量子力学复习
量子力学复习重点
1 e 2
2 2
x
e
i Px
dx
e
1 2 x2 2
e
i Px
dx
1 2 1 2 1 2
e
1 ip p2 2 ( x 2 )2 2 2 2 2
dx
2 e
4 2 1 ( 3 2a0 a0
0
r 2 r / a0 (2r )e dr a0
2 2 a0 a0 4 2 2 ( 2 ) 4 2 4 4 2a0 2a0
(r , , )d (5) c( p) * p (r )
c( p ) 2
p2 ; 2
(3)动量的几率分布函数。
解:(1) U
1 1 2 x 2 2 2 2
x 2 e
2
x2
dx
1 1 1 2 1 1 2 2 2 2 2 2 2 2 4 2 2
1 4
(2) T
4 3 a0
0
r 3 a 2 r / a0 dr
4 3! 3 a0 3 4 2 a0 2 a 0
(2) U (
e2 e2 ) 3 r a0
0 0
2
0
1 2 r / a0 2 e r sin drd d r
e2 3 a0 4e 2 3 a0
解: U ( x)与t 无关,是定态问题。其定态 S—方程
量子力学期末复习资料
简答第一章 绪论什么是光电效应爱因斯坦解释光电效应的公式。
答:光的照射下,金属中的电子吸收光能而逸出金属表面的现象。
这些逸出的电子被称为光电子用来解释光电效应的爱因斯坦公式:221mv A h +=ν第二章 波函数和薛定谔方程1、如果1ψ和2ψ是体系的可能状态,那么它们的线性迭加:2211ψψψc c +=(1c ,2c 是复数)也是这个体系的一个可能状态。
答,由态叠加原理知此判断正确4、(1)如果1ψ和2ψ是体系的可能状态,那么它们的线性迭加:2211ψψψc c += (1c ,2c 是复数)是这个体系的一个可能状态吗(2)如果1ψ和2ψ是能量的本征态,它们的线性迭加:2211ψψψc c +=还是能量本征态吗为什么答:(1)是(2)不一定,如果1ψ,2ψ对应的能量本征值相等,则2211ψψψc c +=还是能量的本征态,否则,如果1ψ,2ψ对应的能量本征值不相等,则2211ψψψc c +=不是能量的本征态1、 经典波和量子力学中的几率波有什么本质区别答:1)经典波描述某物理量在空间分布的周期性变化,而几率波描述微观粒子某力学量的几率分布;(2)经典波的波幅增大一倍,相应波动能量为原来的四倍,变成另一状态,而微观粒子在空间出现的几率只决定于波函数在空间各点的相对强度,几率波的波幅增大一倍不影响粒子在空间出现的几率,即将波函数乘上一个常数,所描述的粒子状态并不改变;6、若)(1x ψ是归一化的波函数, 问: )(1x ψ, 1)()(12≠=c x c x ψψ )()(13x e x i ψψδ= δ为任意实数是否描述同一态分别写出它们的位置几率密度公式。
答:是描述同一状态。
)()()()(1*1211x x x x W ψψψ== 212*22*22)()()()()()(x x x dx x x x W ψψψψψ==⎰ 213*33)()()()(x x x x W ψψψ==第三章 量子力学中的力学量2能量的本征态的叠加一定还是能量本征态。
量子力学期末复习
第一章绪论1.量子力学的研究对象和适用范围是什么?量子力学(Quantum Mechanics)是研究微观粒子(分子、原子、原子核、基本粒子等)运动变化规律的科学。
量子力学规律同时适用于微观世界与宏观世界,即全部物理学都是量子物理学。
2.什么是量子现象?在研究原子、分子、原子核、基本粒子时所观察到的关于微观世界的系列特殊的物理现象。
凡是普朗克常数h在其中起重要作用的现象都可以称为量子现象。
3. 黑体:能够全部吸收各种波长的辐射,完全不发生反射和透射,且能发射各种波长的热辐射能的物体称为绝对黑体(黑体)。
如:空腔上的小孔、烟煤、太阳。
4.普朗克量子假说“能量子”假设:能量是分立的,不是连续的。
物体吸收或发射电磁辐射时,辐射的能量不是连续的,而是分立的,它的取值只能是能量子ε=hν的整数倍。
5.什么是光电效应?它有哪两个突出的特点?写出爱因斯坦的光电效应方程。
金属被光(紫外光)照射时,有电子从金属表面逸出,这种现象称为光电效应。
这种电子称之为光电子。
突出特点:①存在临界频率v0:只有当光的频率大于一定值v0 时,才有光电子发射出来。
若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。
②光电子的能量只与光的频率有关,与光的强度无关。
光的强度只决定光电子数目的多少。
光电效应方程:其中m e为电子质量,υm为电子的最大初速度,ν为光子的频率,W0为电子挣脱原子束缚所需做的逸出功。
6.爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E =hν的微粒形式出现,而且以这种形式在空间以光速C 传播,这种粒子叫做光量子,或光子。
7.什么是康普顿效应?为什么用X射线来进行实验?X射线投射到石墨上发生散射,在散射的X射线中,不但存在与入射光波长相同的X射线,同时还存在波长大于入射光波长的X射线,且波长增量随散射角增大而增大。
这一波长改变的散射称为康普顿效应。
因为X 射线的能量远大于原子中电子的束缚能,光子的能量只能部分地被电子吸收,能够观察到散射的X 射线。
量子力学考试复习
第一章⒈玻尔的量子化条件,索末菲的量子化条件。
⒉黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。
⒊维恩位移公式表明,物体所发出的最强光的波长与温度成反比,或者说,最强光波长的位置随着温度的改变而移动。
⒋辐射热平衡状态: 处于某一温度T下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。
⒌实验发现,维恩公式只在高频(短波)时与实验结果相符合,而在低频(长波)时与实验结果明显不一致。
⒍实验发现,瑞利—金斯公式在长波部分与实验符合较好,而在短波部分则完全不符,而趋于无穷大。
⒎普朗克量子假说:表述1:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。
表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:ε=h ν。
表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。
⒏光电效应:光照射到金属上,有电子从金属上逸出的现象。
这种电子称之为光电子。
⒐光电效应有两个突出的特点:①存在临界频率ν0:只有当光的频率大于一定值v0 时,才有光电子发射出来。
若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。
②光电子的能量只与光的频率有关,与光的强度无关。
光的强度只决定光电子数目的多少。
⒑爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子。
