=k(k≠0)列出方程组分别求出xyz 的值代入求值即可【详解】令=k(k≠0)则有解得:∴===0故答案为:0【点睛】此题主要考查了分式的运算熟练掌握运算法则是解此题的关键解析:0【解析】【分析】 令m n t y z x z x y x y z==+-+-+-=k(k≠0),列出方程组,分别求出x ,y ,z 的值,代入()()()y z m z x n x y t -+-+-求值即可.【详解】 令m n t y z x z x y x y z==+-+-+-=k(k≠0),则有 m y z x k n z x y k t x y z k⎧+-=⎪⎪⎪+-=⎨⎪⎪+-=⎪⎩, 解得:222n t x k m t y k m n z k +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩, ∴()()()y z m z x n x y t -+-+- =222t n m t n m m n t k k k---++ =2tm nm mn tn nt mt k-+-+- =0.故答案为:0.【点睛】 此题主要考查了分式的运算,熟练掌握运算法则是解此题的关键.17.2【解析】【分析】根据分式的值为零的条件得到x-2=0且x≠0易得x=2【详解】∵分式的值为0∴x−2=0且x≠0∴x=2故答案为2【点睛】本题考查了分式的值为零的条件解题的关键是熟练的掌握分式的值 解析:2【解析】根据分式的值为零的条件得到x-2=0且x≠0,易得x=2.【详解】∵分式21xx-+的值为0,∴x−2=0且x≠0,∴x=2.故答案为2.【点睛】本题考查了分式的值为零的条件,解题的关键是熟练的掌握分式的值为零的条件. 18.65°【解析】【分析】根据已知条件中的作图步骤知AG是∠CAB的平分线根据角平分线的性质解答即可【详解】根据已知条件中的作图步骤知AG是∠CAB 的平分线∵∠CAB=50°∴∠CAD=25°;在△AD解析:65°【解析】【分析】根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.【详解】根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);故答案是:65°.19.0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案【详解】∵ab互为相反数∴a+b=0∴a2﹣b2=(a+b)(a﹣b)=0故答案为0【点睛】本题考查了公式法分解因式以及相解析:0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a,b互为相反数,∴a+b=0,∴a2﹣b2=(a+b)(a﹣b)=0,故答案为0.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.20.【解析】【分析】易证∠CAD=∠CBF即可求证△ACD≌△BED可得DE=CD即可求得AE的长即可解题【详解】解:∵BF⊥AC于FAD⊥BC于D∴∠CAD+∠C=90°∠CBF+∠C=90°∴∠CA解析:【解析】易证∠CAD=∠CBF ,即可求证△ACD ≌△BED ,可得DE=CD ,即可求得AE 的长,即可解题.【详解】解:∵BF ⊥AC 于F ,AD ⊥BC 于D ,∴∠CAD+∠C=90°,∠CBF+∠C=90°,∴∠CAD=∠CBF ,∵在△ACD 和△BED 中,90CAD CBF AD BDADC BDE ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩∴△ACD ≌△BED ,(ASA )∴DE=CD ,∴AE=AD-DE=BD-CD=BC-CD-CD=2;故答案为2.【点睛】本题考查了全等三角形的判定和性质,本题中求证△ACD ≌△BED 是解题的关键.三、解答题21.(1)(x+2)2,(4x+3)2,(3x ﹣2)2;(2)①b 2=4ac ,②m=±1【解析】【分析】(1)根据完全平方公式分解即可;(2)①根据已知等式得出b 2=4ac ,即可得出答案;②利用①的规律解题.【详解】(1)x 2+4x+4=(x+2)2,16x 2+24x+9=(4x+3)2,9x 2-12x+4=(3x-2)2,故答案为(x+2)2,(4x+3)2,(3x-2)2;(2)①b 2=4ac ,故答案为b 2=4ac ;②∵多项式x 2-2(m-3)x+(10-6m )是一个完全平方式,∴[-2(m-3)]2=4×1×(10-6m ),m 2-6m+9=10-6mm 2=1m=±1.【点睛】本题考查了对完全平方公式的理解和应用,能根据完全平方公式得出b 2=4ac 是解此题的关键.22.从B 到灯塔C 的距离40海里【分析】易得AB 长为40海里,利用三角形的外角知识可得△ABC 为等腰三角形,那么BC=AB .【详解】解:由题意得:AB=(10-8)×20=40海里, ∵∠C=72°-∠A=36°=∠A , ∴BC=AB=40海里.答:从B 到灯塔C 的距离为40海里.【点睛】考查方向角问题;利用外角知识判断出△ABC 的形状是解决本题的突破点.23.(1)证明见解析;(2)75.【解析】【分析】(1)根据等边对等角可得∠B=∠ACF ,然后利用SAS 证明△ABE ≌△ACF 即可;(2)根据△ABE ≌△ACF ,可得∠CAF=∠BAE=30°,再根据AD=AC ,利用等腰三角形的性质即可求得∠ADC 的度数.【详解】(1)∵AB=AC ,∴∠B=∠ACF ,在△ABE 和△ACF 中,AB AC B ACF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACF (SAS );(2)∵△ABE ≌△ACF ,∠BAE=30°,∴∠CAF=∠BAE=30°,∵AD=AC ,∴∠ADC=∠ACD ,∴∠ADC=280013︒-︒=75°, 故答案为75.