江苏高考数学填空题压轴题精选3

合集下载

2023年高考数学填选压轴题专题03 函数的奇偶性、对称性、周期性

2023年高考数学填选压轴题专题03 函数的奇偶性、对称性、周期性

专题03 函数的奇偶性、对称性、周期性【方法点拨】1.常见的与周期函数有关的结论如下:(1)如果f (x +a )=-f (x )(a ≠0),那么f (x )是周期函数,其中的一个周期T =2a . (2)如果f (x +a )=1f (x )(a ≠0),那么f (x )是周期函数,其中的一个周期T =2a . (3)如果f (x +a )+f (x )=c (a ≠0),那么f (x )是周期函数,其中的一个周期T =2a . 2.函数奇偶性、对称性间关系:(1)若函数y =f (x +a )是偶函数,即f (a +x )=f (a -x )恒成立,则y =f (x )的图象关于直线x =a 对称;一般的,若f (a +x )=f (b -x )恒成立,则y =f (x )的图象关于直线x =a +b 2对称.(2)若函数y =f (x +a )是奇函数,即f (-x +a )+f (x +a )=0恒成立,则函数y =f (x )关于点(a ,0)中心对称;一般的,若对于R 上的任意x 都有f (a +x )+f (a -x )=2b 恒成立,则y =f (x )的图象关于点(a ,b )对称. 3. 函数对称性、周期性间关系:若函数有多重对称性,则该函数具有周期性且最小正周期为相邻对称轴距离的2倍,为相邻对称中心距离的2倍,为对称轴与其相邻对称中心距离的4倍.(注:如果遇到抽象函数给出类似性质,可以联想y =sin x ,y =cos x 的对称轴、对称中心和周期之间的关系)4. 善于发现函数的对称性(中心对称、轴对称),有时需将对称性与函数的奇偶性相互转化.【典型题示例】例1 (2022·全国乙·理·T12) 已知函数(),()f x g x 的定义域均为R ,且()(2)5f x g x +-=,()(4)7g x f x --=.若()y g x =的图像关于直线2x =对称,(2)4g =,则221()k f k ==∑( )A. 21-B. 22-C. 23-D.24-【答案】D【分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=-,()()()462210f f f +++=-,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.【解析】因为()y g x =的图像关于直线2x =对称, 所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-, 因为()(2)5f x g x +-=,所以()(2)5f x g x ++=, 代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-, 所以()()()()35212510f f f +++=-⨯=-,()()()()46222510f f f +++=-⨯=-.因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=, 联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R , 所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()2211235(1)2k f f f f f f k =⎡⎤++++++⎣⎦=∑()()()4622f f f ⎡⎤+++⎣⎦13101024=----=-.故选:D例2 (2022·新高考Ⅱ卷·T8) 若函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A. 3-B. 2-C. 0D. 1【答案】A【分析】根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【解析】因为()()()()f x y f x y f x f y ++-=, 令1,0x y ==可得,()()()2110f f f =,所以()02f =, 令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-, 所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--, 故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++=.由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .例3 (2021·新高考全国Ⅱ卷·8)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( )A. 102f ⎛⎫-= ⎪⎝⎭B. ()10f -=C. ()20f =D.()40f =【答案】B【分析】推导出函数()f x 是以4为周期的周期函数,由已知条件得出()10f =,结合已知条件可得出结论.【解析】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-,因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+, 所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+, 故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选:B.例4 (2021·全国甲卷·理·12)设函数()f x 的定义域为R ,()1fx +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫=⎪⎝⎭( ) A. 94-B. 32-C.74 D.52【答案】D 【分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案.【解析】因为()1f x +是奇函数,所以()()11f x f x -+=-+①;因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以935222f f ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭. 思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =.所以91352222f f f ⎛⎫⎛⎫⎛⎫==-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:D .例5 已知函数f (x )对任意的x ∈R ,都有f ⎝⎛⎭⎫12+x =f ⎝⎛⎭⎫12-x ,函数f (x +1)是奇函数,当-12≤x ≤12时,f (x )=2x ,则方程f (x )=-12在区间[-3,5]内的所有根之和为________. 【答案】4【分析】由f ⎝⎛⎭⎫12+x =f ⎝⎛⎭⎫12-x 对任意的x ∈R 恒成立,得f (x )关于直线x =12==,由函数 f (x +1)是奇函数,f (x )关于点(1,0)中心==,根据函数对称性、周期性间关系,知函数f (x )====2,====f (x )===即可.【解析】====f (x =1)=======f (=x =1)==f (x =1)====f ⎝⎛⎭⎫12=x = f ⎝⎛⎭⎫12=x ===f (1=x )=f (x )===f (x =1)==f (x )==f (x =2)==f (x =1)=f (x )= == ==f (x )====2========x =12=======f (x )========由图象可得 f (x )=-12在区间[-3,5]内有8个零点,且所有根之和为12×2×4=4. 例6 已知函数()y f x =是R 上的奇函数,对任意x R ∈,都有(2)()f x f x f -=+(2)成立,当1x ,2[0x ∈,1],且22x x ≠时,都有1212()()0f x f x x x ->-,则下列结论正确的有( )A .f (1)f +(2)f +(3)(2019)0f +⋯+=B .直线5x =-是函数()y f x =图象的一条对称轴C .函数()y f x =在[7-,7]上有5个零点D .函数()y f x =在[7-,5]-上为减函数【分析】根据题意,利用特殊值法求出f (2)的值,进而分析可得1x =是函数()f x 的一条对称轴,函数()f x 是周期为4的周期函数和()f x 在区间[1-,1]上为增函数,据此分析选项即可得答案.【解答】解:根据题意,函数()y f x =是R 上的奇函数,则(0)0f =;对任意x R ∈,都有(2)()f x f x f -=+(2)成立,当2x =时,有(0)2f f =(2)0=,则有f (2)0=,则有(2)()f x f x -=,即1x =是函数()f x 的一条对称轴;又由()f x 为奇函数,则(2)()f x f x -=--,变形可得(2)()f x f x +=-,则有(4)(2)()f x f x f x +=-+=,故函数()f x 是周期为4的周期函数, 当1x ,2[0x ∈,1],且22x x ≠时,都有1212()()0f x f x x x ->-,则函数()f x 在区间[0,1]上为增函数,又由()y f x =是R 上的奇函数,则()f x 在区间[1-,1]上为增函数; 据此分析选项:对于A ,(2)()f x f x +=-,则f (1)f +(2)f +(3)f +(4)[f =(1)f +(3)][f + (2)f +(4)]0=,f (1)f +(2)f +(3)(2019)504[f f +⋯+=⨯(1)f +(2)f +(3)f +(4)]f +(1)f +(2)+(3)f =(2)0=,A 正确;对于B ,1x =是函数()f x 的一条对称轴,且函数()f x 是周期为4的周期函数,则5x = 是函数()f x 的一条对称轴,又由函数为奇函数,则直线5x =-是函数()y f x =图象的一条对称轴,B 正确; 对于C ,函数()y f x =在[7-,7]上有7个零点:分别为6-,4-,2-,0,2,4,6;C 错误;对于D ,()f x 在区间[1-,1]上为增函数且其周期为4,函数()y f x =在[5-,3]-上为增函数,又由5x =-为函数()f x 图象的一条对称轴,则函数()y f x =在[7-,5]-上为减函数,D正确; 故选:ABD . 例7 已知函数()111123f x x x x =++---,()2g x x =-,则关于x 的方程()()f x g x =的实数根之和为______;定义区间(),a b ,[),a b ,(],a b ,[],a b 长度均为b a -,则()1111123f x x x x =++≥---解集全部区间长度之和为______. 【答案】①8 ②3【分析】根据题意得以函数()f x 关于点()2,0对称,进而利用导数研究函数()f x 性质,作出简图,树形结合求解即可得关于x 的方程()()f x g x =的实数根之和;令()1111123f x x x x =++=---整理得方程的实数根123,,x x x 满足1239x x x ++=,再数形结合得()1f x ≥解集为(](](]1231,2,3,x x x ,最后根据定义求解区间长度的和即可.【解析】因为()()1114321f x f x x x x-=++=----, 所以函数()f x 关于点()2,0对称, 由于()()()()222111'0123f x x x x =---<---,所以函数()f x 在()()()(),1,1,2,2,3,3,-∞+∞上单调递减,由于1x <时,()0f x <,(),0x f x →-∞→,()1,x f x -→→-∞,()1,x f x +→→+∞,()2,x f x -→→-∞,()2,x f x +→→+∞,()3,x f x -→→-∞,()3,x f x +→→+∞,(),0x f x →+∞→,且3x >时,()0f x >.故作出函数简图如图: 根据图像可知,函数()111123f x x x x =++---与函数()2g x x =-图像共有4个交点,且关于点()2,0对称,所以()()f x g x =的实数根之和为8;令()1111123f x x x x =++=---,整理得32923170x x x -+-=, 由图像知方程有三个实数解,不妨设为123,,x x x , 所以由三次方程的韦达定理得1239x x x ++=, 由函数图像得()1f x ≥解集为(](](]1231,2,3,x x x所以全部区间长度之和为12312312363x x x x x x -+-+-=++-=. 故答案为:8;3.【巩固训练】1.已知函数()1()2x af x -=关于1x =对称,则()()220f x f -≥的解集为_____.2.已知定义在R 上的函数()f x 满足(1)(3)f x f x +=--,且()f x 的图象与()lg4xg x x=-的图象有四个交点,则这四个交点的横纵坐标之和等于___________. 3.已知函数()()f x x R ∈满足(1)(1),(4)(4)f x f x f x f x +=-+=-,且33x -<≤时,()ln(f x x =,则(2018)f =( )A .0B .1 C.2) D.2)4. 已知f (x )是定义域为R 的函数,满足f (x +1)=f (x -3),f (1+x )=f (3-x ),当0≤x ≤2时,f (x )=x 2-x ,则下列说法正确的是( ) A.函数f (x )的周期为4B.函数f (x )图象关于直线x =2对称C.当0≤x ≤4时,函数f (x )的最大值为2D.当6≤x ≤8时,函数f (x )的最小值为-125.已知定义在R 上的奇函数,满足,且在区间[0,2]上是增函数,若方程f (x )=m (m >0)在区间上有四个不同的根,则6.(多选题)函数f (x )的定义域为R ,且f (x +1)与f (x +2)都为奇函数,则( ) A.f (x )为奇函数B.f (x )为周期函数C.f (x +3)为奇函数D.f (x +4)为偶函数7.若定义在R 上的函数()f x 满足()()2f x f x +=-,()1f x +是奇函数,现给出下列4个论断:①()f x 是周期为4的周期函数;②()f x 的图象关于点()1,0对称; ③()f x 是偶函数; ④()f x 的图象经过点()2,0-; 其中正确论断的个数是______________.8. (多选题)已知定义在R 上的函数f (x )满足f (x )=2-f (2-x ),且f (x )是偶函数,下列说法正确的是( )A.f (x )的图象关于点(1,1)对称B.f (x )是周期为4的函数C.若f (x )满足对任意的x ∈[0,1],都有f (x 2)-f (x 1)x 1-x 2<0,则f (x )在[-3,-2]上单调递增D.若f (x )在[1,2]上的解析式为f (x )=ln x +1,则f (x )在[2,3]上的解析式为f (x )=1-ln(x -2) 9. (2022·江苏常州·模拟)已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑mi =1(x i +y i )等于( ) A.0B.mC.2mD.4m)(x f (4)()f x f x -=-[]8,8-1234,,,x x x x 1234_________.x x x x +++=10.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .5011.已知函数y kx b =+与函数11x x y e e --=-的图象交于A ,B ,C ,且|AB |=|BC |=2211e e+-,则实数k = .【答案与提示】1.【答案】[]1,2【解析】∵函数()1()2x a f x -=关于1x =对称,∴()111,2x a f x -⎛⎫== ⎪⎝⎭,则由()()12202f x f -≥=,结合图象可得0222x ≤-≤,求得12x ≤≤.2.【答案】8【解析】()lg 4x g x x =-,故(4)()g x g x -=-,即()y g x =的图象关于点(2,0)对称,又函数()f x 满足(1)(3)f x f x +=--,则函数()y f x =的图象关于点(2,0)对称,所以四个交点的横纵坐标之和为8.3. 【答案】D【解析】因为()()()()11,44f x f x f x f x +=-+=-,所以()(2),()(8)(2)(8)826,f x f x f x f x f x f x T =-=-∴-=-∴=-=(2018)(2)ln(25)f f ∴==+ .4. 【答案】ABC【解析】 由f (x +1)=f (x -3),得f (x )=f [(x -1)+1]=f [(x -1)-3]=f (x -4),所以函数f (x )的周期为4,A 正确.由f (1+x )=f (3-x ),得f (2+x )=f (2-x ),所以函数f (x )的图象关于直线x =2对称,B 正确.当0≤x ≤2时,函数f (x )在⎣⎡⎭⎫0,12上单调递减,在⎝⎛⎦⎤12,2上单调递增.所以当x =12时,函数f (x )在[0,2]上取得极小值-14,且f (0)=0,f (2)=2.作出函数f (x )在[0,8]上的大致图象,如图.由图可知,当0≤x ≤4时,函数f (x )的最大值为f (2)=2,C 正确;当6≤x ≤8时,函数f (x )的最小值为f ⎝⎛⎭⎫152=f ⎝⎛⎭⎫12=-14,D 错误.故选ABC.5. 【答案】-8【提示】四个根分别关于直线2x =,6x =-对称.【命题立意】本题综合考查了函数的奇偶性,单调性,对称性,周期性,以及由函数图象解答方程问题,运用数形结合的思想和函数与方程的思想解答问题.6.【答案】ABC【解析】法一 由f (x +1)与f (x +2)都为奇函数知,函数f (x )的图象关于点(1,0),(2,0)对称,所以f (-x )+f (2+x )=0,f (-x )+f (4+x )=0,所以f (2+x )=f (4+x ),即f (x )=f (2+x ),-8 -6 -4 -2 0 2 4 6 8 yx f(x)=m (m>0)所以f (x )是以2为周期的周期函数.又f (x +1)与f (x +2)都为奇函数,所以f (x ),f (x +3),f (x +4)均为奇函数.故选ABC.法二 由f (x +1)与f (x +2)都为奇函数知,函数f (x )的图象关于点(1,0),(2,0)对称,所以f (x )的周期为2|2-1|=2,所以f (x )与f (x +2),f (x +4)的奇偶性相同,f (x +1)与f (x +3)的奇偶性相同,所以f (x ),f (x +3),f (x +4)均为奇函数.故选ABC.7.【答案】3【解析】命题①:由()()2f x f x +=-,得:()()()42f x f x f x +=-+=, 所以函数()f x 的周期为4,故①正确;命题②:由()1f x +是奇函数,知()1f x +的图象关于原点对称,所以函数()f x 的图象关于点()1,0对称,故②正确;命题③:由()1f x +是奇函数,得:()()11f x f x +=--,又()()2f x f x +=-,所以()()()()()()21111f x f x f x f x f x -=--+=-+-=--=,所以函数()f x 是偶函数,故③正确;命题④:()()()2220f f f -=--+=-,无法判断其值,故④错误.综上,正确论断的序号是:①②③.8. 【答案】ABC【解析】根据题意,f (x )的图象关于点(1,1)对称,A 正确;又f (x )的图象关于y 轴对称,所以f (x )=f (-x ),则2-f (2-x )=f (-x ),f (x )=2-f (x +2),从而f (x +2)=2-f (x +4),所以f (x )=f (x +4),B 正确;由f (x 2)-f (x 1)x 1-x 2<0可知f (x )在[0,1]上单调递增,又f (x )的图象关于点(1,1)对称,所以f (x )在[1,2]上单调递增,因为f (x )的周期为4,所以f (x )在[-3,-2]上单调递增,C 正确;因为f (x )=f (-x ),x ∈[-2,-1]时,-x ∈[1,2],所以f (x )=f (-x )=ln(-x )+1,x ∈[-2,-1],因为f (x )的周期为4,f (x )=f (x -4),x ∈[2,3]时,x -4∈[-2,-1],所以f (x )=f (x -4)=ln(4-x )+1,x ∈[2,3],D 错误.综上,正确的是ABC.9.【答案】 B【解析】 ∵f (x )+f (-x )=2,y =x +1x =1+1x. ∴函数y =f (x )与y =x +1x的图象都关于点(0,1)对称, ∴∑m i =1x i =0,∑mi =1y i =m 2×2=m . 10.【答案】C【分析】同例1得f (x )的的的的4,故f (1) +f (2) +f (3) +f (4)=f (5) +f (6) +f (7) +f (8) =···=f (45) +f (46) +f (47) +f (48),而f (1)=2,f (2)=f (0)=0(f (1-x )=f (1+x )中,取x =1)、f (3)=f (-1) =-f (1)=-2、f (4)=f (0)=0,故f (1) +f (2) +f (3) +f (4)=f(5) +f (6) +f (7) +f (8) =···=f (45) +f (46) +f (47) +f (48) =0,所以f (1) +f (2) +f (3) +···+f (50) =f (47) +f (48) =f (1) +f (2) =2.11.【答案】1e e- 【解析】设()x x f x e e -=-,则()f x 为定义在R 上的单增的奇函数而11(1)x x y e e f x --=-=-,故其图象关于点(1,0)中心对称又因为|AB |=|BC |,所以B 的坐标为(1,0)为使运算更简单,问题可转化为过坐标原点的直线y kx =与()x x f x e e -=-交于一点D ,且k 的值 不妨设()000,x x D x e e --(00x >),== 解之得01x =,()11,D e e --,所以1k e e -=-.。

2020年江苏高考数学压轴题突破(填空题)

2020年江苏高考数学压轴题突破(填空题)

__________ 姓名:__________ 班级:__________一、选择题1.在△ABC 中,,2,BD DC AP PD BP AB AC λμ===+,则λμ+= ( ) A. 1-3B.13C. 1-2D.122.已知3()f x x x =+,,,a b c ∈R ,且0a b +>,0a c +>,0b c +>,则()()()f a f b f c ++的值一定( )A. 大于0B. 等于0C. 小于0D. 正负都可能3.已知向量(1,tan )m θ=,(1,cos )n θ=-,(,)2πθπ∈,若12m n ⋅=-,则角θ=( ) A.6π B.3π C. 23πD.56π 4.《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问五人各得几何?”其意思为“有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少子,”这个问题中,得到橘子最少的人所得的橘子个数是( ) A. 4 B. 5 C. 6 D. 7二、填空题5.某几何体的三视图如图所示,则该几何体的体积是 ,表面积是 .6.过双曲线22221(0,0)x y a b a b-=>>的右焦点F 且斜率为1的直线与渐近线有且只有一个交点,则双曲线的离心率为__________. 7.在ABC ∆中,若()cos 24f x x π⎛⎫=-⎪⎝⎭,则A =______.三、解答题8.(本小题满分12分)已知方程()()()R t t y t x t y x ∈=++-++-+0916412324222表示的图形是圆 (1)求t 的取值范围(2)求其中面积最大的圆的方程(3)若点()24,3t P 恒在所给圆内,求t 的取值范围9.已知等差数列{}n a 满足:37a =,5726a a +=, (1)求公差d 和n a ; (2)令()211n n b n a +=∈-N ,求数列{}n b 的前n 项和nT .10.设平面向量213sin ,cos 2a x x ⎛⎫=- ⎪⎭,()cos ,1b x =-,函数()f x a b =⋅.(1)求()f x 的最小正周期,并求出()f x 的单调递增区间; (2)若锐角α满足123f α⎛⎫= ⎪⎝⎭,求πcos 26α⎛⎫+ ⎪⎝⎭的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【解析】 【分析】由题得以P 为ABC ∆的重心,再求出,AP BP ,求出λμ,的值得解. 【详解】因为,2,BD DC AP PD ==所以P 为ABC ∆的重心, 所以11311,22222AD AB AC AP AB AC =+∴=+, 所以1133AP AB AC =+,所以23BP AP AB AB AC =-=-+ 因为BP AB AC λμ=+,所以211=,,333λμλμ-=∴+=-故选:A【点睛】本题主要考查三角形的重心的性质,考查三角形的减法法则和数乘向量,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.A解析:A 【解析】解:f (a )+f (b )+f (c )=a3+b3+c3+a+b+c ∵a+b>0,a+c >0,b+c >0∴a+b+c>0又a 3+b 3+c 3="1/" 2 (a 3+b 3+c 3+a 3+b 3+c 3)a 3+b 3=(a+b )(a 2-ab+b 2)=(a+b )[((a-1 /2 b )2+3 /4 b 2]a ,b 不同时为0,a+b >0,故a 3+b 3=(a+b )(a 2-ab+b 2)=(a+b )[((a-1/ 2 b )2+3/ 4 b 2]>0同理可证得c 3+a 3>0,b 3+c 3>0 故a 3+b 3+c 3>0所以f (a )+f (b )+f (c )>03.D解析:D 【解析】 【分析】由向量点乘的公式带入,可以得到11tan cos 2θθ-+=-,再由,2πθπ⎛⎫∈ ⎪⎝⎭求出θ角的精确数值.【详解】由(1,tan )m θ=,(1,cos )n θ=-及12m n ⋅=-可得 11tan cos 2m n θθ⋅=-+=-,化简得1sin 2θ=26k πθπ=+或52()6k k Z πθπ==∈又,2πθπ⎛⎫∈⎪⎝⎭,则56πθ=为唯一解,答案选D. 【点睛】1、若向量1122(,),(,)a x y b x y ==,则向量点乘1212a b x x y y ⋅=+;4.C解析:C 【解析】由题,得到橘子最少的人所得的橘子个数即为1,a 则由题意,515453602S a =,⨯+⨯= 解得16a =. 故选C.二、填空题5.无6.【解析】 由题意得点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、【解析】由题意得1,be a== 点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.7.或 【解析】 【分析】利用正弦定理,可把变形为,从而解出,进而求出. 【详解】 且,或. 故答案或.【点睛】本题考查了正弦定理的应用,解得本题的关键是利用了正弦定理的变形,,,属于基本知识的考查解析:30或150 【解析】 【分析】利用正弦定理,可把2sin b a B =变形为sin 2sin sin B A B =,从而解出sin A ,进而求出A . 【详解】2sin ,sin 2sin sin ,b a B B A B =∴= ()sin 2sin 10B A ∴-=且sin 0B ∴≠,1sin ,302A A ∴=∴=或150.故答案30或150.【点睛】本题考查了正弦定理的应用,解得本题的关键是利用了正弦定理的变形2sin a R A =,2sin b R B =,2sin c R C =,属于基本知识的考查.三、解答题8.无9.(1)2d =,12+=n a n ;(2)4(1)n nT n =+【解析】 【分析】(1)设等差数列{}n a 的公差为d ,列出方程组,求得2,31==d a ,再利用等差数列的通项公式,即可求解. (2)由(1)得222111111()1(21)14441n n b a n n n n n ====--+-++,利用裂项法,即可求解.【详解】(1)设等差数列{}n a 的公差为d ,因为3577,26a a a =+=,所以112721026a d a d +=⎧⎨+=⎩,解得2,31==d a , 所以等差数列{}n a 的通项公式为1(1)3(1)221n a a n d n n =+-⨯=+-⨯=+. (2)由(1)得222111111()1(21)14441n n b a n n n n n ====--+-++, 所以数列{}n b 的前n 项和11111[(1)()1](1)422344(1()11)11nn n n nT n -=-+-++=-=+++. 所以数列{}n b 的前n 项和4(1)n nT n =+.【点睛】本题主要考查等差的通项公式及求和公式、以及“裂项法”求和,此类题目是数列问题中的常见题型,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“裂项”之后求和时,弄错数列的项数,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等.10.(Ⅰ)最小正周期为π,单调递增区间[,]63k k ππππ-+,k Z ∈.(Ⅱ) 【解析】 试题分析:(Ⅰ)根据题意求出函数的解析式,并化为()sin 26f x x π⎛⎫=- ⎪⎝⎭ 的形式,再求周期及单调区间.(Ⅱ)由123f α⎛⎫=⎪⎝⎭得到1 sin 63πα⎛⎫-= ⎪⎝⎭,进而得cos 63πα⎛⎫-= ⎪⎝⎭,再根据cos 2cos 2sin26626ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦并利用倍角公式求解可得结果.试题解析:(Ⅰ)由题意得()13sin cos 2f x a b x x =⋅=⋅+2–cos x x =- 1cos22x sin 26x π⎛⎫=- ⎪⎝⎭.∴()f x 的最小正周期为π. 由222,262k x k k Z πππππ-+≤-≤+∈,得,63k x k k Z ππππ-≤≤+∈.∴函数()f x 的单调递增区间为,63k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈.(Ⅱ)由(Ⅰ)可得1sin 263f απα⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭, ∵α为锐角, ∴663πππα-<-<,∴cos 6πα⎛⎫-==⎪⎝⎭ ∴cos 2cos 2sin22sin cos 662666ππππππααααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=-+=--=--⋅-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.。

江苏省高考数学考前压轴冲刺(新高考)-专题11 不等式之恒成立与有解问题(填空题)(原卷版)

江苏省高考数学考前压轴冲刺(新高考)-专题11 不等式之恒成立与有解问题(填空题)(原卷版)

专题11 不等式恒成立与有解问题考点预测江苏高考近几年不等式常以压轴题的题型出现,常见的考试题型有恒成立,有解问题,此类题型丰富多变,综合性强,有一定的难度,但只要我们理解问题的本质,就能解决这类问题,常用的知识点如下:1.若)(x f 在区间D 上存在最小值,A x f >)(在区间D 上恒成立,则A x f >min )(.2.若)(x f 在区间D 上存在最大值,B x f <)(在区间D 上恒成立,则B x f <max )(.3.若)(x f 在区间D 上存在最大值,A x f >)(在区间D 上有解,则A x f >max )(.4.若)(x f 在区间D 上存在最小值,B x f <)(在区间D 上有解,则B x f <min )(.5.],,[,21b a x x ∈∀)()(21x g x f ≤,则min max )()(x g x f ≤.6.],,[1b a x ∈∀],[2n m x ∈∃,)()(21x g x f ≤,则max max )()(x g x f ≤.7.],,[1b a x ∈∃],[2n m x ∈∃,)()(21x g x f ≤,则max min )()(x g x f ≤.8.],,[b a x ∈∀)()(x g x f ≤,则0)()(≤-x g x f .典型例题1.已知函数f (x )=x ﹣2(e x ﹣e ﹣x ),则不等式f (x 2﹣2x )>0的解集为 .2.已知a ,b ∈R ,若关于x 的不等式lnx ≤a (x ﹣2)+b 对一切正实数x 恒成立,则当a +b 取最小值时,b 的值为 ﹣ .3.已知函数f(x)=,设a∈R,若关于x的不等式在R上恒成立,则a的取值范围是﹣专项突破一、填空题(共12小题)1.设a∈R,若x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,则a=.2.对于任意的正数a,b,不等式(2ab+a2)k≤4b2+4ab+3a2恒成立,则k的最大值为.3.设a>0,若关于x的不等式x≥9在x∈(3,+∞)恒成立,则a的取值范围为.4.不等式(a﹣2)x2+(a﹣2)x+1>0对一切x∈R恒成立,则实数a的取值范围是.5.若存在实数b使得关于x的不等式|a sin2x+(4a+b)sin x+13a+2b|﹣2sin x≤4恒成立,则实数a的取值范围是﹣.6.已知等比数列{a n}的前n项和为S n,且S n=,若对任意的n∈N*,(2S n+3)λ≥27(n﹣5)恒成立,则实数λ的取值范围是.7.若关于x的不等式(x2﹣a)(2x+b)≥0在(a,b)上恒成立,则2a+b的最小值为.8.若对于任意x∈[1,4],不等式0≤ax2+bx+4a≤4x恒成立,|a|+|a+b+25|的范围为.9.若不等式(x+1)1n(x+1)<ax2+2ax在(0,+∞)上恒成立,则a的取值范围是.10.若对任意a∈[1,2],不等式ax2+(a﹣1)x﹣1>0恒成立,则实数x的取值范围是﹣∞﹣11.若不等式2kx2+kx+<0对于一切实数x都成立,则k的取值范围是﹣∞﹣.12.已知函数f(x)=x2+(1﹣a)x﹣a,若关于x的不等式f(f(x))<0的解集为空集,则实数a的取值范围是﹣.。

