华师大版八年级数学初二下数学教案设计全套

合集下载

华东师大版八年级下册数学教案

华东师大版八年级下册数学教案

华东师大版八年级下册数学教案华东师大版八年级下册数学教案【精选5篇】聪明出于勤奋,天才在于积累。

数学是无穷的科学。

观察可能导致发现,观察将揭示某种规则、模式或定律。

这里给大家分享一些关于华东师大版八年级下册数学教案,供大家参考学习。

华东师大版八年级下册数学教案(篇1)一、学习目标1.多项式除以单项式的运算法则及其应用。

2.多项式除以单项式的运算算理。

二、重点难点重点:多项式除以单项式的运算法则及其应用。

难点:探索多项式与单项式相除的运算法则的过程。

三、合作学习(一)回顾单项式除以单项式法则(二)学生动手,探究新课1.计算下列各式:(1)(am+bm)÷m;(2)(a2+ab)÷a;(3)(4x2y+2xy2)÷2xy。

2.提问:①说说你是怎样计算的;②还有什么发现吗?(三)总结法则1.多项式除以单项式:先把这个多项式的每一项除以__________X,再把所得的商______2.本质:把多项式除以单项式转化成______________四、精讲精练例:(1)(12a3—6a2+3a)÷3a;(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);(3)[(x+y)2—y(2x+y)—8x]÷2x;(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。

随堂练习:教科书练习。

五、小结1、单项式的除法法则2、应用单项式除法法则应注意:A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;E、多项式除以单项式法则。

新版华师大版八年级下数学教案全册

新版华师大版八年级下数学教案全册
四、课堂引入
计算下列各题:
(1) = =( ) (2) = =( )
(3) = =( )
[提问]由以上计算的结果你能推出 (n为正整数)的结果吗
五、例题讲解
(P17)例5.计算
[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.
2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.
教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.
六、随堂练习
计算
(1) (2) (3)
(4)-8xy (5) (6)
七、课后练习
计算
(1) (2) (3)
(4) (5) (6)
八、答案:
六、(1)ab (2) (3) (4)-20x2(5)
(6)
七、(1) (2) (3) (4)
(5) (6)
课后反思:
16.2.1分式的乘除(二)
一、教学目标:熟练地进行分式乘除法的混合运算.
1.P13本节的引入还是用问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是 ,大拖拉机的工作效率是小拖拉机的工作效率的 倍.引出了分式的乘除法的实际存在的意义,进一步引出P14[观察]从分数的乘除法引导学生类比出分式的乘除法的法则.但分析题意、列式子时,不易耽误太多时间.

新版华师大版八年级下数学教案全章

新版华师大版八年级下数学教案全章

第十六章 分式16.1分式16.1.1从分数到分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点 ;1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,as ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.>3. 以上的式子v+20100,v-2060,a s ,sv ,有什么共同点它们与分数有什么相同点和不同点五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0 (1)(2)(3)·[分析] 分式的值为0时,必须同时..满足两个条件:○分母不能为零;○分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义1-m m32+-m m 112+-m m 4522--x x xx 235-+23+x(1) (2) (3) 3. 当x 为何值时,分式的值为0、(1) (2) (3)七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是哪些是分式(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义>3. 当x 为何值时,分式 的值为0八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x2.(1)x ≠-2 (2)x ≠ (3)x ≠±2 3.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, ba s +,4y x -; 整式:8x, a+b, 4y x -;分式:x 80, b a s +2. X = 3. x=-1.课后反思:—x x 57+xx 3217-xx x --221x 802332xx x --212312-+x x16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形. ,二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形. 三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变. ;“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑: 与 相等吗 与 相等吗为什么 2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解 、P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:4320152498343201524983[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.ab 56--, yx 3-, nm --2, nm 67--,yx 43---。

华东师大版八年级数学下全册教案

华东师大版八年级数学下全册教案

第17章 分式§17.1.1 分式的概念教学目标:1、经历实际问题的解决过程,从中认识分式,并能概括分式2、使学生能正确地判断一个代数式是否是分式3、能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。

教学重点:探索分式的意义及分式的值为某一特定情况的条件。

教学难点:能通过回忆分数的意义,探索分式的意义。

教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元;二、概括: 形如BA (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中?A 叫做分式的分子,B 叫做分式的分母.整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式?(1)x 1; (2)2x ; (3)y x xy +2; (4)33y x -. 解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式a S 中,a ≠0;在分式nm -9中,m ≠n. 例2 当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x . 分析 要使分式有意义,必须且只须分母不等于零.解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义. (2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义. 四、练习:P5习题17.1第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0? (1) (2) (3) 五、小结:什么是分式?什么是有理式?六、作业:P5习题17.1第1、2题,第3题(2)(4)教学反思:§17.1.2 分式的基本性质教学目标:1、掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义。