【点睛】 本题考查了全等三角形的判定与性质、等腰三角形的性质,熟练掌握相关性质与定理是解题的关键.24.32°【解析】【分析】设∠1=∠2=x ,根据三角形外角的性质可得∠4=∠3=2x ,在△ABC 中,根据三角形的内角和定理可得方程2x+x+69°=180°,解方程求得x 的值,即可求得∠4、∠3的度数,在△ADC 中,根据三角形的内角和定理求得∠DAC 的度数即可.【详解】设∠1=∠2=x∴∠4=∠3=∠1+∠2=2x ,在△ABC 中,∠4+∠2+∠BAC=180°,∴2x+x+69°=180°解得x=37.即∠1=∠2=37°,∠4=∠3=37°×2=74°. 在△ADC 中,∠4+∠3+∠DAC=180°∴∠DAC=180º-∠4-∠3=180°-74°-74°=32º. 【点睛】本题考查了三角形的内角和定理及三角形外角的性质,熟知三角形的内角和定理及三角形外角的性质是解题的关键.25.(1)无解.(2)x=76【解析】【分析】各分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】 (1)2233111x x x x +-=-+- 去分母得,2(x+1)-3(x-1)=x+3,解方程,得,x=1,经检验,x=1是原方程的增根,原方程无解. (2)32122x x x =--- 去分母得,2x=3-2(2x-2) 解方程得,x=76, 经检验,x=76是原方程的解. 【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.。

2020-2021厦门市八年级数学上期末第一次模拟试卷带答案

2020-2021厦门市八年级数学上期末第一次模拟试卷带答案

2020-2021厦门市八年级数学上期末第一次模拟试卷带答案一、选择题1.如图,已知圆柱底面的周长为4 dm,圆柱的高为2 dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长的最小值为( )A .45 dmB .22 dmC .25 dmD .42 dm2.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为( ) A .5×107 B .5×10﹣7 C .0.5×10﹣6 D .5×10﹣63.风筝会期间,几名同学租一辆面包车前去观看开幕式,面包车的租价为180元,出发时又增加两名同学,结果每人比原来少摊了3元钱车费,设前去观看开幕式的同学共x 人,则所列方程为( )A .18018032x x -=+ B .18018032x x -=+ C .18018032x x -=- D .18018032x x-=- 4.如果2220m m +-=,那么代数式2442m m m m m +⎛⎫+⋅ ⎪+⎝⎭的值是()n n A .2-B .1-C .2D .3 5.计算:(4x 3﹣2x )÷(﹣2x )的结果是( )A .2x 2﹣1B .﹣2x 2﹣1C .﹣2x 2+1D .﹣2x 2 6.如图,已知△ABC 中,∠A=75°,则∠BDE+∠DEC =( )A .335°B .135°C .255°D .150° 7.下列各图中a 、b 、c 为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A .甲和乙B .乙和丙C .甲和丙D .只有丙 8.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .11 9.如图,ABC ∆是等边三角形,0,20BC BD BAD =∠=,则BCD ∠的度数为( )A .50°B .55°C .60°D .65°10.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a +b)2-(a -b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是( )A .a 2-b 2=(a +b)(a -b)B .(a -b)2=a 2-2ab +b 2C .(a +b)2=a 2+2ab +b 2D .(a -b)(a +2b)=a 2+ab -b 211.如图,在△ABC 中,以点B 为圆心,以BA 长为半径画弧交边BC 于点D ,连接AD .若∠B =40°,∠C =36°,则∠DAC 的度数是( )A .70°B .44°C .34°D .24°12.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)二、填空题13.等腰三角形的一个内角是100 ,则这个三角形的另外两个内角的度数是__________.14.-12019+22020×(12)2021=_____________15.若x2+kx+25是一个完全平方式,则k的值是____________.16.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.17.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠BCD=_____.18.连接多边形的一个顶点与其它各顶点,可将多边形分成11个三角形,则这个多边形是______边形.19.如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E, AE=3cm,△ADC•的周长为9cm,则△ABC的周长是____ ___20.