最新上海立信会计学院第一节微分方程的基本概念
高等数学微分方程的基本概念教学ppt讲解
三、主要问题——求方程的解
微分方程的解:
代入微分方程能使方程成为恒等式的函数.
微分方程的解的分类:
(1)通解: 微分方程的解中含有任意常数,且 独立的任意常数的个数与微分方程的阶数相同.
独立的任意常数的个数=微分方程的阶数 含有几个任意常数的表达式,如果它们不能合并而使 得任意常数的个数减少,则称这表达式中的几个任意 常数相互独立.
由题意知 t = 0 时,
s 0, v ds 0 dt
(8)
Nanjing College of Information and Technology
8
第六章 常微分方程
第一节 微分方程的基本概念
把(8)式分别代入(6),(7)式,得
C1 = 0 , C2 = 0. 故(7)式为
s 1 gt 2
是该微分方程的特解.
第一节 微分方程的基本概念
Nanjing College of Information and Technology
22
第六章 常微分方程
内容小结
第一节 微分方程的基本概念
本节基本概念: 微分方程; 微分方程的阶; 微分方程的解; 通解,初始条件; 特解; 初值问题; 积分曲线.
Nanjing College of Information and Technology
15
第六章 常微分方程
第一节 微分方程的基本概念
例如y = C1x + C2x + 1 与 y = Cx+1 (C1,C2,
C都是任意常数)所表示的函数族是相同的,
因此y = C1x + C2x + 1中的C1,C2是不独立的;
代入初始条件
微分方程的基本概念
第十二章 微分方程§12. 1 微分方程的基本概念函数是客观事物的内部联系在数量方面的反映, 利用函数关系又可以对客观事物的规律性进行研究. 因此如何寻找出所需要的函数关系, 在实践中具有重要意义. 在许多问题中, 往往不能直接找出所需要的函数关系, 但是根据问题所提供的情况, 有时可以列出含有要找的函数及其导数的关系式. 这样的关系就是所谓微分方程. 微分方程建立以后, 对它进行研究, 找出未知函数来, 这就是解微分方程.例1 一曲线通过点(1, 2), 且在该曲线上任一点M (x , y )处的切线的斜率为2x , 求这曲线的方程.解 设所求曲线的方程为y =y (x ). 根据导数的几何意义, 可知未知函数y =y (x )应满足关系式(称为微分方程)x dxdy 2=. (1) 此外, 未知函数y =y (x )还应满足下列条件:x =1时, y =2, 简记为y |x =1=2. (2)把(1)式两端积分, 得(称为微分方程的通解)⎰=xdx y 2, 即y =x 2+C , (3)其中C 是任意常数.把条件“x =1时, y =2”代入(3)式, 得2=12+C ,由此定出C =1. 把C =1代入(3)式, 得所求曲线方程(称为微分方程满足条件y |x =1=2的解): y =x 2+1.例2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶; 当制动时列车获得加速度-0.4m/s 2. 问开始制动后多少时间列车才能停住, 以及列车在这段时间里行驶了多少路程?解 设列车在开始制动后t 秒时行驶了s 米. 根据题意, 反映制动阶段列车运动规律的函数s =s (t )应满足关系式 4.022-=dt s d . (4) 此外, 未知函数s =s (t )还应满足下列条件:t =0时, s =0, 20==dtds v . 简记为s |t =0=0, s '|t =0=20. (5) 把(4)式两端积分一次, 得14.0C t dtds v +-==; (6) 再积分一次, 得s =-0.2t 2 +C 1t +C 2, (7)这里C 1, C 2都是任意常数.把条件v |t =0=20代入(6)得20=C 1;把条件s |t =0=0代入(7)得0=C 2.把C 1, C 2的值代入(6)及(7)式得v =-0.4t +20, (8)s =-0.2t 2+20t . (9)在(8)式中令v =0, 得到列车从开始制动到完全停住所需的时间504.020==t (s ). 再把t =50代入(9), 得到列车在制动阶段行驶的路程s =-0.2⨯502+20⨯50=500(m ).解 设列车在开始制动后t 秒时行驶了s 米,s ''=-0.4, 并且s |t =0=0, s '|t =0=20.把等式s ''=-0.4两端积分一次, 得s '=-0.4t +C 1, 即v =-0.4t +C 1(C 1是任意常数),再积分一次, 得s =-0.2t 2 +C 1t +C 2 (C 1, C 2都C 1是任意常数).由v |t =0=20得20=C 1, 于是v =-0.4t +20;由s |t =0=0得0=C 2, 于是s =-0.2t 2+20t .令v =0, 得t =50(s). 于是列车在制动阶段行驶的路程s =-0.2⨯502+20⨯50=500(m ).几个概念:微分方程: 表示未知函数、未知函数的导数与自变量之间的关系的方程, 叫微分方程. 常微分方程: 未知函数是一元函数的微分方程, 叫常微分方程.偏微分方程: 未知函数是多元函数的微分方程, 叫偏微分方程.微分方程的阶: 微分方程中所出现的未知函数的最高阶导数的阶数, 叫微分方程的阶. x 3 y '''+x 2 y ''-4xy '=3x 2 ,y (4) -4y '''+10y ''-12y '+5y =sin2x ,y (n ) +1=0,一般n 阶微分方程:F (x , y , y ', ⋅ ⋅ ⋅ , y (n ) )=0.y (n )=f (x , y , y ', ⋅ ⋅ ⋅ , y (n -1) ) .微分方程的解: 满足微分方程的函数(把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解. 