八年级下册数学华东师范教案大全5篇

八年级下册数学华东师范教案大全5篇

八年级下册数学华东师范教案大全5篇八年级下册数学华东师范教案大全5篇纯粹数学可以是实际有用的,而应用数学也可以是优美高雅的。

整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。

这里给大家分享一些关于八年级下册数学华东师范教案,供大家参考学习。

八年级下册数学华东师范教案(精选篇1)一、课堂引入1.什么叫做平行四边形?什么叫做矩形?2.矩形有哪些性质?3.矩形与平行四边形有什么共同之处?有什么不同之处?4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?通过讨论得到矩形的判定方法.矩形判定方法1:对角钱相等的平行四边形是矩形.矩形判定方法2:有三个角是直角的四边形是矩形.(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)二、例习题分析例1(补充)下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形;(×)(2)有四个角是直角的四边形是矩形;(√)(3)四个角都相等的四边形是矩形;(√)(4)对角线相等的四边形是矩形;(×)(5)对角线相等且互相垂直的四边形是矩形;(×)(6)对角线互相平分且相等的四边形是矩形;(√)(7)对角线相等,且有一个角是直角的四边形是矩形;(×)(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)(9)两组对边分别平行,且对角线相等的四边形是矩形.(√)指出:(l)所给四边形添加的条件不满足三个的肯定不是矩形;(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.例2(补充)已知ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4cm,求这个平行四边形的面积.分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.解:∵ 四边形ABCD是平行四边形,∴AO=A C,BO=BD.∵ AO=BO,∴ AC=BD.∴ ABCD是矩形(对角线相等的平行四边形是矩形).在Rt△ABC中,∵ AB=4cm,AC=2AO=8cm,∴BC=(cm).例3(补充)已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明八年级下册数学华东师范教案(精选篇2)一、学生起点分析通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.二、教学任务分析《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节.本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.本节课的教学目标是:①通过拼图活动,让学生感受客观世界中无理数的存在;②能判断三角形的某边长是否为无理数;③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;三、教学过程设计本节课设计了6个教学环节:第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:质疑内容:【想一想】⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.效果:为后续环节的进行起了很好的铺垫的作用第二环节:课题引入内容:1.【算一算】已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长的平方,并提出问题:是整数(或分数)吗?2.【剪剪拼拼】把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.效果:巧设问题背景,顺利引入本节课题.第三环节:获取新知内容:【议一议】→【释一释】→【忆一忆】→【找一找】【议一议】:已知,请问:① 可能是整数吗?② 可能是分数吗?【释一释】:释1.满足的为什么不是整数?释2.满足的为什么不是分数?【忆一忆】:让学生回顾“有理数”概念,既然不是整数也不是分数,那么一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.第四环节:应用与巩固内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】【画一画1】:在右1的正方形网格中,画出两条线段:1.长度是有理数的线段2.长度不是有理数的线段【画一画2】:在右2的正方形网格中画出四个三角形(右1)2.三边长都是有理数2.只有两边长是有理数3.只有一边长是有理数4.三边长都不是有理数【仿一仿】:例:在数轴上表示满足的解:(右2)仿:在数轴上表示满足的【赛一赛】:右3是由五个单位正方形组成的纸片,请你把它剪成三块,然后拼成一个正方形,你会吗?试试看!(右3)目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上效果:加深了对“新知”的理解,巩固了本课所学知识.第五环节:课堂小结内容:1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会? 2.客观世界中,的确存在不是有理数的数,你能列举几个吗?3.除了本课所认识的非有理数的数以外,你还能找到吗?目的`:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:学生总结、相互补充,学会进行概括总结.第六环节:布置作业习题2.1六、教学设计反思(一)生活是数学的源泉,兴趣是学习的动力大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.(二)化抽象为具体常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.(三)强化知识间联系,注意纠错既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.八年级下册数学华东师范教案(精选篇3)平方差公式学习目标:1、能推导平方差公式,并会用几何图形解释公式;2、能用平方差公式进行熟练地计算;3、经历探索平方差公式的推导过程,发展符号感,体会特殊一般特殊的认识规律.学习重难点:重点:能用平方差公式进行熟练地计算;难点:探索平方差公式,并用几何图形解释公式.学习过程:一、自主探索1、计算:(1)(m+2) (m-2) (2)(1+3a) (1-3a)(3) (x+5y)(x-5y) (4)(y+3z) (y-3z)2、观察以上算式及其运算结果,你发现了什么规律再举两例验证你的发现.3、你能用自己的语言叙述你的发现吗4、平方差公式的特征:(1)、公式左边的两个因式都是二项式。

华师大版八年级数学下教案全套

华师大版八年级数学下教案全套

第十六章 分式16.1分式16.1.1从分数到分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,as ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.3. 以上的式子v+20100,v-2060,as ,sv ,有什么共同点?它们与分数有什么相同点和不同点? 五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3)1-m m32+-m m 112+-m m[分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义?(1) (2) (3)3. 当x 为何值时,分式的值为0?(1) (2) (3) 七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义?3. 当x 为何值时,分式 的值为0?八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x2.(1)x ≠-2 (2)x ≠ (3)x ≠±23.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, b a s +,4y x -; 整式:8x, a+b, 4y x -;分式:x80, b a s +2. X = 3. x=-1452--x x xx 235-+23+x x x 57+x x3217-xx x --221x 802332x x x --212312-+x x课后反思:16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点:灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入1 与 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.a b 56--, yx3-, nm --2, nm 67--,yx 43---。

新版华师大版八年级下数学教案全册

新版华师大版八年级下数学教案全册

新版华师大版八年级下数学教案全册Revised as of 23 November 2020第十六章 分式16.1分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,a s ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少 请同学们跟着教师一起设未知数,列方程.设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v +20100小时,逆流航行60千米所用时间v -2060小时,所以v +20100=v-2060. 3. 以上的式子v +20100,v -2060,a s ,sv ,有什么共同点它们与分数有什么相同点和不同点 五、例题讲解 P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0 (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1六、随堂练习1.判断下列各式哪些是整式,哪些是分式 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义(1) (2) (3) 1-m m 32+-m m 112+-m m 4522--x x x x 235-+23+x3. 当x 为何值时,分式的值为0(1) (2) (3) 七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是哪些是分式(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义 3. 当x 为何值时,分式 的值为0 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x 2.(1)x ≠-2 (2)x ≠ (3)x ≠±23.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, ba s +,4y x -; 整式:8x, a+b, 4y x -; 分式:x 80, ba s + 2. X =3. x=-1 课后反思:一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.x x 57+x x 3217-xx x --221x 802332xx x --212312-+x x教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑: 与 相等吗 与 相等吗为什么 2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变. P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.a b 56--, y x3-, n m --2, n m 67--, yx 43---。

华东师大版八年级数学下全册教案

华东师大版八年级数学下全册教案

第17章 分式§17.1.1 分式的概念教学目标:1、经历实际问题的解决过程,从中认识分式,并能概括分式2、使学生能正确地判断一个代数式是否是分式3、能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。

教学重点:探索分式的意义及分式的值为某一特定情况的条件。

教学难点:能通过回忆分数的意义,探索分式的意义。

教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元;二、概括: 形如BA (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母. 整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式?(1)x 1; (2)2x ; (3)y x xy +2; (4)33y x -. 解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式a S 中,a ≠0;在分式n m -9中,m ≠n.例2 当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x . 分析 要使分式有意义,必须且只须分母不等于零.解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义. (2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义. 四、练习:P5习题17.1第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0? (1) (2) (3) 4522--x xx x 235-+23+x x x 57+x x 3217-x x x --221五、小结:什么是分式?什么是有理式?六、作业:P5习题17.1第1、2题,第3题(2)(4)教学反思:§17.1.2 分式的基本性质教学目标:1、掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义。