若分式的值为零,则x的值为________.三、解答题21.已知:如图,在△ABC中,AB=2AC,过点C作CD⊥AC,交∠BAC的平分线于点D.求证:AD=BD.22.如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE =18°,求∠C的度数.23.已知:如图,点B ,E ,C ,F 在同一直线上,AB ∥DE ,且AB =DE ,BE =CF . 求证:ABC DEF △≌△.24.解分式方程:(1)1123x x =- ;(2)2124+=+111x x x -- 25.如图,已知90A E ∠=∠=︒,A C F E 、、、在一条直线上,,AF EC BC DF ==. 求证:(1)Rt Rt ABC EDF △≌△;(2)四边形BCDF 是平行四边形.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC 的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴2dm,∴这圈金属丝的周长最小为2.故选D.【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.2.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.3.D解析:D【解析】【分析】先用x表示出增加2名同学前和增加后每人分摊的车费钱,再根据增加后每人比原来少摊了3元钱车费列出方程即可.【详解】解:设前去观看开幕式的同学共x人,根据题意,得:18018032x x-= -.故选:D.【点睛】本题考查了分式方程的应用,解题的关键是弄清题意、找准等量关系,易错点是容易弄错增加前后的人数.4.C解析:C【解析】分析:先把括号内通分,再把分子分解后约分得到原式22m m =+,然后利用2220m m +-=进行整体代入计算. 详解:原式2222244(2)(2)222m m m m m m m m m m m m m +++=⋅=⋅=+=+++, ∵2220m m +-=,∴222m m ,+= ∴原式=2.故选C.点睛:考查分式的混合运算,掌握运算法则是解题的关键.注意整体代入法的应用.5.C解析:C【解析】【分析】直接利用整式的除法运算法则计算得出答案.【详解】解:(4x 3﹣2x )÷(﹣2x )=﹣2x 2+1.故选C .【点睛】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.6.C解析:C【解析】【分析】先由三角形内角和定理得出∠B+∠C=180°-∠A=105°,再根据四边形内角和定理即可求出∠BDE+∠DEC =360°-105°=255°.【详解】:∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°-∠A=105°,∵∠BDE+∠DEC+∠B+∠C=360°,∴∠BDE+∠DEC=360°-105°=255°;故答案为:C .【点睛】本题考查了三角形、四边形内角和定理,掌握n 边形内角和为(n-2)•180°(n ≥3且n 为整数)是解题的关键.7.B解析:B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.详解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选B.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.C解析:C【解析】【分析】【详解】试题分析:运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE,然后证明△ACB≌△DCE,再结合全等三角形的性质和勾股定理来求解即可.解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,在△ABC和△CED中,,∴△ACB≌△CDE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S b=S a+S c=1+9=10,∴b的面积为10,故选C.考点:全等三角形的判定与性质;勾股定理;正方形的性质.9.A解析:A【解析】【分析】利用等边三角形三边相等,结合已知BC=BD ,易证ABD n 、CBD n 都是等腰三角形,利用等边对等角及三角形内角和定理即可求得BCD ∠的度数.【详解】Q ABC n 是等边三角形,BC AC AB ∴==,又Q BC BD =,AB BD ∴=,∴20BAD BDA ∠=∠=︒00000018018020206080CBD BAD BDA ABC∴∠=-∠-∠-∠=---=,BC BD =,11(180)(18080)5022BCE CBD ∠=⨯︒-∠=⨯︒-︒=︒, 故选:A .【点睛】本题考查了等边三角形、等腰三角形的性质、等边对等角以及三角形内角和定理,熟练掌握性质和定理是正确解答本题的关键. 10.B解析:B【解析】图(4)中,∵S 正方形=a 2-2b (a-b )-b 2=a 2-2ab+b 2=(a-b )2,∴(a-b )2=a 2-2ab+b 2.故选B11.C解析:C【解析】【分析】易得△ABD 为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC【详解】∵AB=BD ,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB ﹣∠C=34°.故选C.