确切地说, 设函数y =ϕ(x )在区间I 上有n 阶连续导数, 如果在区间I 上,F [x , ϕ(x ), ϕ'(x ), ⋅ ⋅ ⋅, ϕ(n ) (x )]=0,那么函数y =ϕ(x )就叫做微分方程F (x , y , y ', ⋅ ⋅ ⋅, y (n ) )=0在区间I 上的解.通解: 如果微分方程的解中含有任意常数, 且任意常数的个数与微分方程的阶数相同, 这样的解叫做微分方程的通解.初始条件: 用于确定通解中任意常数的条件, 称为初始条件. 如x =x 0 时, y =y 0 , y '= y '0 .一般写成00y y x x ==, 00y y x x '='=. 特解: 确定了通解中的任意常数以后, 就得到微分方程的特解. 即不含任意常数的解. 初值问题: 求微分方程满足初始条件的解的问题称为初值问题.如求微分方程y '=f (x , y )满足初始条件00y y x x ==的解的问题, 记为⎩⎨⎧=='=00),(y y y x f y x x .积分曲线: 微分方程的解的图形是一条曲线, 叫做微分方程的积分曲线. 例3 验证: 函数x =C 1cos kt +C 2 sin kt是微分方程0222=+x k dt x d 的解.解 求所给函数的导数:kt kC kt kC dtdx cos sin 21+-=, )sin cos (sin cos 212221222kt C kt C k kt C k kt C k dt x d +-=--=. 将22dtx d 及x 的表达式代入所给方程, 得 -k 2(C 1cos kt +C 2sin kt )+ k 2(C 1cos kt +C 2sin kt )≡0.这表明函数x =C 1cos kt +C 2sin kt 满足方程0222=+x k dtx d , 因此所给函数是所给方程的解. 例4 已知函数x =C 1cos kt +C 2sin kt (k ≠0)是微分方程0222=+x k dtx d 的通解, 求满足初始条件 x | t =0 =A , x '| t =0 =0的特解.解 由条件x | t =0 =A 及x =C 1 cos kt +C 2 sin kt , 得C 1=A .再由条件x '| t =0 =0, 及x '(t ) =-kC 1sin kt +kC 2cos kt , 得C 2=0.把C 1、C 2的值代入x =C 1cos kt +C 2sin kt 中, 得x =A cos kt .。
第一节 微分方程的基本概念
过定点且在定点的切线的斜率为定值的积分曲线.
2020/1/29
5
例 一 曲 线 通 过 点 (1,2),且 在 该 曲 线 上 任 一 点 M (x,y) 处 的 切 线 的 斜 率 为 2x,求 这 曲 线 的 方 程 .
解 设所求曲y线 y为 (x)
d y 2 x , y(1)2, dx
yxy, 一阶
y2y3yex, 二阶
(t2x)dtxdx0, 一阶
2020/1/29
3
定义 使方程成为恒等式的函数称微分方程的解. 微分方程的解的分类: (1)通解: 微分方程的解中含有任意常数,且独立 任意常数的个数与微分方程的阶数相同.
例yy, 通解 yCex; yy0, 通 y 解 C 1six n C 2co xs
本章还要学习一阶常系数线性差分方程的解法.
2020/1/29
2
定义 含有自变量,自变量的未知函数以及未知函数 的若干阶导数或微分的函数方程称为微分方程. 定义 出现在微分方程中的未知函数的最高阶导数或 微分的阶数,称为微分方程的阶.
未知函数是一元函数的微分方程称为常微分方程, 未知函数是多元函数的微分方程称为偏微分方程.在本 书中只讨论常微分方程,如下例:
(2)特解: 不含任意常数的解.
定解条件: 用来确定任意常数的条件.
2020/1/29
4
初始条件: 规定微分方程中的未知函数及其若干阶 导数在某一点处的取值 。
初值问题: 求微分方程满足初始条件的解的问题.
一阶:
y f (x, y)
y
x
x0
y0
过定点的积分曲线;
二阶:
yf(x,y,y) yxx0 y0,yxx0 y0
第一章 微分方程基础
故 y cos kt sin kt 是所给微分方程的解.
例4、解微分方程y'' 3x2 sin x 5.
解、对两端积分,得
'
'' 2 y dx (3 x sin x 5)dx,
即 y x3 cos x 5 x C1.
1 4 5 2 即 y x sin x x C1 x C2 . 4 2
,并将
,
3 求非齐次线性方程的通解:将求出的u( x)代入y u( x)e
得到非齐次线性方程的通解.
P ( x ) dx
因为P( x) 2 x, Q( x) cos xe , 所以由一阶非齐次 线性方程的通解的公式得
ye
e
2 xdx
x2
x2
cos xe
解
求导,得
dy k sin kt k cos kt , dt
d2y 2 2 k cos kt k sin kt , 2 dt
d2y 将 2 和x的表达式代入所给微分方程中, 得 dt
k 2 (cos kt sin kt ) k 2 (cos kt sin kt ) 0.
dy 2x dx
s 0.2t 2 C1t C2
s 0.2t 2 20t ,
d 2s 0.4 2 dt
定义
如果微分方程的解中含有任意常数,且独立的任 意常数的个数与微分方程的阶数相同,则这样的 解叫做微分方程的通解.
函数y x 2 C C为任意常数 是 dy =2x的通解. dx
F ( x, y, y,, y ( n) ) 0,
( n 1) x , y , y , , y 中的某些变量可以不出现. 其中
微分方程的基本概念
利用后两式可得
因此所求运动规律为 s 0.2 t 2 20 t
说明: 利用这一规律可求出制动后多少时间列车才 能停住 , 以及制动后行驶了多少路程 .