爱因斯坦方程⒒光电效应机理:当光射到金属表面上时,能量为E= hν的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。
⒓解释光电效应的两个典型特点:①存在临界频率v0:由上式明显看出,当hν- W0≤0时,即ν≤ν0 = W0 / h时,电子不能脱出金属表面,从而没有光电子产生。
②光电子动能只决定于光子的频率:上式表明光电子的能量只与光的频率ν有关,而与光的强度无关。
量子力学复习资料
《量子力学》复习资料第一章 绪论1、经典物理学的困难:①黑体辐射;②光电效应;③氢原子线性光谱;④固体在低温下的比热。
2、★★★普朗克提出能量子假说:黑体只能以νh E =为能量单位不连续的发射和吸收辐射能量,⋯⋯==,3,2,1 n nh E n ν,能量的最小单元νh 称为能量子。
意义:解决了黑体辐射问题。
3、★★★(末考选择)爱因斯坦提出光量子假说:电磁辐射不仅在发射和吸收时以能量νh 的微粒形式出现,而且以这种形式在空间以光速c 传播,这种粒子叫做光量子,也叫光子。
意义:解释了光电效应。
【注】光电效应方程为0221W hv v m m e -= 4、★★★玻尔的三个基本假设:①定态假设:原子核外电子处在一些不连续的定常状态上,称为定态,而且这些定态相应的能量是分立的。
②跃迁假设:原子在与能级m E 和n E 相对应的两个定态之间跃迁时,将吸收或辐射频率为ν的光子,而且有m n E E hv -=.③角动量量子化假设:角动量必须是 的整数倍,即 ,3,2,1,==n n L意义:解决了氢原子光谱问题。
(末考选择)5、★★★玻尔理论后来也遇到了困难,为解决这些困难,德布罗意提出了微观粒子也具有波粒二象性的假说。
6、德布罗意公式:⇒⎪⎩⎪⎨⎧===k n h p h Eλν意义:将光的波动性和粒子性联系起来,两式的左端描述的是粒子性(能量和动量),右端描述的是波动性(频率和波长)。
7、(填空)德布罗意波长的计算:meUhmE h p h 22===λ 8、★★★康普顿散射实验的意义:证明了光具有粒子性。
(末考填空)同时也证实了普朗克和爱因斯坦理论的正确性。
9、★★★证实了电子具有波动性的典型实验:戴维孙-革末的电子衍射实验(也证实了德布罗意假说的正确性)、电子双缝衍射实验。
10、微观粒子的运动状态和经典粒子的运动状态的区别:(1)描述方式不同:微观粒子的运动状态用波函数描述,经典粒子的运动状态用坐标和动量描述;(2)遵循规律不同:微观粒子的运动遵循薛定谔方程,经典粒子的运动遵循牛顿第二定律。
量子力学复习资料
量子力学复习资料一、基本概念1、波粒二象性这是量子力学的核心概念之一。
它表明微观粒子既具有粒子的特性,如位置和动量,又具有波动的特性,如波长和频率。
例如,电子在某些实验中表现出粒子的行为,如碰撞和散射;而在另一些实验中,如双缝干涉实验,又表现出波动的行为。
2、量子态量子态是描述微观粒子状态的方式。
与经典物理学中可以精确确定粒子的位置和动量不同,在量子力学中,粒子的状态通常用波函数来描述。
波函数的平方表示在某个位置找到粒子的概率密度。
3、不确定性原理由海森堡提出,指出对于一个微观粒子,不能同时精确地确定其位置和动量,或者能量和时间。
即:\(\Delta x \cdot \Delta p \geq \frac{\hbar}{2}\),\(\Delta E \cdot \Delta t \geq \frac{\hbar}{2}\),其中\(\hbar\)是约化普朗克常数。
二、数学工具1、薛定谔方程这是量子力学中的基本方程,类似于经典力学中的牛顿运动方程。
对于一个质量为\(m\)、势能为\(V(x)\)的粒子,其薛定谔方程为:\(i\hbar\frac{\partial \Psi(x,t)}{\partial t} =\frac{\hbar^2}{2m}\frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x)\Psi(x,t)\)。
2、算符在量子力学中,物理量通常用算符来表示。
例如,位置算符\(\hat{x}\)、动量算符\(\hat{p}\)等。
算符作用在波函数上,得到相应物理量的可能取值。
三、常见量子力学系统1、一维无限深势阱粒子被限制在一个宽度为\(a\)的区域内,势能在区域内为零,在区域外为无穷大。
其能量本征值为\(E_n =\frac{n^2\pi^2\hbar^2}{2ma^2}\),对应的本征函数为\(\Psi_n(x) =\sqrt{\frac{2}{a}}\sin(\frac{n\pi x}{a})\)。
量子力学基本概念复习要点
量子力学基本概念复习要点量子力学基本概念复习要点1.波函数的性质完整描述微观粒子的状态概率密度几率流密度波函数的归一化重要例子: 德布罗意平面波能够描述自由粒子的状态2.薛定谔方程描述了状态随时间的变化3.定态概念定态的性质(定态下的概率密度和几率流密度)4.定态薛定谔方程(能量本征方程)的求解(无限深势阱问题)定解条件(波函数的三大标准条件、周期性条件)5.书上常见力学量的算符形式(在坐标或动量表象下,坐标算符、动量算符、动能算符、势能算符、角动量算符、哈密顿算符等等)不是所有算符都有经典对应(例如自旋算符)6.算符本征态、本征值的概念、物理含义(量子力学基本假定P56)7.厄米算符的定义、算符是否为厄米算符的判断证明(PPT第三章第一节相关例题)厄米算符的本征值8.熟练掌握氢原子的状态、能级的性质,三个量子数(n、l、m)的物理含义及它们之间的关系。
简并度的计算结合氢原子能级公式解决能量跃迁问题9.掌握厄米算符本征函数的正交归一性以及有关定理的证明常见本征函数的正交归一式10.厄米算符本征函数构成完备系波函数展开系数的物理含义(量子力学基本假定P84)会计算力学量的平均值、可能值和相应的概率(典型例题P102 3.6 3.9 PPT上有关例题)11.会计算两个算符之间的对易关系算符对易的物理含义(掌握有关定理并会证明)、书上常见算符的对易式不对易式和测不准关系式之间的关系(典型例题PPT 讲义例题例一、例三)12.知道表象变换的含义态的列矩阵表示知道矩阵元的含义13.算符的矩阵表示(矩阵元,厄米矩阵、自身表象下矩阵形式)14.知道幺正变换的定义及它在表象变换中所起的作用(态的变换和算符的变换),知道并会证明其性质(不改变量子力学的规律, 例如迹、本征值)15.常见本征矢封闭性和正交归一性的狄拉克符号表示法16.应用微扰论求解简单的微扰问题(典型例题P173 5.3,幻灯片例题)适用条件(以氢原子为例)数学要求:常用的简单积分公式和积分方法(分部积分法、换元法)常用的三角函数公式(倍、半、和角公式等等)。
量子力学期末考试复习重点、复习提纲
量子力学期末考试复习重点、复习提纲量子力学期末考试复习重点、复习提纲第一章绪论1、了解黑体辐射、光电效应和康普顿效应。
2、掌握玻尔—索末菲的量子化条件公式。
3、掌握并会应用德布罗意公式。
4、了解戴维逊-革末的电子衍射实验。