2020江苏省高考压轴卷 数学 打印版含解析

2020江苏省高考压轴卷   数学  打印版含解析

绝密★启封前2020江苏省高考压轴卷数 学一、 填空题:本大题共14小题,每小题5分,共70分. 1.已知集合{|02}A x x =<<,{|1}B x x =>,则A B =______2.已知复数(1)(2),z i i =+-则|z |= .3.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为______.4.根据如图所示的伪代码,可知输出的结果S 为____.5.在平面直角坐标亲xOy 中,若双曲线22221x y a b-=(0a >,0b >)的离心率为32,则该双曲线的渐近线方程为______.6.某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为__________.7.已知点P 在抛物线28y x =上运动,F 为抛物线的焦点,点A 的坐标为(5,2),则PA PF +的最小值是______.8.已知,αβ都是锐角,45sin ,cos()513ααβ=+=,则sin β=_____ 9.在体积为9的斜三棱柱ABC —A 1B 1C 1中,S 是C 1C 上的一点,S —ABC 的体积为2,则三棱锥S —A 1B 1C 1的体积为___.10.在等差数列{}n a 中,912162a a =+,则数列{}n a 的前11项和11S =____________. 11.三棱锥P ABC -中,已知PA ⊥平面ABC ,ABC 是边长为2的正三角形,E 为PC 的中点,若直线AE 与平面PBC所成角的正弦值为7,则PA 的长为_____. 12.如图,在四边形ABCD 中,1AB CD ==,点,M N 分别是边,AD BC 的中点,延长BA 和CD 交NM 的延长线于不同..的两点,P Q ,则·()PQ AB DC -的值为_________.13.已知函数()ln ,11,12x x f x xx ≥⎧⎪=⎨-<⎪⎩,若()()()1F x f f x m =++有两个零点12,x x ,则12x x 的取值范围______.14.在ABC 中,记角A ,B ,C 所对的边分别是a ,b ,c ,面积为S ,则22Sa bc+的最大值为______.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知2A π≠,sin 26cos sin b A A B =.(1)求a 的值;(2)若3A π=,求ABC ∆周长的取值范围.16.如图,在直三棱柱111ABC A B C -中,BC AC ⊥,D ,E 分别是AB ,AC 的中点.(1)求证:11B C ∥平面1A DE;(2)求证:平面1A DE ⊥平面11ACC A .17.如图所示,为美化环境,拟在四边形ABCD 空地上修建两条道路EA 和ED ,将四边形分成三个区域,种植不同品种的花草,其中点E 在边BC 的三等分点处(靠近B 点),3BC =百米,BC CD ⊥,120ABC ∠=,EA =60AED ∠=.(1)求ABE △区域的面积;(2)为便于花草种植,现拟过C 点铺设一条水管CH 至道路ED 上,求水管CH 最短时的长.18.已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,点P是椭圆C 上的一个动点,且12PF F ∆. (1)求椭圆C 的方程;(2)设斜率不为零的直线2PF 与椭圆C 的另一个交点为Q ,且PQ 的垂直平分线交y 轴于点1(0,)8T ,求直线PQ 的斜率.19.已知数列{}n a 的前n 项和记为n A ,且()12n n n a a A +=,数列{}n b 是公比为q 的等比数列,它的前n 项和记为n B .若110a b =≠,且存在不小于3的正整数k ,m ,使得k m a b =. (1)若11a =,35a =,求2a 的值; (2)求证:数列{}n a 是等差数列; (3)若2q,是否存在整数m ,k ,使得86k m A B =,若存在,求出m ,k 的值;若不存在,请说明理由.20.已知()22ln 12x f x x x a-=--+,0a >.(1)当2a =时,求函数()f x 图象在1x =处的切线方程;(2)若对任意[)1,x ∈+∞,不等式()0f x ≥恒成立,求a 的取值范围; (3)若()f x 存在极大值和极小值,且极大值小于极小值,求a 的取值范围.数学附加题(满分40分,考试时间30分钟)21. 【选做题】在A,B,C三小题中只能选做两题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换)求椭圆22:1164x yC+=在矩阵1412A⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦对应的变换作用下所得曲线C'的方程.B. (选修44:坐标系与参数方程)在平面直角坐标系xOy中,曲线C的参数方程为3242x cosy sinθθ=+⎧⎨=+⎩,(θ为参数),以原点为极点,x轴非负半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程;(2)在平面直角坐标系xOy中,A(﹣2,0),B(0,﹣2),M是曲线C上任意一点,求△ABM面积的最小值.C. (选修45:不等式选讲)已知x,y,z均为正数,且1113112x y y z++≤+++,求证:4910x y z++≥.【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(1)若厂家库房中(视为数量足够多)的每件产品合格的概率为0.7,从中任意取出3件进行检验,求至少有2件是合格品的概率;(2)若厂家发给商家20件产品,其中有4不合格,按合同规定商家从这20件产品中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出的不合格产品的件数ξ的分布列,并求该商家拒收这批产品的概率.23.已知数列{}n a 满足123*12323,N 2222n n n n n nn n C C C C a m n ++++=++++⋯+∈,其中m 为常数,24a =. (1)求1, m a 的值(2)猜想数列{}n a 的通项公式,并证明.参考答案及解析1.【答案】{|12}x x << 【解析】因为集合{|02}A x x =<<,{|1}B x x =>, 所以{|12}AB x x =<<.故答案为:{|12}x x <<2.【解析】12z i i =+-==3.【答案】8【解析】设样本容量为N ,则306,14,70N N ⨯== 高二所抽人数为4014870⨯=. 故答案为:8 4.【答案】205【解析】模拟程序语言,运行过程,可得1I =, 满足条件100I <,执行循环体3,9I S ==; 满足条件100I <,执行循环体5,13I S ==;满足条件100I <,执行循环体99,201I S ==;满足条件100I <,执行循环体101,21013205I S ==⨯+=, 此时,不满足条件100I <,退出循环,输出S 的值为205, 故答案为205.5.【答案】y x = 【解析】由已知可知离心率32c e a ==,2222294c a b a a +==,即2254b a =.∵双曲线22221x y a b-=的焦点在x 轴上∴该双曲线的渐近线方程为b y x a =±,即2y x =±.故答案为:y =. 6.【答案】14【解析】由题意,三名学生各自随机选择两个食堂中的一个用餐的情况共有2228⨯⨯=(种),其中他们在同一个食堂用餐的情况有2种,根据古典概型概率的计算公式得,所求概率为2184=. 7.【答案】7【解析】PA PF +55272A L Pd -≥=+=+= 8.【答案】1665【解析】∵,αβ都是锐角,∴(0,)αβπ+∈, 又45sin ,cos()513ααβ=+=, ∴3cos 5α=,12sin()13αβ+=, ∴sin sin[()]sin()cos cos()sin βαβααβααβα=+-=+-+123541613513565=⨯-⨯=. 故答案为1665. 9.【答案】1【解析】设三棱柱111ABC A B C -的底面积为'S ,高为h ,则9'9'S h S h==,, 再设S 到底面ABC 的距离为'h ,则1''23S h =,得19'23h h⋅⋅=, 所以'23h h =, 则S 到上底面111A B C 的距离为13h , 所以三棱锥111S A B C -的体积为111'91339S h ⋅=⋅=. 故答案为1. 10.【答案】132【解析】 由a 912=a 12+6,得2a 9﹣a 12=12, 即2a 1+16d ﹣a 1﹣11d =12,∴a 1+5d =12,a 6=12. 则S 11=11a 6=11×12=132. 故答案为:13211.【答案】2【解析】设F 是BC 的中点,连接sin cos 210k k ρθρθ-+-=,PA ⊥平面ABC ,PA BC ∴⊥, ABC ∆为正三角形,BC AF ∴⊥,BC ∴⊥平面PAF ,在平面PAF 内作AH PF ⊥,则BC AH ⊥,AH ∴⊥平面PBC ,连接EH ,则AEH ∠是AE 与平面PBC 所成的角, 设PA m =,在直角三角形PAF 中,AH PF PA AF ⋅=⋅,求得PA AF AH PF ⋅==,12AE PC == AE ∵平面PBC所成的角的正弦值为7,sin 7AH AEH AE ∴∠===,解得2m =或m =,即PA 的长为2212.【答案】0【解析】如图,连AC ,取AC 的中点E ,连ME ,NE ,则,ME NE 分别为,ADC CAB ∆∆的中位线,所以11,22EN AB ME DC ==, 所以1()2MN ME EN DC AB =+=+.由PQ 与MN 共线, 所以()PQ MN R λλ=∈,故()()()()2PQ AB DC MN AB DC AB DC ABDC λλ⋅-=⋅-=+⋅-22()02AB DC λ=-=.答案:013.【答案】(),e -∞【解析】当1x ≥时,()ln 0f x x =≥, ()11f x ∴+≥, [()1]ln(()1)f f x f x ∴+=+,当131()1()1[()1]ln(()1)222x x f x f x f f x f x <=->+>+=+,,,, 综上可知:()()()1ln(()1)0F x f f x m f x m =++=++=,则()1mf x e-+=,()1mf x e-=-有两个根1x ,2x ,(不妨设)12x x <,当1x ≥时,2ln 1mx e -=-,当1x <时,1112m x e --=-, 令112mt e-=->,则2ln x t =,2t x e =,112x t -=,122x t =-,12(22)t x x e t ∴=-,12t >, 设()(22)tg t e t =-,12t >, 所以()2tg t te '=-, 1,()02t g t '⎛⎫∈+∞< ⎪⎝⎭,,函数()g t 单调递减, 1()2g t g ⎛⎫∴<=⎪⎝⎭()g x ∴的值域为(-∞, 12x x ∴取值范围为(-∞,故答案为:(-∞.14.【解析】因为22S a bc +2211222222bcsinAsinA b c b c bccosA bc cosA c b==⨯+-+++- 142sinA cosA ≤-⨯-(当且仅当b c =时取得等号)令,sinA y cosA x ==, 故22S a bc +142y x ≤-⨯-,因为221x y +=,且0y >,故可得点(),x y 表示的平面区域是半圆弧上的点,如下图所示:目标函数2yz x =-,表示圆弧上一点到点()2,0A 点的斜率,数形结合可知,当且仅当目标函数过点12H ⎛ ⎝⎭,即60A =︒时,取得最小值故可得[2y z x =∈-,又22S a bc +142y x ≤-⨯-,故可得22S a bc +14≤-⨯=. 当且仅当60,A b c =︒=,也即三角形为等边三角形时,取得最大值.. 15.【答案】(1)3;(2)(]6,9.【解析】(1)由sin 26cos sin b A A B =及二倍角公式得sin 3sin b A B =, 又sin sin a bA B=即sin sin b A a B =,所以3a =;(2)由正弦定理得sin sin a B b B A ==,sin sin a Cc C A==ABC ∆周长:233sin()3a b c B C B B π++=++=++-33sin 36sin 226B B B π⎫⎛⎫=++=++⎪ ⎪⎪⎝⎭⎭, 又因为2(0,)3B π∈,所以1sin (,1]2B ∈.因此ABC ∆周长的取值范围是(]6,9. 16.【答案】(Ⅰ)详见解析(Ⅱ)详见解析【解析】证明:(1)因为D ,E 分别是AB ,AC 的中点,所以//DE BC , ...........2分 又因为在三棱柱111ABC A B C -中,11//B C BC,所以11//B C DE. ...............4分 又11B C ⊄平面1A DE,DE ⊂平面1A DE,所以11B C ∥平面1A DE. ...............6分(2)在直三棱柱111ABC A B C -中,1CC ⊥底面ABC ,又DE ⊂底面ABC ,所以1CC DE⊥. .............8分又BC AC ⊥,//DE BC ,所以DE AC ⊥, ..........10分 又1,CC AC ⊂平面11ACC A ,且1CC AC C=,所以DE ⊥平面11ACC A . ...............12分又DE ⊂平面1A DE,所以平面1A DE ⊥平面11ACC A . ............14分17.【答案】(1(2)7百米. 【解析】(1)由题知1,120,BE ABC EA =∠==在ABE 中,由余弦定理得2222cos AE AB BE AB BE ABE =+-⋅∠,即2211AB AB =++,所以4AB =百米所以11sin 4122ABESAB BE ABE =⋅⋅∠=⨯⨯=.(2)记AEB α∠=,在ABE 中,sin sin AB AE ABEα=∠,即4sin α=,所以sin 7αα===, 当CH DE ⊥时,水管CH 最短,在Rt ECH 中,2π2π2πsin 2sin 2sin cos 2cos sin 333CH CE HEC ααα⎛⎫=∠=-=-⎪⎝⎭=7百米. 18.【答案】(1)22143x y +=(2)12或32【解析】 (1)因为椭圆离心率为12,当P 为C 的短轴顶点时,12PF F △所以22212122c a a b c c b ⎧=⎪⎪=+⎨⎪⎪⨯⨯=⎩,所以21a b c =⎧⎪=⎨⎪=⎩C 的方程为:22143x y +=.(2)设直线PQ 的方程为()1y k x =-,当0k ≠时,()1y k x =-代入22143x y +=,得:()22223484120k x k x k +-+-=.设()()1122,,,P x y Q x y ,线段PQ 的中点为()00,N x y ,212024234x x k x k +==+,()1200231234y y k y k x k +-==-=+ 即22243,3434k k N k k ⎛⎫- ⎪++⎝⎭因为TN PQ ⊥,则1TN PQ k k ⋅=-,所以222314381443k k k k k --+⋅=-+,化简得24830k k -+=,解得12k =或32k ,即直线PQ 的斜率为12或32.19.【答案】(1)23a =(2)见解析(3)存在8,340m k ==满足题意。

2023年新高考数学选填压轴题汇编(三)(解析版)

2023年新高考数学选填压轴题汇编(三)(解析版)

