一元二次方程的概念及解法

合集下载

一元二次方程的概念及解法

一元二次方程的概念及解法

一元二次方程一、一元二次方程的概念:(1)只含一个未知数x;(2)最高次数是2次的;(3)•整式方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.例2.将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.练习: 判断下列方程是否为一元二次方程?(1)3x+2=5y-3 (2) x2=4 (3) 3x2-5x=0 (4) x2-4=(x+2) 2 (5) ax2+bx+c=0例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.练习:一、选择题1.在下列方程中,一元二次方程的个数是().①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5x=0A.1个B.2个C.3个D.4个2.px2-3x+p2-q=0是关于x的一元二次方程,则().A.p=1 B.p>0 C.p≠0 D.p为任意实数二、填空题1.方程3x2-3=2x+1的二次项系数为_____,一次项系数为_______,常数项为______.2.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________.三、综合提高题1、关于x的方程(2m2+m)x m+1+3x=6可能是一元二次方程吗?为什么?2、方程(2a—4)x2—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?3、当m为何值时,方程(m+1)x/4m/-4+27mx+5=0是关于x的一元二次方程二、一元二次方程的解:复习:方程的解一元二次方程的解也叫做一元二次方程的根.(只含有一个未知数的方程的解,又叫方程的根)例1.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.例2.若x=1是关于x的一元二次方程a x2+bx+c=0(a≠0)的一个根,求代数式2007(a+b+c)的值练习: 关于x的一元二次方程(a-1) x2+x+a 2-1=0的一个根为0,则求a的值三,一元二次方程的解法的整式方程叫做一元二次方程,一般式为:。

一元二次方程的解

一元二次方程的解

一元二次方程的解一元二次方程是指只含有一个未知数的二次方程,通常的形式为:ax² + bx + c = 0,其中 a、b、c 分别为已知常数且a ≠ 0。

解一元二次方程的过程从古至今一直是数学领域中的重要问题,本文将介绍一元二次方程的解法和相关概念。

1. 一元二次方程的解法解一元二次方程可以使用多种方法,包括公式法、配方法和因式分解法等。

下面将介绍其中两种常用的解法。

1.1 公式法公式法是解一元二次方程的基本方法,根据求根公式可以得到一元二次方程的解。

求根公式如下所示:x = (-b ±√(b² - 4ac)) / (2a)其中,√为平方根,±表示两个不同的解,分别是加号和减号形式。

对于一元二次方程 ax² + bx + c = 0,只需将 a、b、c 的值代入公式中即可求得解。

1.2 配方法当一元二次方程无法直接使用公式法解时,可采用配方法进行处理。

配方法的基本思想是通过变换将方程转化为完全平方形式,进而求得解。

首先,对一元二次方程的二次项和一次项进行配方,使其变成一个完全平方形式。

例如,对于方程 x² + 6x + 9 = 0,可以通过将一次项的系数除以 2,然后再平方,得到新的完全平方形式 (x + 3)² = 0。

接下来,利用开平方的性质求解方程。

对于上述方程,解为x = -3。

2. 一元二次方程的解的特点一元二次方程的解的特点包括判别式、重根和虚根。

2.1 判别式判别式是一个与一元二次方程的系数相关的数值,可用于判断方程的解的情况。

判别式的计算公式为Δ = b² - 4ac,其中Δ 表示判别式的值。

根据判别式的值与零的关系,可以分为以下三种情况:- 当Δ > 0 时,方程有两个不相等的实根;- 当Δ = 0 时,方程有两个相等的实根,也称为重根;- 当Δ < 0 时,方程没有实根,但有两个虚根。

一元二次方程讲义

一元二次方程讲义

一元二次方程讲义1.解方程2(2)9x -=. 2(3x ﹣1)2=8.例题3:配方法1.已知方程260xx q +=-可以配方成27x p =(-)的形式,那么262x x q +=-可以配方成下列的( ) A. 25x p =(-) B. 29x p =(-) C. 229x p +=(-) D. 225x p +=(-) 2.用配方法解方程:2420x x ++=练习:1. 用配方法解方程:x 2﹣7x+5=0. 2x 2﹣3x+1=0.x 2﹣6x ﹣7=0.例题4.公式法1.一元二次方程4x 2﹣2x+=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断2.用公式法解方程:03822=+-x x.练习:1.用公式法解方程:3x 2+5(2x+1)=0.练习:1.“在线教育”指的是通过应用信息科技和互联网技术进行内容传播和快速学习的方法.”互联网+”时代,中国的在线教育得到迅猛发展.根据中国产业信息网数据统计分析,2015年中国在线教育市场产值约为1600亿元,2017年中国在线教育市场产值在2015年的基础上增加了900亿元.(1)求2015年到2017年中国在线教育市场产值的年平均增长率;(2)若增长率保持不变,预计2018年中国在线教育市场产值约为多少亿元?例题2:利润问题1.某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?练习:1.今年本市蜜桔大丰收,某水果商销售一种蜜桔,成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式;(2)该经销商想要每天获得150元的销售利润,销售价应定为多少?(销售利润=销售价﹣成本价)例题3:面积问题1.某中学标准化建设规划在校园内的一块长36米,宽20米的矩形场地ABCD上修建三条同样宽的人行道,使其中两条与AB平行,另一条与AD平行,其余部分种草(如图所示),若使每一块草坪的面积都为96平方米.求人行道的宽。