第二章波函数和薛定谔方程1、掌握、区别及计算概率密度和概率2、掌握可积波函数归一化的方法3、理解态叠加原理是波函数的线性叠加4、掌握概率流密度矢量5、理解定态的概念和特点6、掌握并会应用薛定谔方程求解一维无限深方势阱中粒子的波函数及对应能级7、掌握线性谐振子的能级8、定性掌握隧道效应的概念及应用。
第三章量子力学中的力学量1、会算符的基本计算2、掌握厄米算符的定义公式,并能够证明常见力学量算符是厄米算符。
3、了解波函数归一化的两种方法4、掌握动量算符及其本征方程和本征函数5、掌握角动量平方算符和z分量算符各自的本征值,本征方程6、掌握三个量子数n,l,m的取值范围。
7、了解氢原子体系转化为二体问题8、掌握并会求氢原子处于基态时电子的最可几半径9、掌握并会证明定理属于不同本征值(分立谱)的两个本征函数相互正交10、力学量算符F的本征函数组成正交归一系的表达式(分立谱和连续谱)11、理解本征函数的完全性,掌握波函数按某力学量的本征函数展开(分立谱),会求展开系数,理解展开系数的意义。
12、掌握两个计算期望值的公式,会证明其等价性,能应用两公式计算期望值13、掌握坐标、动量算符之间的对易关系,掌握角动量算符之间的对易关系。
14、掌握并会证明定理如果两个算符有一组共同本征函数,而且本征函数组成完全系,则两个算符对易15、掌握不确定关系不等式。
第四章态和力学量的表象(4.1~4.3节)1、理解和掌握什么是表象2、理解不同表象中的波函数描写同一状态。
3、理解态矢量和希尔伯特空间4、了解算符F在Q表象中的表示形式,算符在其自身表象中的表示形式。
《量子力学》复习提纲
)(Et r p i p Ae-⋅=ψ《量子力学》复习 提纲一、基本假设 1、(1)微观粒子状态的描述 (2)波函数具有什么样的特性 (3)波函数的统计解释2、态叠加原理(说明了经典和量子的区别)3、波函数随时间变化所满足的方程 薛定谔方程4、量子力学中力学量与算符之间的关系5、自旋的基本假设 二、三个实验1、康普顿散射(证明了光子具有粒子性) 第一章2、戴维逊-革末实验(证明了电子具有波动性) 第三章3、史特恩-盖拉赫实验(证明了电子自旋) 第七章 三、证明1、粒子处于定态时几率、几率流密度为什么不随时间变化;2、厄密算符的本征值为实数;3、力学量算符的本征函数在非简并情况下正交;4、力学量算符的本征函数组成完全系;5、量子力学测不准关系的证明;6、常见力学量算符之间对易的证明;7、泡利算符的形成。
四、表象算符在其自身的表象中的矩阵是对角矩阵。
五、计算1、力学量、平均值、几率;2、会解简单的薛定谔方程。
第一章 绪论1、德布洛意假设: 德布洛意关系:戴维孙-革末电子衍射实验的结果: 2、德布洛意平面波:3、光的波动性和粒子性的实验证据:4、光电效应:5、康普顿散射:∑=nnn c ψψ1d 2=⎰τψ(全)()ψψψψμ∇-∇2=** i j 0=⋅∇+∂∂j tρ⎥⎦⎤⎢⎣⎡+∇-=),(222t r V H μ)(,)(),(r er t r n tE i n n nψψψ-=n n n E H ψψ=附:(1)康普顿散射证明了光具有粒子性(2)戴维逊-革末实验证明了电子具有波动性 (3)史特恩-盖拉赫实验证明了电子自旋第二章 波函数和薛定谔方程1.量子力学中用波函数描写微观体系的状态。
2.波函数统计解释:若粒子的状态用()t r ,ψ描写,τψτψψd d 2*=表示在t 时刻,空间r处体积元τd 内找到粒子的几率(设ψ是归一化的)。
3.态叠加原理:设 n ψψψ,,21是体系的可能状态,那么,这些态的线性叠加∑=nnn c ψψ也是体系的一个可能状态。
量子力学期末复习
相关的结论须记住! 解题要注意 步骤!
1、在一维无限深势阱中运动的粒子,势阱的宽度为a,如 果粒子的状态由函数 ψ ( x) = Ax(a − x) 描写,A为归一化常数, 求粒子能量取值的几率分布和能量的平均值。 解:粒子能量的本征函数和本征值为
2 nπ sin x, ψ n( ) a x a 0,
(0 ≤ x ≤ a )
ψ 1( 0 ) = 0
能量一级修正为
( x < 0, x > a )
E
(1) 1
= ∫ψ
(0) 1
* H ′ψ
(0) 1
dx
2 a /2 x 2π 2 a x 2 π = ∫ 2λ sin xdx + ∫ 2λ (1 + ) sin xdx a 0 a a a a /2 a a
1 E = ℏω 2
α 2 x2
H n (αx)]dx = − p = 0
• • 由不确定关系得
(∆x)2 = x2 ; (∆p)2 = p2;
(∆p)2 1 2 E= + µω (∆x)2; 2µ 2
2
ℏ2 (∆p) = ; 2 4(∆x)
• • • 将此式对 (∆x)2 求最小值,得 求最小值,
ℏ2 1 E= + µω 2 (∆x) 2 ; 8 µ ( ∆x ) 2 2
1 R 21 ( r )Y11 (θ , ϕ ) ψ = 2 3 R 21 ( r )Y10 (θ , ϕ ) − 2
解: 将波函数改写为: 1 0 1 3 ψ = R21 (r )Y11 (θ , ϕ ) − R21 (r )Y10 (θ , ϕ ) 2 0 2 1
1 3 = R21 (r )Y11 (θ , ϕ ) χ 1 ( S z ) − R21 (r )Y10 (θ , ϕ ) χ 1 ( S z ) − 2 2 2 2
量子力学期末复习
由于 是任意的波函数
ˆ ˆ ˆˆ ˆ ˆ [ x, Px ] xPx Px x i
轨道角动量
角动量算符
ˆ rp ˆ L
及其对易关系
ˆ r p ˆ Li ijk j k
ˆ ˆ ˆ Lx , Ly iLz ˆ ˆ ˆ Ly , Lz iLx ˆ ˆ ˆ Lz , Lx iLy
(2) 光量子具有“整体性”。
爱因斯坦光电效应方程:
1 2 eV m um h A 2
0
玻尔原子模型
1913年 玻尔把量子论推广到原子系统:
(1) 定态条件:电子绕核作圆周运动,但不辐射能量
(经典轨道+定态);
(2)当原子从某一能量状态跃迁到另一能 量状态时服
从频率条件h =E2-E1; (3) 角动量量子化条件mv· =nħ r
当 A 0 B 0 ,有 cos ka 0
n kn 2a
(n为奇数)
当 A 0 B 0 ,有 sin ka 0
n kn 2a
上两式可统一写成
(n为偶数)
n kn , 2a
2mE k 2
2
n 1, 2,3,
n 2 2 2 本征能量: En 8ma 2
2 d 2 2m dx 2 ( x) E ( x) 2 2 d ( x) ( x) E ( x) 2m dx 2
-a
U(x)
0
a
无限深势阱
x a x a
(1) (2)
因 (x) 及 E 有限,由(2)
( x) 0 x a
波函数的统计解释:
(r,t)的物理意义在于: 模的平方(波的强度)代表(r, t)点处,单位体积元中微观粒子出现的概率。
量子力学主要知识点复习资料
大学量子力学主要知识点复习1能量量子化辐射黑体中分子和原子的振动可视为线性谐振子,这些线性谐振子可以发射和吸收辐射能。