【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.12.B解析:B【解析】【分析】根据四边形的内角和为360°、平角的定义及翻折的性质,就可求出2∠A=∠1+∠2这一始终保持不变的性质.【详解】∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,则2∠A+(180°-∠2)+(180°-∠1)=360°,∴可得2∠A=∠1+∠2.故选:B【点睛】本题主要考查四边形的内角和及翻折的性质特点,解决本题的关键是熟记翻折的性质.二、填空题13.40°40°【解析】【分析】因为等腰三角形的两个底角相等且三角形内角和为180°100°只能为顶角所以剩下两个角为底角且为40°40°【详解】解:∵三角形内角和为180°∴100°只能为顶角∴剩下两解析:40° 40°【解析】【分析】因为等腰三角形的两个底角相等,且三角形内角和为180°,100°只能为顶角,所以剩下两个角为底角,且为40°,40°.【详解】解:∵三角形内角和为180°,∴100°只能为顶角,∴剩下两个角为底角,且它们之和为80°,∴另外两个内角的度数分别为40°,40°.故答案为:40°,40°.【点睛】本题考查了等腰三角形的性质和三角形的内角和,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.14.【解析】【分析】根据有理数的混合运算法则求解即可【详解】;故答案为【点睛】本题考查了有理数的混合运算熟练掌握有理数的混合运算法则是解题的关键解析:1 2-【解析】【分析】根据有理数的混合运算法则求解即可.【详解】201920202021202020201111212222⨯⨯⨯-+()=-+() 202011=1222⨯⨯-+() 11=1=22-+-;故答案为12-. 【点睛】本题考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键. 15.±10【解析】【分析】先根据两平方项确定出这两个数再根据完全平方公式的乘积二倍项即可确定k 的值【详解】解:∵x2+kx+25=x2+kx+52∴kx=±2•x•5解得k=±10故答案为:±10【点睛 解析:±10.【解析】【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k 的值.【详解】解:∵x 2+kx+25=x 2+kx+52,∴kx=±2•x•5,解得k=±10. 故答案为:±10. 【点睛】本题考查完全平方式,根据平方项确定出一次项系数是解题关键,也是难点,熟记完全平方公式对解题非常重要.16.30【解析】【分析】根据角平分线的定义可得∠PBC=20°∠PCM=50°根据三角形外角性质即可求出∠P 的度数【详解】∵BP 是∠ABC 的平分线CP 是∠ACM 的平分线∠ABP=20°∠ACP=50°∴解析:30【解析】【分析】根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P 的度数.【详解】∵BP 是∠ABC 的平分线,CP 是∠ACM 的平分线,∠ABP=20°,∠ACP=50°, ∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM ,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案为:30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.17.40°【解析】试题分析:延长DE 交BC 于F 点根据两直线平行内错角相等可知A BC==80°由此可得然后根据三角形的外角的性质可得=-=40°故答案为:40° 解析:40°【解析】试题分析:延长DE 交BC 于F 点,根据两直线平行,内错角相等,可知∠ABC=BFD ∠=80°,由此可得100DFC ∠=︒,然后根据三角形的外角的性质,可得BCD ∠=EDC ∠-FD C ∠=40°. 故答案为:40°.18.【解析】【分析】一个n 边形把一个顶点与其它各顶点连接起来形成的三角形个数为(n-2)据此可解【详解】解:∵一个n 边形把一个顶点与其它各顶点连接起来可将多边形分成(n-2)个三角形∴n-2=11则n=解析:【解析】【分析】一个n 边形,把一个顶点与其它各顶点连接起来,形成的三角形个数为(n-2),据此可解.【详解】解:∵一个n 边形,把一个顶点与其它各顶点连接起来,可将多边形分成(n-2)个三角形,∴n-2=11,则n=13.故答案是:13.【点睛】本题主要考查多边形的性质,一个n 边形,把一个顶点与其它各顶点连接起来,形成的三角形个数为(n-2).19.15cm 【解析】【分析】【详解】在△ABC 中边AB 的垂直平分线分别交BCAB 于点DEAE=3cmAE=BEAD=BD△ADC 的周长为9cm 即AC+CD+AD=9则△ABC 的周长=AB+BC+AC=解析:15cm【解析】【详解】在△ABC 中,边AB 的垂直平分线分别交BC 、AB 于点D 、E ,AE=3cm ,AE=BE ,AD=BD ,△ADC•的周长为9cm ,即AC+CD+AD=9,则△ABC 的周长=AB+BC+AC=AE+BE+BD+CD+AC=AE+BE+AD+CD+AC=6+9=15cm【点睛】本题考查垂直平分线,解答本题的关键是掌握垂直平分线的概念和性质,运用其来解答本题20.1【解析】试题分析:根据题意得|x|-1=0且x-1≠0解得x=-1考点:分式的值为零的条件解析:1【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.考点:分式的值为零的条件.三、解答题21.见解析.