2023年新高考地区数学选填压轴题汇编(三)一、单选题1.(2022·湖北·宜昌市夷陵中学模拟预测)已知双曲线C 1:x 2a 2-y 2b2=1a >0,b >0 与抛物线C 2:y 2=2px p >0 有公共焦点F ,过F 作双曲线一条渐近线的垂线,垂足为点A ,延长FA 与抛物线C 2相交于点B ,若点A 为线段FB 的中点,双曲线C 1的离心率为e ,则e 2=( )A.3+12B.5+12C.5+13D.5+23【答案】B 【解析】根据题意,作图如下:因为双曲线C 1和抛物线C 2共焦点,故可得a 2+b 2=p 24,又F c ,0 到y =b a x 的距离d =bca 2+b 2=b ,即AF =b ,又A 为BF 中点,则BF =2b ,设点B x ,y ,则2b =x +p 2,解得x =2b -p 2;由a 2+b 2=p 24可得OA =a ,则由等面积可知:12×BF ×OA =12×OF ×y ,解得y =4abp,则B 2b -p 2,4abp ,则x A =b ,y A =2ab p ,又点A 在渐近线y =b a x 上,即b 2a =2abp,即2a 2=pb ,又p 2=4a 2+4b 2,联立得a 4-a 2b 2-b 4=0,即b 2a 2-a 2b 2+1=0,解得b 2a2=5-12,故e 2=1+b 2a2=5+12.故选:B .2.(2022·湖北·宜昌市夷陵中学模拟预测)已知函数f (x )是定义在R 上的奇函数,若对任意的x 1,x 2∈0,+∞) ,且x 1≠x 2,都有x 1f x 1 -x 2f x 2x 1-x 2<0成立,则不等式mf m -2m -1 f 2m -1 >0的解集为( )A.13,1 B.(-∞,1)C.1,∞D.-∞,13∪1,+∞ 【答案】D【解析】∵函数f (x )是定义在R 上的奇函数∴g x =xf x 为定义在R 上的偶函数又∵x 1f x 1 -x 2f x 2 x 1-x 2<0∴g x =xf x 在0,+∞) 上递减,则g x 在-∞,0 上递增mf m -2m -1 f 2m -1 >0即mf m >2m -1 f 2m -1则m <2m -1 解得:m ∈-∞,13∪1,+∞ .故选:D .3.(2022·湖北·黄冈中学模拟预测)十八世纪早期,英国数学家泰勒发现了公式sin x =x -x 33!+x 55!-x 77!+⋯+-1 n -1x 2n -12n -1 !+⋯,(其中x ∈R ,n ∈N *,n !=1×2×3×⋯×n ⋅0!=1),现用上述公式求1-12!+14!-16!+⋯+-1 n -112n -2 !+⋯的值,下列选项中与该值最接近的是( )A.sin30∘ B.sin33∘ C.sin36∘ D.sin39∘【答案】B【解析】(sin x )=cos x =1-x 22!+x 44!-x 66!+⋯+-1 n -1x 2n -22n -2 !+⋯所以cos1=1-12!+14!-16!+⋯+(-1)n -11(2n -2)!+⋯=sin π2-1=sin 90∘-180∘π ,由于90∘-180∘π 与33∘最接近,故选:B 4.(2022·湖北·黄冈中学模拟预测)某旅游景区有如图所示A 至H 共8个停车位,现有2辆不同的白色车和2辆不同的黑色车,要求相同颜色的车不停在同一行也不停在同一列,则不同的停车方法总数为( )A.288B.336C.576D.1680【答案】B【解析】解:第一步:排白车,第一行选一个位置,则第二行有三个位置可选,由于车是不相同的,故白车的停法有4×3×2=24种,第二步,排黑车,若白车选AF ,则黑车有BE ,BG ,BH ,CE ,CH ,DE ,DG 共7种选择,黑车是不相同的,故黑车的停法有2×7=14种,根据分步计数原理,共有24×14=336种,故选:B5.(2022·山东·模拟预测)已知函数f (x )=xe x -2a (ln x +x )有两个零点,则a 的最小整数值为( )A.0 B.1C.2D.3【答案】C【解析】f (x )=xe x -2a (ln x +x )=e x +ln x -2a (ln x +x ),设t =x +ln x (x >0),t =1+1x>0,即函数在0,+∞ 上单调递增,易得t ∈R ,于是问题等价于函数g t =e t -2at 在R 上有两个零点,g t =e t -2a ,若a ≤0,则g t >0,函数g t 在R 上单调递增,至多有1个零点,不合题意,舍去;若a >0,则x ∈-∞,ln2a 时,g t <0,g t 单调递减,x ∈ln2a ,+∞ 时,g t >0,g t 单调递增.因为函数g t 在R 上有两个零点,所以g t min =g ln2a =2a 1-ln2a <0⇒a >e2,而g 0 =1>0,限定t >1 ,记φt =e t -t ,φ t =e t -1>0,即φt 在1,+∞ 上单调递增,于是φt =e t -t >φ1 =试卷第1页,共3页e -1>0⇒e t>t ,则t >2时 ,e t2>t 2⇒e t>t 24,此时g t >t 24-2at =t 4t -8a ,因为a >e 2,所以8a>4e >1,于是t >8a 时,g t >0.综上:当a >e2时,有两个交点,a 的最小整数值为2.故选:C .6.(2022·山东·模拟预测)已知函数f (x )=A sin (ωx +φ)(ω>0,0<φ<π)为偶函数,在0,π3单调递减,且在该区间上没有零点,则ω的取值范围为( )A.32,2 B.1,32C.32,52D.0,32【答案】D【解析】因为函数为偶函数,且在0,π3 单调递减,所以φ=π2+k πk ∈Z ,而0<φ<π,则φ=π2,于是f (x )=A cos ωx (ω>0),函数在0,π3 单调递减,且在该区间上没有零点,所以0<π3ω≤π2⇒ω∈0,32 .故选:D .7.(2022·江苏·南京市雨花台中学模拟预测)直线x -y +1=0经过椭圆x 2a 2+y 2b2=1a >b >0 的左焦点F ,交椭圆于A 、B 两点,交y 轴于C 点,若FC=2AC ,则该椭圆的离心率是( )A.10-22B.3-12C.22-2D.2-1【答案】A【解析】由题意可知,点F -c ,0 在直线x -y +1=0上,即1-c =0,可得c =1,直线x -y +1=0交y 轴于点C 0,1 ,设点A m ,n ,FC=1,1 ,AC =-m ,1-n ,由FC =2AC 可得-2m =121-n =1 ,解得m =-12n =12,椭圆x 2a 2+y 2b2=1a >b >0 的右焦点为E 1,0 ,则AE =1+12 2+0-12 2=102,又AF =-1+12 2+0-12 2=22,∴2a =AE +AF =10+22,因此,该椭圆的离心率为e =2c 2a =210+22=410+2=410-2 8=10-22.故选:A .8.(2022·江苏·南京市雨花台中学模拟预测)已知△OAB ,OA =1,OB =2,OA ⋅OB=-1,过点O 作OD 垂直AB 于点D ,点E 满足OE =12ED ,则EO ⋅EA的值为( )A.-328B.-121C.-29D.-221【答案】D【解析】由题意,作出图形,如图,∵OA =1,OB =2,OA ⋅OB=-1∴OA ⋅OB =1×2cos ∠AOB =2cos ∠AOB =-1,∴cos ∠AOB =-12,由∠AOB ∈0,π 可得∠AOB =2π3,∴AB =OA 2+OB 2-2⋅OA ⋅OB ⋅cos ∠AOB =7,又S △AOB =12⋅OA ⋅OB ⋅sin ∠AOB =12⋅OD ⋅AB =32,则OD =37,∴EO ⋅EA =-OE ⋅ED +DA =-2OE 2=-29⋅OD 2=-29×37=-221.故选:D .9.(2022·江苏·南京市雨花台中学模拟预测)若函数f x =e x -2x 图象在点x 0,f x 0 处的切线方程为y =kx +b ,则k -b 的最小值为( )A.-2 B.-2+1eC.-1eD.-2-1e【答案】D【解析】由f x =e x -2x 求导得:f (x )=e x -2,于是得f (x 0)=e x 0-2,函数f (x )=e x -2x 图象在点(x 0,f (x 0))处的切线方程为y -(e x 0-2x 0)=(e x 0-2)(x -x 0),整理得:y =(e x 0-2)x +(1-x 0)e x 0,从而得k =e x 0-2,b =(1-x 0)e x 0,k -b =x 0e x 0-2,令g (x )=xe x -2,则g (x )=(x +1)e x ,当x <-1时,g (x )<0,当x >-1时,g (x )>0,于是得g (x )在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,则g (x )min =g (-1)=-2-1e,所以k -b 的最小值为-2-1e.故选:D10.(2023·江苏·南京市第一中学模拟预测)已知定义域是R 的函数f x 满足:∀x ∈R ,f 4+x +f -x =0,f 1+x 为偶函数,f 1 =1,则f 2023 =( )A.1 B.-1C.2D.-3【答案】B【解析】因为f 1+x 为偶函数,所以f x 的图象关于直线x =1对称,所以f 2-x =f x ,又由f 4+x +f -x =0,得f 4+x =-f -x ,所以f 8+x =-f -4-x =-f 6+x ,所以f x +2 =-f x ,所以f x +4 =f x ,故f x 的周期为4,所以f 2023 =f 3 =-f 1 =-1.故选:B .11.(2022·湖南·长沙一中高三阶段练习)蜂巢是由工蜂分泌蜂蜡建成的,从正面看,蜂巢口是由许多正六边形的中空柱状体连接而成,中空柱状体的底部是由三个全等的菱形面构成,菱形的一个角度是109∘28 ,这样的设计含有深刻的数学原理.我著名数学家华罗庚曾专门研究蜂巢的结构,著有《谈谈与蜂房结构有关的数学问题》一书.用数学的眼光去看蜂巢的结构,如图,在六棱柱ABCDEF -A B C D E F 的三个顶点试卷第1页,共3页A ,C ,E 处分别用平面BFM ,平面BDO ,平面DFN 截掉三个相等的三棱锥M -ABF ,O -BCD ,N -DEF ,平面BFM ,平面BDO ,平面DFN 交于点P ,就形成了蜂巢的结构.如图,设平面PBOD 与正六边形底面所成的二面角的大小为θ,则( )A.tan θ=33tan54∘44 B.sin θ=33tan54∘44 C.cos θ=33tan54∘44D.tan θ=3tan54∘44 【答案】C【解析】先证明一个结论:如图,△ABC 在平面α内的射影为△ABC ,C -AB -C 的平面角为θ,θ∈0,π2 ,则cos θ=S △ABCS △ABC.证明:如图,在平面β内作CE ⊥AB ,垂足为E ,连接EC ,因为△ABC 在平面α内的射影为△ABC ,故CC ⊥α,因为AB ⊂α,故CC ⊥AB ,因为CE ∩AB =E ,故AB ⊥平面ECC .因为EC ⊂平面ECC ,故C E ⊥AB ,所以∠CEC 为二面角的平面角,所以∠CEC =θ.在直角三角形CEC 中,cos ∠CEC =cos θ=ECEC=S △ABCS △ABC .由题设中的第二图可得:cos θ=S △DBCS △DBO.设正六边形的边长为a ,则S △DBC =12a 2×32=34a 2,如图,在△DBO 中,取BD 的中点为W ,连接OW ,则OW ⊥BD ,且BD =3a ,∠BOD =109°28 ,故OW =32a ×1tan54°44,故S △DBO =12×3a ×32a ×1tan54°44 =34a 2×1tan54°44 ,故cos θ=33tan54°44 .故选:C .12.(2022·湖南·长沙市明德中学高三开学考试)已知2021ln a =a +m ,2021ln b =b +m ,其中a ≠b ,若ab <λ恒成立,则实数λ的取值范围为( )A.2021e 2,+∞ B.20212,+∞C.20212,+∞D.2021e 2,+∞【答案】C【解析】令f (x )=ln x -12021x ,则f (x )=1x -12021=2021-x2021x,∴当x ∈(0,2021)时,f (x )>0,当x ∈(2021,+∞)时,f (x )<0,∵f (2021)>0,∴设0<a <2021<b ,则ba=t (t >1),两式相减,得2021ln b a =b -a ,则2021ln t =a (t -1),∴a =2021ln t t -1,b =at =2021t ln tt -1,∴ab =20212⋅t (ln t )2(t -1)2,令g (t )=t (ln t )2-(t -1)2,∴g (t )=(ln t )2+2ln t -2t +2,令h (t )=(ln t )2+2ln t -2t +2,则h (t )=2t(ln t +1-t ),令m (t )=ln t +1-t ,则m (t )=1t-1<0,∴函数m (t )在(1,+∞)上单调递减,∴m (t )<m (1)=0,即h (t )<0,∴h (t )<h 1 =0,∴g (t )<0,∴函数g (t )在(1,+∞)上单调递减,∴g (t )<g 1 =0,∴t (ln t )2-(t -1)2<0,∴t (ln t )2(t -1)2<1,∴ab <20212,∴实数λ的取值范围为20212,+∞ ,故选:C .13.(2022·湖南·长沙市明德中学高三开学考试)己知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A =AB ,F 1B ⋅F 2B=0,则C 的离心率为( )A.2B.5C.3+1D.5+1【答案】A 【解析】如下图示,因为F 1A =AB ,F 1B⋅F 2B =0,O 是F 1F 2中点,所以A 是F 1B 中点且F 1B ⊥F 2B ,则OA ⊥F 1B ,OF 1=OB =c ,因为直线OA 是双曲线x 2a 2-y 2b2=1的渐近线,所以k OA =-b a ,k F 1B =a b ,直线F 1B 的方程为y =ab (x +c ),联立y =a b (x +c )y =b ax,解得B a 2c b 2-a 2,abc b 2-a 2 ,则|OB |2=a 4c 2b 2-a 2 2+试卷第1页,共3页a 2b 2c 2b 2-a 22=c 2,整理得b 2=3a 2,因为c 2-a 2=b 2,所以4a 2=c 2,e =ca=2.故选:A14.(2022·湖南·长沙市明德中学高三开学考试)已知函数f x =cos 2ωx 2+32sin ωx -12ω>0,x ∈R .若函数f x 在区间π,2π 内没有零点,则ω的取值范围是A.0,512 B.0,512 ∪56,1112 C.0,56D.0,512 ∪56,1112【答案】D【解析】 (1)ωπ+π6,2ωπ+π6 ⊆(2k π,2k π+π),k ∈Z ,则{ωx +π6≥2k π2ωπ+π6≤2k π+π ,则{ω≥2k -16ω≤k +512,取k =0 ,∵ω>0, ∴0<k ≤512;(2)ωπ+π6,2ωπ+π6 ⊆(2k π+π,2k π+2π),k ∈Z ,则{ωπ+π6≥2k π+π2ωπ+π6≤2k π+2π ,解得:{ω≥2k +56ω≤k +1112,取k=0 ,∴56≤k ≤1112;综上可知:k 的取值范围是0,512 ∪56,1112,选D .15.(2022·湖南·高三开学考试)已知a =2,b =513,c =(2+e )1e ,则a ,b ,c 的大小关系为( )A.b <c <aB.c <b <aC.b <a <cD.c <a <b【答案】A【解析】由题意,可得a =(2+2)12,b =(2+3)13,c =(2+e )1e ,所以令f x =1x ⋅ln 2+x ,(x >0),则fx =x x +2-ln 2+xx 2,令g x =x x +2-ln 2+x ,(x >0),则g x =-x(x +2)2<0,所以g x 在0,+∞ 上单调递减,g x <g 0 =0,所以f x <0恒成立,所以f x 在0,+∞ 上单调递减,因为2<e <3,所以f 2 >f e >f 3 ,即12ln 2+2 >1e ln 2+e >13ln 2+3 ,所以ln (2+2)12>ln (2+e )1e>ln (2+3)13,所以412>(2+e )1e>513,即b <c <a .故选:A .16.(2022·湖北·高三开学考试)已知a ,b ,c 均为不等于1的正实数,且ln c =a ln b ,ln a =b ln c ,则a ,b ,c 的大小关系是( )A.c >a >b B.b >c >aC.a >b >cD.a >c >b【答案】D【解析】∵ln c =a ln b ,ln a =b ln c 且a 、b 、c 均为不等于1的正实数,则ln c与ln b同号,ln c与ln a同号,从而ln a、ln b、ln c同号.①若a、b、c∈0,1,则ln a、ln b、ln c均为负数,ln a=b ln c>ln c,可得a>c,ln c=a ln b>ln b,可得c>b,此时a>c>b;②若a、b、c∈1,+∞,则ln a、ln b、ln c均为正数,ln a=b ln c>ln c,可得a>c,ln c=a ln b>ln b,可得c>b,此时a>c>b.综上所述,a>c>b.故选:D.17.(2022·湖北·襄阳五中高三开学考试)设f x 是定义在R上的连续的函数f x 的导函数,f x -f x +2e x<0(e为自然对数的底数),且f2 =4e2,则不等式f x >2xe x的解集为( )A.-2,0∪2,+∞B.e,+∞C.2,+∞D.-∞,-2∪2,+∞【答案】C【解析】设g x =f xe x-2x,则g x =f x -f xe x-2=f x -f x -2e xe x,∵f x -f x +2e x<0,∴g x >0,函数g x 在R上单调递增,又f2 =4e2,∴g2 =f2e2-4=0,由f x >2xe x,可得f xe x-2x>0,即g x >0=g2 ,又函数g x 在R上单调递增,所以x>2,即不等式f x >2xe x的解集为2,+∞.故选:C.18.(2022·湖北·襄阳五中高三开学考试)已知实数α,β满足αeα-3=1,βlnβ-1=e4,其中e是自然对数的底数,则αβ的值为( )A.e3B.2e3C.2e4D.e4【答案】D【解析】因为αeα-3=1,所以αeα=e3,所以α+lnα=3.因为βlnβ-1=e4,所以lnβ+ln lnβ-1=4.联立α+lnα-3=0lnβ-1+ln lnβ-1-3=0 ,所以α与lnβ-1是关于x的方程x+ln x-3=0的两根.构造函数f x =x+ln x-3,该函数的定义域为0,+∞,且该函数为增函数,由于fα =f lnβ-1=0,所以α=lnβ-1,又α+lnα-3=0,所以lnβ-1+lnα-3=0,即lnαβ=4,解得αβ=e4.故选:D.19.(2022·湖北·应城市第一高级中学高三开学考试)已知F c,0(其中c>0)是双曲线x2a2-y2b2=1a>0,b>0的焦点.圆x2+y2-2cx+b2=0与双曲线的一条渐近线l交于A、B两点.已知l的倾斜角为30°.则tan∠AFB=( )A.-2B.-3C.-22D.-23试卷第1页,共3页【答案】C 【解析】如图所示:x 2+y 2-2cx +b 2=0,化为x -c 2+y 2=c 2-b 2=a 2,因为渐近线l 的倾斜角为30°,所以tan30∘=b a =33,圆心F c ,0 到直线y =bax 的距离为:d =bca1+b a2=b ,又AF =BF =a ,所以cos 12∠AFB =b a =33,sin 12∠AFB =63,则tan 12∠AFB =2,所以tan ∠AFB =2tan 12∠AFB1-tan 212∠AFB=2×21-2 2=-22,故选:C20.(2022·湖北·应城市第一高级中学高三开学考试)设函数f x =sin x -1 +e x -1-e 1-x -x +3,则满足f x +f 3-2x <6的x 的取值范围是( )A.3,+∞ B.1,+∞ C.-∞,3 D.-∞,1【答案】B【解析】假设g x =sin x +e x -e -x -x ,x ∈R ,所以g -x =sin -x +e -x -e x +x ,所以g x +g -x =0,所以g x 为奇函数,而f x =sin x -1 +e x -1-e 1-x -x -1 +3是g x 向右平移1个单位长度,向上平移3个单位长度,所以f x 的对称中心为1,3 ,所以6=f x +f 2-x ,由f x =sin x -1 +e x -1-e 1-x -x +4求导得f x =cos x -1 +e x -1+e 1-x -1=e x -1+1ex -1+cos x -1 -1因为e x -1+1e x -1≥2e x -1⋅1e x -1=2,当且仅当e x -1=1e x -1即x =1,取等号,所以f x ≥0,所以f x 在R 上单调递增,因为f x +f 3-2x <6=f x +f 2-x 得f 3-2x <f 2-x 所以3-2x <2-x ,解得x >1,故选:B 二、多选题21.(2022·湖北·宜昌市夷陵中学模拟预测)已知函数f x =log 2x ,(0<x <2)x 2-8x +13,x ≥2,若f x =a 有四个不同的实数解x 1,x 2,x 3,x 4,且满足x 1<x 2<x 3<x 4,则下列命题正确的是( )A.0<a <1B.x 1+2x 2∈22,92C.x 1+x 2+x 3+x 4∈10,212D.2x 1+x 2∈22,3【答案】ACD【解析】在同一坐标系中作出函数y =f x ,y =a 的图象,如图所示:由图象知:若f x =a 有四个不同的实数解,则0<a <1,故A 正确;因为log 2x 1 =log 2x 2 ,即-log 2x 1=log 2x 2,则1x 1=x 2,所以x 1+2x 2=1x 2+2x 2,1<x 2<2,因为y =1x 2+2x 2在1,2 上递增,所以1x 2+2x 2∈3,92,故B 错误;因为x 1+x 2=1x 2+x 2,1<x 2<2,y =1x 2+x 2在1,2 上递增,所以1x 2+x 2∈2,52,而x 3+x 4=8,所以x 1+x 2+x 3+x 4∈10,212 ,故C 正确;因为2x 1+x 2=2x 2+x 2,1<x 2<2,y =1x 2+2x 2在1,2 上递减,在2,2 上递增,则2x 2+x 2∈[22,3),故D 正确;故选:ACD22.(2022·湖北·宜昌市夷陵中学模拟预测)如图,点P 是棱长为2的正方体ABCD -A 1B 1C 1D 1的表面上一个动点,则( )A.当P 在平面BCC 1B 1上运动时,四棱锥P -AA 1D 1D 的体积不变B.当P 在线段AC 上运动时,D 1P 与A 1C 1所成角的取值范围是π3,π2C.使直线AP 与平面ABCD 所成的角为45°的点P 的轨迹长度为π+42D.若F 是A 1B 1的中点,当P 在底面ABCD 上运动,且满足PF ⎳平面B 1CD 1时,PF 长度的最小值是5【答案】ABC【解析】A 选项,底面正方形AA 1D 1D 的面积不变,P 到平面AA 1D 1D 的距离为正方体棱长,故四棱锥P -AA 1D 1D 的体积不变,A 选项正确;B 选项,D 1P 与A 1C 1所成角即D 1P 与A C 所成角,当P 在端点A ,C 时,所成角最小,为π3,当P 在AC 中点时,所成角最大,为π2,故B 选项正确;C 选项,由于P 在正方体表面,P 的轨迹为对角线AB 1,AD 1,以及以A 1为圆心2为半径的14圆弧如图,试卷第1页,共3页故P 的轨迹长度为π+42,C 正确;D 选项,FP 所在的平面为如图所示正六边形,故FP 的最小值为6,D 选项错误.故选:ABC .23.(2022·湖北·黄冈中学模拟预测)已知正数x ,y ,z 满足3x =4y =12z ,则( )A.1x +1y =1zB.6z <3x <4yC.xy <4z 2D.x +y >4z【答案】ABD【解析】设3x =4y =12z =t ,t >1,则x =log 3t ,y =log 4t ,z =log 12t ,所以1x +1y =1log 3t +1log 4t =log t 3+log t 4=log t 12=1z,A 正确;因为6z3x =2log 12t log 3t =2log t 3log t 12=log 129<1,则6z <3x ,因为3x4y =3log 3t 4log 4t =3log t 44log t 3=log t 64log t 81=log 8164<1,则3x <4y ,所以6z <3x <4y ,B 正确;因为x +y -4z =log 3t +log 4t -4log 12t =1log t 3+1log t 4-4log t 12=log t 3+log t 4log t 3log t 4-4log t 3+log t 4=log t 3-log t 42log t 3log t 4log t 3+log t 4 >0,则x +y >4z ,D 正确.因为1z =1x +1y =x +y xy ,则xy z =x +y >4z ,所以xy >4z 2,C 错误.故选:ABD .24.(2022·湖北·黄冈中学模拟预测)高斯是德国著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德,牛顿并列为世界三大数学家,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数,例如[-2.1]=-3,[2.1]=2.则下列说法正确的是( )A.函数y =x -[x ]在区间[k ,k +1)(k ∈Z )上单调递增B.若函数f (x )=sin xe x -e -x,则y =[f (x )]的值域为{0}C.若函数f (x )=|1+sin2x -1-sin2x |,则y =[f (x )]的值域为{0,1}D.x ∈R ,x ≥[x ]+1【答案】AC【解析】对于A ,x ∈[k ,k +1),k ∈Z ,有[x ]=k ,则函数y =x -[x ]=x -k 在[k ,k +1)上单调递增,A 正确;对于B ,f 3π2=sin 3π2e 3π2-e -3π2=-1e 3π2-e-3π2∈(-1,0),则f 3π2=-1,B 不正确;对于C ,f (x )=(1+sin2x -1-sin2x )2=2-21-sin 22x =2-2|cos2x |,当0≤|cos2x |≤12时,1≤2-2|cos2x |≤2,1≤f (x )≤2,有[f (x )]=1,当12<|cos2x |≤1时,0≤2-2|cos2x |<1,0≤f (x )<1,有[f (x )]=0,y =[f (x )]的值域为{0,1},C 正确;对于D ,当x =2时,[x ]+1=3,有2<[2]+1,D 不正确.故选:AC25.(2022·湖北·黄冈中学模拟预测)华人数学家李天岩和美国数学家约克给出了“混沌”的数学定义,由此发展的混沌理论在生物学、经济学和社会学领域都有重要作用.在混沌理论中,函数的周期点是一个关键概念,定义如下:设f (x )是定义在R 上的函数,对于x ∈R ,令x n =f (x n -1)(n =1,2,3,⋯),若存在正整数k 使得x k =x 0,且当0<j <k 时,x j ≠x 0,则称x 0是f (x )的一个周期为k 的周期点.若f (x )=2x ,x <122(1-x ),x ≥12,下列各值是f (x )周期为1的周期点的有( )A.0 B.13 C.23D.1【答案】AC【解析】A :x 0=0时,x 1=f 0 =0,周期为1,故A 正确;B :x 0=13时,x 1=f 13 =23,x 2=f 23 =23,x 3=⋯=x n =23,所以13不是f x 的周期点.故B 错误;C :x 0=23时,x 1=x 2=⋯=x n =23,周期为1,故C 正确;D :x 0=1时,x 1=f 1 =0,∴1不是f x 周期为1的周期点,故D 错误.故选:AC .26.(2022·湖北·黄冈中学模拟预测)在数列a n 中,对于任意的n ∈N *都有a n >0,且a 2n +1-a n +1=a n ,则下列结论正确的是( )A.对于任意的n ≥2,都有a n >1B.对于任意的a 1>0,数列a n 不可能为常数列C.若0<a 1<2,则数列a n 为递增数列D.若a 1>2,则当n ≥2时,2<a n <a 1【答案】ACD 【解析】A :由a n +1=a n a n +1+1,对∀n ∈N *有a n >0,则a n +1=an a n +1+1>1,即任意n ≥2都有a n >1,正确;B :由a n +1(a n +1-1)=a n ,若a n 为常数列且a n >0,则a n =2满足a 1>0,错误;C :由an a n +1=a n +1-1且n ∈N *,当1<a n +1<2时0<an a n +1<1,此时a 1=a 2(a 2-1)∈(0,2)且a 1<a 2,数列a n 递增;当a n +1>2时an a n +1>1,此时a 1=a 2(a 2-1)>a 2>2,数列a n 递减;所以0<a 1<2时数列a n 为递增数列,正确;试卷第1页,共3页D:由C分析知:a1>2时a n+1>2且数列a n递减,即n≥2时2<a n<a1,正确.故选:ACD27.(2022·山东·模拟预测)已知点P在棱长为2的正方体ABCD-A1B1C1D1的表面上运动,点Q是CD的中点,点P满足PQ⊥AC1,下列结论正确的是( )A.点P的轨迹的周长为32B.点P的轨迹的周长为62C.三棱锥P-BCQ的体积的最大值为43D.三棱锥P-BCQ的体积的最大值为23【答案】BD【解析】取BC的中点为E,取BB1的中点为F,取A1B1的中点为G,取A1D1的中点为H,取DD1的中点为M,分别连接QE,EF,FG,GH,HM,MQ,由AC1⊥QE,AC1⊥EF,且QE∩EF=E,所以AC1⊥平面EFGHMQ,由题意可得P的轨迹为正六边形EFGHMQ,其中|QE|=|EF|=2,所以点P的轨迹的周长为62,所以A不正确,B正确;当点P在线段HG上运动时,此时点P到平面BCQ的距离取得最大值,此时V P-BCQ有最大值,最大值为V max=13×12×2×1×2=23,所以C不正确,D正确.故选:BD28.(2022·山东·模拟预测)正弦信号是频率成分最为单一的一种信号,因这种信号的波形是数学上的正弦曲线而得名,很多复杂的信号都可以通过多个正弦信号叠加得到,因而正弦信号在实际中作为典型信号或测试信号而获得广泛应用已知某个声音信号的波形可表示为f(x)=2sin x+sin2x,则下列叙述不正确的是( )A.f(x)在[0,2π)内有5个零点B.f(x)的最大值为3C.(2π,0)是f(x)的一个对称中心D.当x∈0,π2时,f(x)单调递增【答案】ABD【解析】对于A,由f(x)=2sin x+sin2x=2sin x(1+cos x),令f(x)=0,则sin x=0或cos x=-1,易知f(x)在[0,2π)上有2个零点,A错误.对于B,因为2sin x≤2,sin2x≤1,由于等号不能同时成立,所以f(x)<3,B错误.对于C,易知f(x)为奇函数,函数关于原点对称,又周期为2π,故(2π,0)是f(x)的一个对称中心.对于D,f (x)=2cos x+2cos2x=2(2cos x-1)(cos x+1),因为cos x+1≥0,所以2cos x-1>0时,即:x∈2kπ-π3,2kπ+π3(k∈Z)时,f(x)单调递增,x∈2kπ+π3,2kπ+5π3(k∈Z)时,f(x)单调递减,故D错误.故选:ABD29.(2022·山东·模拟预测)已知函数f(x)=e x,x≥0-x2-4x,x<0,方程f2(x)-t⋅f(x)=0有四个实数根x1,x2,x3,x4,且满足x1<x2<x3<x4,下列说法正确的是( )A.x1x4∈(-6ln2,0]B.x1+x2+x3+x4的取值范围为[-8,-8+2ln2)C.t的取值范围为[1,4)D.x2x3的最大值为4【答案】BC【解析】f2(x)-t⋅f(x)=0⇒f(x)[f(x)-t]=0⇒f(x)=0或f(x)=t,作出y=f(x)的图象,当f(x)=0时,x1=-4,有一个实根;当t=1时,有三个实数根,∴共四个实根,满足题意;当t=4时,f(x)=t只有两个实数根,所以共三个实根,不满足题意,此时与y=e x的交点坐标为(2ln2,4).要使原方程有四个实根,等价于f(x)=t有三个实根,等价于y=f(x)与y=t图像有三个交点,故t∈[1,4),x4∈[0,2ln2),所以x1x4∈(-8ln2,0],故A错误,C正确;又因为x2+x3=-4,所以x1+x2+x3+x4=-8+x4的取值范围为[-8,-8+2ln2)),B正确;因为x2+x3=-4,x2<x3<0,所以x2x3=-x2⋅-x3<-x2+x322=4,故D错误.故选:BC.30.(2022·江苏·南京市雨花台中学模拟预测)阿基米德是伟大的物理学家,更是伟大的数学家,他曾经对高中教材中的抛物线做过系统而深入的研究,定义了抛物线阿基米德三角形:抛物线的弦与弦的端点处的两条切线围成的三角形称为抛物线阿基米德三角形.设抛物线C:y=x2上两个不同点A,B横坐标分别为x1,x2,以A,B为切点的切线交于P点.则关于阿基米德三角形PAB的说法正确的有( )A.若AB过抛物线的焦点,则P点一定在抛物线的准线上B.若阿基米德三角形PAB为正三角形,则其面积为334C.若阿基米德三角形PAB为直角三角形,则其面积有最小值14D.一般情况下,阿基米德三角形PAB的面积S=|x1-x2|24【答案】ABC【解析】由题意可知:直线AB一定存在斜率,所以设直线AB的方程为:y=kx+m,由题意可知:点A(x1,x21),B(x2,x22),不妨设x1<0<x2,由y=x2⇒y =2x,所以直线切线PA,PB的方程分别为:y-x21=2x1(x-x1),y-x22=2x2(x-x2),两方程联立得:y-x21=2x1(x-x1) y-x22=2x2(x-x2),解得:x=x1+x22 y=x1x2,所以P点坐标为:x1+x22,x1x2,试卷第1页,共3页直线AB 的方程与抛物线方程联立得:y =kx +m y =x 2⇒x 2-kx -m =0⇒x 1+x 2=k ,x 1x 2=-m .A :抛物线C :y =x 2的焦点坐标为0,14 ,准线方程为 y =-14,因为AB 过抛物线的焦点,所以m =14,而x 1x 2=-m =-14,显然P 点一定在抛物线的准线上,故本选项说法正确;B :因为阿基米德三角形PAB 为正三角形,所以有|PA |=|PB |,即x 1+x 22-x 1 2+(x 1x 2-x 21)2=x 1+x 22-x 2 2+(x 1x 2-x 22)2,因为 x 1≠x 2,所以化简得:x 1=-x 2,此时A (x 1,x 21),B (-x 1,x 21), P 点坐标为:(0,-x 21),因为阿基米德三角形PAB 为正三角形,所以有|PA |=|AB |,所以(0-x 1)2+(-x 21-x 21)2=-2x 1⇒x 1=-32,因此正三角形PAB 的边长为3,所以正三角形PAB 的面积为12×3×3⋅sin60°=12×3×3×32=334,故本选项说法正确;C :阿基米德三角形PAB 为直角三角形,当PA ⊥PB 时,所以k PA ⋅k PB =-1⇒x 1+x 22-x 1x 1x 2-x 21⋅x 1+x 22-x 2x 1x 2-x 22=-1⇒x 1x 2=-14,直线AB 的方程为:y =kx +14所以P 点坐标为:k 2,-14 ,点 P 到直线AB 的距离为:k 2⋅k +-14 ×(-1)+14 k 2+(-1)2=12k 2+1,|AB |=(x 1-x 2)2+(x 21-x 22)2=(x 1-x 2)2[1+(x 1+x 2)2]=[(x 1+x 2)2-4x 1x 2][1+(x 1+x 2)2],因为x 1+x 2=k ,x 1x 2=-14,所以 AB =(k 2+1)(1+k 2)=1+k 2,因此直角PAB 的面积为:12×12⋅k 2+1⋅(k 2+1)=14(k 2+1)3≥14,当且仅当k =0时,取等号,显然其面积有最小值14,故本说法正确;D :因为x 1+x 2=k ,x 1x 2=-m ,所以|AB |=(x 1-x 2)2+(x 21-x 22)2=(x 1-x 2)2[1+(x 1+x 2)2]=x 1-x 2 k 2+1,点P 到直线AB 的距离为:x 1+x 22⋅k +(-1)⋅x 1⋅x 2+m k 2+(-1)2=x 1+x 22⋅(x 1+x 2)+(-1)⋅x 1⋅x 2-(x 1x 2)k 2+(-1)2=12⋅(x 1-x 2)2k 2+1,所以阿基米德三角形PAB 的面积S =12⋅x 1-x 2 ⋅k 2+1⋅12⋅(x 1-x 2)2k 2+1=x 1-x 2 34,故本选项说法不正确.故选:ABC31.(2023·江苏·南京市第一中学模拟预测)已知函数f (x )=x ln x ,若0<x 1<x 2,则下列结论正确的是( )A.x 2f x 1 <x 1f x 2B.x 1+f x 1 <x 2+f x 2C.f x 1 -f x 2 x 1-x 2<0D.当ln x >-1时,x 1f x 1 +x 2f x 2 >2x 2f x 1 【答案】AD【解析】 对于A 选项,因为令g x =f (x )x=ln x ,在0,+∞ 上是增函数,所以当0<x 1<x 2时,g x 1 <g x 2 ,所以f (x 1)x 1<f (x 2)x 2,即x 2f x 1 <x 1f x 2 .故A 选项正确;对于B 选项,因为令g x =f x +x =x ln x +x ,所以g ′x =ln x +2,所以x ∈e -2,+∞ 时,g ′x >0,g x 单调递增,x ∈0,e -2 时,g ′x <0,g x 单调递减.所以x 1+f x 1 与x 2+f x 2 无法比较大小.故B 选项错误;对于C 选项,令f ′x =ln x +1,所以x ∈0,1e时,f ′x <0,f x 在0,1e 单调递减,x ∈1e ,+∞ 时,f ′x >0,f x 在1e ,+∞ 单调递增,所以当0<x 1<x 2<1e 时,f x 1 >f x 2 ,故f (x 1)-f (x 2)x 1-x 2<0成立,当1e <x 1<x 2时,f x 1 <f x 2 ,f (x 1)-f (x 2)x 1-x 2>0.故C 选项错误;对于D 选项,由C 选项知,当ln x >-1时,f x 单调递增,又因为A 正确,x 2f x 1 <x 1f x 2 成立,所以x 1⋅f x 1 +x 2⋅f x 2 -2x 2f x 1 >x 1⋅f x 1 +x 2⋅f x 2 -x 2f x 1 -x 1f x 2 =x 1f x 1 -f x 2 +x 2f x 2 -f x 1 =x 1-x 2 f x 1 -f x 2 >0,故D 选项正确.故选:AD .32.(2023·江苏·南京市第一中学模拟预测)已知a ,b 为正实数,且ab =32a +b -42,则2a +b 的取值可以为( )A.1 B.4C.9D.32【答案】BD【解析】因为a ,b 为正实数,ab =32a +b -42,所以32a +b -42=ab =2ab 2≤2a +b22,当且仅当2a =b 时等号成立,即32a +b -42≤2a +b22,所以2a +b -622a +b +16≥0,所以2a +b ≥42或2a +b ≤22,因为a ,b 为正实数,ab =32a +b -42,所以32a +b -42>0,所以2a +b ≥42或423<2a +b ≤22.所以2a +b ≥32或329<2a +b ≤8.故选:BD .33.(2023·江苏·南京市第一中学模拟预测)下列不等式正确的是( )A.log 23<log 49B.log 23<lg15C.log 812>log 1215D.log 812>log 636【答案】CD【解析】选项A :log 23=log 2232=log 49,故不正确;设f x =log 2x 3x (x ≥1),因为x ≥1,所以f x =ln 3x ln 2x=3ln 2x 3x -2ln 3x2x ln 22x=试卷第1页,共3页ln 2x -ln 3xx ln 22x <0,所以f x 在[1,+∞)上单调递减,所以选项B :f 1 =log 23>log 1015=lg15=f 5 ,故不正确;选项C :f 4 =log 812>f 5 =log 1015>log 1215,故正确;选项D :f 4 =log 812>f 18 =log 3654=log 636,故正确,故选:CD .34.(2022·湖南·长沙一中高三阶段练习)已知函数f (x )=x ln (1+x ),则( )A.f (x )在(0,+∞)单调递增B.f (x )有两个零点C.曲线y =f (x )在点-12,f -12处切线的斜率为-1-ln2D.f (x )是偶函数【答案】AC【解析】由f (x )=x ln (1+x )知函数的定义域为(-1,+∞),f (x )=ln (1+x )+x1+x,当x ∈(0,+∞)时,ln (1+x )>0,x1+x>0,∴f (x )>0,故f (x )在(0,+∞)单调递增,A 正确;由f (0)=0,当-1<x <0时,ln (1+x )<0,f (x )=x ln (1+x )>0,当ln (1+x )>0,f (x )>0,所以f (x )只有0一个零点,B 错误;令x =-12,f -12 =ln 12-1=-ln2-1,故曲线y =f (x )在点-12,f -12 处切线的斜率为-1-ln2,C 正确;由函数的定义域为(-1,+∞),不关于原点对称知,f (x )不是偶函数,D 错误.故选:AC35.(2022·湖南·长沙一中高三阶段练习)已知函数f x =x ln x ,x >00,x =012f x +1 ,x <0,则下列说法正确的有( )A.当x ∈-3,-2 时,f x =18x +3 ln x +3B.若不等式f x -mx -m <0至少有3个正整数解,则m >ln3C.过点A -e -2,0 作函数y =f x x >0 图象的切线有且只有一条D.设实数a >0,若对任意的x ≥e ,不等式f x ≥a x e ax 恒成立,则a 的最大值是e【答案】ACD【解析】对于A :当x ∈-3,-2 ,∴x +3∈0,1 ,f x +3 =x +3 ln x +3 ,∵f x =18f x +3 ,∴f x =18x +3 ln x +3 ,A 正确;对于B :f x <mx +m ,画出y 1=f x 与y 2=mx +m 的图象,根据函数的图象,要想至少有3个正整数解,要满足f 3 <3m +m ,∴m >34ln3,故B 错;对于C :设切点T x 0,y 0 则k AT =f x 0 ,∴x 0ln x 0x 0+1e2=ln x 0+1,即e 2x 0+ln x 0+1=0,设h x =e 2x +ln x +1,当x >0时,h x >0,∴h x 是单调递增函数,∴h x =0最多只有一个根,又h 1e 2 =e 2⋅1e 2+ln 1e2+1=0,∴x 0=1e 2,由f x 0 =-1得切线方程是x +y +1e2=0,故C 正确;对于D .:由题意e ln x ⋅ln x ≥a xe ax .设g x =x ⋅e x x >0 ,则g x =x +1 e x >0,于是g x 在0,+∞ 上是增函数.因为a x >0,ln x >0,所以ax≤ln x ,即a ≤x ln x 对任意的x ≥e 恒成立,因此只需a ≤x ln x min .设f x =x ln x x ≥e ,f x =ln x +1>0x ≥e ,所以f x 在e ,+∞ 上为增函数,所以f x min =f (e )=e ,所以a ≤e ,即a 的最大值是e ,选项D 正确;故选:ACD .36.(2022·湖南·长沙市明德中学高三开学考试)抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线C :y 2=2px (p >0),O 为坐标原点,一条平行于x 轴的光线l 1从点M (5,2)射入,经过C 上的点A 反射后,再经C 上另一点B 反射后,沿直线l 2射出,经过点N .下列说法正确的是( )A.若p =2,则|AB |=4 B.若p =2,则MB 平分∠ABN C.若p =4,则|AB |=8D.若p =4,延长AO 交直线x =-2于点D ,则D ,B ,N 三点共线【答案】ABD【解析】若p =2,则抛物线C :y 2=4x ,A (1,2),C 的焦点为F (1,0),直线AF 的方程为:x =1,可得B (1,-2),|AB |=4,选项A 正确;p =2时,因为|AM |=5-1=4=|AB |,所以∠A MB =∠ABM ,又AM ∥BN ,所以∠A MB =∠MB N ,所以MB 平分∠ABN ,选项B 正确;若p =4,则抛物线C :y 2=8x ,A 12,2 ,C 的焦点为F (2,0),直线AF 的方程为y =-43(x -2),联立抛物线方程求解可得B (8,-8),所以|AB |=252,选项C 不正确;若p =4,则抛物线C :y 2=8x ,A 12,2,延长AO 交直线x =-2于点D ,则D (-2,-8),由C 选项可知B试卷第1页,共3页(8,-8),所以D,B,N三点共线,故D正确.故选:ABD.37.(2022·湖南·长沙市明德中学高三开学考试)已知a>1,x1,x2,x3为函数f(x)=a x-x2的零点,x1<x2<x3,下列结论中正确的是( )A.x1>-1B.x1+x2<0C.若2x2=x1+x3,则x3x2=2+1 D.a的取值范围是1,e2e【答案】ACD【解析】∵a>1,f-1=a-1-1=1a-1<0,f0 =a0-0=1>0 ,∴-1<x1<0 ,故A正确;当0≤x≤1 时,1≤a x≤a,0≤x2≤1 ,f x 必无零点,故x2>1 ,∴x1+x2>0 ,故B错误;当2x2=x1+x3 时,即a x1=x21a x2=x22a x3=x23,两边取对数得x1=2log a-x1x2=2log a x2x3=2log a x3,4log a x2=2log a-x1+2log a x3 ,x22=-x1x3 ,联立方程x22=-x1x32x2=x1+x3解得x23-2x2x3-x22=0 ,由于x2>0,x3>0 ,x3x2=2+1 ,故C正确;考虑f x 在第一象限有两个零点:即方程a x=x2 有两个不同的解,两边取自然对数得x ln a=2ln x 有两个不同的解,设函数g x =x ln a-2ln x ,g x =ln a-2x=ln a x-2ln ax ,则x=x0=2ln a 时,g x =0 ,当x>x0 时,g x >0 ,当x<x0 时,g x <0 ,所以g min x =g x0=2-2ln2ln a,要使得g x 有两个零点,则必须g x0<0,即ln2ln a>1 ,解得a<e2e ,故D正确;故选:ACD.38.(2022·湖北·高三开学考试)关于函数f x =ae x+sin x,x∈-π,π,下列结论中正确的有( )A.当a=-1时,f x 的图象与x轴相切B.若f x 在-π,π上有且只有一个零点,则满足条件的a的值有3个C.存在a ,使得f x 存在三个极值点D.当a =1时,f x 存在唯一极小值点x 0,且-1<f x 0 <0【答案】BCD【解析】对于A ,f (x )=-e x +sin x ,f (x )=-e x +cos x =0,即e x =cos x ,由函数y =e x 、y =cos x 的图像可知方程有两个根:x 1∈-π2,0 ,x 2=0,f (x 2)=-1,f (x 1)=sin x 1-e x 1<0,即斜率为0的切线其切点不在x 轴上,故A 错误;对于B ,f (x )=0⇔a =-sin x e x ,令g (x )=-sin xex ,g (x )=sin x -cos x ex ,x ∈-π,-3π4 、x ∈π4,π ,g (x )>0,g (x )单调递增,x ∈-3π4,π4 ,g (x )单调递减,g (-π)=0,g -3π4 =22e 3π4,g π4 =-22e π4,g (π)=0,结合图像可知满足f (x )=0⇔a =-sin xex 在-π,π 上有且只有一个零点的a 的值有3个:0,22e3π4,-22e π4,故B 正确;对于C ,f (x )=ae x +cos x =0⇔a =-cos xex =h (x ),h (x )=2sin x +π4ex ,可知x ∈-π,-π4 ,h (x )<0,h (x )单调递减,x ∈-π4,3π4 ,h (x )>0,h (x )单调递增, x ∈3π4,π ,h (x )<0,h (x )单调递减,h (-π)=e π,h -π4 =-2e π42,h 3π4 =22e 3π4,h (π)=1e π,故a ∈1e π,22e 3π4时,a =-cos xe x =h (x )有三个实数根,f x 存在三个极值点,故C 正确;对于D ,f (x )=e x +cos x =0⇔e x =-cos x ,由图像可知此方程有唯一实根x 0,因为e 3π2>2,所以1e 3π2<12,1e 3π4<22,f -3π4 =1e3π4-22<0,x 0∈-3π4,-π2 ,f (x 0)=e x 0+sin x 0=sin x 0-cos x 0=2sin x 0-π4,可知-1<f (x 0)<0,故D 正确.故选:BCD .39.(2022·湖北·襄阳五中高三开学考试)已知函数f x =x x -1,x <15ln x x ,x ≥1,下列选项正确的是( )A.函数f x 的单调减区间为-∞,1 、e ,+∞B.函数f x 的值域为-∞,1C.若关于x 的方程f 2x -a f x =0有3个不相等的实数根,则实数a 的取值范围是5e ,+∞ D.若关于x 的方程f 2x -a f x =0有5个不相等的实数根,则实数a 的取值范围是1,5e 【答案】ACD试卷第1页,共3页【解析】对于A 选项,当x <1时,f x =x x -1,则f x =-1x -12<0,当x ≥1时,f x =5ln xx ,则f x =51-ln x x2,由f x <0可得x >e ,所以,函数f x 的单调减区间为-∞,1 、e ,+∞ ,A 对;对于B 选项,当x <1时,f x =1+1x -1<1,当x ≥1时,0≤f x =5ln x x ≤f e =5e,因此,函数f x 的值域为-∞,5e,B 错;对于CD 选项,作出函数f x 的图像如下图所示:若a ≤0,由f 2x -a f x =0可得f x =0,则方程f x =0只有两个不等的实根;若a >0,由f 2x -a f x =0可得f x =0或f x =a 或f x =-a ,由图可知,方程f x =0有2个不等的实根,方程f x =-a 只有一个实根,若关于x 的方程f 2x -a f x =0有3个不相等的实数根,则a >5e,C 对;若关于x 的方程f 2x -a f x =0有5个不相等的实数根,则1≤a <5e,D 对.故选:ACD .40.(2022·湖北·应城市第一高级中学高三开学考试)已知函数f (x )=sin 4x +π3 +cos 4x -π6,则下列结论正确的是( )A.f (x )的最大值为2B.f (x )在-π8,π12上单调递增C.f (x )在[0,π]上有4个零点D.把f (x )的图象向右平移π12个单位长度,得到的图象关于直线x =-π8对称【答案】ACD【解析】因为f (x )=sin π2+4x -π6+cos 4x -π6 =2cos 4x -π6,所以A 正确;当x ∈-π8,π12 时,4x -π6∈-2π3,π6 ,函数f (x )=2cos 4x -π6 在-π8,π12上先增后减,无单调性,故B 不正确;令2cos 4x -π6 =0,得4x -π6=π2+k π,k ∈Z ,故x =π6+k π4,k ∈Z ,因为x ∈[0,π],所以k =0,1,2,3,故C 正确;把f (x )=2cos 4x -π6 的图象向右平移π12个单位长度,得到y =2cos 4x -π12 -π6=。