这些谐振子只能处于某些分立的状态,在这些状态下,谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍 对频率为ν 的谐振子, 最小能量ε为: 2.波粒二象性波粒二象性(wave-particle duality )是指某物质同时具备波的特质及粒子的特质。
波粒二象性是量子力学中的一个重要概念。
在经典力学中,研究对象总是被明确区分为两类:波和粒子。
前者的典型例子是光,后者则组成了我们常说的“物质”。
1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。
1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。
根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。
德布罗意公式3.波函数及其物理意义在量子力学中,引入一个物理量:波函数 ,来描述粒子所具εεεεεn ,,4,3,2,⋅⋅⋅νh =εh νmc E ==2λh m p ==v有的波粒二象性。
波函数满足薛定格波动方程粒子的波动性可以用波函数来表示,其中,振幅表示波动在空间一点(x ,y,z )上的强弱。
所以,应该表示 粒子出现在点(x,y,z )附件的概率大小的一个量。
从这个意义出发,可将粒子的波函数称为概率波。
自由粒子的波函数波函数的性质:可积性,归一化,单值性,连续性 4. 波函数的归一化及其物理意义常数因子不确定性设C 是一个常数,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。
相位不定性如果常数 ,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。
表示粒子出现在点(x,y,z )附近的概率。
表示点(x,y,z )处的体积元中找到粒子的概率。
这就是波函数的统计诠释。
自然要求该粒子在空间各点概率之总和为1 必然有以下归一化条件 5. 力学量的平均值既然 表示 粒子出现在点 0),()](2[),(22=-∇+∂∂t r r V mt r t i ψψ)](exp[Et r p i A k -⋅=ψ=ψ2|(,,)|x y z ψ2|(,,)|x y z x y z ψ∆∆∆x y zτ∆=∆∆∆2|(,,)|1x y z dxdydz ψ∞=⎰(,,)x y z ψ(,,)c x y z ψαi e C =(,,)i e x y z αψ(,,)x y z ψ22|()||(,,)|r x y z ψψ=),,(z y x r =23*3|()|()(),x r xd r r x r d r ψψψ+∞+∞-∞-∞==⎰⎰附件的概率,那么粒子坐标的平均值,例如x 的平均值x __,由概率论,有 又如,势能V是 的函数:,其平均值由概率论,可表示为 再如,动量 的平均值为: 为什么不能写成因为x 完全确定时p 完全不确定,x 点处的动量没有意义。
量子力学复习
量子力学复习思考题1、以下说法是否正确:(1)量子力学适用于微观体系,而经典力学适用于宏观体系;(2)量子力学适用于不能忽略的体系,而经典力学适用于可以忽略的体系。
答:(1)量子力学是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。
(2)对于宏观体系或可以忽略的体系,并非量子力学不能适用,而是量子力学实际上已经过渡到经典力学,二者相吻合了。
2、微观粒子的状态用波函数完全描述,这里“完全”的含义是什么?答:按照波函数的统计解释,波函数统计性的描述了体系的量子态。
如已知单粒子(不考虑自旋)波函数)ψ,则不仅可以确定粒子的位置概率分布,而且如粒子(r的动量、能量等其他力学量的概率分布也均可通过)ψ而完全确定。
(r由于量子理论和经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。
从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。
3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。
答:设1ψ和2ψ是分别打开左边和右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ和2ψ的线性叠加2211ψψψc c +=来表示。
可见态的叠加不是概率相加,而是波函数的叠加,屏上粒子位置的概率分布由222112ψψψc c +=确定,2ψ中出现有1ψ和2ψ的干涉项]Re[2*21*21ψψc c ,1c 和2c 的模对相对相位对概率分布具有重要作用。
4、(1)波函数ψ与ψk 、ψαi e 是否描述同一态?(2)下列波函数在什么情况下才是描述同一态?22112211212 1;;ψψψψψψααi i e c e c c c +++这里21,c c 是复常数,21,αα是实常数。
答:(1)ψ与ψk 、ψαi e 描述的相对概率分布完全相同,如对空间1x 和2x 两点的相对概率=221)()(x x ψψ=221)()(x k x k ψψ221)()(x e x e i i ψψαα,故ψ与ψk 、ψαi e 均描述同一态。
量子力学复习
5、 康普顿效应本质:
ms s 1 2 )
1 2
.决定电子自旋角动量 在外磁场方向的分量:
S
Sz ms .
12、 重要公式:
1 ) 光电效应方程: h E k A 2 ) 康普顿散射: 0 反冲电子动能: h m0 c E k (m m0 ) c
2
1 2
D
I
I
I
o
(C )
U
o
U
( A)
o
2
2
(B )
U
I
光 强 同 : n1 h 1 n 2 h
2 1 n 2 n1 I s I s .
1
o
1
另外
2
1 Ek
2
Ek Ua
1
2
Ua .
(D)
U
5. 以一定频率的单色光照射到某金属,测出其光电流的曲线如图 中实线所示, 然后保持频率不变,增大光强, 测出其光电流的曲线 如图中的虚线所示. 则满足题意的图是 [ ]
(2) 若入射光的频率都大于一给定金属的红限, 则该金属分别受到 不同频率的光照射时,释出的光电子的最大初动能也不同. (3) 若入射光的频率都大于一给定金属的红限, 则该金属分别受到 不同频率,但强度相等的光照射时, 单位时间释出的光电子数一定 相等.
(4) 若入射光的频率都大于一给定金属的红限, 则当入射光的频率 不变,而强度增大一倍时,该金属的饱和光电流也增大一倍.
量子力学总复习
n n n Nn Nn Nn e
x y z x y z
2 r 2 2
Байду номын сангаас
H nx ( x) H n y ( y ) H nz ( z )
12、势垒贯穿 隧道效应: 粒子在能量E小于势垒高度时仍能贯 穿势垒的现象,称为隧道效应。
需掌握知识点
1、掌握定态的概念;定态的性质。
几 个 重 要 概 念
本征函数
n N ne
n
x
H n ( x)
Nn
n!