4
二、微分方程的基本概念
1.微分方程:含未知函数及其导数的方程叫做微分方程 . 实质:联系自变量,未知函数及其导数的式子 . 区别:与以往学习的代数方程的区别是:代数方程是含 未知数的等式,微分方程是含未知函数及其导数的等式 .
x
y
即 Fx cos x F sin x Fy y sin x F sin x
Fx y tan x
y
Fy
因此有
y y tan x y x0 1
y 1 , cos x
即y sec x
21
内容小结
1. 微分方程的概念 微分方程; 阶; 定解条件; 解; 通解; 特解 说明: 通解不一定是方程的全部解 .
分类 常微分方程:所含未知函数是一元函数. 偏微分方程
注:本章只讨论常微分方程 2.微分方程的阶:方程中所含未知函数导数的最高阶数 叫做微分方程的阶.
如:d y 2x dx
5
三、微分方程的主要问题-----求方程的解
1.微分方程的解 — 使方程成为恒等式的函数. 设y ( x)在区间 I 上有 n 阶导数, F( x,( x),( x),,(n)( x)) 0.
u
x
即 u lnCux
y
ln Cy
xy
故微分方程的解为 Cy e x .
17
例1 求解微分方程 y2 x2 d y xy d y . dx dx
另解 原方程可变为:d x x ( x )2 dy y y
微分方程的基本概念
微分方程是数学中重要的一个分支,其在物理、工程、经济等领域具有广泛的应用。
微分方程的基本概念包括了方程的定义、解的定义、初值问题以及一阶线性微分方程等。
首先,我们来看微分方程的定义。
微分方程是包含未知函数及其导数或微分的关系式。
它是数学分析的研究对象,用来研究函数在局部上的变化规律。
通常用x来表示自变量,用y表示函数的取值,用y'表示函数y对x的导数。
微分方程可以分为常微分方程和偏微分方程两大类。
接下来,我们来看微分方程的解的定义。
微分方程的解是指满足该方程的函数。
一般来说,微分方程的解不是唯一的,而是存在无穷多个。
例如,对于一阶线性微分方程y'+p(x)y=q(x),其中p(x)和q(x)是已知函数,可以通过积分的方法求得其解。
解的形式可以是显式解或隐式解,取决于方程的形式和解的表达方式。
然后,我们来看初值问题。
初值问题是指在微分方程中给定一个特定的初值条件,要求求解满足该条件的解。
例如,对于一阶线性微分方程y'+y=0,给定初始条件y(0)=1,可以求解得到解y(x)=e^{-x}。
初值问题在应用领域中具有重要的意义,例如在物理学中,我们常常根据初始条件求解出系统的运动规律。
最后,我们来看一阶线性微分方程。
一阶线性微分方程是最简单和最常见的微分方程形式。
一般来说,一阶线性微分方程可以写作y'+p(x)y=q(x),其中p(x)和q(x)是已知函数。
我们可以通过积分的方法求解这类方程,即将方程两边同时积分,得到y=∫q(x)e^{-\int p(x)dx}dx+C。
其中C是一个常数,它代表了方程的任意常数。
总结起来,微分方程是数学中重要的一个分支,它可以用来研究函数在局部上的变化规律。
微分方程具有基本的概念,包括方程的定义、解的定义、初值问题以及一阶线性微分方程等。
微分方程在物理、工程、经济等领域具有广泛的应用,例如求解物理系统的运动规律、分析电路的行为、研究经济的增长模式等。
101微分方程的基本概念
数,则称其为方程的通解; 若n阶微分方程的解中不含有 任意常数,则称其为方程的特解.
例如 y Ce2x 是方程 y 2 y 0 的通解
y C1 sin x C2 cos x 是方程 y y 0 的通解 y e2x 是方程 y 2 y 0 的特解.
确定n阶微分方程通解中n个独立的任意常数时, 通
§10.1 微分方程的基本概念
一. 引例 二. 微分方程的概念
一. 引例
例1 已知曲线通过点(0,1)且在该曲线上的任一点 M ( x, y) 处的切线斜率为 2x, 求该曲线方程.
解 设所求曲线的方程为 y = f (x) , 根据导数的几何意 义知道, 未知函数 应满足关系式
dy 2x dx
其中 F 是 x, y , y', … , y (n) 的已知函数, x 为自变量, y
为未知函数, 且方程中一定含有 y(n).
n阶微分方程的另一种形式为
y(n) f ( x, y, y, , y(n1) )
其中 f 是 x , y , y', … , y ( n - 1) 的已知函数.
y
x0
y0 ,
y
x0
y1 ,
, y(n1) x0 yn1
微分方程解的图形是一条曲线, 叫做微分方程的积 分曲线. 初值问题的几何意义, 就是求微分方程的通 过点 ( x0 , y0 ) 的那条积分曲线.