2024届高考数学专项练习压轴题型03 函数与导数经典常考压轴小题(解析版)

2024届高考数学专项练习压轴题型03 函数与导数经典常考压轴小题(解析版)

压轴题型03 函数与导数经典常考压轴小题命题预测有关函数与导数常见经典压轴小题的高考试题,考查重点是零点、不等式、恒成立等问题,通常与函数性质、解析式、图像等均相关,需要考生具有逻辑推理、直观想象和数学运算核心素养. 同时,对于实际问题,需要考生具有数据分析、数学建模核心素养.预计预测2024年高考,多以小题形式出现,也有可能会将其渗透在解答题的表达之中,相对独立.具体估计为:(1)导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小.(2)应用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题. 高频考法(1)函数嵌套、零点嵌套问题 (2)零点问题(3)导数的同构思想 (4)双重最值问题 (5)构造函数解不等式01函数嵌套、零点嵌套问题解决嵌套函数零点个数的一般步骤(1)换元解套,转化为()t g x =与()y f t =的零点.(2)依次解方程,令()0f t =,求t ,代入()t g x =求出x 的值或判断图象交点个数.【典例1-1】(上海市浦东新区上海市实验学校2024届高三学期第三次月考数学试题)已知函数()f x 是2024届高考数学专项练习定义在R 的偶函数,当0x ≥时,()()3πcos 1,012211,12xx x f x x ⎧⎡⎤−≤≤⎪⎢⎥⎣⎦⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩,若函数()()()()()25566g x f x a f x a a ⎡⎤=−++∈⎣⎦R 有且仅有6个不同的零点,则实数a 取值范围 .【答案】(]30,12⎧⎫⎨⎬⎩⎭【解析】因为()()()()()()25566560g x f x a f x a f x f x a =−++=−⋅−=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦, 由()0g x =,可得()65f x =或()f x a =, 由函数()f x 是定义在R 上的偶函数,当0x ≥时,()3πsin ,012211,12xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩, 当01x ≤≤时,ππ022x ≤≤,如下图所示:因为1112x⎛⎫+> ⎪⎝⎭,由图可知,直线65y =与函数()f x 的图象有4个交点,所以,直线y a =与函数()f x 的图象有2个交点,由图可得(]30,12a ⎧⎫∈⋃⎨⎬⎩⎭.综上所述,实数a 的取值范围是(]30,12⎧⎫⎨⎬⎩⎭.故答案为:(]30,12⎧⎫⎨⎬⎩⎭.【典例1-2】(安徽省合肥市六校联盟2023-2024学年高三学期期中联考数学试题)已知函数()42,13,1x x f x x x ⎧−<⎪=⎨−≥⎪⎩,()22g x x ax =++,若函数()()y g f x =有6个零点,则实数a 的取值范围为 .【答案】(3,2−−【解析】画出()42,13,1x x f x x x ⎧−<⎪=⎨−≥⎪⎩的图象如下:因为()22g x x ax =++最多两个零点,即当280a ∆=−>,2a >22a <−时,()22g x x ax =++有两个不等零点12,t t ,要想()()y g f x =有六个零点,结合函数图象,要()1f x t =和()2f x t =分别有3个零点, 则()12,0,2t t ∈且12t t ≠,即()22g x x ax =++的两个不等零点()12,0,2t t ∈,则要满足()()2Δ800222000a a g g ⎧=−>⎪⎪<−<⎪⎨⎪>⎪>⎪⎩,解得322a −<<− 故实数a 的取值范围为(3,2−− 故答案为:(3,22−−【变式1-1】(海南省琼中黎族苗族自治县琼中中学2024届高三高考全真模拟卷(二)数学试题)已知函数()23,369,3x x f x x x x ⎧−≤=⎨−+−>⎩,若函数()()()22g x f x af x ⎡⎤=−+⎣⎦有6个零点,则a 的值可能为( ) A .1− B .2−C .3−D .4−【答案】C【解析】由题可得,()()330f f =−=,()f x 在()(),0,3,−∞+∞上单调递减,在()0,3上单调递增,则据此可作出函数()f x 大致图象如图所示,令()f x t =,则由题意可得220t at −+=有2个不同的实数解1t ,2t ,且()12,3,0t t ∈−,则()()2121212Δ80601122203331130a t t a a t t t t a ⎧=−>⎪−<+=<⎪⇒−<<−⎨=>⎪⎪++=+>⎩3a =−满足题意. 故选:C .【变式1-2】(河南省部分重点高中2023-2024学年高三阶段性考试(四)数学试题)已知函数()2ln ,0,43,0,x x f x x x x ⎧>=⎨++≤⎩若函数()()()241g x f x f x m =−++⎡⎤⎣⎦恰有8个零点,则m 的最小值是( ) A .1 B .2 C .3 D .4【答案】B【解析】设()f x t =,因为()g x 有8个零点,所以方程()f x t =有4个不同的实根,结合()f x 的图像可得2410t t m −++=在(]0,3内有4个不同的实根,即214m t t +=−+在(]0,3内有2个不同的实根,可知314m ≤+<,即可求得结果.画出函数()2ln ,043,0x x f x x x x ⎧>=⎨++≤⎩,,的图像如图所示,设()f x t =,由()()()2410g x f x f x m =−++=⎡⎤⎣⎦,得2410t t m −++=.因为()g x 有8个零点,所以方程()f x t =有4个不同的实根,结合()f x 的图像可得在(]03t ∈,内有4个不同的实根.所以方程2410t t m −++=必有两个不等的实数根,即214m t t +=−+在(]03t ∈,内有2个不同的实根,结合图像由图可知,314m ≤+<,故23m ≤<,即m 的最小值是2. 故选:B02 零点问题(1)直接法:直接根据题设条件构造关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成球函数值域的问题加以解决;(3)数形结合法:先将解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 【典例2-1】(2024·海南省直辖县级单位·模拟预测)已知函数()()()lg ,011,022,2x x f x x x f x x ⎧−<⎪=−−≤<⎨⎪−≥⎩的图象在区间(),(0)t t t −>内恰好有5对关于y 轴对称的点,则t 的值可以是( )A .4B .5C .6D .7【答案】C【解析】令()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩,()lg m x x =,因为()lg m x x =与()lg y x =−的图象关于y 轴对称,因为函数()()()lg ,011,022,2x x f x x x f x x ⎧−<⎪=−−≤<⎨⎪−≥⎩的图象在区间(),(0)t t t −>内恰好有5对关于y 轴对称的点,所以问题转化为()lg m x x =与()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩的图象在()0,(0)t t >内有5个不同的交点,在同一平面直角坐标系中画出()lg m x x =与()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩的图象如下所示:因为()10lg101m ==,当10x >时()1m x >,()()()()()()13579111g g g g g g ======, 结合图象及选项可得t 的值可以是6,其他值均不符合要求,. 故选:C【典例2-2】(2024·四川成都·三模)若函数()2e xf x kx =−大于0的零点有且只有一个,则实数k 的值为( ) A .4 B .2e C .e 2D .2e 4【答案】D【解析】函数()f x 有且仅有一个正零点,即方程2ex k x=有且仅有一个正根,令()2e xg x x =,则()()3e 2x x g x x ='−,当0x <时,()0g x '>,当02x <<时,()0g x '<,当2x >时,()0g x '>,即函数()g x 在(),0∞−和()2,∞+上单调递增,在()0,2上单调递减,且()2e24g =,0x →时,()g x ∞→+,x →−∞时,()0g x →,x →+∞时,()g x ∞→+,可作出图象如下,方程2e x k x =有且仅有一个正根,所以2e 4k =.故选:D.【变式2-1】(2024·北京海淀·一模)已知()()3,0lg 1,0x x f x x x ⎧≤⎪=⎨+>⎪⎩,函数()f x 的零点个数为m ,过点(0,2)与曲线()y f x =相切的直线的条数为n ,则,m n 的值分别为( ) A .1,1 B .1,2 C .2,1 D .2,2【答案】B【解析】令()0f x =,即0x ≤时,30x =,解得0x =, 0x >时,()lg 10x +=,无解,故1m =,设过点(0,2)与曲线()y f x =相切的直线的切点为()00,x y ,当0x <时,()23f x x '=,则有()320003y x x x x −=−,有()3200023x x x −=−,整理可得301x =−,即01x =−,即当00x <时,有一条切线,当0x >时,()lg e1f x x '=+,则有()()000lg 1e lg 1y x x x x −=−++, 有()()000l 2g elg 11x x x −+=−+,整理可得()()()000221lg 10lg e x x x ++−++=, 令()()()()()2l 0g 2l 1e 1g g x x x x x =++−++>, 则()()2lg 1g x x '=−+, 令()0g x '=,可得99x =,故当()0,99x ∈时,()0g x '>,即()g x 在()0,99上单调递增, 当()99,x ∈+∞时,()0g x '<,即()g x 在()99,∞+上单调递减, 由()()992lg e 99220099lg e 0g =+⨯+−=>,()02020g =−=>,故()g x 在()0,99x ∈上没有零点, 又()()9992lg e 999210003999lg e 10000g =+⨯+−⨯=−<, 故()g x 在()99,999上必有唯一零点, 即当00x >时,亦可有一条切线符合要求, 故2n =.故选:B.【变式2-2】(2024·甘肃武威·模拟预测)已知函数()4ln 12f x ax a x ⎛⎫=−−+ ⎪⎝⎭有3个零点,则实数a 的取值范围是( )A .()1,+∞B .()2,+∞C .(),1−∞−D .(),2−∞−【答案】C【解析】将()y f x =的图象向左平移2个单位长度,可得函数()()22ln 2xg x f x ax x−=+=−+的图象, 所以原题转化为“函数()2ln2xg x ax x−=−+有3个零点”, 即研究直线y ax =与函数()2ln2xh x x−=+图象交点的个数问题. 因为()h x 的定义域为()2,2−,且()()22ln ln ln1022x xh x h x x x+−−+=+==−+, 所以()h x 为奇函数.因为()22222440222(2)4x x x h x x x x x x '+−+−⎛⎫=⋅=⨯=< ⎪−+−+−⎝⎭', 所以()h x 在区间()2,2−上为减函数,且曲线()y h x =在点()0,0处的切线方程为y x =−. 当0x =时,2112xx x−+⨯=−+; 当02x <<时,2ln2xx x−<−+; 当20x −<<的,2ln2xx x−>−+, 作出()h x 的图象.如图:由图知:当1a <−时,直线y ax =与函数()2ln2xh x x−=+的图象有3个交点.故实数a 的取值范围是(),1∞−−. 故选:C.03 导数的同构思想同构式的应用:(1)在方程中的应用:如果方程()0f a =和()0f b =呈现同构特征,则,a b 可视为方程()0f x =的两个根(2)在不等式中的应用:如果不等式的两侧呈现同构特征,则可将相同的结构构造为一个函数,进而和函数的单调性找到联系。

江苏省高考数学考前压轴冲刺(新高考)-专题08 不等式之最值问题(填空题)(解析版)

江苏省高考数学考前压轴冲刺(新高考)-专题08 不等式之最值问题(填空题)(解析版)

专题08 不等式之最值问题考点预测江苏高考近几年不等式常以压轴题的题型出现,常见的考试题型就有最值,范围形式出现,有些可以转化为函数问题,有些则是用不等式比较简单,常用的不等式结论如下:1.如果.2,,22时,等号成立,当且仅当那么b a ab b a =≥+∈R b a 2.如果.2,,时,等号成立,当且仅当那么b a ab ba =≥+∈+R b a 3.如果.3,,,3时,等号成立,当且仅当那么b ac b a =≥++∈+abc R c b a 4.如果.)())((,,,,22222时,等号成立,当且仅当那么bc ad =+≥++∈bd ac d c b a R d c b a 5.如果.11222,,22时,等号成立,当且仅当那么b a ab b a =+≥≥+≥+∈+ba b a R b a典型例题1.对于任意的正实数a ,b ,则的取值范围为 .【分析】首先利用直线和曲线的位置关系,求出直线的斜率的最小值,进一步求出结果.【解答】解:=,故可看作与两点的斜率,其中点A在y2﹣x2=1(x>0,y>0)上,故k AB最小值在相切时取得,设,联立,消去y,可得(k2﹣1)x2+2k(5k﹣2)x+(5k﹣2)2﹣1=0,由△=26k2﹣20k+7=0,解得(舍)当→+∞时,→1,故的取值范围是.故答案为:.【知识点】基本不等式及其应用2.已知x>0,y>0,且,则的最小值为.【答案】3【分析】将已知等式变形可得=x+4y,则()2=()(x+4y),利用基本不等式求解即可.【解答】解:因为x>0,y>0,且,所以==x+4y,所以()2=()(x+4y)=5++≥5+2=9,当且仅当=,即x=2y=1时等号成立,所以≥3,即的最小值为3.故答案为:3.【知识点】基本不等式及其应用3.若a,b为实数,且1≤a≤3,2≤b≤4,则的取值范围是.【分析】构造函数f(b)==a2(+)2﹣,可得函数f(b)单调递减,即可求出f(b)的范围,得到两边含有a的不等式,再分别构造关于a的范围,利用导数和最值的关系即可求出.【解答】解:设f(b)==()2+=a2(+)2﹣,故当2≤b≤4时,f(b)单调递减,∴+≤f(b)≤+,令h(a)=+,g(a)=+,∴h′(a)=,即h(a)在[1,2)上单调递减,在(2,3]单调递增,∴h(a)min=h(2)=,令g(a)=+,∴g′(a)=,∴g(a)在[1,)上单调递减,在(,3]单调递增,∵g(1)=,g(3)=,∴g(a)max=g(3)=,故的取值范围是[,],故答案为:[,].【知识点】简单线性规划专项突破一、填空题(共18小题)1.已知a、b、c为正实数,则代数式的最小值是.【分析】直接利用关系式的恒等变换和基本不等式的应用求出结果.【解答】解:令b+3c=x,8c+4a=y,3a+2b=z,则a=,b=,c=,所以代数式=.当且仅当x:y:z=1:2:3,即a:b:c=10:21:1时,等号成立.故答案为:.【知识点】基本不等式及其应用2.若正实数x,y满足,则x+2y的最大值为.【分析】先由题设⇒(x+2y)2=6+2xy,然后利用基本不等式可得:2xy≤()2,进而求得结果.【解答】解:∵,∴=,即x2+4y2=2(3﹣xy),即(x+2y)2=6+2xy,∵x>0,y>0,∴2xy≤()2,当且仅当x=2y时取“=“,∴(x+2y)2=6+2xy≤6+()2,整理得:(x+2y)2≤6,即(x+2y)2≤8,∴x+2y≤2,当且仅当时取“=“,故答案为:2.【知识点】基本不等式及其应用3.若x>y>z>0,则2x2+的最小值为.【答案】4【分析】原式转化为(x2﹣xy)++(+xy)+(x﹣3z)2,利用基本不等式即可求出.【解答】解:∵x>y>z>0,∴x2﹣xy>0,xy>0,∴>0,>0,∴2x2+,=x2﹣xy+++xy+x2﹣6xz+9z2,=(x2﹣xy)++(+xy)+(x﹣3z)2,≥2+2+(x﹣3z)2=4,当且仅当.即x=,y=,z=时取等号,故2x2+的最小值为4,故答案为:4.【知识点】基本不等式及其应用4.若x>y>0,且+=1,则x+y的最小值是.【分析】先将x+y变形为[(x﹣y)+2(x+2y)],再利用基本不等式求得其最小值即可.【解答】解:∵x>y>0,∴x﹣y>0,又∵+=1,∴x+y=[(x﹣y)+2(x+2y)]=[(x﹣y)+2(x+2y)](+)=[9++]≥(9+2)=(当且仅当时取“=“),故答案为:.【知识点】基本不等式及其应用5.已知实数x,y满足y≠2x且x≠﹣2y,若+=1,则x2+y2的最小值是.【分析】根据题意,分析可得x2+y2=(2x﹣y)2+(x+2y)2,进而可得x2+y2=[(2x﹣y)2+(x+2y)2]×(+),结合基本不等式的性质分析可得答案.【解答】解:根据题意,x=(2x﹣y)+(x+2y),y=(x+2y)﹣(2x﹣y),则x2+y2=[(2x﹣y)+(x+2y)]2+[(x+2y)﹣(2x﹣y)]2=(2x﹣y)2+(x+2y)2,又由+=1,则x2+y2=[(2x﹣y)2+(x+2y)2]×(+)=×[25++]≥×(25+2)=,当且仅当=时等号成立,即x2+y2的最小值为;故答案为:.【知识点】基本不等式及其应用6.已知实数x,y,z满足x2+y2+z2=1,则xy﹣3yz的取值范围为.【分析】可得10x2+9y2+(y2+10z2)=10,结合10x2+9y2+(y2+10z2).及柯西不等式(10x2+9y2)(y2+10z2)≥(,即可求解.【解答】解:由x2+y2+z2=1得10x2+9y2+(y2+10z2)=10.∵10x2+9y2+(y2+10z2).又由柯西不等式得(10x2+9y2)(y2+10z2)≥(∴10≥2|xy﹣3yz|.∴﹣≤xy﹣3yz,故答案为:[﹣,]【知识点】基本不等式及其应用7.若2a+3b=12(a•b≥0),则的最小值为;最大值为.【分析】把已知2a+3b=12(a•b≥0)两边平方,把通分化成关于ab为自变量的函数,利用函数的单调性即可求出最值.【解答】解:若2a+3b=12(a•b≥0),则a≥0,b≥0,有基本不等式12=2a+3b≥2,(当且仅当a =3,b=2时“=”成立),得0≤ab≤6,又由(2a+3b)2=122,得4a2+9b2=144﹣12ab,令y=,则y===,令t=18﹣ab,则,12≤18﹣ab≤18,y=,(12≤t≤18),则y′=,令y′=0,得t=12或t=﹣12(舍去),∴当t∈[12,12)时,y′>0,当t∈(12,18],y′<0∴函数y=,在区间当[12,12)上单调递增,在区间当(12,18]上单调递减,∴当t=12时,y有最大值,最大值是:,又因为,当t=12时,y=1,当t=18时,y=,∵1<,所以,y的最小值为:1故答案为:1;.【知识点】基本不等式及其应用8.已知a,b∈R,且,则a+b的最大值为,最小值为.【分析】先由题设⇒a+b>0且(a+b)2=8+4(a+b)+8,再利用不等式的性质和基本不等式⇒0≤2•≤a+b+2,进而有(a+b)2﹣8(a+b)﹣16≤0与(a+b)2≥8+4(a+b),解出a+b的取值范围,即可求得结果.【解答】解:∵,∴a+b>0且(a+b)2=4(+)2,即a+b>0且(a+b)2=8+4(a+b)+8,∵2•≤a+1+b+1=a+b+2,当且仅当a=b时取“=“,∴(a+b)2≤8+4(a+b)+4(a+b+2),当且仅当a=b时取“=“,即(a+b)2﹣8(a+b)﹣16≤0,解得:a+b≤4+4,当且仅当a=b=2+2时取“=“,又∵8≥0,(a+b)2=8+4(a+b)+8,∴(a+b)2≥8+4(a+b),当或时取“=“,解得:a+b≥2+2,当且仅当或时取“=“,∴(a+b)max=4+4,(a+b)min=2+2,故答案为:4+4,2+2.【知识点】基本不等式及其应用9.若实数x,y满足:0<x<y,则﹣的最小值为.【分析】根据题意设t=,则t∈(0,1),原式化为关于t的函数f(t),利用导数求出f(t)的最小值即可.【解答】解:由0<x<y,则﹣=﹣,设t=,则t∈(0,1),所以f(t)=﹣=﹣=+﹣1,则f′(t)=﹣,令f′(t)=0,解得t=﹣2,所以f(t)的最小值为+﹣1=+﹣1=,即﹣的最小值是.故答案为:.【知识点】基本不等式及其应用10.设a、b、c是三个正实数,且,则的最大值为.【答案】3【分析】由题意可求出c的表达式,根据c>0,把原式转化为关于的解析式,设=x,构造函数,利用基本不等式求出函数的最小值,从而求出答案.【解答】解:∵a+b+2c=,∴a2+ab+2ac=bc,∴c=,∵c>0,∴b﹣2a>0,解法一:设b﹣2a=t,则t>0,b=t+2a;∴==≤==3,当且仅当t=a时成立;∴的最大值为3.解法二:由b﹣2a>0,得>2,∴===;设=x,则x>2,所以f(x)=3x+=3x++1=3(x﹣2)++7≥2+7=6+7=13,当且仅当x=3时取等号,∴≤=3,即的最大值为3.故答案为:3.【知识点】基本不等式及其应用11.若正数m,n满足,则的最小值是.【分析】本题可先设=t,然后联系题干中等式进行变形,利用均值不等式及权方和不等式求取最小值,即可求出结果.【解答】解:设=t,则3t=m+=+++﹣1≥2+﹣1,∴3t≥1+,∴9t2﹣3t﹣2≥0,解得t≥或t≤﹣(舍去),当且仅当n=2m时,等号成立.∴t min=.故答案为:.【知识点】基本不等式及其应用12.已知x>0,y>0,且,则的最大值为﹣.【答案】-25【分析】,所以,即x+y=xy,且x>1,y>1,再结合基本不等式即可得到的最大值.【解答】解:依题意,x>0,y>0,且,所以x>1,y>1,且,即x+y=xy,所以=+=﹣9﹣4﹣(+),因为>0,>0,所以=﹣13﹣(+)≤﹣13﹣2=﹣13﹣2=﹣13﹣12=﹣25.当且仅当x=,y=时等号成立.故答案为:﹣25.【知识点】基本不等式及其应用13.已知ab=,a,b∈(0,1),则+的最小值为;【分析】先根据条件消掉b,即将b=代入原式得+=++4,并乘“1”法,最后运用基本不等式求其最小值【解答】解:∵ab=,a,b∈(0,1),∴b=,∴1﹣a>0,1﹣b=1﹣>0,∴2a﹣1>0,∴+=+=+,=+,=++4,=++4,=2(+)+4,=2(+)[(2﹣2a)+(2a﹣1)]+4,=2(1+2++)+4,≥2(3+2)+4=2(3+2)+4=10+4,当且仅当=时,即a=时取等号,故+的最小值为10+4,故答案为:10+4【知识点】基本不等式及其应用14.已知m>0,n>0,m+2n+2mn=8,则m+2n的最小值是.【答案】4【分析】由基本不等式得,得,然后利用基本不等式得,转化为m+2n的二次不等式求解,即可求出m+2n的最小值.【解答】解:由基本不等式可得,所以,8mn≤(m+2n)2,则,由基本不等式可得,化简得(m+2n)2+4(m+2n)﹣32≥0,即(m+2n+8)(m+2n﹣4)≥0,由于m>0,n>0,所以,m+2n>0,解得,m+2n≥4,当且仅当,即当时,等号成立,因此,m+2n的最小值为4,故答案为:4.【知识点】基本不等式及其应用15.若存在正实数x,y,z满足3y2+3z2≤10yz,且,则的最小值为【答案】e2【分析】由⇒,又ln=ln()=ln+ln=e﹣ln,令,则ln=e﹣ln=et﹣lnt,t,f(t)=et﹣lnt,利用函数求导求最值.【解答】解:∵正实数x,y,z满足3y2+3z2≤10yz,∴⇒,∵,∴ln=e,ln=ln()=ln+ln=e﹣ln,令,则ln=e﹣ln=et﹣lnt,t,f(t)=et﹣lnt,f′(t)=e﹣=0,则t=,可得f(t)在()递减,在()递增,∴f(t)min=f()=1﹣(﹣1)=2,即(ln))min=2,∴的最小值为e2,故答案为:e2.【知识点】简单线性规划16.设a,b,c是三个正实数,且a+b+2c=,则的最大值为.【答案】1【分析】由题意可得c=,根据c>0,可得b﹣2a>0,则原式可化为=,设=x,则x>2令f(x)=3x+,利用基本不等式即可求出函数的最小值,则可求出答案.【解答】解:∵a+b+2c=,∴a2+ab+2ac=bc,∴c=,∵c>0,∴b﹣2a>0,即>2,∴===,设=x,则x>2,令f(x)=3x+=3x++1=3(x﹣2)++7≥2+7=6+7=13,当且仅当x=3时取等号,∴≤=1,故答案为:1【知识点】基本不等式及其应用17.已知a,b∈R,且a≠﹣1,则|a+b|+|﹣b|的最小值是.【答案】1【分析】利用绝对值不等式的性质、基本不等式的性质即可得出.【解答】解:a,b∈R,且a≠﹣1,则|a+b|+|﹣b|≥=|a+1+﹣1|≥|2﹣1|=1,当且仅当a=0,0≤b≤1时取等号.故答案为:1.【知识点】基本不等式及其应用18.已知函数f(x)=4x+(x>0,a>0)在x=3时取得最小值,则a=;f(x)的最小值为.【答案】【第1空】36【第2空】24【分析】利用导数研究函数f(x)的单调性极值与最值即可得出.【解答】解:f′(x)=4﹣==,(x>0,a>0).可知:x=时,函数f(x)取得最小值,∴3=,解得a=36.f(3)=12+=24.故答案为:36,24.【知识点】基本不等式及其应用。