【解析】【分析】过D 作DE ⊥AB 于E ,根据角平分线的性质得出DE=DC ,根据AAS 证△DEA ≌△DCA ,推出AE=AC ,利用等腰三角形的性质证明即可.【详解】证明:过D 作DE ⊥AB 于E ,∵AD 平分∠BAC ,CD ⊥AC ,∴DE=DC ,在△DEA 和△DCA 中,DAE DAC AED ACD DE DC ∠∠∠∠⎧⎪⎨⎪⎩===,∴△DEA ≌△DCA ,∴AE=AC ,∴AE=AC=BE∵AE ⊥DE∴AD=BD【点睛】此题考查了等腰三角形的性质,全等三角形的性质和判定的应用,关键是求出△DEA ≌△DCA ,主要培养了学生分析问题和解决问题的能力,题目比较好,难度适中.22.∠C =78°. 【解析】【分析】由AD 是BC 边上的高,∠B=42°,可得∠BAD=48°,在由∠DAE=18°,可得∠BAE=∠BAD-∠DAE=30°,然后根据AE 是∠BAC 的平分线,可得∠BAC=2∠BAE=60°,最后根据三角形内角和定理即可推出∠C 的度数.【详解】解:∵AD 是BC 边上的高,∠B=42°,∴∠BAD=48°,∵∠DAE=18°,∴∠BAE=∠BAD-∠DAE=30°,∵AE 是∠BAC 的平分线,∴∠BAC=2∠BAE=60°,∴∠C=180°-∠B-∠BAC=78°.考点:1.三角形内角和定理;2.三角形的角平分线、3.中线和高.23.证明见解析.【解析】试题分析:首先根据AB ∥DE 可得∠B=∠DEF .再由BE=CF 可得BC=EF ,然后再利用SAS 证明△ABC ≌△DEF .试题解析:∵AB ∥DE ,∴∠B=∠DEF .∵BE=CF ,∴BE+EC=FC+EC ,即BC=EF .在△ABC 和△DEF 中,AB DE B DEF BC EF ⎧⎪∠∠⎨⎪⎩===,∴△ABC ≌△DEF (SAS ).24.(1)原方程的解是x =-1;(2)原方程无解.【解析】试题分析:(1)先把分式方程化为整式方程,再求出x 的值,代入最简公分母进行检验即可;(2)先把分式方程化为整式方程,再求出x 的值,代入最简公分母进行检验即可. 试题解析:(1)方程两边同时乘以()3x x 2-,得3x x 2=-,解得x =-1,把x =-1代入()3x x 2-,()3x x 2-≠0,∴原方程的解是x =-1.(2)方程两边同乘以最简公分母()()x 1x 1+-,得(x-1)+2(x+1)=4,解这个整式方程得,x=1,检验:把x=1代入最简公分母()()x 1x 1+-,()()x 1x 1+-=0,∴x=1不是原方程的解,应舍去,∴原方程无解.25.(1)详见解析;(2)详见解析.【解析】【分析】(1)由题意由“HL”可判定Rt △ABC ≌Rt △EDF(2)根据一组对边平行且相等的四边形是平行四边形,可证四边形BCDF 是平行四边形.【详解】证明:(1)∵AF=EC∴AC=EF又∵BC=DF ,∴Rt △ABC ≌Rt △EDF(2)∵Rt △ABC ≌Rt △EDF∴BC=DF ,∠ACB=∠DFE∴∠BCF=∠DFC∴BC ∥DF ,BC=DF∴四边形BCDF 是平行四边形【点睛】本题考查了平行四边形的判定与性质,全等三角形的判定与性质,关键是灵活运用性质和判定解决问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021厦门双十中学初中部初二数学上期末模拟试题(及答案)一、选择题1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( )A .5.6×10﹣1B .5.6×10﹣2C .5.6×10﹣3D .0.56×10﹣1 2.如图,将边长相等的正方形、正五边形、正六边形纸板,按如图方式放在桌面上,则a ∠的度数是( )A .42B .40C .36D .32 3.下列运算中,结果是a 6的是( )A .a 2•a 3B .a 12÷a 2C .(a 3)3D .(﹣a)6 4.如图,在△ABC 中,点D 在BC 上,AB=AD=DC ,∠B=80°,则∠C 的度数为( )A .30°B .40°C .45°D .60°5.2019年7月30日阳朔至鹿寨高速公路建成通车,已知从阳朔至鹿寨国道的路程为150km ,现在高速路程缩短了20km ,若走高速的平均车速是走国道的2.5倍,所花时间比走国道少用1.5小时,设走国道的平均车速为/xkm h ,则根据题意可列方程为( )A .15020150 1.52.5x x --=B .15015020 1.52.5x x--= C .15015020 1.52.5x x --= D .15020150 1.52.5x x--= 6.如果30x y -=,那么代数式()2222x y x y x xy y+⋅--+的值为( ) A .27- B .27 C .72- D .727.如图,在△ABC 中,AB =AC ,∠A =30°,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为( )A .30°B .45°C .50°D .75°8.如图,在ABC ∆中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,连接MN ,交BC 于点D ,连接AD ,若ADC ∆的周长为10,7AB =,则ABC ∆的周长为( )A .7B .14C .17D .20 9.一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是( ) A .3 B .4 C .6D .12 10.到三角形各顶点的距离相等的点是三角形( ) A .三条角平分线的交点 B .三条高的交点C .三边的垂直平分线的交点D .三条中线的交点 11.