例3 验证 函数 y = C1cosx + C2 sinx + x 是微分方程
解 设所求的函数关系为 Q = Q (p)
则由题意可知,它应满足
p
Q
dQ dp
上海立信会计金融高等数学 b-微积分
高校数学课程是大学教育中不可或缺的一部分,而高等数学 b-微积分作为数学专业的基础课程之一,对于培养学生的数学思维和分析能力具有重要意义。
作为我国知名的高校之一,上海立信会计金融高等数学 b-微积分课程在教学内容、教学方法以及学习效果等方面都具有一定的特色和优势。
一、教学内容全面上海立信会计金融高等数学 b-微积分课程的教学内容全面,包括微积分的基本概念、导数与微分、积分与微分方程等内容,涵盖了微积分的各个重要知识点,并且教学内容与数学专业的发展趋势和实际应用密切相关,有助于学生全面系统地掌握微积分的基础知识和方法,为将来深入学习数学以及从事相关领域的工作打下坚实的基础。
二、教学方法灵活多样在教学方法上,上海立信会计金融高等数学 b-微积分课程注重灵活多样的教学方式。
除了传统的课堂教学外,还注重引导学生进行实际应用和实验,通过案例分析和解决实际问题的方式,深化学生对微积分理论知识的理解和应用能力。
教师会根据学生的学习特点和需求,采用不同的教学方法和手段,例如小组讨论、课外辅导等,使学生在思维方式和学习方法上得到全面提高。
三、学习效果显著上海立信会计金融高等数学 b-微积分课程在学习效果上表现显著。
通过对学生的学习情况进行全面的跟踪和评估,教师及时发现学生的学习困难和问题,采取相应的措施进行指导和辅导,使学生的学习效果得到进一步提高。
学校还注重对学生的认知能力、动手能力和创新能力的培养,使学生在学习微积分的过程中获得综合能力的提升,为其未来的学习和发展奠定坚实基础。
四、教学团队实力雄厚上海立信会计金融高等数学 b-微积分课程的教学团队实力雄厚,拥有一支高素质的教师队伍。
教师们既具有扎实的数学理论基础,又具备丰富的教学经验和实践能力,能够根据学生的学习特点和需求,灵活运用教学手段和方法,使得教学过程生动有趣,引导学生主动参与学习,达到教学的最佳效果。
在总体上看,上海立信会计金融高等数学 b-微积分课程具有教学内容全面、教学方法灵活多样、学习效果显著和教学团队实力雄厚等优点。
第一节 微分方程基本概念
f ( x , y , y , , y
).
(2)微分方程的解:如果将一个函数代入微分方 程能使方程成为恒等式 , 这个函数就称这个微分 方程的解.
例如 y x 1和 y x C 都是
2 2
dy dx
2 x 的解 .
( 1 ) 含任意常数 C ; 微分方程的解有两种形式 ( 2 ) 不含任意常数 C .
故满足初始条件的特解
为 y e e
x
2x
思考: 设 C 1 , C 2 分别为任意常数
y C 1 e 3 C 2 e 是否 y 3 y 2 y 0的通解 ?
x x
y C 1 C 2 e e 是否 y 3 y 2 y 0的通解 ?
x 2x
2x
中不含任意常数,
故为微分方程的特解.
x
C 2e
2x
( C 1 , C 2 为任意常数
)
y 3 y 2 y 0的通解 , y ( 0 ) 0 , y ( 0 ) 1
并求方程满足初始条件 的特解 .
解 y C 1e 2 C 2e
x
2x
C 1 e x 4 C 2 e 2 x y
将 y , y , y 代入方程 y 3 y 2 y 0 左边 ,
y f ( x , y , y ) 二阶: y x x y 0 , y x x y 0 0 0
过定点且在定点的切线的斜率为定值的积分曲线.
例3
验证 y Cx ( C 为任意常数 )为方程 y
2
2y x
的通解 .
并求满足初始条件
y
微分方程基本概念与解法
微分方程基本概念与解法微分方程是数学中重要的分支之一,广泛应用于自然科学、工程领域以及经济学等各个领域。
本文将介绍微分方程的基本概念和解法。
一、微分方程的基本概念微分方程是描述函数及其导数之间关系的方程。
一般形式为:dy/dx = f(x)其中y表示未知函数,x表示自变量,f(x)为已知函数。
这种形式的微分方程称为一阶常微分方程。
二、微分方程的分类根据微分方程中未知函数和自变量的阶次,微分方程可以分为一阶、二阶、高阶等不同类型。
1. 一阶微分方程一阶微分方程是指未知函数的导数只与自变量x的一阶有关的微分方程。
一般形式可以写为:dy/dx = f(x, y)其中f(x, y)为已知函数。
常见的一阶微分方程有可分离变量、线性微分方程、齐次微分方程等。
2. 二阶微分方程二阶微分方程是指未知函数的二阶导数出现在方程中的微分方程。
一般形式可以写为:d²y/dx² = f(x, y, dy/dx)其中f(x, y, dy/dx)为已知函数。
常见的二阶微分方程有常系数二阶齐次线性微分方程、非齐次线性微分方程等。
三、微分方程的解法解微分方程的方法有很多种,下面介绍几种常见的解法。
1. 可分离变量法对于可分离变量的微分方程,可以通过分离变量的方式将方程化简为两个独立变量的微分方程,再进行求解。
2. 线性微分方程的求解对于线性微分方程,可以使用常数变易法或特征方程法来求解。
常数变易法将未知函数表示为一个待定函数与一个特解的和,特征方程法则通过寻找特征方程的根来求解。
3. 齐次微分方程的求解对于齐次微分方程,可以使用同类相除法或变量替换法等求解方法。
同类相除法通过将分子与分母同除以未知函数的幂次,得到一个关于新变量的一阶微分方程。
变量替换法则通过引入新的变量,将原微分方程转化为一个更简单的形式。
四、应用实例微分方程在各个领域都有广泛的应用,下面以物理学中的弹簧振动为例来说明。
考虑到弹簧的弹性特性和质点的运动方程,可以建立如下的二阶微分方程:m(d²x/dt²) + kx = 0其中m表示质点的质量,k表示弹簧的劲度系数,x表示质点的位移。
微积分课件(微分方程简介)
n阶微分方程(9.8)的常见定解条件是
y ( x0 ) y0 , y' ( x0 ) y1 ,, y
( n1)
( x0 ) yn1
(9.12)
称(9.12)为初始条件,其中x0,y0,y1,…, yn为n+1个给
定的常数.
求微分方程满足某个定解条件或初始条件 的特解问题,称为微分方程的定解问题或初值问 题. 例如,初值问题:
dy dt ay (t ),
a为常数
(9.1)
(9.2)
y' P( x) y Q( x)
y'' xy' x y e
2
x
(9.3) (9.4)
( y' ) 1 y
2
2
都是常微分方程.而方程
u
2
t
2
2
u
2
x
2
2
f (t , x)
u
2
(9.5)
a1 ( x) y
( n 1)
an1 ( x) y' an ( x) y f ( x) (9.9)
其中a1(x),…an(x)和f(x)均为x的已知函数.