,
11、可以用分离变量法求解得到(在笛卡尔坐标中) 三维各向同性谐振子的能级和波函数。
3 Enx ny nz nx n y nz 2
nx , n y , nz 0,1,2,
H mn
2 0
E n Em
m,m n
0
H mn
0
1, m n
0 m
En En H nn
0
m,m n
0 ˆ 0 m H mn H n
En Em 0 * ˆ 0 m (r )H n (r )d
( A) ( S ) 1M s A ( S ) ( A) 00
5、角动量(轨道和自旋)
ˆL ˆ i L ˆ L ˆS ˆ i S ˆ S
2 ˆ2 S ˆ2 S ˆ2 S x y z 4
对两个Fermi子体系:
M s 0, 1
2 n x n ( x) sin ,0 x a a a
es4 es2 En 2 2 2 2 2 n 2n a0
量子力学复习提纲
量子力学复习提纲第一章 绪论 1.德布罗意关系, E h νω==(1)h p n k λ==(2)2.微观粒子的波粒二象性.3. 电子被V 伏电压加速,则电子的德布罗意波长为12.25hA λ=≈(3)第二章 波函数和薛定谔方程 1.波函数的统计解释:波函数在空间某一点的强度()2,r t ψ 和在该处找到粒子的几率成正比,描写粒子的波是几率波. 其中2w*=ψψ=ψ代表几率密度.2.态叠加原理:如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加1122c c ψ=ψ+ψ,也是体系的一个可能状态.3. 薛定谔方程和定态薛定谔方程薛定谔方程()(),ˆ,r t i H r t t∂ψ=ψ∂(4)定态薛定谔方程()()ˆH r E r ψ=ψ (5)其中()22ˆ2H U r μ=-∇+ (6)为哈密顿算符,又称为能量算符,4. 波函数的标准条件: 有限性,连续性(包括ψ及其一阶导数)和单值性.5. 波函数的归一化,1d τ*∞ψψ=⎰(9)6.求解一维薛定谔方程的几个例子.一维无限深势阱及其变种, 一维线性谐振子; 势垒贯穿.第三章 量子力学中的力学量1. 坐标算符, 动量算符及角动量算符;构成量子力学力学量的法则;2. 本征值方程,本征值,本征函数的概念ˆF ψλψ= (10)3. 厄密算符的定义,性质及与力学量的关系.ˆF dx ψφ*=⎰()ˆF dx ψφ*⎰(11)实数性: 厄密算符的本征值是实数.正交性: 厄密算符的属于不同本征值的两个本征函数 相互正交.完全性: 厄密算符ˆF的本征函数()n x φ和()x λφ组成完全系, 即任一函数()x ψ可以按()n x φ和()x λφ展开为级数:()()()n n nx c x c x d λλψφφλ=+∑⎰ (12)展开系数: ()()nnc x x dx φψ*=⎰, (13)()()c x x dx λλφψ*=⎰. (14)2nc 是在()x ψ态中测量力学量F 得到nλ的几率,2c d λλ是在()x ψ态中测量力学量F ,得到测量结果在λ到d λλ+范围内的几率.4. 2ˆL 和ˆZL 算符的本征值方程,本征值和本征函数. ()22ˆ1L l l ψψ=+ , ˆzL m ψψ= 本征函数 (),lm Y θφ.5. 氢原子的哈密顿算符及其本征值,本征函数nlm ψ的数学结构, ()()(),,,nlmnl lm r R r Y ψθφθφ= (15)主量子数n ,角量子数l 和磁量子数m 的取值范围,简并态的概念.6. 氢原子的能级公式和能级的简并度.422,1,2,3,...2s n e E n nμ=-= (16)不考虑电子的自旋是2n 度简并的;考虑电子的自旋是22n 度简并的.7. 给定电子波函数的表达式,根据电子在(),,r θφ点周围的体积元内的几率()22,,sin nlm r r drd d ψθφθθφ(17)计算电子几率的径向分布和角分布.计算在半径r 到r dr +的球壳内找到电子的几率. 8. 给定态函数,计算力学量平均值,平均值的计算公式.()()ˆF x F x dx ψψ*=⎰(18) 注意(11)式对波函数所在的空间作积分. 9. 算符的对易关系及测不准关系.(1) 如果一组算符相互对易,则这些算符所表示的力学量同时具有确定值(即对应的本征值), 这些算符有组成完全系的共同的本征函数.例如: 氢原子的哈密顿算符ˆH ,角动量平方算符2ˆL 和角动量算符ˆz L 相互对易, 则(i) 它们有共同的本征函数nlm ψ, (ii) 在态nlm ψ中,它们同时具有确定值:4222s n e E n μ=-,()21l l + , m .(2) 测不准关系:如果算符ˆF和ˆG 不对易,则一般来说它们不能同时有确定值. 设ˆFˆG -ˆG ˆF =ˆik 则算符ˆF和ˆG 的均方偏差满足:()_______2ˆF ∆⋅()_______22ˆ4k G ∆≥(19)其中 ()()________________________2222222F F F F FF F F F ∆=-=-+=-()__________222F F F ∆=-, ()__________222G G G ∆=-(a) 利用测不准关系估计氢原子的基态能量, 线性谐振子的零点能等.(b) 给定态函数ψ,计算两个力学量ˆF和ˆG 的均方偏差的乘积()_______2ˆF∆⋅()_______2ˆ?G ∆=(20)第四章 态和力学量的表象 1. 对表象的理解(1) 状态ψ: 态矢量(2) Q 表象:力学量Q 的本征函数 ()()()12,,...,...n u x u x u x构成无限维希耳伯特空间(坐标系)的基矢量 (4) 将态矢量按照上述基矢量展开:()()(),n n nx t a t u x ψ=∑()()()12,,...,...n a t a t a t 是态矢量ψ在Q 表象中沿各基矢量的分量.(5) ()2n a t 是在(),x t ψ所描写的态中,测量力学量Q 得到结果为n Q 的几率. 2. 算符在Q 表象中的表示(i)算符ˆF在Q 表象中是一个矩阵, nm F 称为矩阵元 ()(),nm nm F u x F x u x dx i x *∂⎛⎫≡ ⎪∂⎝⎭⎰(ii) 算符在自身表象中是一个对角矩阵,其对角矩阵元为该算符对应的本征值. 3. 量子力学公式的矩阵表述 (1) 平均值公式:†F F =ψψ (21)(2) 本征值方程 → 久期方程()()()()()()1111121222122212 ... ... ... ... : : : ... ... : : :m m n n nm mm a t a t F F F a t a t F F F F F F a t a t λ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭→ 111212122212 ... ... ... ... 0... ... ..............................n n n n nn F F F F F F F F F λλλ--=-(3) 薛定谔方程的矩阵形式 di H dtψ=ψ(22) 4. 么正变换的概念(1) 么正变换是两个表象基矢量之间的变换矩阵. (2) 么正变换的矩阵元由两个表象的基矢量共同确定,()()()(),.n n m m S x x dx S x x dx ββααψϕψϕ***⎫=⎪⎬=⎪⎭⎰⎰(3) 态矢量由A 表象变换到B 表象的公式1b S a -= (23)(4) 力学量ˆF由A 表象变换到B 表象的公式: 1F S FS -'= (24)5. 么正变换的性质(i) 么正变换不改变算符的本征值; (ii) 么正变换不改变矩阵F 的迹; (iii) 么正变换不改变力学量的平均值.