华师大版八年级数学下册教案

华师大版八年级数学下册教案

华师大版八年级数学下册教案第1章平行四边形第1节平行四边形的性质一、教学目标1.理解平行四边形的定义,掌握平行四边形的基本性质。

2.能够运用平行四边形的性质解决实际问题。

二、教学重难点重点:平行四边形的性质。

难点:运用平行四边形的性质解决问题。

三、教学过程1.导入新课通过复习四边形的基本概念,引导学生思考平行四边形的特点。

2.探索平行四边形的性质引导学生通过观察、操作、推理等方式,发现平行四边形的性质。

性质1:对边平行。

性质2:对角相等。

性质3:邻角互补。

性质4:对角线互相平分。

4.应用平行四边形的性质举例说明如何运用平行四边形的性质解决实际问题。

学生练习,巩固所学知识。

5.课堂小结强调平行四边形的性质在实际问题中的应用。

四、课后作业1.请同学们结合教材,熟记平行四边形的性质。

2.完成课后练习题,巩固所学知识。

第2节平行四边形的判定一、教学目标1.掌握平行四边形的判定方法。

2.能够运用平行四边形的判定方法判断四边形是否为平行四边形。

二、教学重难点重点:平行四边形的判定方法。

难点:运用平行四边形的判定方法判断四边形。

三、教学过程1.导入新课复习平行四边形的性质,引导学生思考如何判断一个四边形是否为平行四边形。

2.探索平行四边形的判定方法引导学生通过观察、操作、推理等方式,发现平行四边形的判定方法。

判定1:两组对边分别平行。

判定2:两组对边分别相等。

判定3:两组对角分别相等。

判定4:一组对边平行且相等。

4.应用平行四边形的判定方法举例说明如何运用平行四边形的判定方法判断四边形。

学生练习,巩固所学知识。

5.课堂小结强调平行四边形的判定方法在实际问题中的应用。

四、课后作业1.请同学们结合教材,熟记平行四边形的判定方法。

2.完成课后练习题,巩固所学知识。

第3节平行四边形的证明一、教学目标1.掌握平行四边形的证明方法。

2.能够运用平行四边形的证明方法解决实际问题。

二、教学重难点重点:平行四边形的证明方法。

难点:运用平行四边形的证明方法解决问题。

新版华师大版新八年级下数学教案全册

新版华师大版新八年级下数学教案全册

第十六章分式16.1分式一、教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求五、例题讲解P5例1.当x为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.[提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2.当m 为何值时,分式的值为0? (1)(2)(3)[分析]分式的值为0时,必须同时..满足两个条件:分母不能为零;分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. [答案](1)m=0(2)m=2(3)m=13.当x 为何值时,分式的值为0? 八、答案:六、1.整式:9x+4,209y +,54-m 分式:x 7,238y y -,91-x2.(1)x ≠-2(2)x ≠(3)x ≠±23.(1)x=-7(2)x=0(3)x=-1七、1.18x,,a+b,ba s +,4yx -;整式:8x,a+b,4y x -;1-m m 32+-m m 112+-m m x8023xx x --21分式:x80,ba s 2.X=3.x=-1 课后反思: 一、教学目标1.理解分式的基本性质.分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入32432015249831.请同学们考虑:与相等吗?与相等吗?为什么?2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同(1)x x x 3222+=()3+x (2)32386b b a =()33a(3)c a b ++1=()cn an +(4)()222y x y x +-=()y x - 2.约分:(1)c ab b a 2263(2)2228mn n m (3)532164xyz yz x -(4)x y y x --3)(23.通分: (1)321ab 和c b a 2252(2)xy a 2和23xb(3)223ab c 和28bca-(4)11-y 和11+y 4.不改变分式的值,使下列分式的分子和分母都不含“-”号.(1)233ab y x --(2)2317b a ---(3)2135x a --(4)m b a 2)(--32ab cb a 3210c b a 225c b a 3210(2)xy a 2=y x ax 263,23xb=y x by 262 (3)223ab c =223812c ab c 28bc a -=228cab ab(4)11-y =)1)(1(1+-+y y y 11+y =)1)(1(1+--y y y4.(1)233ab y x (2)2317b a -(3)2135xa (4)mb a 2)(-- 课后反思:16.2分式的运算16.2.1分式的乘除(一)一、教学目标:理解分式乘除法的法则,会进行分式乘除运算. 二、重点、难点分析清楚“丰收2号”单位面积产量高.(或用求差法比较两代数式的大小) 四、课堂引入1.出示P13本节的引入的问题1求容积的高nmab v ⋅,问题2求大拖拉机的工作效率是小拖拉机的工作效率的⎪⎭⎫⎝⎛÷n b m a 倍.[引入]从上面的问题可知,有时需要分式运算的乘除.本节我们就讨论数量关系需要进行分式的乘除运算.我们先从分数的乘除入手,类比出分式的乘除法法则. 1.P14[观察]从上面的算式可以看到分式的乘除法法则. 3.[提问]P14[思考]类比分数的乘除法法则,你能说出分式的乘除法法则?类似分数的乘除法法则得到分式的乘除法法则的结论.六、随堂练习计算(1)ab c 2cb a 22⋅(2)322542n m m n⋅-(3)⎪⎭⎫ ⎝⎛-÷x x y 27 (4)-8xy xy 52÷(5)4411242222++-⋅+--a a a a a a (6))3(2962y y y y-÷++- 七、课后练习计算(1)⎪⎪⎭⎫ ⎝⎛-⋅y x y x132(2)⎪⎭⎫ ⎝⎛-÷a bc ac b2110352(3)()yx a xy 28512-÷(4)b a ab ab b a234222-⋅-(5))4(12x x x x -÷--(6)3222)(35)(42x y x x y x --⋅- 八、答案:六、(1)ab (2)nm 52-(3)14y -(4)-20x 2(5))2)(1()2)(1(+--+a a a a(6)23+-y y法则是学生学习中重点,也是难点,故补充例题,突破符号问题. 四、课堂引入计算(1))(xy yx xy -⋅÷(2)21(3(43xyx yx -⋅-÷五、例题讲解(P17)例4.计算[分析]是分式乘除法的混合运算.分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.(补充)例.计算(1))4(398(23232b x b a xy y x ab -÷-⋅=xb xy ab 34)8(3232-⋅-⋅(先把除法统一成乘法运算)x y x y --)(32x xy 七、课后练习计算(1)6(4382642z yx yx y x -÷⋅-(2)9323496222-⋅+-÷-+-a a b a b a a (3)229612316244y y y y y y --÷+⋅-+-(4)xyy xyy x xy x xy x -÷+÷-+222)(八、答案:六.(1)c a 432-(2)485c -(3)3)(4y x -(4)-y七.(1)336y xz (2)22-b a (3)122y -(4)x1-课后反思:16.2.1分式的乘除(三)这个难点. 四、课堂引入计算下列各题:(1)2)(b a =⋅b a b a =()(2)3)(b a =⋅b a ⋅b a ba =() (3)4)(ba=⋅b a ⋅b a b a ba⋅=()[提问]由以上计算的结果你能推出nba)((n 为正整数)的结果吗?五、例题讲解 (P17)例5.计算[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,32(()(c b a b a ((ab ab -八、答案:六、1.