不是线性微分方程的微分方程,统称为非线
性微分方程.
二、微分方程的解 定义9.3 如果将已知函数 y ( x) 代入方程(9.8)后, 能使其成为恒等式,则称函数y ( x)为方程(9.8) 的解;如果由关系式Φ(x,y)=0确定的隐函数 y ( x) 是方程(9.8)的解,则称Φ(x,y)=0为方程(9.8)的隐式 解. 例如,y=eat,y=Ceat(C为常数)都是方程(9.1)的 解;而x2+y2=1是方程(9.4)的隐式解.
微分方程初步微分方程的基本概念与解法
微分方程初步微分方程的基本概念与解法微分方程是数学中的一个重要分支,它研究的是含有未知函数及其导数的方程。
在实际问题的建模和解决过程中,微分方程起到了至关重要的作用。
本文将介绍微分方程的基本概念和一些解法。
一、微分方程的基本概念微分方程可以分为常微分方程和偏微分方程两大类。
常微分方程是研究只涉及一个自变量的未知函数的方程,而偏微分方程则是研究涉及多个自变量的未知函数的方程。
微分方程的解包括通解和特解两种。
通解是满足方程的所有解的集合,特解是其中的一个解。
通解是通过求解微分方程得到的,而特解可以通过给定初始条件来确定。
二、微分方程的解法1. 可分离变量法可分离变量法是最简单常用的解微分方程的方法。
对于形如dy/dx=f(x)·g(y)的方程,可以将dy/g(y)=f(x)dx两边同时积分得到解。
2. 齐次方程法对于形如dy/dx=f(x,y)/g(x,y)的方程,如果f(x,y)和g(x,y)都是同次齐次函数,即f(kx,ky)=k^n*f(x,y)和g(kx,ky)=k^m*g(x,y),则可以通过变量代换y=vx得到一个可分离变量的方程。
3. 线性方程法对于形如dy/dx+p(x)y=q(x)的一阶线性方程,可以通过积分因子法求解。
首先求得其积分因子μ(x)=exp[∫p(x)dx],方程两边同时乘以μ(x)化为可积形式,再对其进行积分得到解。
4. 变化常数法对于形如y'+p(x)y=q(x)e^(-∫p(t)dt)的一阶线性方程,可以通过变化常数法求解。
假设通解为y=(c(x)+∫q(x)e^(-∫p(t)dt)dx)e^∫p(x)dx,其中c(x)为待定的常函数。
5. 微分方程的级数解法级数解法是针对某些特殊的微分方程的一种解法。
通过将未知函数展开为幂级数的形式,将微分方程转化为递归关系式,从而得到解的表达式。
6. 数值解法对于一些无法求得解析解的复杂微分方程,可以通过数值方法来近似求解。
微分方程的基本概念和分类
微分方程的基本概念和分类作为数学中的基础内容,微分方程一直以来都是数学爱好者和学者心中的热门话题。
本篇文章将阐述微分方程的基本概念和分类,让读者对微分方程有一个全面而深入的了解。
一、微分方程的基本概念微分方程是一种数学方程,它涉及函数和其导数的关系。
通俗地说,微分方程可以用来描述自然世界中许多现象,如物理学中的运动方程和化学中的反应动力学等问题。
一般来说,微分方程可以分为常微分方程和偏微分方程两类。
在常微分方程中,只有一个自变量变化,而偏微分方程则有多个自变量变化。
除此之外,我们还需要了解微分方程的阶数和形式。
微分方程的阶数指的是导数的最高阶数,而微分方程的形式则指方程的一般形式,常见的包括线性微分方程、非线性微分方程、高阶微分方程等。
二、微分方程的分类1. 常微分方程常微分方程是指只包含一个自变量的微分方程。
它可以进一步分为一阶常微分方程和高阶常微分方程两类。
一阶常微分方程一般可以写成形如y′=f(x,y)的形式,其中y′表示y关于x的导数,f(x,y)是已知的函数。
高阶常微分方程可以写成形如y(n)=f(x,y,y′,y′′,……,y(n−1))的形式,其中y(n)表示函数y的n阶导数,f(x,y,y′,y′′,……,y(n−1))是已知的函数。
2. 偏微分方程偏微分方程是指包含多个自变量的微分方程。
它也可以进一步分为常系数线性偏微分方程、非常系数线性偏微分方程和非线性偏微分方程等。
常系数线性偏微分方程可以写成形如∂2u/∂x2+∂2u/∂y2=k2u 的形式,其中u表示未知函数,k是已知的常数。
非常系数线性偏微分方程的形式和常系数形式类似,只不过k是一个未知的函数。
非线性偏微分方程的形式则更为复杂,包括众多的方程类型。
总结起来,微分方程是数学中极为重要的一个分支,它涉及到许多领域中物理、化学、生物学等问题的描述。
熟悉微分方程的基本概念和分类对于我们掌握微分方程的求解方法和应用具有非常重要的意义。
微分方程的基本概念
微分方程的基本概念1. 概念定义微分方程是描述函数与其导数之间关系的方程。
一般形式为:F(x, y, dy/dx, d^2y/dx^2, ..., d^n-1y/dx^n-1) = 0其中,x是自变量,y是因变量,dy/dx是y对x的导数,依此类推。
微分方程可以分为常微分方程和偏微分方程两类。
常微分方程中只涉及一个自变量,而偏微分方程中涉及多个自变量。
2. 重要性微分方程在物理学、工程学、生物学等领域中有着广泛的应用。