如图,Rt △ABC 中,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E ,若AB=10cm ,AC=6cm ,则BE 的长度为( )A .10cmB .6cmC .4cmD .2cm12.如图,以∠AOB 的顶点O 为圆心,适当长为半径画弧,交OA 于点C ,交OB 于点D .再分别以点C 、D 为圆心,大于12CD 的长为半径画弧,两弧在∠AOB 内部交于点E ,过点E 作射线OE ,连接CD .则下列说法错误的是A .射线OE 是∠AOB 的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称二、填空题13.腰长为5,高为4的等腰三角形的底边长为_____.14.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.15.把0.0036这个数用科学记数法表示,应该记作_____.16.已知m n ty z x z x y x y z==+-+-+-,则()()()y z m z x n x y t-+-+-的值为________.17.若分式21xx-+的值为0,则x=____.18.如图所示,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E,F为圆心,大于12EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为.19.若a,b互为相反数,则a2﹣b2=_____.20.如图,在△ABC中,BF⊥AC 于点F,AD⊥BC 于点D ,BF 与AD 相交于点E.若AD=BD,BC=8cm,DC=3cm.则 AE= _______________cm .三、解答题21.(1)分解下列因式,将结果直接写在横线上:x2+4x+4=,16x2+24x+9=,9x2﹣12x+4=(2)观察以上三个多项式的系数,有42=4×1×4,242=4×16×9,(﹣12)2=4×9×4,于是小明猜测:若多项式ax2+bx+c(a>0)是完全平方式,则实数系数a、b、c一定存在某种关系.①请你用数学式子表示a、b、c之间的关系;②解决问题:若多项式x2﹣2(m﹣3)x+(10﹣6m)是一个完全平方式,求m的值.22.如图,上午8时,一艘轮船从A 处出发以每小时20海里的速度向正北航行,10时到达B 处,则轮船在A 处测得灯塔C 在北偏西36°,航行到B 处时,又测得灯塔C 在北偏西72°,求从B 到灯塔C 的距离.23.如图,△ABC 中,AB=AC ,点E ,F 在边BC 上,BE=CF ,点D 在AF 的延长线上,AD=AC ,(1)求证:△ABE ≌△ACF ;(2)若∠BAE=30°,则∠ADC= °.24.如图所示,在△ABC 中,D 是BC 边上一点∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC 的度数.25.解下列分式方程(1)2233111x x x x +-=-+- (2)32122x x x =---【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【详解】2.A解析:A【解析】【分析】根据正多边形的内角,角的和差,可得答案.【详解】解:正方形的内角为90°,正五边形的内角为(52)1801085︒︒-⨯=,正六边形的内角为(62)1801206︒︒-⨯=,∠1=360°-90°-108°-120°=42°, 故选:A .【点睛】本题考查多边形的内角与外角,解题关键是利用正多边形的内角进行计算.3.D解析:D【解析】【分析】分别利用幂的乘方运算和合并同类项法则分别化简求出答案.【详解】解:A 、a 2•a 3=a 5,故此选项错误;B 、122a a ÷= a 10,故此选项错误;C 、(a 3)3=a 9,故此选项错误;D 、(-a )6=a 6,故此选项正确.故选D .【点睛】此题主要考查了合并同类项法则以及幂的乘方运算等知识,正确运用相关法则是解题关键.4.B解析:B【解析】【分析】先根据等腰三角形的性质求出∠ADB 的度数,再由平角的定义得出∠ADC 的度数,根据等腰三角形的性质即可得出结论.【详解】解:∵△ABD 中,AB=AD ,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD ,∴∠C=180********.22ADC -︒︒-=︒=︒∠ 故选B .考点:等腰三角形的性质. 5.C解析:C【解析】【分析】根据“走高速用的时间比走国道少花1.5小时”列出方程即可得出答案.【详解】 根据题意可得,走高速所用时间150202.5x -小时,走国道所用时间150x小时 即15015020 1.52.5x x--= 故答案选择C.【点睛】 本题考查的是分式方程在实际生活中的应用,根据公式“路程=速度×时间”及其变形列出等式是解决本题的关键.6.D解析:D【解析】【分析】先把分母因式分解,再约分得到原式=2x y x y +-,然后把x=3y 代入计算即可. 【详解】原式=()22x y x y +-•(x-y )=2x y x y+-, ∵x-3y=0,∴x=3y ,∴原式=63y y y y +-=72. 故选:D .【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.7.B解析:B【解析】试题解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.8.C解析:C【解析】【分析】本题主要涉及到了线段垂直平分线性质,代入题目相关数据,即可解题.