(1)不成立,232(a b =264a b (2)不成立,223(a b -=2249ab (3)不成立,3)32(x y -=33278x y -(4)不成立,23(bx x -=22229b bx x x +-2.(1)24925y x (2)936827c b a -(3)24398yx a -(4)43z y - (5)21x(6)2234x y a七、(1)968ab --(2)224+n b a (3)22a c (4)bba +课后反思:16.2.2分式的加减(一)分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.(4)P21例7是一道物理的电路题,学生首先要有并联电路总电阻R 与各支路电阻R 1,R 2,…,R n 的关系为nR R R R 111121+⋅⋅⋅++=.若知道这个公式,就比较容易地用含有R 1的式子表示R 2,列出5011111++=R R R ,下面的计算就是异分母的分式加法的运算了,得到)50(5021111++=R R R R,再利用倒数的概念得到R 的结果.这道题的数学计算并不难,但是物理的知分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.(补充)例.计算 (1)2222223223yx yx y x y x y x y x --+-+--+ [分析]第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式. 解:2222223223y x yx y x y x y x y x --+-+--+=22)32()2()3(yx y x y x y x --++-+ =2222y x yx --六、随堂练习计算 (1)b a a b b a b a b a b a 22255523--+++(2)m n mn m n m n n m -+---+22 (3)96312-++a a (4)ba ba b a b a b a b a b a b a ---+-----+-87546563 七、课后练习计算 (1)22233343365cba ba c ba ab bc a b a +--++(2)2222224323ab ba b a b a b a a b ----+--- (3)122+++-+-b a ab a b a b (4)22643461461x y x y x y x ----- 八、答案:四.(1)ba b a 2525+(2)m n n m -+33(3)31-a (4)1解决了应用问题. 四、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 五、例题讲解(P21)例8.计算[分析]这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(补充)计算 (1)x xx x x x x x -÷+----+444122(22 [分析]这道题先做括号里的减法,再把除法转化成乘法,把分母的“-”号提到分式本身的前边..=))(()(y x y x x y xy +--=yx xy+-六、随堂练习 计算(1)x x x x x 22242(2+÷-+-(2))11()(ba ab b b a a -÷--- (3)2122(41223(2+--÷-+-a a a a 七、课后练习 1.计算 (1))11(yx xy x y +--+二、重点、难点1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根.2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根.三、例、习题的意图分析1.P31思考提出问题,引发学生的思考,从而引出解分式方程的解法以及产生增根的原因.2.P32的归纳明确地总结了解分式方程的基本思路和做法.3.P33思考提出问题,为什么有的分式方程去分母后得到的整式方程的解就是原方程的解,而有的分式方程去分母后得到的整式方程的解就不是原方程的解,引出分析产生增根的原因,及P33的归纳五、例题讲解(P34)例1.解方程[分析]找对最简公分母x(x-3),方程两边同乘x(x-3),把分式方程转化为整式方程,整式方程的解必须验根这道题还有解法二:利用比例的性质“内项积等于外项积”,这样做也比较简便.(P34)例2.解方程[分析]找对最简公分母(x-1)(x+2),方程两边同乘(x-1)(x+2)时,学生容易把整数1漏乘最简公分母(x-1)(x+2),整式方程的解必须验根.六、随堂练习解方程一、教学目标:1.会分析题意找出等量关系.2.会列出可化为一元一次方程的分式方程解决实际问题.二、重点、难点1.重点:利用分式方程组解决实际问题.2.难点:列分式方程表示实际问题中的等量关系.三、例、习题的意图分析本节的P35例3不同于旧教材的应用题有两点:(1)是一道工程问题应用题,它的问题是甲乙两个施工队哪一个队的施工速度快?这与过去直接问甲队单独干多少天完成或乙队单独干多少天完成有所不同,需要学生根据题意,寻找未知数,然后根据题意找出问题中的等量关系列方程.求得方程的解除了要检验外,还要比较甲乙两个施工队哪一个队的施工速度快,才能完成解题的全过程(2)教材的分析是填空的形式,为学生分析题意、设未知数搭好了平台,有助于数量关系清晰,教师就放手让学生做,以提高学生分析问解决问题的能力.四、例题讲解P35例3分析:本题是一道工程问题应用题,基本关系是:工作量=工作效率×工作时间.这题没有具体的工作量,工作量虚拟为1,工作的时间单位为“月”.等量关系是:甲队单独做的工作量+两队共同做的工作量=1P36例4路程.这题分析:是一道行程问题的应用题,基本关系是:速度=时间用字母表示已知数(量).等量关系是:提速前所用的时间=提速后所用的时间1,结果于下午4时到达,求原计划行时到达,后来由于把速度加快5军的速度。

华东师大版八年级数学下全册教案

华东师大版八年级数学下全册教案

第17章 分式§ 分式的概念教学目标:1、经历实际问题的解决过程,从中认识分式,并能概括分式2、使学生能正确地判断一个代数式是否是分式3、能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。

教学重点:探索分式的意义及分式的值为某一特定情况的条件。

教学难点:能通过回忆分数的意义,探索分式的意义。

教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元;二、概括: 形如BA (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式哪些是分式(1)x 1; (2)2x ; (3)y x xy +2; (4)33y x -. 解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式a S 中,a ≠0;在分式nm -9中,m ≠n. 例2 当x 取什么值时,下列分式有意义(1)11-x ; (2)322+-x x . 分析 要使分式有意义,必须且只须分母不等于零.解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义. (2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义. 四、练习:P5习题第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义(1) (2) (3) 3. 当x 为何值时,分式的值为0 (1) (2) (3) 五、小结:什么是分式什么是有理式六、作业:P5习题第1、2题,第3题(2)(4)教学反思:§ 分式的基本性质教学目标:1、掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义。

华东师大版八年级数学下全册教案

华东师大版八年级数学下全册教案

第17章 分式§ 分式的概念教学目标:1、经历实际问题的解决过程,从中认识分式,并能概括分式2、使学生能正确地判断一个代数式是否是分式3、能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。