第五章 微扰理论(I) 求解非简并定态微扰问题 (1) 确定微扰的哈密顿算符ˆH'. ()0ˆˆˆHH H '=+, 及与()0ˆH对应的零级近似能量()n E 和零级近似波函数()0nψ;(2) 计算能量的一级修正:()()()100ˆn nn E H d ψψτ*'=⎰ (25)(3) 计算波函数的一级修正:()()()()10'00mn n m mn mH E E ψψ'=-∑(26) (4) 计算能量的二级修正:()()()22'0nln ln l H E E E '=-∑ (27)(II) 求解非简并定态微扰问题 (只要求能量的一级修正) 求解步骤(1) 确定微扰的哈密顿算符ˆH'. (2) 确定微扰算符的矩阵元:ˆliH '=ˆl i H d φφτ*'⎰(28)(3) 求解久期方程得到能量的一级修正()()()111121121222112.........................................................n k n k kkkkn H E H H H H E H H H H E '''-'''-='''- (29)(III) 变分法不作要求 (IV) 含时微扰论 (1) 基本步骤设0ˆH 的本征函数为n φ为已知:0ˆn n nH φεφ=(30)将ψ按照0ˆH 的定态波函数n it n n e εφ-Φ=展开:()n nna t ψ=Φ∑(31)展开系数的表达式:()01mk ti t m mka t H e dt i ω'''=⎰(32)其中ˆmn m n H H d φφτ*''=⎰(33)是微扰矩阵元,()1m nmnωεε=-(34)为体系由n ε能级跃迁到m ε能级的玻尔频率. 在t 时刻发现体系处于m Φ态的几率是()2m a t , 体系在微扰的作用下,由初态k Φ跃迁到终态m Φ的几率为()2k m m W a t →= (35)(2) 用于周期微扰()()ˆˆi t i t H t F e e ωω-'=+得到()()()11mk mk i t i t mk m mk mk F e e a t ωωωωωωωω''+-⎡⎤--=-+⎢⎥+-⎣⎦(36)由(36)式,讨论并理解发生跃迁的条件是mkωω=±或m k m k εεω=± (37)(i) 表明只有外界的微扰含有频率mk ω时,体系才能从k Φ态跃迁到m Φ态,这时体系吸收和发射的能量是mk ω ;(ii)跃迁是一个共振现象.(3) 能量时间的测不准关系的含义E t ∆∆ (38)(4) 了解原子的跃迁几率和三个爱因斯坦系数:mk A , mkB 和km B 及相互关系. (5) 了解用含时微扰理论计算爱因斯坦发射和吸收系数(6) 记住对角量子数和磁量子数的选择定则1,0, 1.l l l m m m '∆=-=±⎫⎬'∆=-=±⎭(39) 第六章 散射只要求理解微分散射截面的概论, 不作计算要求.第七章 自旋与全同粒子1. 电子的自旋角动量S ,它在空间任何方向的投影只能取 2z S =± (40) 2. 自旋算符的矩阵形式 01ˆ210x S ⎛⎫= ⎪ ⎪⎝⎭ , 0ˆ20y i S i ⎛⎫-= ⎪ ⎪⎝⎭ , 10ˆ201z S ⎛⎫= ⎪ ⎪-⎝⎭(41) 3.泡利矩阵 01ˆ10x σ⎛⎫= ⎪ ⎪⎝⎭, 0ˆ0y i i σ⎛⎫-= ⎪ ⎪⎝⎭, 10ˆ01z σ⎛⎫= ⎪ ⎪-⎝⎭ (42)(1) 求力学量在某个自旋态的平均值和均方偏差.†G G =ψψ (43)()11121†1222122G G G G G G **⎛⎫ψ⎛⎫=ψψ=ψψ ⎪ ⎪ ⎪ψ⎝⎭⎝⎭ (44) (2)求解自旋角动量算符的本征值方程, 本征值和本征函数4. 自旋与轨道角动量的耦合及产生光谱的精细结构的原因.5. 全同性原理的表述6. 描写全同粒子体系状态的波函数只能是对称或反对称的,它们的对称性不随时间改变.实验证明,微观粒子按照其波函数的对称性可以分为两类: (I) 费米子: 波函数是反对称的;(II) 玻色子: 波函数是对称的.7.泡利不相容原理:不能有两个或两个以上的费米子处于同一状态.。
量子力学期末复习
e 1 2 [ n n | n 1 n 1 n | n 1 ]
0
x 1 2 [aˆ aˆ ]
aˆ | n n | n 1
aˆ | n n 1 | n 1
6、表象变换
1
7、近似方法的应用(微扰、变分)
8、电子体系考虑自旋时的态函数、泡利算符
9、含时微扰(跃迁概率)
三、几个重要模型
1、一维无限深势阱(宽为 a、2a;对称、非对称)
2、线性谐振子
3、氢原子
相关的结论须记住!
4、双电子体系(不考虑自旋间的相互作用)
四、常见题型
1、薛定谔方程
2、算符理论
3、表象理论
(0)
(0)
En En 1
En En 1
e 2 2
2 2
由于势场不再具有空间反射对称性,所以波函数没
有确定的宇称。这一点可以从下式扰动后的波函数ψn
时再加上沿x方向的较弱的磁场 = ( , , ),从而
= + = ( , , ),求 > 时粒子的自旋态,以
及测得自旋“向上”( =1)的几率。
解: (1)在 表象中,H的矩阵表示为:
ˆ
ˆ
ˆ
H m B
mˆ mB (ˆ x ex ˆ y ey ˆ z ez )
2
21
能量二级修正:
E n( 2 )
mn
2
1
2
|
e
[
n
n
1
]
量子力学复习资料
第一章知识点:1. 黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体.2. 处于某一温度 T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。
3. 实验发现: 热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度 T 有关而与黑体的形状和材料无关。
4. 光电效应---光照射到金属上,有电子从金属上逸出的现5. 光电效应特点:1.临界频率ν0 只有当光的频率大于某一定值ν0时,才有光电子发射出来.若光频率小于该值时,则不论光强度多大,照射时间多长,都没有电子产生.光的这一频率ν0称为临界频率。
2.光电子的能量只是与照射光的频率有关,与光强无关,光强只决定电子数目的多少 (爱因斯坦对光电效应的解释)3. 当入射光的频率大于ν0时,不管光有多么的微弱,只要光一照上,立即观察到光电子(10-9s )6. 光的波粒二象性:普朗克假定a.原子的性能和谐振子一样,以给定的频率 ν 振荡;b.黑体只能以 E = h ν 为能量单位不连续的发射和吸收能量,而不是象经典理论所要求的那样可以连续的发射和吸收能量.7. 总结光子能量、动量关系式如下: 把光子的波动性和粒子性联系了起来8.波长增量 Δλ=λ′–λ 随散射角增大而增大.这一现象称为康普顿效应.散射波的波长λ′总是比入射波波长长(λ′ >λ)且随散射角θ增大而增大。
9.波尔假定:1.原子具有能量不连续的定态的概念. 2.量子跃迁的概念. 10.德布罗意:• 假定:与一定能量 E 和动量 p 的实物粒子相联系的波(他称之为“物质波”)的频率和波长分别为:E = h ν ⇒ ν= E/h • P = h/λ ⇒ λ= h/p • 该关系称为de. Broglie 关系.德布罗意波:ψ= E/h ⇒ω = 2π ν= 2πE/h = E/λ= h/p ⇒n k h k n n h n C h n C E p h E ===⎪⎩⎪⎨⎧=======πλπλνων22其中波长。
量子力学复习题
量子力学复习题
量子力学是20世纪初发展起来的一种物理学理论,它主要描述微观粒子如原子、电子、光子等的行为。
量子力学的核心概念包括波函数、量子态、量子跃迁、测不准原理等。
以下是一些关于量子力学的复习题,可以帮助你更好地理解这一理论。
1. 波函数:描述一个量子系统状态的数学函数是什么?它如何与粒子的物理性质相联系?