通过建立物理规律或实验数据与数学模型之间的联系,可以利用微分方程来预测和解释自然现象和工程问题。
它是现代科学研究和工程技术应用的基础。
具体而言,微分方程在以下几个方面具有重要性:(1) 描述动态过程微分方程可以描述许多动态过程,如运动物体的运动轨迹、电路中电流和电压随时间的变化、化学反应速率等。
通过求解这些微分方程,可以得到关于系统行为的详细信息。
(2) 预测未来行为通过已知的初始条件和微分方程,可以求解出函数在未来某个时间点的值。
这使得微分方程成为预测和规划问题的重要工具,如天气预报、金融市场预测等。
(3) 优化问题求解许多优化问题可以归结为微分方程的求解。
例如,在物理中常常需要找到使某个物理量最小或最大的条件。
这些问题可以通过求解微分方程获得最优解。
(4) 建模与仿真通过将实际问题建模成微分方程,可以进行数值模拟和仿真。
这对于工程设计、新产品开发等领域非常重要。
例如,在飞机设计中,可以使用微分方程来模拟空气动力学效应,从而改进飞机性能。
3. 应用举例微分方程在各个领域都有广泛的应用。
以下是一些典型的应用举例:(1) 物理学中的运动描述经典力学中,牛顿第二定律描述了物体运动与作用力之间的关系:m * d^2x/dt^2 = F(x, dx/dt)其中,m是物体的质量,x是位置,t是时间,F(x, dx/dt)是作用力。
(2) 生物学中的生长模型生物学中,许多生物体的生长过程可以用微分方程来描述。
微分方程的基本概念
微分方程的基本概念微分方程是数学中的一个重要概念,它描述了变量之间的关系以及函数与其导数之间的关系。
微分方程在自然科学、工程技术和社会科学等多个领域中都有广泛的应用。
本文将介绍微分方程的基本概念以及其在解决实际问题中的应用。
一、微分方程的定义与分类微分方程是包含未知函数及其导数的方程。
一般形式为:dy/dx =f(x, y),其中y是未知函数,x是自变量,f(x, y)是已知函数。
微分方程可分为常微分方程和偏微分方程两类。
常微分方程是只含有未知函数的一阶或高阶导数的微分方程,它在某个区间上成立。
偏微分方程是对多个变量的未知函数及其偏导数进行求解,它在多维空间中成立。
二、微分方程的解与初值问题给定一个微分方程,我们需要求解它的解。
解是使得方程成立的函数。
常微分方程的解可以表示为y = φ(x) + C,其中φ(x)是方程的特解,C是常数。
特解是满足特定条件的解。
对于常微分方程,我们还需考虑初值问题,即给定一些初始条件,求解出满足这些条件的特解。
三、微分方程的阶与线性性质微分方程的阶指方程中最高阶导数的阶数。
一阶微分方程只包含一阶导数,二阶微分方程包含二阶导数,以此类推。
方程的阶数决定了方程解的复杂程度。
微分方程还有线性性质,即满足叠加和齐次性质。
叠加性质表示如果一个方程有两个特解,那么它们的线性组合也是方程的解。
齐次性质表示如果一个方程的解满足某些条件,那么满足这些条件的倍数也是方程的解。
四、微分方程的应用微分方程在科学和工程中有广泛的应用。
它可以描述物理学中的运动、传热、弹性力学等现象。
在经济学中,微分方程可以用来研究经济指标的变化趋势和关系。
在生物学中,微分方程可用于模拟生物种群的增长和传播。
在电路理论中,微分方程可以描述电路中电压和电流的变化。
五、常见微分方程的例子1. 一阶线性微分方程:dy/dx + p(x)y = q(x)2. 二阶线性常系数齐次微分方程:d²y/dx² + a dy/dx + by = 03. 二阶线性非齐次微分方程:d²y/dx² + a dy/dx + by = f(x)4. 常见的偏微分方程有热传导方程、波动方程和拉普拉斯方程等。
微分方程的基本概念
(9 7 )
其中包含两个任意常数, C 1 x ( 0 ) ,C 2 x ( 0 ) .
(97)是方(9程 1)所有解的一般 . 表达式
定义9.3 如果方程(95)的解中含有n个独立的任意 常数,则称这样的解为方程 (95)的通解. 而通解中 给任意常数以确定值的解, 称为方程 (95)的特解. 求特解的步骤:
( 9 5 )
n阶线性常微分方程般的形一式:
y (n ) a 1 (x )y (n 1 ) a n 1 (x )y a n (x )y f(x ) ( 9 6 )
不能表示成形如 (96)形式的微分方程,统称为非 线性方程.
二、微分方程的解
定义9.2 设y 函 (x )在 数 I区 上n 间 存 阶.在 导
d P k [D (P ) S (P )] ( k 0 ) ( 9 4 ) d t
在D(P)和S(P)确定的情,况 可下 解出价格t 的 与关 系.
未知函数为一元函数的微分方程定义为常微分方程; 未知函数为多元函数的微分方程定义为偏微分方程.
n阶(常) 微分方程的一般形式是
F ( x , y , y , , y ( n ) ) 0
§9.1 微分方程的基本概念
一、微分方程的定义 二、微分方程的解
一、微分方程的定义
定义9.1 含有自变量、未知函数以及未知函数的导 数(或微分)的函数方程, 称为微分方程. 微分方程中 出现的未知函数的最高阶导数的阶数, 称为微分方 程的阶.