教学重点:探索分式的意义及分式的值为某一特定情况的条件。

教学难点:能通过回忆分数的意义,探索分式的意义。

教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元;二、概括: 形如BA (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式哪些是分式(1)x 1; (2)2x ; (3)y x xy +2; (4)33y x -. 解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式a S 中,a ≠0;在分式nm -9中,m ≠n. 例2 当x 取什么值时,下列分式有意义(1)11-x ; (2)322+-x x . 分析 要使分式有意义,必须且只须分母不等于零.解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义. (2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义. 四、练习:P5习题第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义(1) (2) (3) 3. 当x 为何值时,分式的值为0 (1) (2) (3) 五、小结:什么是分式什么是有理式六、作业:P5习题第1、2题,第3题(2)(4)教学反思:§ 分式的基本性质教学目标:1、掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义。

华师大版八年级数学(下册)教(学)案全集

华师大版八年级数学(下册)教(学)案全集

第17章 分式§17.1.1 分式的概念教学目标:1、经历实际问题的解决过程,从中认识分式,并能概括分式2、使学生能正确地判断一个代数式是否是分式3、能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。

教学重点:探索分式的意义及分式的值为某一特定情况的条件。

教学难点:能通过回忆分数的意义,探索分式的意义。

教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元;二、概括: 形如BA (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母.整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式?(1)x 1; (2)2x ; (3)y x xy +2; (4)33y x -. 解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式a S 中,a ≠0;在分式nm -9中,m ≠n. 例2 当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x . 分析 要使分式有意义,必须且只须分母不等于零.解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义. (2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义. 四、练习:P5习题17.1第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0?(1) (2) (3)五、小结:什么是分式?什么是有理式?六、作业:P5习题17.1第1、2题,第3题(2)(4)七、教学后记§17.1.2 分式的基本性质教学目标:1、掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义。

华东师大版八年级数学下全册教案

华东师大版八年级数学下全册教案

第17章 分式§17.1.1 分式的概念教学目标:1、经历实际问题的解决过程,从中认识分式,并能概括分式2、使学生能正确地判断一个代数式是否是分式3、能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。

教学重点:探索分式的意义及分式的值为某一特定情况的条件。

教学难点:能通过回忆分数的意义,探索分式的意义。

教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元;二、概括: 形如BA (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中?A 叫做分式的分子,B 叫做分式的分母. 整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式?(1)x 1; (2)2x ; (3)y x xy +2; (4)33y x -. 解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式a S 中,a ≠0;在分式nm -9中,m ≠n. 例2 当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x . 分析 要使分式有意义,必须且只须分母不等于零.解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义. (2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义. 四、练习:P5习题17.1第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0? (1) (2) (3) 五、小结:什么是分式?什么是有理式?六、作业:P5习题17.1第1、2题,第3题(2)(4)教学反思:§17.1.2 分式的基本性质教学目标:1、掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十六章 分式16.1分式16.1.1从分数到分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,as ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.3. 以上的式子v+20100,v-2060,a s ,sv ,有什么共同点?它们与分数有什么相同点和不同点? 五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2)(3) 1-m m32+-m m 112+-m m[分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义?(1) (2) (3)3. 当x 为何值时,分式的值为0?(1) (2) (3) 七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义?3. 当x 为何值时,分式 的值为0?八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x2.(1)x ≠-2 (2)x ≠ (3)x ≠±23.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, b a s +,4y x -; 整式:8x, a+b, 4y x -;分式:x 80, ba s +2. X = 3. x=-14522--x x xx 235-+23+x x x 57+x x3217-xx x --221x 802332x x x --12312-+x x课后反思:16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点:灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程,与 之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.ab 56--, yx 3-, nm --2, nm 67--,yx 43---。

[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.解:ab 56--=ab 56,yx 3-=yx 3-,nm --2=nm 2,4320152498343201524983n m 67--=nm67 , y x 43---=y x 43。