(完整word版)江苏省高考数学填空题压轴题(3)(word文档良心出品)

(完整word版)江苏省高考数学填空题压轴题(3)(word文档良心出品)

1.如图,已知二次函数c bx ax y ++=2(a ,b ,c 为实数,0≠a )的图象过点)2,(t C ,且与x 轴交于A ,B 两点,若BC AC ⊥,则a 的值为.2.将函数3322-++-=x x y ([]2,0∈x )的图象绕坐标原点逆时针旋转θ(θ为锐角),若所得曲线仍是一个函数的图象,则θ的最大值为 .3.在面积为2的ABC ∆中,E ,F 分别是AB ,AC 的中点,点P 在直线EF 上,则2BC PB PC +⋅的最小值是______________4.已知关于x 的方程03)2(log 22222=-+++a x a x 有唯一解,则实数a 的值为_____5.已知等差数列{},{}n n a b 的前n 项和分别为n S 和n T ,若7453n n S n T n +=+,且2n nab 是整数, 则n 的值为6.平面直角坐标系中,已知点A (1,-2),B (4,0),P (a ,1),N (a +1,1),当四边 形P ABN 的周长最小时,过三点A 、P 、N 的圆的圆心坐标是7.已知ABC ∆的三边长,,a b c 成等差数列,且22284,a b c ++=则实数b 的取值范围是8.若12sin a x x a x ≤≤对任意的[0,]2x π∈都成立,则21a a -的最小值为 .9.如图,在平面直角坐标系xOy 中,12,F F 分别为椭圆22221(0)x y a b a b+=>>的左、右焦点,B ,C 分别为椭圆的上、下 顶点,直线2BF 与椭圆的另一个交点为D ,若127cos 25F BF ∠=, 则直线CD 的斜率为 .10.各项均为正偶数的数列1234,,,a a a a 中,前三项依次成公差为(0)d d >的等差数列,后三项依次成公比为q 的等比数列,若4188a a -=,则q 的所有可能的值构成的集合为 .11.设)(x f 是定义在R 上的可导函数,且满足0)()('>+x xf x f .则不等式)1(1)1(2-->+x f x x f 的解集为 .12.在等差数列{}n a 中,52=a ,216=a ,记数列⎭⎬⎫⎩⎨⎧n a 1的前n 项和为n S ,若1512mS S n n ≤-+ 对+∈N n 恒成立,则正整数m 的最小值为 .江苏省13大市2012届模拟调研测试填空题把关难题的详解与解析苏锡常镇四市2012届高三教学调研测试一1.如图,已知二次函数c bx ax y ++=2(a ,b ,c 为实数,0≠a )的图象过点)2,(t C ,且与x 轴交于A ,B 两点,若BC AC ⊥,则a 的值为 .【答案】12- 解法一:设12(,0),(,0)A x B x ,则121212,,(,2),(,2),b cx x x x AC t x BC t x a a+=-==-=- ∵BC AC ⊥,∴12()()40t x t x --+=,整理得21212()40t x x t x x -+++=,∴2240,40b ct t at bt c a a a+++=∴+++=, 又函数c bx ax y ++=2的图象过点)2,(t C ,∴22at bt c ++=,比较上述两式得142,2a a =-∴=-。

完整word版江苏省高考数学填空题压轴题3word文档良心出品

完整word版江苏省高考数学填空题压轴题3word文档良心出品

2cy?ax?bx?),2C(t b0?a ca,,)的图象过点(为实数,1.如图,已知二次函数,BCAC?BA ax .轴交于的值为且与,,则两点,若??2??2?,0x33x??y?x??2,()的图象绕坐标原点逆时针旋转2.(为锐角)将函数? . 若所得曲线仍是一个函数的图象,则的最大值为ABC?的中点,点P在直线EF上,则中,E,F分别是AB,AC3.在面积为2的2BCPB?PC?______________的最小值是2220??x?2)a?3ax?2log(_____ 的值为的方程4.已知关于x有唯一解,则实数a2Sa45?7n nn?}b{aTS是整数,项和分别为的前n5.已知等差数列和,若,且nnnn3bnT?n2n n则的值为aa P),(,-21A6.平面直角坐标系中,已知点(,)B40,(,),+(,1)N11,当四边A 的周长最小时,过三点P形ABN的圆的圆心坐标是N、、P22284,?c?a?bcb,a,ABC?7.已知则实数成等差数列,且的三边长b的取值范围是?a?a][0,x?..若8对任意的都成立,则的最小值为xax?sinx?a12212F,FxOy 9.如图,在平面直角坐标系中,分别为椭2122yx0)??b??1(a 分别为椭圆的上、下,C圆的左、右焦点,B22ba7BF?BFcos?F,D顶点,直线,若与椭圆的另一个交点为22125.则直线CD的斜率为a,a,a,a0)d?d(.各项均为正偶数的数列中,前三项依次成公差为的等差数列,后104213qq88?a?a ,则的等比数列,若.的所有可能的值构成的集合为三项依次成公比为14'0?x))?xf(xf()x(f R是定义在.11.设上的可导函数,且满足则不等式2)?(x11?)?x?1ff(x.的解集为??1m??Sa21?a??SS n5a?,中,项和为的前,若,记数列.12在等差数列??nn62n1?2n a15??n m N?n.对恒成立,则正整数的最小值为?大市2012届模拟调研测试填空题把关难题的详解与解析江苏省13苏锡常镇四市2012届高三教学调研测试一2cbx?y?ax?),2C(t b0?a ca,1(为实数,,)的图象过点.如图,已知二次函数,BC?ACBA ax .且与,则轴交于的值为,两点,若1?【答案】2解法一:cb,0)(xA(x,0),B,2),?xBC?(t,AC?(?xx??t?x,2),?,xx设,则21222111aa20?x)?4(t?x)(t?0?x?4?(xx)t?xt?BCAC?,∴∵,整理得,221121cb2204a??bt?t?c?att??4?0,?∴,aa22c?bx?y?ax2c?at?bt?)2C(t,的图象过点又函数,∴,1????2,?a4a。