2. 薛定谔方程:写出非相对论性量子力学中描述粒子状态随时间演化的基本方程。
3. 量子态:解释什么是量子态,以及如何通过测量来确定一个量子系统的量子态。
4. 量子跃迁:描述量子跃迁的概念,并解释它在原子光谱中的作用。
5. 测不准原理:解释海森堡测不准原理的内容,并说明它对量子力学实验的意义。
6. 量子纠缠:解释什么是量子纠缠,以及它在量子通信和量子计算中的应用。
7. 泡利不相容原理:描述泡利不相容原理,并说明它如何影响多电子原子的电子排布。
8. 量子隧道效应:解释量子隧道效应,并讨论它在扫描隧道显微镜中的应用。
9. 量子退相干:解释量子退相干的概念,并讨论它对量子计算和量子信息的影响。
10. 量子力学的解释:讨论不同的量子力学解释,如哥本哈根解释、多世界解释等,并比较它们之间的异同。
11. 量子力学与经典力学的关系:讨论量子力学与经典力学之间的联系和区别,以及量子力学如何从经典力学中发展而来。
12. 量子力学的应用:列举量子力学在现代科技中的应用实例,如半导体技术、量子点、量子传感器等。
通过解答这些问题,你可以更深入地理解量子力学的基本原理和它在现代物理学中的重要性。
记住,量子力学是一门非常抽象的学科,需要大量的练习和思考才能掌握。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空1.量子力学中,描写微观粒子状态的波函数随时间的变化规律由(薛定谔方程)给出.2.一维线性谐振子的波函数n ψ的宇称为 . 3.在z σ表象中,z σ的矩阵表示为 .4.泡利不相容原理指出不容许有两个全同的 处于同一个单粒子态. 5.高能粒子散射宜采用 方法处理,低能粒子散射宜采用 处理. 6.微观体系的状态由 完全描述,由此可以得出体系的所有性质.它一般应满足 、 、 三个条件. 1.几率守恒定律的微分表达式 .2.描述微观粒子的动量算符为ˆp= . 3.两个厄密算符之和 (一定,不一定)为厄密算符.4.原子置于外电场中,它发出的光谱线会发生分裂的现象称为 . 5.体系的 具有确定值的状态称为定态. 体系处于定态时, 和 都与时间无关.1.不能有两个或两个以上的 处于同一状态,这个结果称为泡利不相容原理. 2.算符在其自身表象中是一个 矩阵.3.量子力学中,体系的任意态()x ψ可用一组力学量完全集的共同本征态()n x φ展开:()()n n nx c x ψφ=∑,展开式系数n c = .4.用球坐标表示,粒子波函数表为(,,)r ψθϕ,粒子在立体角d Ω中被测到的几率为 .5.如果一个力学量在经典力学中有对应的量,则表示这个力学量的算符由经典表示式中将动量p用算符 代换得出.6.满足 式的矩阵S 称为幺正矩阵,由幺正矩阵所表示的变换称为幺正变换.幺正变换 (改变、不改变)算符的本征值.7.波函数应满足三个基本条件 、 、 . 1.量子力学描述方式的特点是微观系统的运动状态用 完全描写. 2. 是指质量、电荷、自旋等固有性质完全相同的微观粒子.3.粒子波函数为(,,)r ψθϕ,则粒子在球壳d r r r →+中被测到的几率为 . 4.一维无限深势阱中粒子的波函数n ψ的节点数为 .5.占有数表象中,产生算符†ˆa和湮灭算符ˆa 的对易关系为 ,一维线性谐振子的哈密顿算符ˆH用†ˆa ,ˆa 表示为 . 6.量子力学中表示力学量的算符都是 算符,它们的本征函数组成 .力学量F 对应的算符ˆF 的本征方程为ˆn n n F φλφ=.当体系处于波函数()()n n nx c x ψφ=∑所描写的状态时,测量力学量F 所得的数值必定是算符ˆF 的 之一,测得nλ的几率是 .1.自由粒子的能量算符为 .2.在量子力学中,体系的量子态用希尔伯特空间中的 来描述,而力学量用 描述.3.普朗克的量子假说揭示了微观粒子的 特性,爱因斯坦的光量子假说揭示了光的 性.4.算符在其自身表象中是一个 矩阵,并且此矩阵的对角元素是算符的 .5.线性谐振子的零点能是 所要求的最小能量.6.每个电子具有自旋角动量S,它在空间任何方向上的投影只能取两个数值 . 7.在考虑自旋时氢原子的第n 个能级的简并度为 .1.根据表示力学量的算符规则写出量子力学中角动量算符的形式 .2.定态薛定谔方程的表示式为 .3.乌伦贝克和哥德斯密脱关于自旋的基本假设中,每个电子具有自旋角动量S,它在空间任何方向上的投影只能取 个数值为 ;每个电子具有自旋磁矩S M,它和自旋角动量S的关系是 (e -表示电子的电荷,μ表示电子的质量.4.波函数的标准条件是: 、 、 . 5.1924年,德布罗意在光有波粒二象性的启示下,提出微观粒子也具有波粒二象性的假说.把粒子的能量E 和动量p与波的频率ν和波长λ联系起来,表示为德布罗意关系 、 .二、单项选择1.以下表达式错误的是().A .ˆˆˆ[,]x y zL L i L =B .ˆˆ[,]x xp i =C .†ˆˆ[,]1aa = D .ˆˆˆˆˆˆˆˆˆ[,][,][,]ABC B A C A B C =+ 2.占有数表象中,下列表述有误的是().A .粒子数算符为†ˆˆˆNa a = B .线性谐振子的哈密顿算符†1ˆˆˆ()2H a a ω=+C .†ˆ1a n =+D .ˆ1an =- 3.电子在氢原子中受到球对称的库仑场的作用,不计电子自旋,第n 个能级有( )度简并. A .nB .2nC .1n -D .2n4.2ˆˆ(,)z L L 的共同本征函数是球谐函数(,)lm Y θϕ,以下表述正确的是( ).A .2ˆ(,)(1)(,)lm lm L Y l l Y θϕθϕ=+B .ˆ(,)(,)z lm lmL Y m Y θϕθϕ=C .2ˆL 的本征值是(1)l l +D .ˆzL 的本征值是m 1.粒子处于一维束缚态,能级基态的节点数为( ). A .1 B .2 C .0 D .均有可能2.一体系由三个全同的玻色子组成,玻色子之间无相互作用.玻色子只有两个可能的单粒子态.体系可能的状态有( )个.A .4B .3C .6D .无法确定3.以下对力学量算符ˆF的本征值和本征函数说法错误的是( ).A .本征值一定是实数B .本征函数构成正交归一函数系C .本征值必大于零D .本征函数构成完备函数系 4.以下有关散射理论说法正确的是( ). A .高能粒子散射宜采用分波法处理 B .低能粒子散射宜采用玻恩近似处理C .总散射截面(,)Q q d θϕ=Ω⎰((,)q θϕ为微分散射振幅)D .碰撞中原子被激发属于非弹性散射 1.测不准关系的存在是由于( ). A .实验仪器精度的限制 B .测量技术的限制C .波粒二象性D .不能分别测准粒子的坐标和相应的动量 2.以下关于表象间的变换矩阵说法错误的是( ).A .表象间的变换矩阵是幺正矩阵B .幺正变换不改变算符的本征值C .幺正变换改变矩阵的阵迹D .幺正变换不改变态矢量的归一化3.若ˆA ,B ˆ是厄密算符,则下列各算符中必为厄密算符的是().A .ˆˆABB .ˆˆA B +C .ˆˆˆˆ()/2i ABBA + D .