【详解】解:在△ABC中,以点A和点B为圆心,大于二分之一AB的长为半径画弧,两弧相交与点M,N,则直线MN为AB的垂直平分线,则DA=DB,△ADC的周长由线段AC,AD,DC组成,△ABC的周长由线段AB,BC,CA组成而DA=DB,因此△ABC的周长为10+7=17.故选C.【点睛】本题考察线段垂直平分线的根本性质,解题时要注意数形结合,从题目本身引发思考,以此为解题思路.9.B解析:B【解析】【分析】首先设正多边形的一个外角等于x°,由在正多边形中,一个内角的度数恰好等于它的外角的度数,即可得方程:x+x=180,解此方程即可求得答案.【详解】设正多边形的一个外角等于x°,∵一个内角的度数恰好等于它的外角的度数,∴这个正多边形的一个内角为: x°,∴x+x=180,解得:x=900,∴这个多边形的边数是:360°÷90°=4.故选B.【点睛】此题考查了多边形的内角和与外角和的知识.此题难度不大,方程思想的应用是解题的关键.10.C解析:C【解析】【分析】根据三角形外心的作法,确定到三定点距离相等的点.【详解】解:因为到三角形各顶点的距离相等的点,需要根据垂直平分线上的点到线段两端点的距离相等,只有分别作出三角形的两边的垂直平分线,交点才到三个顶点的距离相等. 故选:C .【点睛】本题考查了垂直平分线的性质和三角形外心的作法,关键是根据垂直平分线的性质解答.11.C解析:C【解析】试题解析:∵AD 是∠BAC 的平分线,∴CD=DE ,在Rt △ACD 和Rt △AED 中,{CD DE AD AD==, ∴Rt △ACD ≌Rt △AED (HL ),∴AE=AC=6cm ,∵AB=10cm ,∴EB=4cm .故选C .12.D解析:D【解析】试题分析:A 、连接CE 、DE ,根据作图得到OC=OD ,CE=DE .∵在△EOC 与△EOD 中,OC=OD ,CE=DE ,OE=OE ,∴△EOC ≌△EOD (SSS ).∴∠AOE=∠BOE ,即射线OE 是∠AOB 的平分线,正确,不符合题意.B 、根据作图得到OC=OD ,∴△COD 是等腰三角形,正确,不符合题意.C 、根据作图得到OC=OD ,又∵射线OE 平分∠AOB ,∴OE 是CD 的垂直平分线.∴C 、D 两点关于OE 所在直线对称,正确,不符合题意.D 、根据作图不能得出CD 平分OE ,∴CD 不是OE 的平分线,∴O 、E 两点关于CD 所在直线不对称,错误,符合题意.故选D .二、填空题13.6或或【解析】【分析】根据不同边上的高为4分类讨论即可得到本题的答案【详解】解:①如图1当则∴底边长为6;②如图2当时则∴∴∴此时底边长为;③如图3:当时则∴∴∴此时底边长为故答案为:6或或【点睛】 解析:6或25或45.【解析】【分析】根据不同边上的高为4分类讨论即可得到本题的答案.【详解】解:①如图1当5AB AC ==,4AD =,则3BD CD ==,∴底边长为6;②如图2.当5AB AC ==,4CD =时,则3AD =,∴2BD =,∴222425BC =+=,∴此时底边长为25;③如图3:当5AB AC ==,4CD =时,则223AD AC CD -=,BD=,∴8BC=,∴45∴此时底边长为45.故答案为:6或25或45.【点睛】本题考查了勾股定理,等腰三角形的性质,解题的关键是分三种情况分类讨论.14.40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数进而得出答案【详解】如图所示:∠1+∠2+∠6=180°∠3+∠4+∠7=180°∵∠1+∠2+∠3+∠4=220°∴∠1+∠2+∠解析:40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.15.6×10﹣3【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解析:6×10﹣3【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.16.0【解析】【分析】令=k(k≠0)列出方程组分别求出xyz 的值代入求值即可【详解】令=k(k≠0)则有解得:∴===0故答案为:0【点睛】此题主要考查了分式的运算熟练掌握运算法则是解此题的关键解析:0【解析】【分析】 令m n t y z x z x y x y z==+-+-+-=k(k≠0),列出方程组,分别求出x ,y ,z 的值,代入()()()y z m z x n x y t -+-+-求值即可.【详解】 令m n t y z x z x y x y z==+-+-+-=k(k≠0),则有 m y z x k n z x y k t x y z k⎧+-=⎪⎪⎪+-=⎨⎪⎪+-=⎪⎩, 解得:222n t x k m t y k m n z k +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩, ∴()()()y z m z x n x y t -+-+- =222t n m t n m m n t k k k---++ =2tm nm mn tn nt mt k-+-+- =0.故答案为:0.【点睛】 此题主要考查了分式的运算,熟练掌握运算法则是解此题的关键.17.2【解析】【分析】根据分式的值为零的条件得到x-2=0且x≠0易得x=2【详解】∵分式的值为0∴x−2=0且x≠0∴x=2故答案为2【点睛】本题考查了分式的值为零的条件解题的关键是熟练的掌握分式的值 解析:2【解析】根据分式的值为零的条件得到x-2=0且x≠0,易得x=2.【详解】∵分式21xx-+的值为0,∴x−2=0且x≠0,∴x=2.故答案为2.【点睛】本题考查了分式的值为零的条件,解题的关键是熟练的掌握分式的值为零的条件. 