压轴题03--函数与导数常见经典压轴小题(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题03--函数与导数常见经典压轴小题(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题03函数与导数常见经典压轴小题1、导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小.2、应用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题.考向一:函数、零点嵌套问题考向二:函数整数解问题考向三:等高线问题考向四:零点问题考向五:构造函数解不等式考向六:导数中的距离问题考向七:导数的同构思想考向八:最大值的最小值问题(平口单峰函数、铅锤距离)1、分段函数零点的求解与判断方法:(1)直接法:直接根据题设条件构造关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成球函数值域的问题加以解决;(3)数形结合法:先将解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.2、由于三次函数的导函数为我们最熟悉的二次函数,所以基本的研究思路是:借助导函数的图象来研究原函数的图象.如借助导函数的正负研究原函数的单调性;借助导函数的(变号)零点研究原函数的极值点(最值点);综合借助导函数的图象画出原函数的图象并研究原函数的零点,具体来说,对于三次函数()()32 0f x ax bx cx d a =+++>,其导函数为()()232 0f x ax bx c a '=++>,根的判别式()243b ac ∆=-.a >()232f x ax bx c'=++判别式∆>0∆=0∆<图象()32f x ax bx cx d=+++单调性增区间:()1, x -∞,()2, x +∞;减区间:()12, x x 增区间:(), -∞+∞增区间:(), -∞+∞图象(1)当0∆≤时,()0f x '≥恒成立,三次函数()f x 在R 上为增函数,没有极值点,有且只有一个零点;(2)当0∆≥时,()0f x '=有两根1x ,2x ,不妨设12x x <,则1223bx x a+=-,可得三次函数()f x 在()1, x -∞,()2, x +∞上为增函数,在()12, x x 上为减函数,则1x ,2x 分别为三次函数()32f x ax bx cx d =+++的两个不相等的极值点,那么:①若()()120f x f x ⋅>,则()f x 有且只有1个零点;②若()()120f x f x ⋅<,则()f x 有3个零点;③若()()120f x f x ⋅=,则()f x 有2个零点.特别地,若三次函数()()32 0f x ax bx cx d a =+++>存在极值点0x ,且()00f x =,则()f x 地解析式为()()()20f x a x x x m =--.同理,对于三次函数()()32 0f x ax bx cx d a =+++<,其性质也可类比得到.3、由于三次函数()()32 0f x ax bx cx d a =+++≠的导函数()232f x ax bx c '=++为二次函数,其图象变化规律具有对称性,所以三次函数图象也应当具有对称性,其图象对称中心应当为点, 33bb faa ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,此结论可以由对称性的定义加以证明.事实上,该图象对称中心的横坐标正是三次函数导函数的极值点.4、恒成立(或存在性)问题常常运用分离参数法,转化为求具体函数的最值问题.5、如果无法分离参数,可以考虑对参数或自变量进行分类讨论,利用函数性质求解,常见的是利用函数单调性求解函数的最大、最小值.6、当不能用分离参数法或借助于分类讨论解决问题时,还可以考虑利用函数图象来求解,即利用数形结合思想解决恒成立(或存在性)问题,此时应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数图象之间的关系,得出答案或列出条件,求出参数的范围.7、两类零点问题的不同处理方法利用零点存在性定理的条件为函数图象在区间[a ,b ]上是连续不断的曲线,且()()0f a f b ⋅<..①直接法:判断-一个零点时,若函数为单调函数,则只需取值证明()()0f a f b ⋅<.②分类讨论法:判断几个零点时,需要先结合单调性,确定分类讨论的标准,再利用零点存在性定理,在每个单调区间内取值证明()()0f a f b ⋅<.8、利用导数研究方程根(函数零点)的技巧(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.(2)根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置.(3)利用数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.9、已知函数零点个数求参数的常用方法(1)分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分类讨论法:结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围.1.(2023·江西宜春·统考模拟预测)已知函数()()()ln 1,ln (0)1m xf x xg x x m x m=+-=+>+,且()()120f x g x ==,则()2111em x x -+的最大值为()A .1B .eC .2eD .1e【答案】A【解析】()()()()()ln 10,ln 10,1ln 1,11m mf x x x m x x x x =+-=+-==++++()ln0,e ,x xg x x m x m=+==由题意知,()()21121ln 1e ,x x x x m ++==即()()2221121ln 1e e ln e ,x x xx x x m ++===因为0m >,所以21e 1,11xx >+>,设()ln ,1p x x x x =>,则()1ln 0p x x '=+>,()()211e ,xp x p m +==所以211e x x +=,所以()22121111e e e ex m m m x x x m---+==,1(),0e m m t m m -=>,则11(),e m m t m --'=当01m <<时,()0;t m '>当1m >时,()0;t m '<所以()t m 在()0,1时单调递增,在()1,+∞时单调递减,所以max ()(1)1,t m t ==故选:A.2.(2023·湖南岳阳·统考二模)若函数()22ln 2e 2ln x xf x a x ax -=-+有两个不同的零点,则实数a 的取值范围是()A .(),e -∞-B .(],e -∞-C .()e,0-D .()【答案】A【解析】函数()f x 的定义域为(0,)+∞,()()222ln 22ln 2e 2ln e 2ln x x x x f x a x ax a x x --=-+=+-,设2()2ln (0)h x x x x =->,则22(1)(1)()2x x h x x x x+-'=-=,令()01h x x '>⇒>,令()001h x x '<⇒<<,所以函数()h x 在(0,1)上单调递减,在(1,)+∞上单调递增,且(1)1h =,所以min ()(1)1h x h ==,所以()1h x ≥,函数()f x 有两个不同的零点等价于方程()0f x =有两个不同的解,则()222ln 2ln 22e e 2ln 02ln x x x x a x x a x x--+-=⇒-=-,等价于函数y a =-与22ln 2e 2ln x xy x x-=-图象有两个不同的交点.令22ln x x t -=,()1e ,tg t tt =>,则函数y a =-与()1e ,tg t tt =>图象有一个交点,则()()22e 1e e 0tt t t t g t t t '--==>,所以函数()g t 在(1,)+∞上单调递增,所以()()1e g t g >=,且t 趋向于正无穷时,()e tg t t=趋向于正无穷,所以e a ->,解得e a <-.故选:A.3.(2023·江西吉安·统考一模)已知,R,0,0x y x y ∈>>,且2x y xy +=,则8e y x-的可能取值为()(参考数据: 1.1e 3≈, 1.2e 3.321≈)A .54B .32C .e 1-D .e【答案】D【解析】由2x y xy +=,可得844x y =-且1y >,所以84e e 4y yx y-=+-,令()()4e 4,1,yg y y y =+-∈+∞,可得()24e y g y y='-,令()24e yh y y =-,可得()38e 0yh y y '=+>,()h y 为单调递增函数,即()g y '单调递增,又()()1.1 1.222441.1e 0, 1.2e 01.1 1.2g g =--'<'=>,所以存在()0 1.1,1.2y ∈,使得()00204e 0yg y y =-=',所以()()0min 002000444e 44, 1.1,1.2yg g y y y y y ==+-=-∈,设()0200444f y y y =+-,则()0320084f y y y =--',因为()0 1.1,1.2y ∈,所以()00f y '<,所以()0f y 在()1.1,1.2上单调递减,所以()()0191.229f y f >=>,又因为()22e 2e g =->,()g y 在()0,y ∞+上递增,所以D 正确.故选:D.4.(2023·河南开封·开封高中校考一模)若存在[)1,x ∞∈+,使得关于x 的不等式11e x ax +⎛⎫+≥ ⎪⎝⎭成立,则实数a 的最小值为()A .2B .1ln2C .ln21-D .11ln2-【答案】D 【解析】由11e x ax +⎛⎫+≥ ⎪⎝⎭两边取对数可得 1()ln 11x a x ⎛⎫++≥ ⎪⎝⎭①,令11,t x +=则11x t =-,因为[)1,x ∞∈+,所以(1,2]t ∈,则①可转化得1ln 11a t t ⎛⎫+≥⎪-⎝⎭,因为ln 0t >,11ln 1a t t ∴≥--因为存在[)1,x ∞∈+,使得关于x 的不等式11e x ax +⎛⎫+≥ ⎪⎝⎭成立,所以存在(1,2]t ∈,11ln 1a t t ≥--成立,故求11ln 1t t --的最小值即可,令11(),(1,2]ln 1g x x x x =-∈-2211()(ln )(1)g x x x x '∴=-+⋅-2222(ln )(1)(1)(ln )x x x x x x ⋅--=-2222222(1)1(ln )(ln )2(1)(ln )(1)(ln )x x x x x x x x x x ----+==--,令()h x 21(ln )2,(1,2]x x x x=--+∈212ln 11()2ln 1x x x h x x x xx-+'∴=⋅-+=,令1()2ln ,(1,2]x x x x xϕ=-+∈,2222121()1x x x x x x ϕ-+-'∴=--=22(1)0x x --=<,所以()ϕx 在(1,2]上单调递减,所以()(1)0x ϕϕ<=,()0h x '∴<,所以()h x 在(1,2]上单调递减,所以()(1)0,()0,h x h g x '<=∴<()g x ∴在(1,2]上单调递减,1()(2)1ln 2g x g ∴≥=-,11ln 2a ∴≥-,所以实数a 的最小值为11ln 2-故选:D5.(2023·河北石家庄·统考一模)已知210x x a -=在()0,x ∈+∞上有两个不相等的实数根,则实数a 的取值范围是()A .10,2e ⎛⎤ ⎥⎝⎦B .10,2e ⎛⎫⎪⎝⎭C .12e 1,e ⎛⎤ ⎥⎝⎦D .12e 1,e ⎛⎫ ⎪⎝⎭【答案】D【解析】由()0,x ∈+∞,则210x x a =>,故2ln ln xa x=,要使原方程在()0,x ∈+∞有两个不等实根,即2ln ()xf x x =与ln y a =有两个不同的交点,由432ln 12ln ()x x x x f x x x --'==,令()0f x '>,则120e x <<,()0f x '<,则12e x >,所以()f x 在12(0,e )上递增,12(e ,)+∞上递减,故12max 1()(e )2e f x f ==,又x 趋向于0时,()f x 趋向负无穷,x 趋向于正无穷时,()f x 趋向0,所以,要使()f x 与ln y a =有两个不同的交点,则10ln 2ea <<,所以12e 1e a <<.故选:D6.(2023·吉林·统考三模)已知不等式22e ln ln x x λλ+≥在()0,x ∈+∞上恒成立,则实数λ的取值范围是()A .10,2e ⎛⎤ ⎥⎝⎦B .10,4e ⎛⎤ ⎥⎝⎦C .1,2e ∞⎡⎫+⎪⎢⎣⎭D .1,4e ⎡⎫+∞⎪⎢⎣⎭【答案】C【解析】由22e ln ln x x λλ+≥得22e ln ln lnxxx λλλ≥-=,即22e lnxxxx λλ≥,令()e t f t t =,()0,t ∈+∞,则()()1e 0tf t t '=+>,所以()e tf t t =在()0,∞+上单调递增,而ln22e lnlne xxxxxx λλλλ≥=等价于()2ln x f x f λ⎛⎫≥ ⎪⎝⎭,∴2lnxx λ≥,即2e xx λ≥令()2e x g x x =,()0,x ∈+∞,则()212e xg x x-'=,所以()g x 在10,2x ⎛⎫∈ ⎪⎝⎭时()0g x '>,为增函数;在在1,2x ⎛⎫∈+∞ ⎪⎝⎭时()0g x '<,为减函数,所以()g x 最大值为1122e g ⎛⎫= ⎪⎝⎭,∴12e λ≥.故选:C7.(2023·黑龙江哈尔滨·哈尔滨三中校考二模)设()f x 是定义在R 上的可导函数,()f x 的导函数为()f x ',且()()32f x f x x '⋅>在R 上恒成立,则下列说法中正确的是()A .()()20232023f f <-B .()()20232023f f >-C .()()20232023f f <-D .()()20232023f f >-【答案】D【解析】由题设32()()4f x f x x ⋅>',构造24()()g x f x x =-,则3()2()()40g x f x f x x =-'>',所以()g x 在R 上单调递增,则(2023)(2023)g g >-,即2424(2023)2023(2023)(2023)f f ->---,所以22(2023)(2023)f f >-,即()()20232023f f >-.故选:D8.(2023·四川广安·统考二模)若存在[]01,2x ∈-,使不等式()022002e 1ln e 2ex ax a x +-≥+-成立,则a 的取值范围是()A .21,e 2e ⎡⎤⎢⎥⎣⎦B .221,e e ⎡⎤⎢⎥⎣⎦C .421,e e ⎡⎤⎢⎥⎣⎦D .41,e e ⎡⎤⎢⎥⎣⎦【答案】D【解析】()022002e 1ln e 2e x a x a x +-≥+-⇔()()222e 1ln e 12e x a a x ---≥-()()()000022222 e 1ln e 1ln e 2 e 1ln 2e e x x x x a a a a e ⇔---≥-⇔-≥-令ex at =,即()2e 1ln 220t t --+≥,因为0[1,2]x ∈-,所以21,e e a a t -⎡⎤∈⎢⎥⎣⎦,令()2()e 1ln 22f t t t =--+.则原问题等价于存在21,e e a a t -⎡⎤∈⎢⎥⎣⎦,使得()0f t ≥成立.()22e 12e 1()2t f t t t---'=-=令()0f t '<,即()2e 120,t --<解得2e 12t ->,令()0f t '>,即()2e 120,t -->解得2e 102t -<<,所以()f t 在2e 10,2⎛⎫- ⎪⎝⎭上单调递增,在2e 1,2⎛⎫-+∞⎪⎝⎭上单调递减.又因为()()2222(1)0,e e 1ln e 2e 2f f ==--+222e 22e 20=--+=而22e 11e 2-<<,∴当21e t ≤≤时,()0f t ≥.若存在21,e e a a t -⎡⎤∈⎢⎥⎣⎦,使得()0f t ≥成立.只需22e e a ≤且11e a -≥,解得4ea ≤且1e a ≥,所以41e ea ≤≤.故a 的取值范围为41,e e ⎡⎤⎢⎥⎣⎦.故选:D9.(2023·河南郑州·统考二模)函数()ln ,01,0x x x f x x x >⎧=⎨+≤⎩,若关于x 的方程()()()210f x m f x m -++=⎡⎤⎣⎦恰有5个不同的实数根,则实数m 的取值范围是()A .10em -<<B .10em -<≤C .10em -≤<D .10em -≤≤【答案】A【解析】由()2[()]1()[()][()1]0f x m f x m f x m f x -++=--=,可得()f x m =或()1f x =,令ln y x x =且定义域为(0,)+∞,则ln 1y x ¢=+,当1(0,ex ∈时0'<y ,即y 递减;当1(,)ex ∈+∞时0'>y ,即y 递增;所以min 1e y =-,且1|0x y ==,在x 趋向正无穷y 趋向正无穷,综上,根据()f x 解析式可得图象如下图示:显然()1f x =对应两个根,要使原方程有5个根,则()f x m =有三个根,即(),f x y m =有3个交点,所以10em -<<.故选:A10.(2023·贵州·统考模拟预测)已知函数()f x 在R 上满足如下条件:(1)()()0f x f x -+=;(2)()20f -=;(3)当()0,x ∈+∞时,()()f x f x x'<.若()0f a >恒成立,则实数a 的值不可能是()A .3-B .2C .4-D .1【答案】B 【解析】设()()f x g x x =,则()()()2xf x f x g x x'-'=,因为当()0,x ∈+∞时,()()f x f x x'<,所以当0x >时,有()()0xf x f x '-<恒成立,即此时()g x '<0,函数()g x 为减函数,因为()f x 在R 上满足()()0f x f x -+=,所以函数()f x 是奇函数,又()20f -=,所以()20f =,又()()()()()f x f x f x g x g x x x x---====--,故()g x 是偶函数,所以()()220g g =-=,且()g x 在(),0x ∈-∞上为增函数,当0a >时,()0f a >,即()()0f a ag a =>,等价为()0g a >,即()()2g a g >,得02a <<;当a<0时,()0f a >,即()()0f a ag a =>,等价为()0g a <,即()()2g a g <-,此时函数()g x 为增函数,得2a <-,综上不等式()0f a >的解集是()(),20,2-∞- ,结合选项可知,实数a 的值可能是3-,4-,1.故选:B11.(2023·广西·统考三模)已知2()cos f x x x =+,若3441e ,ln ,54a f b f c f -⎛⎫⎛⎫⎛⎫===- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则a ,b ,c 的大小关系为()A .b c a <<B .c a b<<C .c b a<<D .a c b<<【答案】A【解析】因为2()cos ,R f x x x x =+∈,定义域关于原点对称,()22()()cos()cos f x x x x x f x -=-+-=+=,所以()f x 为R 上的偶函数,当0x ≥时,()2sin ,f x x x '=-,设()2sin g x x x =-,则()2cos g x x =-',1cos 1x -≤≤ ,()0g x '∴>,所以()g x 即()f x '在[0,)+∞上单调递增,所以()(0)0f x f ''≥=,所以()f x 在[0,)+∞上单调递增,又因为()f x 为偶函数,所以()f x 在(,0]-∞上单调递减,又因为41ln0,054<-<,所以445ln ln ln 554b f f f ⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,1144c f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭又因为31411ee e 4-->=>,因为141ln e 4=,41445e e, 2.4e 4⎛⎫⎛⎫=≈< ⎪ ⎪⎝⎭⎝⎭,所以145e 4>,所以145ln e ln 4>,即15ln 44>,所以3415eln 44->>,所以3441e 5ln 4f f f -⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,即a c b >>.故选:A.12.(2023·天津南开·统考一模)已知函数()()216249,1,11,1,9x x x f x f x x ⎧-+≤⎪=⎨->⎪⎩则下列结论:①()1*9,Nn f n n -=∈②()()10,,x f x x∞∀∈+<恒成立③关于x 的方程()()R f x m m =∈有三个不同的实根,则119m <<④关于x 的方程()()1*9N n f x n -=∈的所有根之和为23n n +其中正确结论有()A .1个B .2个C .3个D .4个【答案】B【解析】由题意知,()()()()1211111219999n n f n f n f n f n n --=-=-==--=⎡⎤⎣⎦ ,所以①正确;又由上式知,要使得()()10,,x f x x∞∀∈+<恒成立,只需满足01x <≤时,()1f x x <恒成立,即2116249x x x-+<,即321624910x x x -+-<恒成立,令()(]32162491,0,1g x x x x x =-+-∈,则()248489g x x x '=-+,令()0g x '=,解得14x =或34x =,当1(0,4x ∈时,()0g x '>,()g x 单调递增;当13(,)44x ∈时,()0g x '<,()g x 单调递减;当3(,)4x ∈+∞时,()0g x '>,()g x 单调递增,当14x =时,函数()g x 取得极大值,极大值11101444g f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,,所以②不正确;作出函数()f x 的图象,如图所示,由图象可知,要使得方程()()R f x m m =∈有三个不同的实根,则满足()()21f m f <<,即119m <<,所以③正确;由()1(1)9f x f x =-知,函数()f x 在(),1n n +上的函数图象可以由()1,n n -上的图象向右平移一个单位长度,再将所有点的横坐标不变,纵坐标变为原来的19倍得到,因为216249y x x =-+的对称轴为34x =,故()09f x =的两根之和为32,同理可得:()19f x =的两个之和为322+, ,()19nf x -=的两个之和为32(1)2n +-,故所有根之和为23333(2)[2(1)]2222n n n +++++-=+,所以④不正确.故选:B.13.(2023·山东济南·一模)函数()()()221xxx f x a a a =++-+(0a >且1a ≠)的零点个数为()A .1B .2C .3D .4【答案】B【解析】由()0f x =可得22011x x a a a a +⎛⎫⎛⎫+-= ⎪ ⎪++⎝⎭⎝⎭,即11112011x xa a ⎛⎫⎛⎫-++-= ⎪ ⎪++⎝⎭⎝⎭,因为0a >且1a ≠,则1110,,1122a ⎛⎫⎛⎫∈ ⎪ ⎪+⎝⎭⎝⎭,令11t a =+,令()()()112x xg x t t =-++-,则()()010g g ==,()()()()()1ln 11ln 1xxg x t t t t '=--+++,令()()()()()1ln 11ln 1xxh x t t t t =--+++,则()()()()()221ln 11ln 10xxh x t t t t '=--+++>⎡⎤⎡⎤⎣⎦⎣⎦,所以,函数()g x '在R 上单调递增,因为()()()()20ln 1ln 1ln 1ln10g t t t'=-++=-<=,()()()()()11ln 11ln 1g t t t t '=--+++,令()()()()()1ln 11ln 1p t t t t t =--+++,其中01t <<,则()()()ln 1ln 10p t t t '=+-->,所以,函数()p t 在()0,1上单调递增,所以,()()()100g p t p >'==,由零点存在定理可知,存在()00,1x ∈,使得()00g x '=,且当0x x <时,()0g x '<,此时函数()g x 单调递减,当0x x >时,()0g x '>,此时函数()g x 单调递增,所以,()()()0010g x g g <==,所以,函数()g x 的零点个数为2,即函数()f x 的零点个数为2.故选:B.14.(2023·陕西榆林·统考二模)已知函数()()25e xf x x x =+-,若函数()()()()222g x f x a f x a =---⎡⎤⎣⎦恰有5个零点,则a 的取值范围是()A .()3e,0-B .470,e ⎛⎫ ⎪⎝⎭C .473e,e ⎛⎫- ⎪⎝⎭D .()0,3e 【答案】B【解析】函数()g x 恰有5个零点等价于关于x 的方程()()()2220f x a f x a ⎡⎤---=⎣⎦有5个不同的实根.由()()()2220f x a f x a ⎡⎤---=⎣⎦,得()f x a =或()2f x =-.因为()()25e x f x x x =+-,所以()()234e x f x x x '=+-()()41e xx x =+-,由()0f x ¢>,得<4x -或1x >,由()0f x '<,得41x -<<,则()f x 在(),4-∞-和()1,+∞上单调递增,在()4,1-上单调递减.因为()474e f -=,()13e f =-,当x →+∞时,()f x →+∞,当x →-∞时,()0f x →,所以可画出()f x 的大致图象:由图可知()2f x =-有2个不同的实根,则()f x a =有3个不同的实根,故470,e a ⎛⎫∈ ⎪⎝⎭,故A ,C ,D 错误.故选:B.15.(2023·山东枣庄·统考二模)已知()f x =,a ∈R ,曲线cos 2y x =+上存在点()00,x y ,使得()()00f f y y =,则a 的范围是()A .()8,18ln 3+B .[]8,18ln 3+C .()9,27ln 3+D .[]9,27ln 3+【答案】B【解析】因为[]cos 1,1x ∈-,所以[]cos 21,3y x =+∈,由题意cos 2y x =+上存在一点()00,x y 使得()()00f f y y =,即[]01,3y ∈,只需证明()00f y y =,显然()f x =假设()00f y y c =>,则()()()()000f f y f c c y f y ==>>不满足()()00f f y y =,同理()00f y c y =<不满足()()00f f y y =,所以()00f y y =,那么函数()[]1,3f x =即函数()f x x =在[]1,3x ∈有解,x =,可得[]2ln 9,1,3x x a x x +-=∈,从而[]2ln 9,1,3x x x a x +-=∈,令()[]2ln 9,1,3h x x x x x =+-∈,则()2119292x x h x x x x+-'=+-=,令()0h x '=,即21920x x +-=,解得12993,044x x -=>=(舍去),()0h x '>时03x <<<()0h x '<时x >所以()h x 在[]1,3单调递增,所以()()()13h h x h ≤≤,()1ln1918h =+-=,()3ln 3279ln 318h =+-=+,所以()h x 的取值范围为[]8,ln 318+,即a 的取值范围为[]8,ln 318+.故选:B.16.(2023·四川绵阳·盐亭中学校考模拟预测)已知()(0)ln kxx k xϕ=>,若不等式()11e kxxx ϕ+<+在()1+∞,上恒成立,则k 的取值范围为()A .1e⎛⎫+∞ ⎪⎝⎭,B .()ln2+∞,C .()0,eD .()0,2e 【答案】A【解析】由题意知,(1,)x ∀∈+∞,不等式11e ln kx x kx x+<+恒成立,即()(1,),1eln e(1)ln kxkxx x x ∀∈+∞+>+成立.设()(1)ln (1)f x x x x =+>,则()e ()kxf f x >.因为11()ln ln 10x f x x x x x+'=+=++>,所以()f x 在()1+∞,上单调递增,于是e kx x >对任意的()1x ∈+∞,恒成立,即ln xk x >对任意的()1x ∈+∞,恒成立.令ln ()(1)x g x x x=>,即max ()k g x >.因为21ln ()xg x x-'=,所以当(1,e)x ∈时,()0g x '>;当()e x ∈+∞,时,()g x '<0,所以()g x 在(1,e)上单调递增,在()e ,+∞上单调递减,所以max 1()(e)eg x g ==,所以1ek >.故选:A .17.(2023·江西·校联考模拟预测)已知()ee 1ln x x a x+>有解,则实数a 的取值范围为()A .21,e ⎛⎫-+∞ ⎪⎝⎭B .1,e⎛⎫-+∞ ⎪⎝⎭C .()1,-+∞D .1,e⎛⎫-∞ ⎪⎝⎭【答案】A【解析】不等式()e e 1ln x x a x+>可化为()e ln 1x a x x x ++>,()()e ln e 1x x a x x +>,令e x t x =,则ln 1at t +>且0t >,由已知不等式ln 1t at +>在()0,∞+上有解,所以1ln ta t ->在()0,∞+上有解.令()1ln t f t t -=,则()2ln 2t f t t ='-,当20e t <<时,()0f t '<,()f t 在()20,e 上单调递减;当2t e >时,()0f t '>,()f t 在()2e ,+∞单调递增,所以()min f t =()221e e f =-,所以21e a >-,所以a 的取值范围为21,e ⎛⎫-+∞ ⎪⎝⎭,故选:A.18.(2023·辽宁朝阳·校联考一模)设0k >,若不等式()ln e 0xk kx -≤在0x >时恒成立,则k 的最大值为()A .eB .1C .1e -D .2e 【答案】A【解析】对于()ln e 0xk kx -≤,即()e ln x kx k≤,因为()ln y kx =是e xy k =的反函数,所以()ln y kx =与e xy k =关于y x =对称,原问题等价于e x x k≥对一切0x >恒成立,即e xk x≤;令()e x f x x =,则()()'21e x x f x x -=,当01x <<时,()()'0,f x f x <单调递减,当1x >时,()()'0,f x f x >单调递增,()()min 1e f x f ==,e k ∴≤;故选:A.19.(2023·四川南充·统考二模)已知函数()()2ln ln 1212x x h x t t x x ⎛⎫=--+- ⎪⎝⎭有三个不同的零点123,,x x x ,且123x x x <<.则实数11ln 1x x ⎛-⎝)A .1t -B .1t -C .-1D .1【答案】D 【解析】令ln x y x =,则21ln xy x-'=,当(0,e)x ∈时0'>y ,y 是增函数,当(e,)x ∈+∞时0'<y ,y 是减函数;又x 趋向于0时y 趋向负无穷,x 趋向于正无穷时y 趋向0,且e 1|ex y ==,令ln xm x=,则2()()(12)12h x g m m t m t ==--+-,要使()h x 有3个不同零点,则()g m 必有2个零点12,m m ,若11(0,e m ∈,则21em =或2(,0]m ∞∈-,所以2(12)120m t m t --+-=有两个不同的根12,m m ,则2Δ(12)4(12)0t t =--->,所以32t <-或12t >,且1212m m t +=-,1212m m t =-,①若32t <-,12124m m t +=->,与12,m m 的范围相矛盾,故不成立;②若12t >,则方程的两个根12,m m 一正一负,即11(0,)em ∈,2(,0)m ∞∈-;又123x x x <<,则12301e x x x <<<<<,且121ln x m x =,32123ln ln x x m x x ==,故11ln 1x x ⎛⎫- ⎪⎝⎭(()()221111m m m =-=--12121()1m m m m =-++=.故选:D20.(2023·陕西咸阳·武功县普集高级中学统考二模)已知实数0a >,e 2.718=…,对任意()1,x ∈-+∞,不等式()e e 2ln xa ax a ⎡⎤++⎣⎦≥恒成立,则实数a 的取值范围是()A .10,e ⎛⎤⎥⎝⎦B .1,1e⎡⎫⎪⎢⎣⎭C .20,e⎛⎫⎪⎝⎭D .2,1e⎛⎫ ⎪⎝⎭【答案】A【解析】因为()e e 2ln xa ax a ⎡⎤++⎣⎦≥,所以()()1e2ln 2ln 2ln ln(1)x a ax a a a ax a a a a a x -⎡⎤++=++=+++⎣≥⎦,即11e 2ln ln(1)x a x a-⋅++≥+,即1ln 11ln e e 2ln ln(1)e 2ln ln(1)x x a a a x a x ---⋅+++⇔+≥++≥,所以1ln e 1ln ln(1)1x a x x a x --+≥--+++,令()e ,(1,)x f x x x =+∈-+∞,易知()f x 在()1,x ∈-+∞上单调递增,又因为ln(1)[ln(1)]e ln(1)1ln(1)x f x x x x ++=++=+++,所以(1ln )[ln(1)]f x a f x --≥+,所以1ln ln(1),(1,)x a x x --≥+∈-+∞,所以ln 1ln(1),(1,)a x x x ≤--+∈-+∞,令()1ln(1),(1,)g x x x x =--+∈-+∞,则1()111x g x x x '=-=++,所以当(1,0)x ∈-时,()0g x '<,()g x 单调递减;当,()0x ∈+∞时,()0g x '>,()g x 单调递增;所以min ()(0)1g x g ==-,所以ln 1a ≤-,解得10ea <≤.故选:A21.(2023·陕西榆林·统考二模)已知函数()()25e xf x x x =+-,若函数()()()()0g x f f x a a =->,则()g x 的零点个数不可能是()A .1B .3C .5D .7【答案】D【解析】令()0g x =,即()()f f x a =,因为()()25e xf x x x =+-,所以()2()34e x f x x x '=+-,由()0f x ¢>,得<4x -或1x >,由()0f x '<,得41x -<<,则()f x 在(),4-∞-和()1,+∞上单调递增,在()4,1-上单调递减,因为()474e f -=,()13e f =-,当+x →∞时,()+f x →∞,当x →-∞时,()0f x →,令()0f x =,解得1212x -=或1212x -=,所以可画出()f x 的大致图像,设()t f x =,则()f t a =,第一种情况:当470e a <<时,()f t a =有三个不同的零点1t ,2t ,3t ,不妨设123t t t <<,则14t <-,2142t -<<-,312t ->,①讨论()1f x t =根的情况:当13e t <-时,()1f x t =无实数根,当13e t =-时,()1f x t =有1个实数根,当13e 4t -<<-时,()1f x t =有2个实数根,②讨论()2f x t =根的情况:因为2142t -<<-,所以()2f x t =有2个实数根,③讨论()3f x t =根的情况:因为3t >47e>,所以()3f x t =只有1个实数根,第二种情况:当47e a =时,()f t a =有2个实数根44t =-,51212t ->,则()4f x t =有2个实数根,()5f x t =有1个实数根,故当47ea =时,()()f f x a =有3个实数根;第三种情况:当47e a >时,()f t a =有一个实数根612t ->,则()6f x t =有1个实数根,综上,当470ea <<时,()()f f x a =可能有3个或4个或5个实数根;当47e a =时,()()f f x a =有3实数根;当47e a >时,()()f f x a =有1个实数根;综上,()g x 的零点个数可能是1或3或4或5.故选:D .22.(多选题)(2023·河北唐山·开滦第二中学校考一模)若关于x 的不等式1ln ln e e ex m xm -+≥在(),m +∞上恒成立,则实数m 的值可能为()A .21e B .22e C .1eD .2e【答案】CD【解析】因为不等式1ln ln ee e x m x m -+≥在(),m +∞上恒成立,显然0x m >>,1x m >,ln 0xm>,因此ln 1ln ln 1ee ln e ln e ln e e e xx x x x mm x x x x x m x x m m m m m-+≥⇔≥⇔≥⇔≥⋅,令()e ,0x f x x x =>,求导得()(1)0x f x x e '=+>,即函数()f x 在(0,)+∞上单调递增,ln e ln e ()(ln xxm x x x f x f m m ≥⋅⇔≥,于是ln x x m ≥,即e e xx x x m m ≥⇔≥,令(),0e x xg x x =>,求导得1()ex x g x -'=,当01x <<时,()0g x '>,当1x >时,()0g x '<,因此函数()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,max 1()(1)eg x g ==,因为0x m >>,则当01m <<时,()g x 在(,1)m 上单调递增,在(1,)+∞上单调递减,1()(1)eg x g ≤=,因此要使原不等式成立,则有11em ≤<,当m 1≥时,函数()g x 在(,)m +∞上单调递减,()()()11eg x g m g <≤=,符合题意,所以m 的取值范围为1[,)e+∞,选项AB 不满足,选项CD 满足.故选:CD23.(多选题)(2023·山东·沂水县第一中学校联考模拟预测)已知函数()()()32e 04610x x f x x x x ⎧<⎪=⎨-+≥⎪⎩,其中e 是自然对数的底数,记()()()2h x f x f x a =-+⎡⎤⎣⎦,()()()3g x f f x =-,则()A .()g x 有唯一零点B .方程()f x x =有两个不相等的根C .当()h x 有且只有3个零点时,[)2,0a ∈-D .0a =时,()h x 有4个零点【答案】ABD【解析】因为32()461(0)f x x x x =-+≥,所以2()121212(1)(0)f x x x x x x '=-=-≥,所以(0,1)x ∈时,()0f x '<,(1,)x ∈+∞时,()0f x '>所以()()()32e04610x x f x x x x ⎧<⎪=⎨-+≥⎪⎩的图像如下图,选项A ,因为()()()3g x f f x =-,令()f x t =,由()0g x =,得到()3f t =,由图像知,存在唯一的01t >,使得()3f t =,所以0()1f x t =>,由()f x 的图像知,存在唯一0x ,使00()f x t =,即()()()3g x f f x =-只有唯一零点,所以选项A 正确;选项B ,令()g x x =,如图,易知()g x x =与()y f x =有两个交点,所以方程()f x x =有两个不相等的根,所以选项B 正确;选项C ,因为()()()2h x f x f x a =-+⎡⎤⎣⎦,令()f x m =,由()0h x =,得到20m m a -+=,当()h x 有且只有3个零点时,由()f x 的图像知,方程20m m a -+=有两等根0m ,且0(0,1)m ∈,或两不等根12,m m ,1210,1m m -<<>,或121,1m m =-=(舍弃,不满足韦达定理),所以140a ∆=-=或Δ140(0)0(1)0(1)0a f f f =->⎧⎪<⎪⎨->⎪⎪<⎩即14a =或14020a a aa ⎧<⎪⎪⎪<⎨⎪-<⎪<⎪⎩,所以14a =或20a -<<,当14a =时,12m =,满足条件,所以选项C 错误;选项D ,当0a =时,由()0h x =,得到()0f x =或()1f x =,由()f x 的图像知,当()0f x =时,有2个解,当()1f x =时,有2个解,所以选项D 正确.故选:ABD.24.(多选题)(2023·全国·模拟预测)已知函数()21ln 1f x a x x =++.若当()0,1x ∈时,()0f x >,则a 的一个值所在的区间可能是()A .()12,11--B .()0,1C .()2,3D .()24e ,e 【答案】ABC 【解析】设21t x =,因为01x <<,所以1t >,则211ln 1ln 12a x t a t x ++=-+.设()1ln 12g t t a t =-+,则()12ag t t'=-.若2a ≤,则()0g t '>,所以()g t 在()1,+∞上单调递增,所以()()120g t g >=>,则A ,B 符合题意.若2a >,则当1,2a t ⎛⎫∈ ⎪⎝⎭时,()0g t '<,所以()g t 单调递减;当,2a t ⎛⎫∈+∞ ⎪⎝⎭时,()0g t '>,所以()g t 单调递增.所以()ln 12222a a a ag t g ⎛⎫≥=-+ ⎪⎝⎭.设()()ln 11h x x x x x =-+>,则()ln 0h x x '=-<,所以()h x 在()1,+∞上单调递减,且3533ln 02222h ⎛⎫=-> ⎪⎝⎭,所以若()2,3a ∈,则()30222a a g t g h h ⎛⎫⎛⎫⎛⎫≥=>> ⎪ ⎪⎝⎭⎝⎭⎝⎭,当()0,1x ∈时,()0f x >,C 符合题意.因为()h x 在()1,+∞上单调递减,且()22e e 10h =-+<,所以若()24e ,e a ∈,则24e e ,222a ⎛⎫∈ ⎪⎝⎭,取22e a =,则()2e 022a a g h h ⎛⎫⎛⎫=<< ⎪ ⎝⎭⎝⎭,此时存在()1,t ∈+∞,使得()0g t <,即存在()0,1x ∈时,使得()0f x <,D 不符合题意.故选:ABC .25.(多选题)(2023·全国·本溪高中校联考模拟预测)已知函数()f x 是定义在()0,∞+上的函数,()f x '是()f x 的导函数,若()()122e xx f x xf x '+=,且()e 22f =,则下列结论正确的是()A .函数()f x 在定义域上有极小值.B .函数()f x 在定义域上单调递增.C .函数()()eln H x xf x x =-的单调递减区间为()0,2.D .不等式()12e e 4x f x +>的解集为()2,+∞.【解析】令()()m x xf x =,则()()()m x f x xf x ''=+,又()()22e xx f x xf x '+=得:()()2e xf x xf x x'+=,由()()m x f x x =得:()()()()()()()22222e xm x x m x xf x x f x m x m x f x x x x ''⋅-+--'===,令()()2e xh x m x =-得:()()2222e e e 2e 222x x x xx h x m x x x -''=-=-=⎛⎫ ⎪⎝⎭,当()0,2x ∈时,()0h x '<,()h x 单调递减;当()2,x ∈+∞时,()0h x '>,()h x 单调递增,所以()()()()2e 2e 220h x h m f ≥=-=-=,即()0f x '≥,所以()f x 单调递增,所以B 正确,A 不正确;由()()eln H x m x x =-且定义域为()0,∞+得:()()2e e e x H x m x xx-''=-=,令()0H x '<,解得02x <<,即()H x 的单调递减区间为()0,2,故C 正确.()12ee 4xf x +>的解集等价于()2e e 4x x x xf x +>的解集,设()()2e e 44xx x x m x ϕ=--,则()()222ee ee e 11424424x xx x x x m x x ϕ⎛⎫⎛⎫''=-+-=-+- ⎪ ⎪⎝⎭⎝⎭2282e e 84x x x x --=⋅-,当()2,x ∈+∞时,2820x x --<,此时()0x ϕ'<,即()x ϕ在()2,+∞上递减,所以()()()22e 0x m ϕϕ<=-=,即()2e e 4x x x xf x +<在()2,+∞上成立,故D 错误.26.(多选题)(2023·山东泰安·统考一模)已知函数()()()ln f x x x ax a =-∈R 有两个极值点1x ,2x ()12x x <,则()A .102a <<B .2112x a<<C .21112x x a->-D .()10<f x ,()212f x >-【答案】ACD【解析】对于A :()()()ln f x x x ax a =-∈R ,定义域()0,x ∈+∞,()()ln 120f x x ax x '=+->,函数()f x 有两个极值点1x ,2x ,则()f x '有两个变号零点,设()()ln 120g x x ax x =+->,则()1122axg x a xx-'=-=,当0a ≤时,()0g x '>,则函数()f x '单调递增,则函数()f x '最多只有一个变号零点,不符合题意,故舍去;当0a >时,12x a <时,()0g x '>,12x a>时,()0g x '<,则函数()f x '在10,2a ⎛⎫⎪⎝⎭上单调递增,在1,2a ⎛⎫+∞⎪⎝⎭上单调递减,若()f x '有两个变号零点,则102f a ⎛⎫'> ⎪⎝⎭,解得:12a <,此时x 由正趋向于0时,()f x '趋向于-∞,x 趋向于+∞时,()f x '趋向于-∞,则()f x '有两个变号零点,满足题意,故a 的范围为:102a <<,故A 正确;对于B :函数()f x 有两个极值点1x ,2x ()12x x <,即()f x '有两个变号零点1x ,2x ()12x x <,则1212x x a<<,故B 错误;对于C :当102a <<时,()1120f a '=->,则12112x x a <<<,即212x a >,11x ->-,则21112x x a->-,故C 正确;对于D :()f x '有两个变号零点1x ,2x ()12x x <,且函数()f x '先增后减,则函数()f x 在()10,x 与()2,x +∞上单调递减,在()12,x x 上单调递增,121x x << ,且102a <<,()()()()1210112f x f a f x f a ⎧<=-<⎪∴⎨>=->-⎪⎩,故D 正确;故选:ACD.27.(多选题)(2023·吉林·东北师大附中校考二模)已知函数()ln xf x a a =,()()ln 1g x a x =-,其中0a >且1a ≠.若函数()()()h x f x g x =-,则下列结论正确的是()A .当01a <<时,()h x 有且只有一个零点B .当1e 1e a <<时,()h x 有两个零点C .当1e e a >时,曲线()yf x =与曲线()yg x =有且只有两条公切线D .若()h x 为单调函数,则e e 1a -≤<【答案】BCD【解析】对A ,()ln ln(1),x h x a a a x =--令()10,ln ln(1),log (1)x x a h x a a a x a x -=∴=-∴=-,令111,164a x =-=,或111,162a x =-=1log (1)x a a x -=-都成立,()h x 有两个零点,故A 错误;对B ,1ln ln(1),x a a x -=-令1ln ,(1)ln ln ,ln(1),1x ta t x a t t x x -=∴-=∴⋅=--ln (1)ln(1)t t x x ∴=--,(1t >).考虑ln (),()ln 10,y x x F x F x x '===+=11,()(1),e x x F a F x -∴=∴=-所以函数()F x 在1(0,e单调递减,在1(,)e +∞单调递增,1()(1),x F a F x -∴=-1ln(1)1,ln 1x x a x a x --∴=-∴=-.考虑2ln 1ln (),()0,e,x xQ x Q x x x x -'=∴==∴=所以函数()Q x 在(0,e)单调递增,在(e,)+∞单调递减,1(e),eQ =当1ln1e ()e 0,1e eQ ==-<x →+∞时,()0Q x >,所以当10ln e a <<时,有两个零点.此时1e 1e a <<,故B 正确;对C ,设21ln ,(),()e 1x ak a f x a k g x x ''=>=⋅=-,1t x =-.设切点1122111222(,()),(,()),()()(),()()(),x f x x g x y f x f x x x y g x g x x x ''∴-=--=-所以12111222()()()()()()f x g x f x x f x g x x g x ''''=⎧⎨-=-⎩.①111122222211,,11x x t a a k a k a k x x t -=∴==--。

2018年江苏高考数学填空压轴题

2018年江苏高考数学填空压轴题

2018年江苏高考数学填空压轴题已知集合A={x|x=2n-1,n ∈N ⁺},B={x|x=2ⁿ,n ∈N ⁺},将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n+1成立的n 的最小值为 .解:由题意得等差数列前n 项和:S A =2)1(2)(11d n n na n a a n -+=+=n 2. (a 1=1,d=2) 等比数列前n 项和:S B =qq a q q a a n n --=--1)1(111=2n+1-2. (a 1=2,q=2) S n =a 1+a 2+a 3+……+a n=1+21+元素个A 13+22+元素个A 1275++23+元素个A 22⋅⋅⋅⋅⋅⋅+24+…+2m-1+元素个A m 22-⋅⋅⋅⋅⋅⋅+2m +… 以下分为两种情况讨论:①若数列{a n }的前n 项和S n 中最大的项是集合B 中的元素2m 时,则有:集合A 中的元素正好有:1+2+22+…+2m-2+1=2m-1个. 集合B 中的元素正好有:m 个.且n=2m-1+m, a n+1=2(2m-1+1)-1=2m +1.即Sn=1+个13+个275++...+个22-⋅⋅⋅⋅m +21+22+ (2)=(2m-1)2+2m+1-2又S n >12a n+1 ,得:(2m-1)2+2m+1-2>12(2m +1)化简,得:(2m-1-10)2>114 ⇒ m >5此时,n=2m-1+m>21.②若数列{a n}的前n项和S n中最大的项是集合A中的元素且介于2m与2m+1之间,设其在2m后i位.则有:集合A中的元素恰好有:2m-1+i个.集合B中的元素恰好有:m个.且n=2m-1+m+i ,a n+1=2(2m-1+i+1)-1=2m+2i+1 .又S n>12a n ,得:(2m-1+i)2+2m+1-2>12(2m+2i+1)化简得:(2m-1+i-10)2>114+4i由①知:∵m>5,∴2m-1+i-10>0∴2m-1+i-10>i4114+2m-1>24>10-i+i4114+即i2+8i-78>0.⇒i>94-4>5综上①②所述:n=2m-1+m+i>21+5=26.故满足题意的n的最小值为27.。

高考数学(江苏专用)三轮专题复习素材填空题押题练D组

高考数学(江苏专用)三轮专题复习素材填空题押题练D组

填空题押题练D 组1.设集合M ={-1,0,1},N ={x |x 2≤x },则M ∩N =______.解析 因为N ={x |x 2≤x }={x |0≤x ≤1},所以M ∩N ={0,1}.答案 {0,1}2.复数11+i=________. 解析 11+i =(1-i )(1+i )(1-i )=1-i 2=12-12i. 答案 12-12i3.命题“存在一个无理数,它的平方是有理数”的否定是________. 解析 根据对命题的否定知,是把命题取否定,然后把结论否定. 答案 任意一个无理数,它的平方不是有理数4.一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是________.解析 设应抽取的女运动员人数是x ,则x 98-56=2898,易得x =12. 答案 125.设a =2 0110.1,b =ln 2 0122 010,c =log 122 0112 010,则a ,b ,c 的大小关系是________.解析 由指数函数、对数函数图象可知a >1,0<b <1,c <0,所以a >b >c . 答案 a >b >c6.把函数y =2sin x ,x ∈R 的图象上所有的点向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),则所得函数图象的解析式是________.解析 根据函数图象变换法则求解.把y =2sin x 向左平移π6个单位长度后得到y =2sin ⎝ ⎛⎭⎪⎫x +π6,再把横坐标伸长到原来的2倍(纵坐标不变)得到y =2sin ⎝ ⎛⎭⎪⎫12x +π6. 答案 y =2sin ⎝ ⎛⎭⎪⎫12x +π6 7.已知等比数列{a n }满足a 5a 6a 7=8,则其前11项之积为________. 解析 利用等比数列的性质求解.由a 5a 6a 7=a 36=8得,a 6=2,所以,其前11项之积为a 1a 2…a 11=a 116=211.答案 2118.在等腰直角△ABC 中,过直角顶点C 在∠ACB 内部任作一条射线CM ,与线段AB 交于点M ,则AM <AC 的概率为________.解析 所求概率P =180°-45°290°=34.答案 349.两座相距60 m 的建筑物AB 、CD 的高度分别为20 m 、50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为________.解析 在△ACD 中,容易求得AD =2010,AC =305,又CD =50,由余弦定理可得cos ∠CAD =AD 2+AC 2-CD 22AD ·AC =22,所以∠CAD =45°,即从建筑物AB 的顶端A 看建筑物CD 的张角为45°.答案 45°10.对于任意x ∈[1,2],都有(ax +1)2≤4成立,则实数a 的取值范围为________. 解析 由不等式(ax +1)2≤4在x ∈[1,2]恒成立,得-2≤ax +1≤2在x ∈[1,2]恒成立,利用分类参数的方法得⎩⎪⎨⎪⎧ a ≤⎝ ⎛⎭⎪⎫1x min ,a ≥⎝ ⎛⎭⎪⎫-3x max,利用反比例函数的单调性得-32≤a ≤12.答案 ⎣⎢⎡⎦⎥⎤-32,12 11.过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分两部分,使得这两部分的面积之差最大,则该直线的方程为________.解析 当OP 与所求直线垂直时面积之差最大,故所求直线方程为x +y -2=0.答案 x +y -2=012.设四面体的六条棱的长分别为1,1,1,1,2和a 且长为a 的棱与长为2的棱异面,则a 的取值范围是________.解析 由题知令BD =BC =AD =AC =1,AB =a ,则DC =2,分别取DC ,AB 的中点E ,F ,连接AE 、CE 、EF .由于EF ⊥DC ,EF ⊥AB .而BE = 1-⎝ ⎛⎭⎪⎫222= 1-12=22,BF <BE ,AB =2BF <2BE = 2.答案 (0,2)13.两个半径分别为r 1,r 2的圆M 、N ,公共弦AB 长为3,如图所示,则AM →·AB→+AN →·AM→=________.解析 根据向量的数量积运算求解.连接圆心MN 与公共弦相交于点C ,则C 为公共弦AB 的中点,且MN ⊥AB ,故AM →·AB →=|AB →||AM →|cos ∠MAC =|AB →|·|AC→|=12|AB →|2=92,同理AN →·AB →=|AB →||AN →|·cos ∠NAC =|AB →||AC →|=12|AB →|2=92,故AM →·AB →+AN →·AM→=9. 答案 914.已知函数f (x )=-x ln x +ax 在(0,e)上是增函数,函数g (x )=|e x-a |+a 22,当x ∈[0,ln 3]时,函数g (x )的最大值M 与最小值m 的差为32,则a =________.解析 因为f ′(x )=-ln x -1+a ≥0在(0,e)上恒成立,所以a ≥(ln x +1)max =2.又x ∈[0,ln 3]时,e x ∈[1,3],所以当a ∈(3,+∞)时,g (x )=a -e x+a 22递减,此时M -m =a -1+a 22-⎝ ⎛⎭⎪⎫a -3+a 22=2,不适合,舍去;当a ∈[2,3]时, g (x )=⎩⎪⎨⎪⎧ a -e x+a 22,0≤x ≤ln a ,e x -a +a 22,ln a <x ≤ln 3,此时m =a 22,M max =⎩⎨⎧⎭⎬⎫a -1+a 22,3-a +a 22=a -1+a 22, 所以a -1+a 22-a 22=a -1=32,解得a =52.答案 52。