六、随堂练习1.填空:(1) x x x 3222+= ()3+x (2) 32386b b a =()33a (3) c a b ++1=()cn an + (4) ()222y x y x +-=()yx -2.约分:(1)c ab b a 2263 (2)2228mn n m (3)532164xyzyz x - (4)x y y x --3)(23.通分: (1)321ab 和cb a 2252 (2)xy a 2和23x b(3)223ab c 和28bca- (4)11-y 和11+y 4.不改变分式的值,使下列分式的分子和分母都不含“-”号.(1) 233ab y x -- (2) 2317b a --- (3) 2135x a -- (4) m b a 2)(--七、课后练习1.判断下列约分是否正确: (1)c b c a ++=ba(2)22y x y x --=y x +1(3)nm nm ++=0 2.通分: (1)231ab 和b a 272 (2)x x x --21和x x x +-21 3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号. (1)ba ba +---2 (2)y x y x -+--32八、答案:六、1.(1)2x (2) 4b (3) bn+n (4)x+y2.(1)bc a 2 (2)n m 4 (3)24zx - (4)-2(x-y)2 3.通分: (1)321ab = cb a ac 32105, c b a 2252= c b a b 32104(2)xy a 2= y x ax 263, 23xb= y x by 262 (3)223ab c = 223812c ab c 28bc a -= 228cab ab (4)11-y =)1)(1(1+-+y y y 11+y =)1)(1(1+--y y y 4.(1) 233ab y x (2) 2317b a - (3) 2135xa (4) mb a 2)(--课后反思:16.2分式的运算16.2.1分式的乘除(一)一、教学目标:理解分式乘除法的法则,会进行分式乘除运算. 二、重点、难点1.重点:会用分式乘除的法则进行运算. 2.难点:灵活运用分式乘除的法则进行运算 . 三、例、习题的意图分析1.P13本节的引入还是用问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是nmab v ⋅,大拖拉机的工作效率是小拖拉机的工作效率的⎪⎭⎫⎝⎛÷n b m a 倍.引出了分式的乘除法的实际存在的意义,进一步引出P14[观察]从分数的乘除法引导学生类比出分式的乘除法的法则.但分析题意、列式子时,不易耽误太多时间.2.P14例1应用分式的乘除法法则进行计算,注意计算的结果如能约分,应化简到最简.3.P14例2是较复杂的分式乘除,分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.4.P14例3是应用题,题意也比较容易理解,式子也比较容易列出来,但要注意根据问题的实际意义可知a>1,因此(a-1)2=a 2-2a+1<a 2-2+1,即(a-1)2<a 2-1.这一点要给学生讲清楚,才能分析清楚“丰收2号”单位面积产量高.(或用求差法比较两代数式的大小)四、课堂引入1.出示P13本节的引入的问题1求容积的高nmab v ⋅,问题2求大拖拉机的工作效率是小拖拉机的工作效率的⎪⎭⎫⎝⎛÷n b m a 倍. [引入]从上面的问题可知,有时需要分式运算的乘除.本节我们就讨论数量关系需要进行分式的乘除运算.我们先从分数的乘除入手,类比出分式的乘除法法则.1. P14[观察] 从上面的算式可以看到分式的乘除法法则.3.[提问] P14[思考]类比分数的乘除法法则,你能说出分式的乘除法法则? 类似分数的乘除法法则得到分式的乘除法法则的结论. 五、例题讲解P14例1.[分析]这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,在计算结果.P15例2.[分析] 这道例题的分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式相乘是不必把它们展开.P15例.[分析]这道应用题有两问,第一问是:哪一种小麦的单位面积产量最高?先分别求出“丰收1号”、“丰收2号”小麦试验田的面积,再分别求出“丰收1号”、“丰收2号”小麦试验田的单位面积产量,分别是15002-a 、()21500-a ,还要判断出以上两个分式的值,哪一个值更大.要根据问题的实际意义可知a>1,因此(a-1)2=a 2-2a+1<a 2-2+1,即(a-1)2<a 2-1,可得出“丰收2号”单位面积产量高. 六、随堂练习计算(1)ab c 2c b a 22⋅ (2)322542n m m n ⋅- (3)⎪⎭⎫ ⎝⎛-÷x x y 27 (4)-8xy x y 52÷ (5)4411242222++-⋅+--a a a a a a (6))3(2962y y y y -÷++- 七、课后练习计算(1)⎪⎪⎭⎫ ⎝⎛-⋅y xy x 132 (2)⎪⎭⎫ ⎝⎛-÷a bc acb 2110352(3)()y x axy 28512-÷ (4)ba ab ab b a 234222-⋅- (5))4(12x x x x -÷-- (6)3222)(35)(42x y x xy x --⋅-八、答案:六、(1)ab (2)nm 52- (3)14y - (4)-20x 2 (5))2)(1()2)(1(+--+a a a a(6)23+-y y七、(1)x1- (2)227c b - (3)ax 103- (4)bb a 32+(5)xx -1 (6)2)(5)(6y x y x x -+课后反思:16.2.1分式的乘除(二)一、教学目标:熟练地进行分式乘除法的混合运算. 二、重点、难点1.重点:熟练地进行分式乘除法的混合运算. 2.难点:熟练地进行分式乘除法的混合运算. 三、例、习题的意图分析1. P17页例4是分式乘除法的混合运算. 分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式.教材P17例4只把运算统一乘法,而没有把25x 2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点.2, P17页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题. 四、课堂引入计算(1))(xy yx xy -⋅÷ (2) )21()3(43xyx yx -⋅-÷五、例题讲解(P17)例4.计算[分析] 是分式乘除法的混合运算. 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.(补充)例.计算(1))4(3)98(23232b x b a xy y x ab -÷-⋅=xb b a xy y x ab 34)98(23232-⋅-⋅ (先把除法统一成乘法运算) =xb b a xy y x ab 349823232⋅⋅ (判断运算的符号) =32916ax b (约分到最简分式) (2) x x x x x x x --+⋅+÷+--3)2)(3()3(444622=x x x x xx x --+⋅+⋅+--3)2)(3(31444622(先把除法统一成乘法运算) =x x x x x x --+⋅+⋅--3)2)(3(31)2()3(22(分子、分母中的多项式分解因式) =)3()2)(3(31)2()3(22---+⋅+⋅--x x x x x x=22--x六、随堂练习计算(1))2(216322b a a bc a b -⋅÷ (2)103326423020)6(25b a c c ab b a c ÷-÷ (3)x y y x x y y x -÷-⋅--9)()()(3432 (4)22222)(x y x xy y xy x x xy -⋅+-÷-七、课后练习计算(1))6(4382642z yx yx y x -÷⋅- (2)9323496222-⋅+-÷-+-a a b a b a a (3)229612316244y y y y y y --÷+⋅-+- (4)xyy xyy x xy x xy x -÷+÷-+222)(八、答案:六.(1)c a 432- (2)485c - (3)3)(4y x - (4)-y七. (1)336y xz (2) 22-b a (3)122y - (4)x1-课后反思:16.2.1分式的乘除(三)一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算. 二、重点、难点1.重点:熟练地进行分式乘方的运算.2.难点:熟练地进行分式乘、除、乘方的混合运算. 三、例、习题的意图分析1. P17例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,在分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除..2.教材P17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习.同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好.