18.65°【解析】【分析】根据已知条件中的作图步骤知AG是∠CAB的平分线根据角平分线的性质解答即可【详解】根据已知条件中的作图步骤知AG是∠CAB 的平分线∵∠CAB=50°∴∠CAD=25°;在△AD解析:65°【解析】【分析】根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.【详解】根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);故答案是:65°.19.0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案【详解】∵ab互为相反数∴a+b=0∴a2﹣b2=(a+b)(a﹣b)=0故答案为0【点睛】本题考查了公式法分解因式以及相解析:0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a,b互为相反数,∴a+b=0,∴a2﹣b2=(a+b)(a﹣b)=0,故答案为0.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.20.【解析】【分析】易证∠CAD=∠CBF即可求证△ACD≌△BED可得DE=CD即可求得AE的长即可解题【详解】解:∵BF⊥AC于FAD⊥BC于D∴∠CAD+∠C=90°∠CBF+∠C=90°∴∠CA解析:【解析】易证∠CAD=∠CBF ,即可求证△ACD ≌△BED ,可得DE=CD ,即可求得AE 的长,即可解题.【详解】解:∵BF ⊥AC 于F ,AD ⊥BC 于D ,∴∠CAD+∠C=90°,∠CBF+∠C=90°,∴∠CAD=∠CBF ,∵在△ACD 和△BED 中,90CAD CBF AD BDADC BDE ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩∴△ACD ≌△BED ,(ASA )∴DE=CD ,∴AE=AD-DE=BD-CD=BC-CD-CD=2;故答案为2.【点睛】本题考查了全等三角形的判定和性质,本题中求证△ACD ≌△BED 是解题的关键.三、解答题21.(1)(x+2)2,(4x+3)2,(3x ﹣2)2;(2)①b 2=4ac ,②m=±1【解析】【分析】(1)根据完全平方公式分解即可;(2)①根据已知等式得出b 2=4ac ,即可得出答案;②利用①的规律解题.【详解】(1)x 2+4x+4=(x+2)2,16x 2+24x+9=(4x+3)2,9x 2-12x+4=(3x-2)2,故答案为(x+2)2,(4x+3)2,(3x-2)2;(2)①b 2=4ac ,故答案为b 2=4ac ;②∵多项式x 2-2(m-3)x+(10-6m )是一个完全平方式,∴[-2(m-3)]2=4×1×(10-6m ),m 2-6m+9=10-6mm 2=1m=±1.【点睛】本题考查了对完全平方公式的理解和应用,能根据完全平方公式得出b 2=4ac 是解此题的关键.22.从B 到灯塔C 的距离40海里【分析】易得AB 长为40海里,利用三角形的外角知识可得△ABC 为等腰三角形,那么BC=AB .【详解】解:由题意得:AB=(10-8)×20=40海里, ∵∠C=72°-∠A=36°=∠A , ∴BC=AB=40海里.答:从B 到灯塔C 的距离为40海里.【点睛】考查方向角问题;利用外角知识判断出△ABC 的形状是解决本题的突破点.23.(1)证明见解析;(2)75.【解析】【分析】(1)根据等边对等角可得∠B=∠ACF ,然后利用SAS 证明△ABE ≌△ACF 即可;(2)根据△ABE ≌△ACF ,可得∠CAF=∠BAE=30°,再根据AD=AC ,利用等腰三角形的性质即可求得∠ADC 的度数.【详解】(1)∵AB=AC ,∴∠B=∠ACF ,在△ABE 和△ACF 中,AB AC B ACF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACF (SAS );(2)∵△ABE ≌△ACF ,∠BAE=30°,∴∠CAF=∠BAE=30°,∵AD=AC ,∴∠ADC=∠ACD ,∴∠ADC=280013︒-︒=75°, 故答案为75.【点睛】 本题考查了全等三角形的判定与性质、等腰三角形的性质,熟练掌握相关性质与定理是解题的关键.24.32°【解析】【分析】设∠1=∠2=x ,根据三角形外角的性质可得∠4=∠3=2x ,在△ABC 中,根据三角形的内角和定理可得方程2x+x+69°=180°,解方程求得x 的值,即可求得∠4、∠3的度数,在△ADC 中,根据三角形的内角和定理求得∠DAC 的度数即可.【详解】设∠1=∠2=x∴∠4=∠3=∠1+∠2=2x ,在△ABC 中,∠4+∠2+∠BAC=180°,∴2x+x+69°=180°解得x=37.即∠1=∠2=37°,∠4=∠3=37°×2=74°. 在△ADC 中,∠4+∠3+∠DAC=180°∴∠DAC=180º-∠4-∠3=180°-74°-74°=32º. 【点睛】本题考查了三角形的内角和定理及三角形外角的性质,熟知三角形的内角和定理及三角形外角的性质是解题的关键.25.(1)无解.(2)x=76【解析】【分析】各分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】 (1)2233111x x x x +-=-+- 去分母得,2(x+1)-3(x-1)=x+3,解方程,得,x=1,经检验,x=1是原方程的增根,原方程无解. (2)32122x x x =--- 去分母得,2x=3-2(2x-2) 解方程得,x=76, 经检验,x=76是原方程的解. 【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.。

相关文档
最新文档