(完整word版)江苏高考数学填空题压轴题精选1

(完整word版)江苏高考数学填空题压轴题精选1

江苏高考数学填空题压轴题精选1.已知存在实数a 满足 2ab a ab >> ,则实数b 的取值范围为__________.2.在△ABC 中,π6A ∠=,D 是BC 边上任意一点(D 与B 、C 不重合),且22||||AB AD BD DC =+⋅u u u r u u u r u u u r u u u r ,则B ∠等于__________.3.设{}n a 是正项数列,其前n 项和n S 满足:4(1)(3)n n n S a a =-+,则n a =__________.4.在直角坐标系中, 如果两点(,),(,)A a b B a b --在函数)(x f y =的图象上,那么称[],A B 为函数()f x 的一组关于原点的中心对称点([],A B 与[],B A 看作一组).函数4sin ,0()2log (1),0x x g x x x π⎧≤⎪=⎨⎪+>⎩,关于原点的中心对称点的组数为__________. 5.下列说法:①当101ln 2ln x x x x>≠+≥且时,有;②函数x y a =的图象可以由函数2x y a =(其中01a a >≠且)平移得到;③ABC ∆中,A B >是sin A sin B >成立的充要条件;④已知n S 是等差数列{}n a 的前n 项和,若75S S >,则93S S >;⑤函数(1)y f x =+与函数(1)y f x =-的图象关于直线1x =对称.其中正确的命题的序号为__________.6.偶函数()f x 在[0,)+∞上是增函数,若(1)(3)f ax f x +>-在[1,2]x ∈上恒成立,则实数a 的取值范围是_________.7.已知数列}{n a 满足*112311111,(2,)231n n a a a a a a n n N n -==+++⋅⋅⋅∈-≥,若 100=k a ,则k =_________.8、已知函数()5sin(2)f x x ϕ=+,若对任意x ∈R ,都有()()f x f x αα+=-, 则()4f πα+=__________.9. 在等式tan95tan35tan35-=o o o o 中,根号下的W 表示的正整数是__________.10. 已知函数()ln 2x f x x =+,若2(2)(3)f x f x +<,则实数x 的取值范围是__________.11. 矩形ABCD 中,AB x ⊥轴,且矩形ABCD 恰好能完全覆盖函数()sin ,0y a ax a R a =∈≠的一个完整周期图象,则当a 变化时,矩形ABCD 周长的最小值为__________.12.直角三角形ABC 中,斜边BC 长为2,O 是平面ABC 内一点,点P 满足 1()2OP OA AB AC =++u u u r u u u r u u u r u u u r ,则AP u u u r =__________.13. 不等式223()a b b a b λ+≥+对任意,a b R ∈恒成立,则实数λ的最大值为__________.14. 已知等差数列{}n a 首项为a ,公差为b ,等比数列{}n b 首项为b ,公比为a ,其中,a b都是大于1的正整数,且1123,a b b a <<,对于任意的*n N ∈,总存在*m N ∈,使得3m n a b +=成立,则n a =__________.简明参考答案(11):1、(),1-∞-2、5π123、21n +4、25、②③④6、1,3a a ><-;7、2008、0;9、3;10、(1,2);11、12 、1、13、2;14、53n -。

江苏高考数学填空题专项训练34

江苏高考数学填空题专项训练34

江苏高考数学填空题专项训练341、有如下结论:“圆222r y x =+上一点),(00y x P 处的切线方程为200r y y y x =+”,类比也有结论:“椭圆),()0(1002222y x P b a by a x 上一点>>=+处的切线方程为12020=+by y a x x ”,过椭圆C :2212x y +=的右准线l 上任意一点M 引椭圆C 的两条切线,切点为 A 、B.直线AB 恒过一定点 ▲ .2、已知O 是锐角△ABC 的外接圆的圆心,且A θ∠=,若cos cos 2sin sin B C AB AC mAO C B+=.则m = .(用θ表示)3、在平面直角坐标系x O y 中,点P 是第一象限内曲线13+-=x y 上的一个动点,过P 作切线与坐标轴交于A,B 两点,则AOB ∆的面积的最小值是__________.4、曲线1:=+y x C 上的点到原点的距离的最小值为 .5、直线l 与函数]),0[.(sin π∈=x x y 的图像相切于点A ,且OP l //,O 为坐标原点,P 为图像的极值点。

l 与x 轴交于B 点,过切点A 作x 轴的垂线,垂足为C ,则=⋅BC BA .6、若函数)0.()(23>-=a ax x x f 在区间),320(+∞上是单调递增函数,则使方程1000)(=x f 有整数解的实数a 的个数是 .7、设,x y 满足约束条件220840,0,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩若目标孙数(0,0)z abx y a b =+>>的最大值为8,则a b +的最小值为__________.8、下列关于函数2()(2)x f x x x e =-⋅①()0f x >的解集是{|02}x x <<;②(f 是极小值,f 是极大值; ③()f x 没有最小值,也没有最大值.以上判断正确的是__________.9、在△ABC 中,A=120°,b=1,则sin sin sin a b c A B C++++=__________. 10、函数()y f x =定义在R 上单调递减且(0)0f ≠,对任意实数m 、n ,恒有()()(),f m n f m f n +=⋅集合22{(,)|()()(1)}A x y f x f y f =⋅>,{(,)|(2)1,},B x y f ax y a R AB =-+=∈若φ=,则a 的取值范围是__________. 11、已知点1F ,2F 分别是双曲线2222 1 (0,0)x y a b a b-=>>的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A ,B 两点,若2ABF ∆是锐角三角形,则该双曲线离心率的取值范围是_________.12、设O 为坐标原点,给定一个定点(4,3)A , 而点)0,(x B 在x 正半轴上移动,)(x l 表示AB 的长,则△OAB 中两边长的比值)(x l x 的最大值为 . 13、若对[],1,2x y ∈且2xy =总有不等式24a x y -≥-成立,则实数a 的取值范围是__________.14、如果对于函数()f x 定义域内任意的两个自变量的值12,x x ,当12x x <时,都有12()()f x f x ≤,且存在两个不相等的自变量值12,m m ,使得12()()f m f m =,就称()f x 为定义域上的不严格的增函数.已知函数()g x 的定义域、值域分别为A 、B ,{1,2,3}A =,B A ⊆, 且()g x 为定义域A 上的不严格的增函数,那么这样的()g x 共有()个。

江苏高考数学填空题压轴题精选2(2021年整理)

江苏高考数学填空题压轴题精选2(2021年整理)

江苏高考数学填空题压轴题精选2(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏高考数学填空题压轴题精选2(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏高考数学填空题压轴题精选2(word版可编辑修改)的全部内容。

江苏高考数学填空题压轴题精选1、已知函数()lg ,01016,102x x f x x x <≤⎧⎪=⎨-+>⎪⎩,若a b c 、、互不相等,且()()()f a f b f c ==,则a b c ++的取值范围是__________.2、已知a b 、是不相等的两个正数,在a b 、之间插入两组数12n ,,,x x x …和12n ,,,y y y …,(*,2)n N n ∈≥且,使得12n ,,,,,a x x x b …成等差数列,12n ,,,,,a y y y b …成等比数列,则下列四个式子中,一定成立的是__________.(填上你认为正确的所有式子的序号)1()2nk k n a b x =+=∑①; 211)2nk k a b x ab n =⎛⎫->+ ⎪ ⎪⎝⎭∑② 12n n y y y ab =③…; 122n n aby y y a b>+③… 3。

过圆22(1)(1)1C x y -+-=:的圆心,作直线分别交x 、y 正半 轴于点A 、B ,AOB ∆ 被圆分成四部分(如图),若这四部分图形面积满足S Ⅰ+S Ⅳ=S Ⅱ+S Ⅲ,则直线AB 有________条 4。