分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点. 四、课堂引入计算下列各题: (1)2)(b a=⋅b a b a =( ) (2) 3)(b a =⋅b a ⋅b a b a=( ) (3)4)(ba =⋅b a ⋅b a b a ba⋅=( ) [提问]由以上计算的结果你能推出nba )((n 为正整数)的结果吗? 五、例题讲解 (P17)例5.计算[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除. 六、随堂练习1.判断下列各式是否成立,并改正.(1)23)2(a b =252a b (2)2)23(a b -=2249ab -(3)3)32(x y -=3398x y (4)2)3(b x x -=2229bx x - 2.计算(1) 22)35(y x (2)332)23(c b a - (3)32223)2()3(xay xy a -÷ (4)23322)()(z x zy x -÷- 5))()()(422xy x y y x -÷-⋅- (6)232)23()23()2(ayx y x x y -÷-⋅-七、课后练习计算(1) 332)2(a b - (2) 212)(+-n ba(3)4234223)()()(c a ba cb ac ÷÷ (4) )()()(2232b a a b a ab b a -⋅--⋅-八、答案:六、1. (1)不成立,23)2(a b =264a b (2)不成立,2)23(a b -=2249ab(3)不成立,3)32(x y -=33278x y - (4)不成立,2)3(b x x -=22229b bx x x +-2. (1)24925y x (2)936827c b a - (3)24398yx a - (4)43z y - (5)21x(6)2234x y a七、(1) 968a b -- (2) 224+n b a (3)22a c (4)bba +课后反思:16.2.2分式的加减(一)一、教学目标:(1)熟练地进行同分母的分式加减法的运算.(2)会把异分母的分式通分,转化成同分母的分式相加减. 二、重点、难点1.重点:熟练地进行异分母的分式加减法的运算. 2.难点:熟练地进行异分母的分式加减法的运算. 三、例、习题的意图分析1. P18问题3是一个工程问题,题意比较简单,只是用字母n 天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的311++n n .这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2. P19[观察]是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.3.P20例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.(4)P21例7是一道物理的电路题,学生首先要有并联电路总电阻R 与各支路电阻R 1, R 2, …, R n 的关系为nR R R R111121+⋅⋅⋅++=.若知道这个公式,就比较容易地用含有R 1的式子表示R 2,列出5011111++=R R R,下面的计算就是异分母的分式加法的运算了,得到)50(5021111++=R R R R ,再利用倒数的概念得到R 的结果.这道题的数学计算并不难,但是物理的知识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例8之后讲.四、课堂堂引入1.出示P18问题3、问题4,教师引导学生列出答案.引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗? 3. 分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则? 4.请同学们说出2243291,31,21xy y x y x 的最简公分母是什么?你能说出最简公分母的确定方法吗? 五、例题讲解(P20)例6.计算[分析] 第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.(补充)例.计算 (1)2222223223yx yx y x y x y x y x --+-+--+[分析] 第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.解:2222223223y x yx y x y x y x y x --+-+--+=22)32()2()3(y x y x y x y x --++-+ =2222yx yx -- =))(()(2y x y x y x +--=yx +2 (2)96261312--+-+-x x x x [分析] 第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式. 解:96261312--+-+-x x x x =)3)(3(6)3(2131-+-+-+-x x x x x =)3)(3(212)3)(1()3(2-+---++x x x x x=)3)(3(2)96(2-++--x x x x =)3)(3(2)3(2-+--x x x =623+--x x六、随堂练习计算 (1)ba ab b a b a b a b a 22255523--+++ (2)m n mn m n m n n m -+---+22 (3)96312-++a a (4)ba ba b a b a b a b a b a b a ---+-----+-87546563七、课后练习计算(1)22233343365cba ba c ba ab bc a b a +--++ (2)2222224323a b ba b a b a b a a b ----+--- (3) 122+++-+-b a ab a b a b (4) 22643461461x y xy x y x -----八、答案:四.(1)ba b a 2525+ (2)m n n m -+33 (3)31-a (4)1五.(1)b a 22 (2) 223ba ba -- (3)1 (4)y x 231-课后反思:16.2.2分式的加减(二)一、教学目标:明确分式混合运算的顺序,熟练地进行分式的混合运算. 二、重点、难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 三、例、习题的意图分析1. P21例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.例8只有一道题,训练的力度不够,所以应补充一些练习题,使学生熟练掌握分式的混合运算.2. P22页练习1:写出第18页问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.四、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 五、例题讲解(P21)例8.计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(补充)计算 (1)x xx x x x x x -÷+----+4)44122(22 [分析] 这道题先做括号里的减法,再把除法转化成乘法,把分母的“-”号提到分式本身的前边.. 解: x x x x x x x x -÷+----+4)44122(22=)4(])2(1)2(2[2--⋅----+x xx x x x x=)4(])2()1()2()2)(2([22--⋅-----+x xx x x x x x x x =)4()2(4222--⋅-+--x xx x x x x =4412+--x x(2)2224442yx x y x y x y x y y x x +÷--+⋅- [分析] 这道题先做乘除,再做减法,把分子的“-”号提到分式本身的前边.解:2224442yx x y x y x y x y y x x +÷--+⋅- =22222224))((2x y x y x y x y x y x y y x x +⋅-+-+⋅- =2222))((yx y x y x y x xy --⋅+- =))(()(y x y x x y xy +--=yx xy+-六、随堂练习 计算(1) x x x x x 22)242(2+÷-+- (2))11()(ba ab b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a七、课后练习 1.计算 (1) )1)(1(yx xy x y +--+ (2) 22242)44122(aaa a a a a a a a -÷-⋅+----+(3) zxyz xy xy z y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值. 八、答案:六、(1)2x (2)ba ab- (3)3 七、1.(1)22y x xy - (2)21-a (3)z12.422--a a ,-31课后反思:16.2.3整数指数幂一、教学目标:1.知道负整数指数幂na-=na 1(a ≠0,n 是正整数). 2.掌握整数指数幂的运算性质. 3.会用科学计数法表示小于1的数. 二、重点、难点1.重点:掌握整数指数幂的运算性质. 2.难点:会用科学计数法表示小于1的数.