例如, yxy, y2y3yex,
(t2x)d tx d x0 , z x y x
如果 y(x 将 )代入 (95 方 )后 ,使 程 方 (95程 )在 I
上为恒等式, 则称 y (x )是 函 (9 方 数 5 ) 在 I上 程
最新01第一节微分方程的基本概念
01第一节微分方程的基本概念第八章常微分方程与差分方程对自然界的深刻研究是数学最富饶的源泉.-------傅里叶微积分研究的对象是函数关系,但在实际问题中,往往很难直接得到所研究的变量之间的函数关系,却比较容易建立起这些变量与它们的导数或微分之间的联系,从而得到一个关于未知函数的导数或微分的方程,即微分方程. 通过求解这种方程,同样可以找到指定未知量之间的函数关系. 因此,微分方程是数学联系实际,并应用于实际的重要途径和桥梁,是各个学科进行科学研究的强有力的工具.如果说“数学是一门理性思维的科学,是研究、了解和知晓现实世界的工具”,那么微分方程就是显示数学的这种威力和价值的一种体现.现实世界中的许多实际问题都可以抽象为微分方程问题. 例如,物体的冷却、人口的增长、琴弦的振动、电磁波的传播等,都可以归结为微分方程问题. 这时微分方程也称为所研究问题的数学模型.微分方程是一门独立的数学学科,有完整的理论体系. 本章我们主要介绍微分方程的一些基本概念,几种常用的微分方程的求解方法及线性微分方程解的理论.第一节微分方程的基本概念分布图示★引言★微分方程的概念★例1★例2★例3★例4★微分方程解的概念★例5★例6★内容小结★课堂练习★习题8-1内容要点:一、微分方程的概念我们把未知函数为一元函数的微分方程称为常微分方程. 类似地,未知函数为多元函数的微分方程称为偏微分方程,本章我们只讨论常微分方程. 常微分方程的一般形式是:«Skip Record If...» (1.5)其中«Skip Record If...»为自变量,«Skip Record If...»是未知函数.如果能从方程(1.5)中解出最高阶导数,就得到微分方程«Skip Record If...» (1.6)以后我们讨论的微分方程组主要是形如(1.6)的微分方程,并且假设(1.6)式右端的函数«Skip Record If...»在所讨论的范围内连续.如果方程(1.6)可表为如下形式:«Skip Record If...» (1.7)则称方程(1.7)为«Skip Record If...»阶线性微分方程. 其中«Skip Record If...»«Skip Record If...»«Skip Record If...» «Skip Record If...»和«Skip Record If...»均为自变量«Skip Record If...»的已知函数.不能表示成形如(1.7)式的微分方程,统称为非线性方程.在研究实际问题时,首先要建立属于该问题的微分方程,然后找出满足该微分方程的函数(即解微分方程),就是说,把这个函数代入微分方程能使方程称为恒等式,我们称这个函数为该微分方程的解. 更确切地说,设函数«Skip Record If...»在区间«Skip Record If...»上有«Skip Record If...»阶连续导数,如果在区间«Skip Record If...»上,有«Skip Record If...»则称函数«Skip Record If...»为微分方程(1.5)在区间«Skip Record If...»上的解.二、微分方程的解微分方程的解可能含有也可能不含有任意常数. 一般地,微分方程的不含有任意常数的解称为微分方程的特解. 含有相互独立的任意常数,且任意常数的个数与微分方程的阶数相等的解称为微分方程的通解(一般解). 所谓通解的意思是指,当其中的任意常数取遍所有实数时,就可以得到微分方程的所有解(至多有个别例外).注:这里所说的相互独立的任意常数,是指它们不能通过合并而使得通解中的任意常数的个数减少.许多实际问题都要求寻找满足某些附加条件的解,此时,这类附加条件就可以用来确定通解中的任意常数,这类附加条件称为初始条件,也称为定解条件. 例如,条件(1.2)和(1.4)分别是微分方程(1.1)和(1.3)的初始条件.带有初始条件的微分方程称为微分方程的初值问题.微分方程的解的图形是一条曲线,称为微分方程的积分曲线.例题选讲:微分方程的概念例1 (E01) 设一物体的温度为100℃, 将其放置在空气温度为20℃的环境中冷却. 根据冷却定律:物体温度的变化率与物体和当时空气温度之差成正比, 设物体的温度«Skip Record If...»与时间«Skip Record If...»的函数关系为«Skip Record If...»则可建立起函数«Skip Record If...»满足的微分方程«Skip Record If...»其中«Skip Record If...»为比例常数. 这就是物体冷却的数学模型.根据题意, «Skip Record If...»还需满足条件 «Skip Record If...»例2(E02)设一质量为«Skip Record If...»的物体只受重力的作用由静止开始自由垂直降落. 根据牛顿第二定律:物体所受的力«Skip Record If...»等于物体的质量«Skip Record If...»与物体运动的加速度«Skip Record If...»成正比,即«Skip Record If...»,若取物体降落的铅垂线为«Skip Record If...»轴,其正向朝下,物体下落的起点为原点,并设开始下落的时间是«Skip Record If...»,物体下落的距离«Skip Record If...»与时间«Skip Record If...»的函数关系为«Skip Record If...»,则可建立起函数«Skip Record If...»满足的微分方程«Skip Record If...» (1.1)其中«Skip Record If...»为重力加速度常数. 这就是自由落体运动的数学模型.根据题意,«Skip Record If...»还需满足条件«Skip Record If...» (1.2)例3(E03)如果设某商品在时刻t的售价为P, 社会对该商品的需求量和供给量分别是P的函数«Skip Record If...»则在时刻t的价格«Skip Record If...»对于时间t的变化率可认为与该商品在同时刻的超额需求量«Skip Record If...»成正比, 即有微分方程«Skip Record If...» (1.3)在«Skip Record If...»和«Skip Record If...»确定情况下, 可解出价格与t的函数关系.