在平面直角坐标系x O y 中,给定两点M (-1,2)和N (1,4),点P 在x 轴上移动,当MPN∠取最大值时,点P 的横坐标为__________.5。

江苏省数学填空题压轴题

江苏省数学填空题压轴题

高考数学学填空压轴题常见题型复习指导高考数学学填空压轴题常见题型复习指导题1(苏锡常镇四市一模) 设m ∈N,假设函数()210f x x m =-+存在整数零点,则m 的取值集合为 ▲ .题2(淮安市一模) 已知数列{a n },{b n }满足a 1=1,a 2=2,b 1=2,且对任意的正整数i ,j ,k ,l ,当i +j =k +l 时都有a i +b j =a k +b l ,则201111()2011i i i a b =+∑的值是 ▲ .变式1 已知数列{a n },{b n }满足a 1=1,a 2=2,b 1=2,且对任意的正整数i ,j ,k ,l ,当i +j =k +l 时都有a i -b j =a k -b l ,则11()ni i i a b n =+∑的值是 ▲ .变式2 已知数列{a n },{b n }满足a 1=1,a 2=2,b 1=2,且对任意的正整数i ,j ,k ,l ,当i +j =k +l 时都有a i b j =a k b l ,记c n (n n a b ⋅⋅+{c n }的通项公式是 ▲ .题3(常州市一模) 假设对任意的x ∈D ,均有f 1(x )≤f (x )≤f 2(x )成立,则称函数f (x )为函数f 1(x )到函数f 2(x )在区间D 上的“折中函数”.已知函数f (x )=(k -1)x -1,g (x )=0,h (x )=(x +1)ln x ,且f (x )是g (x )到h (x )在区间[1,2e]上的“折中函数”,则实数k 的取值范围为 ▲ .题4(泰州市一模) 已知O 是锐角△ABC 的外接圆的圆心,且∠A =θ,假设cos cos 2sin sin B CAB AC mAO C B+=,则m = ▲ .(用θ表示)题5(南京市一模) 假设直角坐标平面内两点P ,Q 满足条件:①P ,Q 都在函数f (x )的图象上;②P ,Q 关于原点对称,则称点对(P ,Q )是函数()f x 的一个“友好点对”(点对(P ,Q )与点对(Q ,P )为同一个“友好点对”).已知函数22410()20ex x x x f x x ⎧++<⎪=⎨⎪⎩≥, , , , 则()f x 的“友好点对”有 ▲ 个.题6(镇江市一模) 直线l 与函数sin y x =([0]x ∈π,)的图象相切于点A ,且l ∥OP ,O 为坐标原点,P 为图象的极值点,l 与x 轴交于点B ,过切点A 作x 轴的垂线,垂足为C ,则BA BC ⋅= ▲ .题7(扬州市一模) 假设函数f (x )=x 3-ax 2(a >0)在区间20(,)3+∞上是单调递增函数,则使方程f (x )=1000有整数解的实数a 的个数是 ▲ .题8(苏州市一模) 在平面直角坐标系xOy 中,点P 是第一象限内曲线31y x =-+上的一个动点,过P 作切线与两个坐标轴交于A ,B 两点,则△AOB 的面积的最小值是 ▲ .题9(盐城市一模) 已知函数2342011()12342011x x x x f x x =+-+-+⋅⋅⋅+,2342011()12342011x x x x g x x =-+-+-⋅⋅⋅-,设()(3)(3)F x f x g x =+⋅-,且函数F (x )的零点均在区间[,](,,)a b a b a b <∈Z 内,则b a -的最小值为 ▲ .题10(南通市一模) ,则该三角形的面积的最大值是 ▲.变式1在等腰三角形ABC中,AB=AC,D在线段AC上,AD=kAC(k为常数,且0<k<1),BD=l为定长,则△ABC的面积的最大值为▲ .变式2在正三棱锥P-ABC中,D为线段BC的中点,E在线段PD上,PE=kPD(k为常数,且0<k<1),AE=l 为定长,则该棱锥的体积的最大值为▲ .题11(无锡市一模) 已知函数f(x)=|x2-2|,假设f(a)≥f(b),且0≤a≤b,则满足条件的点(a,b)所围成区域的面积为▲ .题12(高三百校大联考一模) 假设函数f(x)=|sin x|(x≥0)的图象与过原点的直线有且只有三个交点,交点中横坐标的最大值为α,则2(1)sin2ααα+= ▲ .题13(苏北四市二模) 已知函数()|1||2||2011||1||2||2011|f x x x x x x x =+++++++-+-++-()x ∈R ,且2(32)(1)f a a f a -+=-,则满足条件的所有整数a 的和是 ▲ .题14(南京市二模) 已知函数f (x )=2111x ax x +++(a ∈R ),假设对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是 ▲ .变式 已知函数f (x )=2111x ax x +++(x ∈N *),且[f (x )]min =3,则实数a 的取值集合是 ▲ .题15(盐城市二模)已知函数f (x )=cos x ,g (x )=sin x ,记S n =2211(1)1(1)2()()222nnnk k k k n f g n n==-π--π-∑∑,T m =S 1+S 2+…+S m .假设T m <11,则m 的最大值为 ▲ .M 图2题16(苏锡常镇四市二模) 已知m ,n ∈R ,且m +2n =2,则2122m n m n +⋅+⋅的最小值为 ▲ .题17(南通市二模) 在平面直角坐标系xOy 中,设A ,B ,C 是圆x 2+y 2=1上相异三点,假设存在正实数λ,μ,使得OC OA OB λμ=+,则λ2+(μ-3)2的取值范围是 ▲ .题18(苏北四市三模) 如图1是一个数表,第1行依次写着从小到大的正整数,然后把每行相邻的两个数的和写在这两数正中间的下方,得到下一行,数表从上到下与从左到右均为无限项,则这个数表中的第13行第10个数为 ▲ .题19(南京市三模) 如图2,已知正方形ABCD 的边长为1,过正方形中心O 的直线MN 分别交正方形的边AB ,CD 于点M ,N ,则当MNBN取最小值时,CN = ▲ .1 2 3 4 5 6 7 … 3 5 7 9 11 13 …8 12 16 20 24 …20 28 36 44 …48 64 80 … … … … 图1题20(南通市三模) 定义在[1,)+∞上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);②当2≤x≤4时,f(x)=1-|x-3|.假设函数图象上所有取极大值的点均落在同一条直线上,则c= ▲ .题21定义在[1,)+∞上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);②当2≤x≤4时,f(x)=1-|x-3|.假设函数图象上所有取极大值的点均落在同一条以原点为顶点的抛物线上,则常数c= ▲ .题22(扬州市三模) 设函数f(x)的定义域为D,如果存在正实数k,使对任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,则称函数f(x)为D上的“k型增函数”.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x-a|-2a,假设f(x)为R上的“2011型增函数”,则实数a的取值范围是▲ .题23(徐州市三模) 假设关于x的方程x4+ax3+ax2+ax+1=0有实数根,则实数a的取值范围为▲ .题24(南通市最后一卷) 函数f(x)=32412x xx x-++的最大值与最小值的乘积是▲ .题25(淮安市四模) 已知函数f(x)=|x-1|+|2x-1|+|3x-1|+…+|100x-1|,则当x= ▲ 时,f(x)取得最小值.高考数学填空题压轴题常见题型复习指导题1(苏锡常镇四市一模) 设m ∈N,假设函数()210f x x m =-+存在整数零点,则m 的取值集合为 ▲ . 解 当x ∈Z ,且x ≤10时,Z . 假设m =0,则x = -5为函数f (x )的整数零点. 假设m ≠0,则令f (x )=0,得mN .注意到-5≤x ≤10N ,得x ∈{1,6,9,10},此时m ∈{3,223,14,30}.故m 的取值集合为{0,3,14,30}.注 将“m ∈N ”改为“m ∈N *”,即得2011年全国高中数学联赛江苏赛区初赛试卷的填空题的压轴题:已知m是正整数,且方程2100x m -+=有整数解,则m 所有可能的值是 ▲ .题2(淮安市一模) 已知数列{a n },{b n }满足a 1=1,a 2=2,b 1=2,且对任意的正整数i ,j ,k ,l ,当i +j =k +l 时都有a i +b j =a k +b l ,则201111()2011i i i a b =+∑的值是 ▲ .解 依题设,有b n +1-b n =a 2-a 1=1,从而数列{b n }是以2为首项,1为公差的等差数列. 同理可得,{a n }是以1为首项,1为公差的等差数列. 所以,数列{a n +b n }是以3为首项,2为公差的等差数列.所以,201111()2011i i i a b =+∑=120112010(201132)20112⋅⨯+⨯=2013. 变式1 已知数列{a n },{b n }满足a 1=1,a 2=2,b 1=2,且对任意的正整数i ,j ,k ,l ,当i +j =k +l 时都有a i -b j =a k -b l ,则11()ni i i a b n =+∑的值是 ▲ .略解 依题设,有a i -b j =a j -b i ,于是a i +b i =a j +b j ,所以a n +b n =3,11()ni i i a b n =+∑=3.变式2 已知数列{a n },{b n }满足a 1=1,a 2=2,b 1=2,且对任意的正整数i ,j ,k ,l ,当i +j =k +l 时都有a i b j =a k b l ,记c n (n n a b ⋅⋅+{c n }的通项公式是 ▲ .略解 由a 2b n =a 1b n +1,得1212n n b a b a +==,故b n =2n.同理,a n =12n -,通项公式为1232n -⨯. 题3(常州市一模) 假设对任意的x ∈D ,均有f 1(x )≤f (x )≤f 2(x )成立,则称函数f (x )为函数f 1(x )到函数f 2(x )在区间D 上的“折中函数”.已知函数f (x )=(k -1)x -1,g (x )=0,h (x )=(x +1)ln x ,且f (x )是g (x )到h (x )在区间[1,2e]上的“折中函数”,则实数k 的取值范围为 ▲ . 解 依题意,有0≤(k -1)x -1≤(x +1)ln x 在x ∈[1,2e]上恒成立.当x ∈[1,2e]时,函数f (x )=(k -1)x -1的图象为一条线段,于是(1)0,(2e)0,f f ≥⎧⎨≥⎩解得k ≥2.另一方面,k -1≤(1)ln 1x x x++在x ∈[1,2e]上恒成立.令m (x )=(1)ln 1x x x ++=ln 1ln x x x x ++,则2ln ()x xm x x -'=.因1≤x ≤2e ,故1(ln )1x x x'-=-≥0,于是函数ln x x -为增函数.所以ln x x -≥1ln1->0,()m x '≥0,m (x )为[1,2e]上的增函数. 所以k -1≤[m (x )]min =m (1)=1,k ≤2.综上,k =2为所求.题4(泰州市一模) 已知O 是锐角△ABC 的外接圆的圆心,且∠A =θ,假设cos cos 2sin sin B CAB AC mAO C B+=,则m = ▲ .(用θ表示) 解法1 如图1,作OE ∥AC 交AB 于E ,作OF ∥AB 交AC 于F . 由正弦定理,得sin sin sin AE AO AOAOE AEO A==. 又∠AOE =∠OAF =2ADC π-∠=2B π-∠,所以cos sin AO BAE A=,所以cos sin AO B AB AE A AB =⋅.同理,cos sin AO C ACAF A AC=⋅.因AE AF AO +=,故cos cos sin sin AO B AB AO C ACAO A AB A AC⋅+⋅=.因2sin sin AB AC AO C B ==,故上式可化为cos cos 2sin sin 2sin sin B CAB AC AO A C A B+=, 即cos cos 2sin sin sin B CAB AC A AO C B+=⋅,所以m =sin θ.解法2 将等式cos cos 2sin sin B CAB AC mAO C B+=两边同乘以2AO ,得 222cos cos 4sin sin B C AB AC mAO C B +=,即2222cos cos sin 4sin 4B AB C AC m C AO B AO=⋅+⋅.由正弦定理,得 m =22cos cos sin sin sin sin B C C B C B+=cos B sin C +cos C sin B =sin(B +C )=sin A =sin θ. 解法3 将已知等式cos cos 2sin sin B CAB AC mAO C B+=两边平方,得 22222222cos cos cos cos 2cos 4sin sin sin sin B C B C AB AC AB AC A m AO C B C B++⋅=. 由正弦定理,得m 2=22cos cos 2cos cos cos B C B C A ++ =222cos sin (cos cos cos )B A B A C ++ =222cos sin (cos cos cos())B A B A A B +-+ =222cos sin (sin sin )B A B A + =sin 2A =2sin θ.注意到m >0,故m =sin θ.注 1.此题虽难度较大,但得分率却较高.其主要原因是考生利用了特值法,令△ABC 为正三角形,即得mm =sin θ. 2.题中三种解法均是处理向量问题最常用的基本方法,解法1用的是平面向量基本定理,从不同侧A BC OE FD 图1面表示AO ;解法2与解法3,是或将向量等式两边同乘某个向量,或将等式两边同时平方,进而到达去除向量的目的.题5(南京市一模) 假设直角坐标平面内两点P ,Q 满足条件:①P ,Q 都在函数f (x )的图象上;②P ,Q 关于原点对称,则称点对(P ,Q )是函数()f x 的一个“友好点对”(点对(P ,Q )与点对(Q ,P )为同一个“友好点对”).已知函数22410()20ex x x x f x x ⎧++<⎪=⎨⎪⎩≥, , , , 则()f x 的“友好点对”有 ▲ 个.解 设x <0,则问题化归为关于x 的方程22(241)0e xx x -+++=, 即21e 22xx x =---(0x <)有几个负数解问题.记1=e xy ,221(1)2y x =-++,当1x =-时,11e 2<,所以函数1y 的图象与2y 的图象有两个交点(如图2),且横坐标均为负数, 故所求“友好点对”共有2个.题6(镇江市一模) 直线l 与函数sin y x =([0]x ∈π,)的图象相切于点A ,且l ∥OP ,O 为坐标原点,P 为图象的极值点,l 与x 轴交于点B ,过切点A 作x 轴的垂线,垂足为C ,则BA BC ⋅= ▲ .解 如图3,(1)P π2, 为极值点,2OP k =π.设点A (x 0,sin x 0),则过点A 的切线l 的斜率为02cos x =π. 于是,直线l 的方程为002sin ()y x x x -=-π. 令y =0,得00sin 2x x x π-=,从而BC =00sin 2x x x π-=.BA BC ⋅=cos BA BC ABC⋅⋅=BC 2=20(sin )2x π2224(1)144=ππ=--π. 题7(扬州市一模) 假设函数f (x )=x 3-ax 2(a >0)在区间20(,)3+∞上是单调递增函数,则使方程f (x )=1000有整数解的实数a 的个数是 ▲ .解 令由22()323()03a f x x ax x x '=-=-=,得x =0或23ax =. 于是,f (x )的单调增区间为(,0)-∞和2(,)3a+∞. 所以220033a <≤,即0<a ≤10. 因f (x )的极大值为f (0)=0,故f (x )=1000的整数解只能在2(,)3a+∞上取得. 令x 3-ax 2=1000,则a =21000x x -. 令g (x )=21000x x -,则32000()1g x x '=+>0,故g (x )在2(,)3a+∞为增函数. 因g (10)=0,g (15)=510109+>,故方程f (x )=1000的整数解集为{11,12,13,14}.图4从而对应的实数a 亦有4个不同的值.题8(苏州市一模) 在平面直角坐标系xOy 中,点P 是第一象限内曲线31y x =-+上的一个动点,过P 作切线与两个坐标轴交于A ,B 两点,则△AOB 的面积的最小值是 ▲ .解 设P (a ,-a 3+1),0<a <1,则切线方程为y = -3a 2x +2a 3+1. 于是,两交点分别为(0,2a 3+1),(32213a a +,0),322(21)()6AOB a S S a a∆+==. 令333(21)(41)()3a a S a a +-'==0,得a ,且可判断此时S .题9(盐城市一模) 已知函数2342011()12342011x x x x f x x =+-+-+⋅⋅⋅+,2342011()12342011x x x x g x x =-+-+-⋅⋅⋅-,设()(3)(3)F x f x g x =+⋅-,且函数F (x )的零点均在区间[,](,,)a b a b a b <∈Z 内,则b a -的最小值为 ▲ .解 23420092010()1f x x x x x x x '=-+-+-⋅⋅⋅-+=20111,1,12011, 1.x x x x ⎧+≠-⎪+⎨⎪=-⎩当x ≥0时,()0f x '>;当-1<x <0时,()0f x '>;当x <-1时,()0f x '>,故函数f (x )为R 上的增函数,于是函数f (x )在R 上最多只有一个零点.因f (0)=1>0,f (-1)=111111(11)()()()234520102011-+-++-++⋅⋅⋅+-+<0,故f (0)f (-1)<0,因而f (x )在R上唯一零点在区间(-1,0)上,于是f (x +3)的唯一零点在区间(-4,-3)上.同理可得,函数g (x )为R 上的减函数,于是函数f (x )在R 上最多只有一个零点.又g (1)=111111(11)()()()234520102011-+-+-+⋅⋅⋅+->0,g (2)=242010121212(12)2()2()2()234520102011-+-+-+⋅⋅⋅+-<0,于是g (1)g (2)<0,因而g (x )在R 上唯一零点在区间(1,2)上,于是g (x -3)的唯一零点在区间(4,5)上. 所以,F (x )的两零点落在区间[-4,5]上,b -a 的最小值为9.注 不少考生想对复杂的函数表达式进行求和变形化简,结果当然是徒劳而返,得分率非常低.导数法是解决高次函数或复杂函数的强有力的工具.题10(南通市一模) 是 ▲ .解 (此题解法很多,仅给出平几解法)如图4,△ABC 中,E ,F 分别为底BC 与腰AC 的中点,BF 与AE 交于点G ,则G 为△ABC 的重心,于是BG =CG=23BF =,且AE =3GE .所以,21333sin 222ABC BGC S S GB GC BGC ∆∆==⋅⋅≤⨯=,当且仅当∠BGC =2π,即BG ⊥GC 时,△ABC 的面积取最大值2. 变式1 在等腰三角形ABC 中,AB =AC ,D 在线段AC 上,AD =kAC (k 为常数,且0<k <1),BD =l 为定长,则△ABC 的面积的最大值为 ▲ .略解 如图5,以B 为原点,BD 为x 轴建立直角坐标系xBy .设A (x ,y ),y >0. 因AD =kAC =kAB ,故AD 2=k 2AB 2,于是(x -l )2+y 2=k 2(x 2+y 2).所以,22222(1)21k x lx l y k--+-=- =2222222(1)()111l k l k x k k k ---+---≤2222(1)k l k -,于是,max21kly k=-,2max 2()2(1)ABD kl S k ∆=-,2max max 21()()2(1)ABC ABD l S S k k ∆∆==-. 变式2 在正三棱锥P -ABC 中,D 为线段BC 的中点,E 在线段PD 上,PE =kPD (k 为常数,且0<k <1),AE =l 为定长,则该棱锥的体积的最大值为 ▲ .略解 如图6,因PE =kPD ,故EG =kOD . 因AO =2OD ,故2OF AO FG GE k ==,于是22OF GO k =+. 因PG PE k PO PD ==,故1GOk PO =-, 从而OF OF GO PO GO PO =⋅=2(1)2k k-+. 所以,22(1)P ABC F ABC kV V k --+=-.因2AF AO FE GE k ==,故AF =2222AE lk k =++. 于是,F ABC V -≤316FA =3343(2)l k +(当且仅当F A ,FB ,FC 两两垂直时,“≤”中取“=”),所以,22(1)P ABCF ABC k V V k --+=-≤3223(1)(2)l k k -+,于是所求的最大值为3223(1)(2)l k k -+. 注 此题的原型题,可能来自于2008年江苏高考数学题:满足条件AB =2,AC的△ABC 的面积的最大值为 ▲ .题11(无锡市一模) 已知函数f (x )=|x 2-2|,假设f (a )≥f(b ),且0≤a ≤b ,则满足条件的点(a ,b )所围成区域的面积为 ▲ .解 易知f (x )在上为减函数,在)+∞上为增函数,于是a ,b不可能同在)+∞上. 假设0≤a ≤b2-a 2≥2-b 2恒成立,它围成图7中的区域①; 假设0≤ab ,则2-a 2≥b 2-2,即a 2+b 2≤4,它围成图7中的区域②.综上,点(a ,b )所围成的区域恰好是圆a 2+b 2=4的18.故所求区域的面积为2π. 题12(高三百校大联考一模) 假设函数f (x )=|sin x |(x ≥0)的图象与过原点的直线有且只有三个交点,交点中横坐标的最大值为α,则2(1)sin 2ααα+= ▲ .解 依题意,画出示意图如图8所示.于是,3(,2)2απ∈π,且A (α,-sin α)为直线y =kx 与函数y = -sin x (3(,2)2x π∈π)图象的切点.x在A 点处的切线斜率为sin cos ααα--=,故α=tan α.所以,2(1)sin 2ααα+=2(1tan )sin 2tan ααα+=sin 2cos sin ααα=2.题13(苏北四市二模) 已知函数()|1||2||2011||1||2||2011|f x x x x x x x =+++++++-+-++-()x ∈R ,且2(32)(1)f a a f a -+=-,则满足条件的所有整数a 的和是 ▲ . 解 因f (-x )=f (x ),故f (x )为偶函数. 记g (x )=|1||2||2011|x x x ++++++,h (x )=|1||2||2011|x x x -+-++-.当x ≥0时,g (x +1)-g (x )=|x +2012|-|x +1|=2011, h (x +1)-h (x )=|x |-|x -2011|=22011,02011,2011,2011.x x x -≤<⎧⎨≥⎩所以,f (x +1)-f (x )=2,02011,4022,2011.x x x ≤<⎧⎨≥⎩所以,f (0)=f (1)<f (2)<f (3)<…. 又当0≤x ≤1时, f (x )=(1)(2)(2011)(1)(2)(2011)x x x x x x +++++++-+-++-=20112012⨯,故2|32||1|a a a -+=-或21132111a a a ⎧--+⎨--⎩≤≤≤≤,,且a ∈N *,解得a =1,2,3,所以结果为6.注 此题也可以这样思考:从最简单的先开始.先研究函数1()|1||1|f x x x =++-与函数2()|1||2||1||2|f x x x x x =++++-+-的图象与性质,它们都是“平底锅型”,进而猜测函数()f x 的图象与性质,并最终得以解决问题.题14(南京市二模) 已知函数f (x )=2111x ax x +++(a ∈R ),假设对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是 ▲ . 解 因x ∈N *,故由f (x )≥3恒成立,得a ≥8()3x x -++,故a ≥max 8[()3]x x -++.当x取最接近于x =3时,8()3x x -++取最大值83-,于是a ≥83-.变式 已知函数f (x )=2111x ax x +++(x ∈N *),且[f (x )]min =3,则实数a 的取值集合是 ▲ .略解 首先a ≥83-.另一方面,∃x ∈N *,使f (x )≤3能成立,即a ≤8()3x x -++能成立,于是a ≤max 8[()3]x x -++=83-.所以,a 的取值集合是{83-}.题15(盐城市二模) 已知函数f (x )=cos x ,g (x )=sin x ,记S n =2211(1)1(1)2()()222nnnk k k k n f g n n==-π--π-∑∑,T m =S 1+S 2+…+S m . 假设T m <11,则m 的最大值为 ▲ .解21(1)()2nk k f n =-π∑=(21)(1)cos0[cos cos ][coscos ]cos22222n n n n n nn n nπ-π(-1)π+ππ++++++=1.21(1)()2nk k n g n =--π∑=1(1)sin [sin sin ][sinsin ]sin022222n n n n n nn n-π(-)π-π-ππ++++++= -1. 所以,S n =122n +,T m =1212mm +-. 令T m <11,则正整数m 的最大值为5.注 此题的难点在于复杂的S n 的表达式.去掉求和符号∑,展开表达式,化抽象为具体,进而识得庐山真面目.题16(苏锡常镇四市二模) 已知m ,n ∈R ,且m +2n =2,则2122m n m n +⋅+⋅的最小值为 ▲ . 解法1 设x =m ,y =2n ,则问题等价于:已知x +y =2,求22x y x y ⋅+⋅的最小值. 令S =22x y x y ⋅+⋅,T =22y x x y ⋅+⋅,则S -T =()(22)xy x y --≥0,即S ≥T .另一方面,S +T =()(22)x y x y ++≥2⨯,故S ≥4,当且仅当x =y =1时取等号. 所以2122m n m n +⋅+⋅的最小值为4.解法2 考虑到对称性,不妨取m ≥1.令g (m )=22(2)2m m m m -⋅+-⋅,m ≥1. 则22()(22)(2(2)2)ln 2m m m m g m m m --'=-+⋅--⋅≥0. 所以函数g (m )(m ≥1)为增函数,故min ()(1)4g m g ==.注 这道题虽然正面求解难度较大,但得分率却相当的高.究其原因大致为:当考生经过变元后,得问题为“已知x +y =2,求22x y x y ⋅+⋅的最小值”,它具有某种对称性,凭直观猜测:让x =y =1,一举得到所求结果.题17(南通市二模) 在平面直角坐标系xOy 中,设A ,B ,C 是圆x 2+y 2=1上相异三点,假设存在正实数λ,μ,使得OC OA OB λμ=+,则λ2+(μ-3)2的取值范围是 ▲ .解法1 如图9,作1OA OA λ=,1OB OB μ=,连B 1C ,A 1C ,则1||OA λ=,1||OB μ=,||1OC =.因三点A ,B ,C 互异,且11OC OA OB =+,故O ,C ,B 1构成三角形的三个顶点,且11||||B C OA λ==,于是由三角形的边与边之间的关系有1,|| 1.λμλμ+>⎧⎨-<⎩〔☆〕如图10的阴影部分表示不等式组〔☆〕所表示的区域,P (λ,μ)为阴影部分内的动点,定点A(0,3),则λ2+(μ-3)2=AP 2.点A (0,3)到直线μ-λ=1的距离d AP >d λ2+(μ-3)2>2,从而λ2+(μ-3)2的取值范围为(2,)+∞.解法2 依题意,B ,O ,C 三点不可能在同一条直线上. 所以OC OB ⋅=||||cos OC OB BOC ⋅=cos BOC ∈(-1,1).又由OC OA OB λμ=+,得OA OC OB λμ=-,于是2212OB OC λμμ=+-⋅. 记f (μ)=λ2+(μ-3)2=2212(3)OB OC μμμ+-⋅+-=226210OB OC μμμ--⋅+. 于是,f (μ)>2228102(2)2μμμ-+=-+≥2, 且f (μ)<22410μμ-+=22(1)8μ-+,无最大值. 故λ2+(μ-3)2的取值范围为(2,)+∞. 题18(苏北四市三模) 如图11是一个数表,第1行依次写着从小到大的正整数,然后把每行相邻的两个图10λ+图12数的和写在这两数正中间的下方,得到下一行,数表从上到下与从左到右均为无限项,则这个数表中的第13行第10个数为 ▲ .解法1 记第n 行第m 个数为a n ,m .为了得到a 13,10,则第1行必须写满22个数.观察可得:a 13,1+a 13,10=2(a 12,1+a 12,11)=22(a 11,1+a 11,12)=…=212(a 1,1+a 1,22)=23×212. 所以,a 13,1+a 13,10=23×212. 另一方面,a 13,10=a 13,1+9×212. 联立解得 a 13,10=216.解法2 记第n 行的第1个数为a n .于是,猜测(1)2n a n =+⋅.因第n 行的数从左到右排列成公差为12n -的等差数列,故第13行第10个数为111216142922⨯+⨯=.解法3 记第n 行的第1个数为a n ,数列{a n }的前n 项和为S n ,则12n n n a S +-=. 所以,S n +1-2S n =2n ,111222n n n n S S ++-=.又11122S =,故22n n S n =,S n =12n n -⋅.所以,2(1)2n na n -=+⋅.下同解法2. 题19(南京市三模) 如图12,已知正方形ABCD 的边长为1,过正方形中心O 的直线MN 分别交正方形的边AB ,CD 于点M ,N ,则当MNBN取最小值时,CN = ▲ . 解法1 设CN =x ∈1[,1]2,则BM =DN =1-x .作MP ⊥DC 交DC 于点P ,则PN =2x -1. 所以,MN 2=1+(2x -1)2=4x 2-4x +2,BN 2=x 2+1,22MN BN=224421x x x -++=24241x x +-+ =2441(12t t --+=44514t t-+-(其中t =12x +),当且仅当54t t =,即t,x时,22MN BN 取最小值,所以CN.解法2 设∠CBN =θ(θ∈[0,]4π),则BN =1cos θ,DN =1-tan θ,MN所以,MNBN=cos其中cos ϕ=sin ϕ=.1 2 3 4 5 6 7 …3 5 7 9 11 13 …8 12 16 20 24 …20 28 36 44 …48 64 80 … … … …图11当sin(2)1θϕ+=时,MN BN 取最小值,此时tan 2tan()2θϕπ=-=1tan ϕ=2.解22tan 21tan θθ=-,得tan θ为所求(另一解为负,舍去). 题20(南通市三模) 定义在[1,)+∞上的函数f (x )满足:①f (2x )=cf (x )(c 为正常数);②当2≤x ≤4时,f (x )=1-|x -3|.假设函数图象上所有取极大值的点均落在同一条直线上,则c = ▲ .解 可求得,当12n -≤x ≤2n (n ∈N *)时, f (x ) =22(1|3|)2n n x c ----.记函数f (x ) =22(1|3|)2n n x c ----(12n -≤x ≤2n ,n ∈N *)图象上极大值的点为P n (x n ,y n ).令2302n n x --=,即x n =232n -⋅时,y n =2n c -,故P n (232n -⋅,2n c -). 分别令n =1,2,3,得 P 1(32,1c),P 2(3,1),P 3(6,c ). 由2123P P P P k k =(k 表示直线的斜率)得,c =2或c =1.当c =2时,所有极大值的点均在直线13y x =上;当c =1时,y n =1对n ∈N *恒成立,此时极大值的点均在直线y =1上.题21定义在[1,)+∞上的函数f (x )满足:①f (2x )=cf (x )(c 为正常数);②当2≤x ≤4时,f (x )=1-|x -3|.假设函数图象上所有取极大值的点均落在同一条以原点为顶点的抛物线上,则常数c = ▲ .略解 以原点为顶点的抛物线方程可设为x 2=py (p ≠0)或y 2=qx (q ≠0). 假设P n (232n -⋅,2n c -)在抛物线x 2=py (p ≠0)上,则(232n -⋅)2=2n pc -,即29()4n cp -=对n ∈N *恒成立,从而c =4;假设P n (232n -⋅,2n c -)在抛物线y 2=qx (q ≠0)上,则(2n c -)2=232n q -⋅,即23n q -=对n ∈N *恒成立,从而c综上,c =4题22(扬州市三模) 设函数f (x )的定义域为D ,如果存在正实数k ,使对任意x ∈D ,都有x +k ∈D ,且f (x +k )>f (x )恒成立,则称函数f (x )为D 上的“k 型增函数”.已知f (x )是定义在R 上的奇函数,且当x >0时,f (x )=|x -a |-2a ,假设f (x )为R 上的“2011型增函数”,则实数a 的取值范围是 ▲ . 解 假设a ≤0,则f (x )在x >0时为增函数,故对任意正实数k ,不等式f (x +k )>f (x )恒成立.假设a >0,则函数y =f (x +k )的图象可由函数y =f (x )的图象向左平移k 个单位而得(如图13).因k =2011,故仅当2011>6a 时,f (x +2011)>f (x ),所以此时0<a <20116.综上,实数a 的取值范围是a <20116. 题23(徐州市三模) 假设关于x 的方程x 4+ax 3+ax 2+ax +1=0有实数根,则实数a 的取值范围为 ▲ .解法1 因x ≠0,故将方程两边同除以x 3,并变形得211()()2x a x a x x ++++-=0.令g (t )=22t at a ++-,t =1x x+∈(,2][2,)-∞-+∞.原方程有实数根,等价于函数g (t )有零点.因g (-1)= -1,故函数g (t )有零点,只须g (-2)≤0或g (2)≤0.解g (-2)≤0,得a ≥2;解g (2)≤0,得a ≤23-.所以,实数a 的取值范围为2(,][2,)3-∞-+∞.解法2 易知x =0不是方程的根,故x 3+x 2+x =213(())24x x ++≠0.所以,a =4321x x x x +-++=22111x x x x +-++=212()11x x x x-+++=12t t -+∈2(,][2,)3-∞-+∞,其中t =11x x++∈(,1][3,)-∞-+∞. 解法3 接解法2,a =4321x x x x+-++,于是2432322(1)(2421)()x x x x x a x x x -++++'=++. 因4322421x x x x ++++=x 2(x +1)2+(x +1)2+2x 2>0,故由0a '=可解得x =1或-1.当x >0时,a <0,且当x =1时,a 取极大值23-,故此时a ≤23-;当x <0时,a >0,且当x = -1时,a 取极小值2,故此时a ≥2.综上,实数a 的取值范围为2(,][2,)3-∞-+∞.题24(南通市最后一卷) 函数f (x )=32412x x x x -++的最大值与最小值的乘积是 ▲ . 解法1 当x ≠0,±1时,f (x )=22112x x x x -++=211()4xx x x --+=114()1x x x x-+-. 当1x >x 时,f (x )≤14,且当1x x -=2时,取“=”,故f (x )的最大值为14.又因为f (x )为奇函数,故f (x )的最小值为14-.所以所求的乘积为116-. 解法2 令422361()(1)x x f x x -+'=+=0,得x 2=21). 函数f (x )的最大值应在x -x 3>0,即0<x <1或x <-1时取得. 所以[f (x )]max =max{f1),f(1)}=14,下同解法1. 解法3 令x =tan θ,则g (θ)=f (x )=222tan (1tan )(1tan )θθθ-+=1sin 44θ∈11[,]44-,所求乘积为116-.注 题23与题24有异曲同工之妙,它们都出现了x ,x 2,x 3,x 4,经换元后,分别得到了只关于整体变量1x x +及1x x-的表达式,进而一举解决了问题.题25(淮安市四模) 已知函数f (x )=|x -1|+|2x -1|+|3x -1|+…+|100x -1|,则当x = ▲ 时,f (x )取得最小值.解 f (x )=123100111111|1|||||||||||||2233100100x x x x x x x -+-+-+-++-++-++-项项项项, f (x )共表示为5050项的和,其最中间两项均为1||71x -.x =171,同时使第1项|x -1|与第5050项1||100x -的和, 第2项1||2x -与第5049项1||100x -的和,第3项与第5048项的和,…,第2525项与第2526项的和,取得最小值.故所求的x 为171. 注 1.一般地,设a 1≤a 2≤a 3≤…≤a n (n ∈N *),f (x )=|x -a 1|+|x -a 2|+|x -a 3|+…+|x -a n |.假设n 为奇数,则当x =12n a +时,f (x )取最小值;假设n 为偶数,则x ∈122[,]n n a a +时,f (x )取最小值.2.此题似于2011年北大自主招生题:“求|x -1|+|2x -1|+|3x -1|+…+|2011x -1|的最小值”相关联.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考压轴题精选1.如图为函数()1)f x x =<<的图象,其在点(())M t f t ,l l y 处的切线为,与轴和直线1=y 分别交于点P 、Q ,点N (0,1),若△PQN 的面积为b 时的点M 恰好有两个,则b 的取值围为 ▲ . 解:2. 已知⊙A :221x y +=,⊙B : 22(3)(4)4x y -+-=,P 是平面一动点,过P 作⊙A 、⊙B 的切线,切点分别为D 、E ,若PE PD =,则P 到坐标原点距离的最小值为 ▲ .解:设)(y x P ,,因为PE PD =,所以22PD PE =,即14)4()3(2222-+=--+-y x y x ,整理得:01143=-+y x ,这说明符合题意的点P 在直线01143=-+y x 上,所以点)(y x P ,到坐标原点距离的最小值即为坐标原点到直线01143=-+y x 的距离,为5113. 等差数列{}n a 各项均为正整数,13a =,前n 项和为n S ,等比数列{}n b 中,11b =,且2264b S =,{}n b 是公比为64的等比数列.求n a 与n b ;解:设{}n a 的公差为d ,{}n b 的公比为q ,则d 为正整数,3(1)n a n d =+-,1n n b q -=依题意有1363(1)22642(6)64n n nda d n d ab q q b q S b d q +++-⎧====⎪⎨⎪=+=⎩①由(6)64d q +=知q 为正有理数,故d 为6的因子1,2,3,6之一,解①得2,8d q == 故132(1)21,8n n n a n n b -=+-=+=4. 在ABC ∆中,2==⋅AC AB (1)求22+(2)求ABC ∆面积的最大值.||||2BC AC AB =-=4222又因为 2AB AC ⋅=,所以228AB AC +=;(2)设||||||AB c AC b BC a ===,,,由(1)知822=+c b ,2=a , 又因为bcbc bc a c b A 22282cos 222=-=-+=,所以A bc A bc S ABC2cos 121sin 21-==∆=222222421cb c b c b ⋅-≤34)2(21222=-+c b , 当且仅当c b a ==时取“=”,所以ABC ∆的面积最大值为3.5. 设等差数列{}n a 的公差为d ,0d >,数列{}n b 是公比为q 等比数列,且110b a =>. (1)若33a b =,75a b =,探究使得n m a b =成立时n m 与的关系; (2)若22a b =,求证:当2>n 时,n n b a <.解:记a b a ==11,则1,)1(-=-+=m m n aq b d n a a ,……………1分(1)由已知得2426a d aq a d aq ⎧+=⎨+=⎩,,消去d 得4232aq aq a -=, 又因为0≠a ,所以02324=+-q q ,所以2122==q q 或,……………5分若12=q ,则0=d ,舍去;……………6分 若22=q ,则2a d =,因此12)1(-=-+⇔=m m n aq a n a b a 1211-=-+⇔m q n , 所以1221-=+m n (m 是正奇数)时,m n b a =;……………8分(2)证明:因为0,0>>a d ,所以111212>+=+===ada d a a ab b q , …………11分2>n 时,1)1(---+=-n n n aq d n a b a =d n q a n )1()1(1-+--=d n q q q q a n )1()1)(1(22-+++++--d n n q a )1()1)(1(-+--<=[]0))(1()1()1(22=--=+--b a n d q a n所以,当n n b a n <>时,2. …………………………16分6. 已知圆O :221x y +=,O 为坐标原点.(1的正方形ABCD 的顶点A 、B 均在圆O 上,C 、D 在圆O 外,当点A 在圆O 上运动时,C 点的轨迹为E . (ⅰ)求轨迹E 的方程;(ⅱ)过轨迹E 上一定点00(,)P x y 作相互垂直的两条直线12,l l ,并且使它们分别与圆O 、轨迹E 相交,设1l 被圆O 截得的弦长为a ,设2l 被轨迹E 截得的弦长为b ,求a b +的最大值.(2)正方形ABCD 的一边AB 为圆O 的一条弦,求线段OC长度的最值.解:(1)(ⅰ)连结OB ,OA ,因为OA =OB =1,AB =2,所以222AB OB OA =+,所以4OBA π∠=,所以34OBC π∠=,在OBC ∆中,52222=⋅-+=BC OB BC OB OC ,所以轨迹E 是以O 为圆心,5为半径的圆,所以轨迹E 的方程为522=+y x ; (ⅱ)设点O 到直线12l l ,的距离分别为12d d ,,因为21l l ⊥,所以2222212005d d OP x y +==+=, 则22215212d d b a -+-=+,则[])5)(1(2)(64)(222122212d d d d b a --++-=+≤4⎥⎥⎦⎤⎢⎢⎣⎡--⋅++-262)(622212221d d d d =22124[122(d d -+=4(1210)8-=,当且仅当221222125,15,d d d d ⎧+=⎨-=-⎩,即22219,21,2d d ⎧=⎪⎪⎨⎪=⎪⎩时取“=”,所以b a +的最大值为 (2)设正方形边长为a ,OBA θ∠=,则cos 2a θ=,0,2θπ⎡⎫∈⎪⎢⎣⎭.当A 、B 、C 、D 按顺时针方向时,如图所示,在OBC ∆中,2212cos 2a a OC θπ⎛⎫+-+= ⎪⎝⎭,即OC == ==由2,444θππ5π⎡⎫+∈⎪⎢⎣⎭,此时(1,1]OC ∈; 当A 、B 、C 、D 按逆时针方向时,在OBC ∆中,2212cos 2a a OC θπ⎛⎫+--= ⎪⎝⎭,即OC ====,由2,444θππ3π⎡⎫-∈-⎪⎢⎣⎭,此时1,OC ∈, 综上所述,线段OC 11.7. 已知函数()1ln ()f x x a x a R =--∈.(1)若曲线()y f x =在1x =处的切线的方程为330x y --=,数a 的值; (2)求证:0)(≥x f 恒成立的充要条件是1a =;(3)若0a <,且对任意(]1,0,21∈x x ,都有121211|()()|4||f x f x x x -≤-,数a 的取值围.另解:042≤--ax x 在(]1,0∈x 上恒成立,设4)(2--=ax x x g ,只需[)0,30041)1(04)0(-∈⇒⎪⎩⎪⎨⎧<≤--=<-=a a a g g .8. 已知函数2()3,()2f x mx g x x x m =+=++. (1)求证:函数()()f x g x -必有零点; (2)设函数()G x =()()1f x g x --(ⅰ)若|()|G x 在[]1,0-上是减函数,数m 的取值围;(ⅱ)是否存在整数,a b ,使得()a G x b ≤≤的解集恰好是[],a b ,若存在,求出,a b 的值;若不存在,说明理由.9. 已知函数()1ax x ϕ=+,a 为正常数. (1)若()ln ()f x x x ϕ=+,且92a =,求函数()f x 的单调增区间;(2)若()|ln |()g x x x ϕ=+,且对任意12,(0,2]x x ∈,12x x ≠,都有2121()()1g x g x x x -<--,求a 的的取值围.解:(1) 2221(2)1'()(1)(1)a x a x f x x x x x +-+=-=++, ∵92a =,令'()0f x >,得2x >,或12x <, ∴函数()f x 的单调增区间为1(0,)2, (2,)+∞.(2)∵2121()()1g x g x x x -<--,∴2121()()10g x g x x x -+<-,∴221121()[()]0g x x g x x x x +-+<-,设()()h x g x x =+,依题意,()h x 在(]0,2上是减函数.当12x ≤≤时, ()ln 1ah x x x x =+++,21'()1(1)a h x x x =-++, 令'()0h x ≤,得:222(1)1(1)33x a x x x x x+≥++=+++对[1,2]x ∈恒成立, 设21()33m x x x x =+++,则21'()23m x x x =+-,∵12x ≤≤,∴21'()230m x x x=+->, ∴()m x 在[1,2]上是增函数,则当2x =时,()m x 有最大值为272,∴272a ≥.当01x <<时, ()ln 1ah x x x x =-+++,21'()1(1)a h x x x =--++, 令'()0h x ≤,得: 222(1)1(1)1x a x x x x x+≥-++=+--, 设21()1t x x x x =+--,则21'()210t x x x=++>, ∴()t x 在(0,1)上是增函数,∴()(1)0t x t <=, ∴0a ≥,综上所述,272a ≥10. (1)设10+<<a b ,若对于x 的不等式()()22ax b x >-的解集中的整数恰有3个,则实数a 的取值围是 ▲ .(2)若关于x 的不等式()2221x ax -<的解集中的整数恰有3个,则实数a 的取值围是▲ .解:(1)()3,1(2)⎪⎭⎫ ⎝⎛1649,92511. 已知{}n a 是公差不为0的等差数列,{}n b 是等比数列,其中1122432,1,,2a b a b a b ====,且存在常数α、β,使得n a =log n b αβ+对每一个正整数n 都成立,则βα= ▲ .12. 在直角坐标系平面两点Q P ,满足条件:①Q P ,都在函数)(x f 的图象上;②Q P ,关于原点对称,则称点对),(Q P 是函数)(x f 的一个“友好点对”(点对),(Q P 与),(P Q 看作同一个“有好点对”).已知函数⎪⎩⎪⎨⎧≥<++=,0,2,0,142)(2x ex x x x f x 则函数)(x f 的“友好点对”有 ▲ 个.13. 已知ABC ∆的三边长c b a ,,满足b a c a c b 22≤+≤+,,则ab的取值围是 ▲ . 解:⎪⎭⎫ ⎝⎛23,32xyO已知ABC ∆的三边长c b a ,,满足b a c a c b 3232≤+≤+,,则ab的取值围是 ▲ . 解:⎪⎭⎫ ⎝⎛35,4314. 已知分别以21,d d 为公差的等差数列{}n a ,{}n b ,满足120091,409a b ==. (1)若11=d ,且存在正整数m ,使得200920092-=+m m b a ,求2d 的最小值;(2)若0k a =,1600k b =且数列200921121,,,,,,b b b b a a a k k k k ++-,的前项n 和n S 满足200920129045k S S =+,求 {}n a 的通项公式.解:(1)证明:220092009m m a b +=-,21120092[(1)]2009a m d b md ∴+-=+-,即200940922-+=md m , ……4分2160080d m m ∴=+≥=. 等号当且仅当"1600"mm =即"40"=m 时成立,故40m =时,2min []80d = . ……7分(2)0a =,1600b =,1,409a b ==200912112009()()k k k k S a a a a b b b -+∴=++++++++=++2)(1k a a k 2)12009)((2009+-+k b b k 2009(2010)22k k -=+,…10分 200920129045k S S =+1()201290452k a a k +=+=904522012+k201290452k ∴⋅+2009(2010)22k k -=+40202009201018090k ∴=⨯-,220099k ∴=-,1000k ∴= ……13分故得1,011000==a a 又,11999d ∴=-,1210001(1)999999n a a n d n ∴=+-=-,因此{}n a 的通项公式为n a n 99919991000-=. ……15分15. 已知函数)(3ln )(R a ax x a x f ∈--=. (1)当1a =时,求函数)(x f 的单调区间;(2)若函数)(x f y =的图像在点))2(,2(f 处的切线的倾斜角为︒45,问:m 在什么围取值时,对于任意的[]2,1∈t ,函数⎥⎦⎤⎢⎣⎡++=)('2)(23x f m x x x g 在区间)3,(t 上总存在极值?(3)当2=a 时,设函数32)2()(-+--=xep x p x h ,若在区间[]e ,1上至少存在一个0x ,使得)()(00x f x h >成立,试数p 的取值围. 24,1e e ⎛⎫+∞ ⎪-⎝⎭16. 如图,在△ABC 中,已知3=AB ,6=AC ,7BC =,AD 是BAC ∠平分线. (1)求证:2DC BD =; (2)求AB DC ⋅的值.(1)在ABD ∆中,由正弦定理得sin sin AB BDADB BAD=∠∠①, 在ACD ∆中,由正弦定理得sin sin AC DCADC CAD=∠∠②, 所以BAD CAD ∠=∠,sin sin BAD CAD ∠=∠, sin sin()sin ADB ADC ADC π∠=-∠=∠,由①②得36BD AB DC AC ==,所以2DC BD =(2)因为2DC BD =,所以BC DC 32=. 在△ABC 中,因为22222237611cos 223721AB BC AC B AB BC +-+-===⋅⨯⨯, 所以22()||||cos()AB DC AB BC AB BC B π⋅=⋅=⋅- AD2112237()3213=⨯⨯⨯-=- 17. 已知数列{}n a 的前n 项和为n S ,数列{}1n S +是公比为2的等比数列.(1)证明:数列{}n a 成等比数列的充要条件是13a =;(2)设n n n n a b )1(5--=(*∈N n ),若1+<n n b b 对任意*∈N n 成立,求1a 的取值围.18. 已知分别以1d 和2d 为公差的等差数列{}n a 和{}n b 满足181=a ,3614=b .(1)若181=d ,且存在正整数m ,使得45142-=+m mb a ,求证:1082>d ; (2)若0==k k b a ,且数列142121b b b a a a k k k ,,,,,,, ++的前n 项和n S 满足k S S 214=,求数列{}n a 和{}n b 的通项公式;(3)在(2)的条件下,令0>==a a d a c n n b n a n ,,,且1≠a ,问不等式n n n n d c d c +≤+1是否对一切正整数n 都成立?请说明理由.19. 若椭圆)0(12222>>=+b a by a x 过点(-3,2),离心率为33,⊙O 的圆心为原点,直径为椭圆的短轴,⊙M 的方程为4)6()8(22=-+-y x ,过⊙M 上任一点P 作⊙O 的切线PA 、PB ,切点为A 、B .(1)求椭圆的方程;(2)若直线PA 与⊙M 的另一交点为Q ,当弦PQ 最大时,求直线PA 的直线方程; (3)求OB OA ⋅的最大值与最小值.(1)1101522=+y x ;(2)直线PA 的方程为:0509130103=--=+-y x y x 或 (3)20. 已知集合{}k x x x x x x D =+>>=212121,0,0),(,其中k 为正常数. (1)设21x x u =,求u 的取值围;(2)求证:当1≥k 时,不等式⎪⎭⎫⎝⎛-≤⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-k k x x x x 22112211对任意D x x ∈),(21恒成立; (3)求使不等式⎪⎭⎫⎝⎛-≥⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-k k x x x x 22112211对任意D x x ∈),(21恒成立的k 取值围.21. 设函数x m mx x x f )4(31)(223-+-=,R x ∈,且函数)(x f 有三个互不相同的零点βα,,0,且βα<,若对任意的[]βα,∈x ,都有)1()(f x f ≥成立,数m 的取值围. 解:。

相关文档
最新文档