三、例、习题的意图分析1. P23思考提出问题,引出本节课的主要容负整数指数幂的运算性质. 2. P24观察是为了引出同底数的幂的乘法:nm nmaa a +=⋅,这条性质适用于m,n是任意整数的结论,说明正整数指数幂的运算性质具有延续性.其它的正整数指数幂的运算性质,在整数围里也都适用.3. P24例9计算是应用推广后的整数指数幂的运算性质,教师不要因为这部分知识已经讲过,就认为学生已经掌握,要注意学生计算时的问题,及时矫正,以达到学生掌握整数指数幂的运算的教学目的.4. P25例10判断下列等式是否正确?是为了类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来.5.P25最后一段是介绍会用科学计数法表示小于1的数. 用科学计算法表示小于1的数,运用了负整数指数幂的知识. 用科学计数法不仅可以表示小于1的正数,也可以表示一个负数.6.P26思考提出问题,让学生思考用负整数指数幂来表示小于1的数,从而归纳出:对于一个小于1的数,如果小数点后至第一个非0数字前有几个0,用科学计数法表示这个数时,10的指数就是负几.7.P26例11是一个介绍纳米的应用题,使学生做过这道题后对纳米有一个新的认识.更主要的是应用用科学计数法表示小于1的数. 四、课堂引入1.回忆正整数指数幂的运算性质: (1)同底数的幂的乘法:nm n m a a a +=⋅(m,n 是正整数);(2)幂的乘方:mnn m aa =)((m,n 是正整数);(3)积的乘方:nnnb a ab =)((n 是正整数); (4)同底数的幂的除法:nm nmaa a -=÷( a ≠0,m,n 是正整数,m >n);(5)商的乘方:n nn ba b a =)((n 是正整数);2.回忆0指数幂的规定,即当a ≠0时,10=a .3.你还记得1纳米=10-9米,即1纳米=9101米吗? 4.计算当a ≠0时,53a a ÷=53a a =233a a a ⋅=21a,再假设正整数指数幂的运算性质n m n m a a a -=÷(a ≠0,m,n 是正整数,m >n)中的m >n 这个条件去掉,那么53a a ÷=53-a =2-a .于是得到2-a =21a(a ≠0),就规定负整数指数幂的运算性质:当n 是正整数时,na -=n a1(a ≠0). 五、例题讲解(P24)例9.计算[分析] 是应用推广后的整数指数幂的运算性质进行计算,与用正整数指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.(P25)例10. 判断下列等式是否正确?[分析] 类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来,然后再判断下列等式是否正确.(P26)例11.[分析] 是一个介绍纳米的应用题,是应用科学计数法表示小于1的数. 六、随堂练习 1.填空(1)-22= (2)(-2)2= (3)(-2) 0= (4)20= ( 5)2 -3= ( 6)(-2) -3= 2.计算(1) (x 3y -2)2 (2)x 2y -2 ·(x -2y)3 (3)(3x 2y -2) 2 ÷(x -2y)3七、课后练习1. 用科学计数法表示下列各数:0.000 04, -0. 034, 0.000 000 45, 0. 003 009 2.计算(1) (3×10-8)×(4×103) (2) (2×10-3)2÷(10-3)3 八、答案:六、1.(1)-4 (2)4 (3)1 (4)1(5)81 (6)812.(1)46y x (2)4x y (3) 7109yx 七、1.(1) 4×10-5 (2) 3.4×10-2 (3)4.5×10-7 (4)3.009×10-32.(1) 1.2×10-5 (2)4×103课后反思:16.3分式方程(一)一、教学目标:1.了解分式方程的概念, 和产生增根的原因.2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检 验一个数是不是原方程的增根. 二、重点、难点1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根.2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根.三、例、习题的意图分析1. P31思考提出问题,引发学生的思考,从而引出解分式方程的解法以及产生增根的原因.2.P32的归纳明确地总结了解分式方程的基本思路和做法.3. P33思考提出问题,为什么有的分式方程去分母后得到的整式方程的解就是原方程的解,而有的分式方程去分母后得到的整式方程的解就不是原方程的解,引出分析产生增根的原因,及P33的归纳出检验增根的方法.4. P34讨论提出P33的归纳出检验增根的方法的理论根据是什么?5. 教材P38习题第2题是含有字母系数的分式方程,对于学有余力的学生,教师可以点拨一下解题的思路与解数字系数的方程相似,只是在系数化1时,要考虑字母系数不为0,才能除以这个系数. 这种方程的解必须验根.四、课堂引入1.回忆一元一次方程的解法,并且解方程163242=--+x x 2.提出本章引言的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v 千米/时,根据“两次航行所用时间相同”这一等量关系,得到方程vv -=+206020100. 像这样分母中含未知数的方程叫做分式方程.五、例题讲解(P34)例1.解方程[分析]找对最简公分母x(x-3),方程两边同乘x(x-3),把分式方程转化 为整式方程,整式方程的解必须验根这道题还有解法二:利用比例的性质“项积等于外项积”,这样做也比较简便. (P34)例2.解方程[分析]找对最简公分母(x-1)(x+2),方程两边同乘(x-1)(x+2)时,学生容易把整数1漏乘最简公分母(x-1)(x+2),整式方程的解必须验根. 六、随堂练习解方程 (1)623-=x x (2)1613122-=-++x x x (3)114112=---+x x x (4)22122=-+-x xx x 七、课后练习1.解方程 (1) 01152=+-+x x (2) x x x 38741836---=- (3)01432222=---++x x x x x (4) 4322511-=+-+x x 2.X 为何值时,代数式xx x x 231392---++的值等于2? 八、答案:六、(1)x=18 (2)原方程无解 (3)x=1 (4)x=54 七、1. (1) x=3 (2) x=3 (3)原方程无解 (4)x=1 2. x=23课后反思:16.3分式方程(二)一、教学目标:1.会分析题意找出等量关系.2.会列出可化为一元一次方程的分式方程解决实际问题.二、重点、难点1.重点:利用分式方程组解决实际问题.2.难点:列分式方程表示实际问题中的等量关系.三、例、习题的意图分析本节的P35例3不同于旧教材的应用题有两点:(1)是一道工程问题应用题,它的问题是甲乙两个施工队哪一个队的施工速度快?这与过去直接问甲队单独干多少天完成或乙队单独干多少天完成有所不同,需要学生根据题意,寻找未知数,然后根据题意找出问题中的等量关系列方程.求得方程的解除了要检验外,还要比较甲乙两个施工队哪一个队的施工速度快,才能完成解题的全过程(2)教材的分析是填空的形式,为学生分析题意、设未知数搭好了平台,有助于学生找出题目中等量关系,列出方程.P36例4是一道行程问题的应用题也与旧教材的这类题有所不同(1)本题中涉及到的列车平均提速v千米/时,提速前行驶的路程为s千米,完成. 用字母表示已知数(量)在过去的例题里并不多见,题目的难度也增加了;(2)例题中的分析用填空的形式提示学生用已知量v、s和未知数x,表示提速前列车行驶s千米所用的时间,提速后列车的平均速度设为未知数x 千米/时,以及提速后列车行驶(x+50)千米所用的时间.这两道例题都设置了带有探究性的分析,应注意鼓励学生积极探究,当学生在探究过程中遇到困难时,教师应启发诱导,让学生经过自己的努力,在克服困难后体会如何探究,教师不要替代他们思考,不要过早给出答案.教材中为学生自己动手、动脑解题搭建了一些提示的平台,给了设未知数、解题思路和解题格式,但教学目标要求学生还是要独立地分析、解决实际问题,所以教师还要给学生一些问题,让学生发挥他们的才能,找到解题的思路,能够独立地完成任务.特别是题目中的数量关系清晰,教师就放手让学生做,以提高学生分析问解决问题的能力. 四、例题讲解P35例3分析:本题是一道工程问题应用题,基本关系是:工作量=工作效率×工作时间.这题没有具体的工作量,工作量虚拟为1,工作的时间单位为“月”.等量关系是:甲队单独做的工作量+两队共同做的工作量=1 P36例4分析:是一道行程问题的应用题, 基本关系是:速度=时间路程.这题用字母表示已知数(量).等量关系是:提速前所用的时间=提速后所用的时间 五、随堂练习1. 学校要举行跳绳比赛,同学们都积极练习.甲同学跳180个所用的时间,乙同学可以跳240个;又已知甲每分钟比乙少跳5个,求每人每分钟各跳多少个.2. 一项工程要在限期完成.如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成,如果两组合作3天后,剩下的工程由第二组单独做,正好在规定日期完成,问规定日期是多少天?3. 甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度. 六、课后练习。

相关文档
最新文档