一元二次方程求根公式和常见解法

一元二次方程求根公式和常见解法

⼀元⼆次⽅程求根公式和常见解法
⼀、⼀元⼆次⽅程的概述
1、定义:等号两边都是等式,只含有⼀个未知数,未知数的最⾼次数是2且最⾼次项的系数不为0,这样的整式⽅程叫做⼀元⼆次⽅程.
2、求根公式:$x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}(b^2-4ac \ge 0)$。

3、⼀元⼆次⽅程的⼀般形式:
⼀元⼆次⽅程的⼀般形式是$ax^2+bx+c=0(a\not=0)$.其中$ax^2$是⼆次项,$a$ 是⼆次项系数;$bx$ 是⼀次项,$b$ 是⼀次项系数;$c$ 是常数项.
4、⼀元⼆次⽅程的根:
使⽅程左右两边相等的未知数的值就是这个⼀元⼆次⽅程的解,也叫做⼀元⼆次⽅程的根.
5、⼀元⼆次⽅程的常见解法:
(1)直接开平⽅法
(2)配⽅法
(3)公式法
(4)因式分解法
(5)利⽤根与系数的关系
⼆、⼀元⼆次⽅程的例题
例:如果⽅程$(m-\sqrt{2})x^{m^2}+3mx-1=0$ 是关于$x$ 的⼀元⼆次⽅程,那么 $m$ 的值是____.
答案:$-\sqrt{2}$
解析:由⼀元⼆次⽅程的定义知 $m^2=2$,即 $m=\pm\sqrt{2}$,⼜ $\because m-\sqrt{2}\not=0,\therefore m
\not=\sqrt{2},\therefore m=-\sqrt{2}$.。

一元二次方程的概念与性质

一元二次方程的概念与性质

一元二次方程的概念与性质一元二次方程是数学中常见的一种类型的方程,它由一个变量的平方项、一个变量的一次项和一个常数项组成,具体形式为:ax^2 + bx + c = 0。

在这篇文章中,我们将介绍一元二次方程的概念、解的性质以及一些常见的解法。

一、一元二次方程的概念一元二次方程是指只含有一个变量的平方项、一次项和常数项的方程。

在一元二次方程中,变量通常用字母x表示,方程的一般形式为ax^2 + bx + c = 0,其中a、b、c为实数且a≠0。

二、一元二次方程的解法要解一元二次方程,我们可以通过以下几种方法来求解。

1. 因式分解法当一元二次方程可以被因式分解为两个一次因式的乘积时,我们可以通过将方程两边置零,并运用零乘积法则来解方程。

举例说明:解方程x^2 - 5x + 6 = 0首先将方程因式分解为(x - 2)(x - 3) = 0然后根据零乘积法则可得到x - 2 = 0 或 x - 3 = 0因此,方程的解为x = 2 或 x = 32. 完全平方公式法对于形如x^2 + 2ax + a^2 = b的一元二次方程,我们可以利用完全平方公式来求解。

完全平方公式为(x + a)^2 = b,从中我们可以得到方程的两个解。

举例说明:解方程x^2 + 6x + 9 = 25根据完全平方公式可得(x + 3)^2 = 25再对方程取平方根,得到x + 3 = ±5因此,方程的解为x = -3 + 5 或 x = -3 - 5,即x = 2 或 x = -83. 直接使用求根公式法对于一元二次方程ax^2 + bx + c = 0,可以使用求根公式x = (-b ±√(b^2 - 4ac)) / 2a 来求解方程。

举例说明:解方程2x^2 + 5x - 3 = 0根据求根公式可得x = (-5 ± √(5^2 - 4*2*(-3))) / (2*2)化简得x = (-5 ± √(25 + 24)) / 4进一步化简得x = (-5 ± √49) / 4因此,方程的解为x = (-5 + 7) / 4 或 x = (-5 - 7) / 4,即x = 1 或 x = -3/2三、一元二次方程的性质一元二次方程具有以下性质:1. 一元二次方程的根一元二次方程的根可以是实数根或复数根。