例4(E04)试指出下列方程是什么方程,并指出微分方程的阶数.«Skip Record If...»解(1)是一阶线性微分方程,因方程中含有的«Skip Record If...»和«Skip Record If...»都是一次.(2)是一阶非线性微分方程,因方程中含有的«Skip Record If...»的平方项.(3)是二阶非线性微分方程,因方程中含有的«Skip Record If...»的三次方.(4)是二阶非线性微分方程,因方程中含有非线性函数«Skip Record If...»和«Skip Record If...»微分方程的解例5求曲线族«Skip Record If...»满足的微分方程,其中«Skip Record If...»为任意常数.解求曲线族所满足的方程,就是求一微分方程,使所给的曲线族正好是该微分方程的积分曲线族.因此所求的微分方程的阶数应与已知曲线族中的任意常数的个数相等.这里,我们通过消去任意常数的方法来得到所求的微分方程.在等式«Skip Record If...»两端对«Skip Record If...»求导,得«Skip Record If...»再从«Skip Record If...»解出«Skip Record If...»代入上式得«Skip Record If...»化简即得到所求的微分方程 «Skip Record If...»例6(E05)验证函数«Skip Record If...»(C为任意常数)是方程«Skip Record If...»的通解, 并求满足初始条件«Skip Record If...»的特解.解要验证一个函数是否是方程的通解,只要将函数代入方程,看是否恒等,再看函数式中所含的独立的任意常数的个数是否与方程的阶数相同.将«Skip Record If...»求一阶导数,得«Skip Record If...»«Skip Record If...»把«Skip Record If...»和«Skip Record If...»代入方程左边得«Skip Record If...»«Skip Record If...»«Skip Record If...»因方程两边恒等,且«Skip Record If...»中含有一个任意常数,故«Skip Record If...»是题设方程的通解.将初始条件«Skip Record If...»代入通解«Skip Record If...»中,得«Skip Record If...»从而所求特解为 «Skip Record If...»课堂练习1.验证函数«Skip Record If...»是微分方程«Skip Record If...»的解. 并求满足初始条件«Skip Record If...»的特解.。
微分方程的基本概念20页word
第一节 微分方程的基本概念教学目的:理解并掌握微分方程的基本概念,主要包括微分方程的阶,微分方程的通解、特解及微分方程的初始条件等教学重点:常微分方程的基本概念,常微分方程的通解、特解及初始条件 教学难点:微分方程的通解概念的理解教学内容:1、首先通过几个具体的问题来给出微分方程的基本概念。
(1)一条曲线通过点(1,2),且在该曲线上任一点M (x ,y )处的切线的斜率为2x ,求这条曲线的方程。
解 设曲线方程为)(x y y =.由导数的几何意义可知函数)(x y y =满足x dxdy 2= (1) 同时还满足以下条件:1=x 时,2=y (2)把(1)式两端积分,得⎰=xdx y 2 即 C x y +=2 (3)其中C 是任意常数。
把条件(2)代入(3)式,得1=C ,由此解出C 并代入(3)式,得到所求曲线方程:12+=x y (4)(2)列车在平直线路上以20s m /的速度行驶;当制动时列车获得加速度2/4.0s m -.问开始制动后多少时间列车才能停住,以及列车在这段时间里行驶了多少路程?解 设列车开始制动后t 秒时行驶了s 米。
根据题意,反映制动阶段列车运动规律的函数)(t s s =满足:4.022-=dts d (5) 此外,还满足条件:0=t 时,20,0===dtds v s (6) (5)式两端积分一次得: 14.0C t dtds v +-==(7) 再积分一次得 2122.0C t C t s ++-= (8)其中21,C C 都是任意常数。
把条件“0=t 时20=v ”和“0=t 时0=s ”分别代入(7)式和(8)式,得0 ,2021==C C把21,C C 的值代入(7)及(8)式得,204.0+-=t v (9)t t s 202.02+-= (10)在(9)式中令0=v ,得到列车从开始制动到完全停止所需的时间:)(504.020s t ==。
再把5=t 代入(10)式,得到列车在制动阶段行驶的路程).(5005020502.02m s =⨯+⨯-=上述两个例子中的关系式(1)和(5)都含有未知函数的导数,它们都是微分方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)特解: 确定了通解中任意常数以后的解. 解的图象: 微分方程的积分曲线. 通解的图象: 积分曲线族. 初始条件: 用来确定任意常数的条件.
初值问题: 求微分方程满足初始条件的解的问题.
故 xC 1co k stC 2sikn 是 t 原方 . 程 xt0A , d dtx t00, C 1 A ,C 2 0 .
所求特解为 x A ck o .ts
作业
10-1: 5、10
结束语
谢谢大家聆听!!!
14
上海立信会计学院第一节 微分方程的基本概念
问题的提出
例1 一曲线通过点(1,2),且在该曲线上任一点
M(x,y)处的切线的斜率为 2x,求这曲线的方程.
解 设所求曲y线 y为 (x)
dy 2x dx
其 x 1 中 时 ,y 2
y2xdx即 yx2C, 求C 得 1,
所求曲线方y程x2为 1.
xt0A,ddxtt00的 特 解 . 解 d d x t k1s C k in tk2c Ck o ,ts
d d 2 2 x t k 2 C 1 ck o k ts 2 C 2sk i,n t 将dd2t2x和x的表达式代入,原方程
k 2 ( C 1 c k C 2 o s k t ) k i 2 s ( C 1 t c n k C 2 o s k t ) i 0 . s
一阶:
y f(x, y) yxx0 y0
过定点的积分曲线;
二阶:
yf(x,y,y) yxx0 y0,yxx0 y0
过定点且在定点的切线的斜率为定值的积分曲线.
例3验 证 :函 数xC1coks t C2sik n是 t 微 分
方 程 dd22xtk2x0的 解 . 并 求 满 足 初 始 条 件