ˆcB (c 是任一复数) 4.以下对玻色子和费密子的叙述中错误的是( ).A .全同费密子体系的波函数是反对称的B .质子是玻色子C .全同玻色子体系服从玻色-爱因斯坦统计D .电子是费密子 5.以下关系错误的是( ).A .ˆˆ,0z x σσ+⎡⎤=⎣⎦B .ˆˆ[,]x xp i = C .ˆˆˆ,2y z x i σσσ⎡⎤=⎣⎦ D .ˆˆ[,]z yp i = 1.以下有关ˆzL 和2ˆL 说法正确的是().A .ˆz L 和2ˆL 有共同的本征函数系B .2ˆL 的本征值由磁量子数确定C .ˆz L 的本征值是m ,其中1,2,m =D .2ˆˆ,0z L L ⎡⎤≠⎢⎥⎣⎦2.在一维无限深势阱中运动的粒子,势阱的宽度为a ,如果粒子的状态由波函数)()(x a Ax x -=ψ描写,则归一化常数A 等于().A .530aBC .530aD 3.两个厄密算符ˆˆFG 、之积为厄密算符的一般条件( ).A .ˆˆ[,]0F G += B .ˆˆˆˆFGGF ≠C .ˆˆ[,]0F G =D .ˆˆFG = 4.以下对玻色子和费密子的叙述中正确的是( ).A .全同费密子体系的波函数是对称的B .质子是费米子C .全同玻色子体系的波函数是反对称的D .电子是玻色子 1.Planck 在解释黑体辐射时,提出了( )概念. A .光子 B .能量子 C .光量子 D .辐射场量子 2.下列关于波粒二象性说法正确的是( ).A .粒子性就是经典中的粒子性质B .波动性是粒子运动的相干叠加性C .波动性就是经典中波动的特点D .粒子性就是物质的动量和能量守恒 3.在一维空间中运动的粒子的势能为0,||(),||x aU x x a<⎧=⎨∞≥⎩,则其基态波函数的宇称是( ).A .奇宇称B .偶宇称C .奇和偶宇称都有可能D .无法判断13、在一维无限深方势阱中的粒子可以有若干能态,如果势阱的宽度缓慢地增大至某一较大的宽度,则( )。
A 、每一能级的能量增加; B 、能级数增加;C 、每个能级的能量保持不变;D 、相邻能级间的能量差减小;E 、粒子将不再留在势阱内。
14、下列波函数哪个所描写的状态是定态?( ) A 、tE i ix tE i ix ex v ex u t x ---+=ψ)()(),(1; B 、tE i ix tE i ix ex v e x u t x+--+=ψ)()(),(2;C 、t E it E ie x v ex u t x21)()(),(3--+=ψ;D 、tE i t Ei ex v e x u t x)()(),(4+=ψ-。
15、2ˆˆ(,)z L L 的共同本征函数是球谐函数(,)lm Y θϕ,以下表述正确的是().A .2ˆ(,)(1)(,)lm lm L Y l l Y θϕθϕ=+ B .ˆ(,)(,)z lm lm L Y m Y θϕθϕ=C .2ˆL 的本征值是(1)l l +D .ˆz L 的本征值是m16、电子在氢原子中受到球对称的库仑场的作用,不计电子自旋,第n 个能级有()度简并.A .n ;B .2n ; C .1n -;D .2n。
17、以下对力学量算符ˆF的本征值和本征函数说法错误的是( ).A .本征值一定是实数;B .本征函数构成正交归一函数;C .本征值必大于零;D .本征函数构成完备函数系 2ˆˆ(,)z L L 的共同本征函数是什么?相应的本征方程和本征值分别是什么?4.对于ˆσ算符,下列关系式不正确的是( ).A .2ˆi σ的本征值21i σ=,其中,,i x y z =B .ˆˆ,0z x σσ+⎡⎤=⎣⎦C .ˆˆ,0y x σσ⎡⎤=⎣⎦D .ˆˆˆ,2y z x i σσσ⎡⎤=⎣⎦ 1.单位时间内,与粒子前进方向垂直的单位面积内通过的几率称为( ). A .几率密度 B .几率流密度 C .质量密度 D .质量流密度 2.下列有关德布罗意关系表述错误的是( ). A .E ω=B .p hk =C .E h ν=D .h p n λ=3.对于阶梯形方势场12,(),V x aV x V x a<⎧=⎨>⎩,如果有21V V -有限,则有关定态波函数()x ψ说法正确的是().A .()x ψ及其一阶导数()x ψ'都连续B .()x ψ及其一阶导数()x ψ'都不连续C .()x ψ连续而其一阶导数()x ψ'不连续D .()x ψ及其一阶导数()x ψ'连续与否不确定 4.下列波函数所描写的状态是定态的是( ). A .(,)()()EE i t i t x t u x eu x eψ-=+B .()()()1212, ()E E it it x t u x e v x eE E ψ-=+≠C .()()()(),()E E i x t i x t x t u x ev x eψ--+=+ D .(,)()()EE ix i tix i tx t u x ev x eψ--+=+5.一体系由三个全同玻色子组成,玻色子之间无相互作用.玻色子只有两个可能的单粒子态1()q φ和2()q φ.对体系可能状态说法有误的是( ). A .体系有3种可能的状态B .111213()()()q q q Φφφφ=是体系的可能状态C .2212223()()()q q q Φφφφ=是体系的可能状态D .111223112213211213()()()()()()()()()q q q q q q q q q Φφφφφφφφφφ=++是体系的可能状态三、简答1.束缚态、非束缚态及相应能级的特点.2.完全描述电子运动的旋量波函数为(,/2)(,)(,/2)z r r s r ψψψ⎛⎫= ⎪-⎝⎭,准确叙述2(,/2)r ψ 及23(,/2)d r r ψ-⎰分别表示什么样的物理意义.3.2ˆˆ(,)zL L 的共同本征函数是什么?相应的本征方程和本征值分别是什么?(8分) 4.一个电子运动的旋量波函数为(,/2)(,)(,/2)z r r s r ψψψ⎛⎫= ⎪-⎝⎭,写出表示电子自旋向下、位置在r处的几率密度表达式,以及表示电子自旋向上的几率的表达式.(6分)1.写出力学量F 在ψ态中的平均值公式(ψ已归一化和未归一化两种情况).(4分)2.何谓几率流密度?写出几率流密度(,)J r t的表达式.(6分)3.ˆzS 的本征函数为1/2χ,1/2χ-,写出两电子体系的自旋函数(1)S χ,(2)S χ,(3)S χ,A χ.(8分) 1.写出定态薛定谔方程及定态波函数.2.二粒子体系,仅限于角动量涉及的自由度,有哪两种表象?它们的力学量完全集分别是什么?1.简述量子力学中关于力学量与算符关系的基本假定. 2.指出波函数()()()(),()E E i x t i x t x t u x ev x eψ--+=+ 所描写的状态是否为定态并说明理由.1.写出电子自旋z s 的两个本征值和对应的本征态. 2ˆˆ(,)z L L 的共同本征函数是什么?相应的本征方程和本征值分别是什么?在非相对论量子力学中,波函数具有不确定性,简要回答不确定性以及产生不确定性的原因。