一元二次方程概念与解法

一元二次方程概念与解法

一元二次方程概念与解法教学目标1•了解一元二次方程及其相关概念,会用配方法、公式法、分解因式法解简单的一元二次方程2•能够利用一元二次方程解决简单的实际问题。

教学重点一元二次方程的三种解法:配方法、公式法、分解因式法。

教学难点列一元二次方程解决实际问题。

知识点梳理:一元二次方程知识框图:1•一元二次方程:只含有一个未知数,并且含未知数的项的最高次数是2的整式方程,这样的方程叫做一元二次方程。

2. —元二次方程的一般形式:a2x+bx+c=0(a丰0)3•—元二次方程的解法直接开平方法:适用于(mx+n) 2=h (h > 0)的一元二次方程。

配方法:适用于化为一般形式的一元二次方程。

关键:方程两边都加上一次项系数一半的平方。

公式法:-b b2 4acx=(b2-4ac> 0)2a关键:b2-4ac>0时,方程才有解。

因式分解法:适用于方程右边是0,左边是易于分解成两个一次因式乘积的一元二次方程。

4 .一元二次方程ax2+bx+c=0 (a丰0)的根的判别式是_____________________ ,当 _______ 时,它有两个不相等的实数根;当_____________ 时,它有两个相等的实数根;当 ____________ 时,?它没有实数根.5.根的判别式及应用(△ =b2-4ac)(1) 判定一元二次方程根的情况.△ >0 有两个不相等的实数根 △ =0 有两个相等的实数根 △ <0 没有实数根; △ > 0有实数根•6.根与系数的关系(韦达定理)的应用bc 韦达定理:如果一元二次方程 ax 2+bx+c=0(a 工的两根为X 1、X 2,则X 1+X 2=-,X 1 X 2=.aa(1) 已知一根求另一根及未知系数; (2) 求与方程的根有关的代数式的值 ; (3) 已知两根求作方程;(4) 已知两数的和与积,求这两个数; (5) 确定根的符号:(X i ,X 2是方程两根).0,一元二次方程的应用解应用题的关键是把握题意 是否符合实际意义• 例题讲解1: 一元二次方程基本概念(1) mf-3x+x 2=0是关于X 的一元二次方程的条件是 A m=1 B m 丰-1 C m 丰0 D m为任意实数(2) (k-1 ) x 2-kx+仁0是关于x 的一元二次方程的条件是 Js 丰1_.有两正根X ,x 2x ,x 2 00,有两负根有一正根一负根0,X 1 x 2 x 1x 20,0, X 1X 2 0有一正根一零根0,X 1 X 2 0 X 1X 2 0 有一负根一零根0, X 1 x 2 0X 1=X 2=00, X i X 2,找准等量关系,列出方程•?最后还要注意求出的未知数的值(3) _____________________________________ 已知方程mX+mx+3m-X+x+2=0,当m 时,为一元二次方程;当m ___________________________ 时,为兀一次方程1. 关于x 的方程(k — 3)X 2+ 2x — 1 = 0,当k _______ 时,是一元二次方程。

一元二次方程概念及解法

一元二次方程概念及解法

一元二次方程一、一元二次方程的概念:1、定义:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 补充关于初中常见代数式:2、一元二次方程的一般式:例1.已知(m -1)x |m|+1+3x -2=0是关于x 的一元二次方程,求m 的值.举一反三:【变式】若方程2(2)310m m x mx --=是关于x 的一元二次方程,求m 的值.3、一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.的两根求,,的两根分别为为常数方程已知关于0)2(1-2)0,,,(0)(22=+++≠=++b m x a a m b a b m x a xb a b b ax x x --=++求有一个非零根的一元二次方程关于,,02二、一元二次方程的解法1、基本思想:一元二次方程−−−→降次一元一次方程 2、常见解法:直接开平方法:模型)0(2≥=p p x因式分解理论基础:(1)提公因式法解方程: (1)3x+15=-2x 2-10x ; (2)x 2-3x =(2-x)(x-3).(2)运用公式完全平方公式:222()2a b a ab b ±=±+ 平方差公式:22()()a b a b a b +-=-三数和平方公式:2222()2()a b c a b c ab bc ac ++=+++++224(3)25(2)0x x ---= 22)25(96x x x -=+- 01442=++x x(3)十字相乘:化成标准形式之后“看两端,凑中间”模型一: (1)=0 (2)21016x x -+=0; (3)2310x x --=0模型二:(1) 21252x x --=0 (2) 22568x xy y +-=0配方法:0362=+-x x 01242=+-x x公式法:步骤:0322=+-x x 0962=+-x x 0242=+-x x关于四种方法比较3、思想补充:换元思想0913424=+-x x 2(21)4(21)40x x ++++=的值。

一元二次方程的概念与解法

一元二次方程的概念与解法

一元二次方程的概念与解法一元二次方程是数学中的一种基本形式,它可以用于解决许多实际问题。

本文将介绍一元二次方程的概念和解法,并在实例中展示其实际应用。

一、概念一元二次方程是指只有一个变量的二次方程,通常具有以下形式:ax^2 + bx + c = 0其中,a、b、c是已知的实数常数且a ≠ 0,x是未知变量。

二、解法解一元二次方程的一种常见方法是利用求根公式,即它根据方程的系数a、b、c,可以计算出方程的解。

求根公式如下:x = (-b ± √(b^2 - 4ac)) / (2a)这个公式中的±表示两个解,分别是两个子式的加减情况。

三、实例展示下面通过一个实际问题来说明一元二次方程的应用和解法。

假设有一个矩形的面积为36平方米,且矩形的长度比宽度多4米。

我们可以列出方程来表示这个问题。

设矩形的宽度为x米,则矩形的长度为(x+4)米,根据矩形的面积公式,我们可以得到方程如下:x(x+4) = 36接下来,将方程进行化简:x^2 + 4x - 36 = 0根据一元二次方程的解法,我们可以使用求根公式来计算方程的解。

根据公式,我们可以得到:x = (-4 ± √(4^2 - 4*1*(-36))) / (2*1)即:x = (-4 ± √(16 + 144)) / 2最终计算得到两个解,分别是:x = 4,x = -9由于宽度不能为负数,所以我们可以确定矩形的宽度为4米。

根据问题中给出的条件,矩形的长度比宽度多4米,因此矩形的长度为8米。

综上所述,通过解一元二次方程,我们得到了矩形的宽度为4米,长度为8米,解决了这个实际问题。

总结:本文介绍了一元二次方程的概念和解法。

一元二次方程是指只有一个变量的二次方程,解法可以利用求根公式来计算方程的解。

通过一个矩形面积的实际问题,我们展示了一元二次方程的应用和解题思路。

只需根据方程的系数应用求根公式,即可得到方程的解,并根据实际问题中的条件进行判断和筛选。

一元二次方程及其解法

一元二次方程及其解法

第2课时 一元二次方程及其解法一·基本概念理解1 一元二次方程的定义:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边加一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

2、一元二次方程的解法(1)、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如b a x =+2)(的一元二次方程。

根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b 〈0时,方程没有实数根.(2)、配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。

配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(3)、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b a ac b b x公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c(4)、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(5)、韦达定理若1x ,2x 是一元二次方程的一般形式:)0(02≠=++a c bx ax 的两个实数根,则a b x x -=+21,ac x x =21。

(完整版)一元二次方程的概念及解法(学生版)

(完整版)一元二次方程的概念及解法(学生版)

一元二次方程的概念及解法知识图谱1、一元二次方程知识精讲一.一元二次方程的概念只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程的一般形式:ax 2c为常数项.bxc0(a0),a为二次项系数,b为一次项系数,判断是一元二次方程的标准:①整式方程②一元方程③二次方程二.一元二次方程的解一元二次方程的解:使方程左、右两边相等的未知数的值叫做方程的解,一元二次方程的解也叫做一元二次方程的根.三点剖析一.考点:一元二次方程的概念,一元二次方程的解.1二.重难点:一元二次方程的一般形式,一元二次方程的解.1.三.易错点:确定方程是否为一元二次方程只需要检验最高次项—--二次项的系数是否为零即可;2.注意对于关于x的方程ax 2,当a0时,方程是一元二次方程;当a0且b0 bxc0时,方程是一元一次方程;一元二次方程的系数一定要化为一般式之后再看.题模精讲题模一:概念例以下方程中是关于x的一元二次方程的是〔〕A.x210B.ax 2x2bxcC.3x22x53x2D.x1x21例方程(m2)x m3mx10是关于x的一元二次方程,那么m______例假设方程m1x2m x1是关于x的一元二次方程,那么m的取值范围是__________.例方程x422x13的二次项系数是______,一次项系数是_______,常数项是_______题模二:解例关于x的一元二次方程 a 1x2x a2 1 0的一个根是0,那么a的值为_________________.例x1是关于x的方程x2mx n 0的一个根,那么m22mn n2的值为_______.随堂练习2随练假设(m2)x m2x 3 0是关于x的一元二次方程,那么m的值为_________。

2随练关于x的方程(m1)x2 (m 1)x 3m 2 0,当m__________时是一元一次方程;当m__________时是一元二次方程随练假设一元二次方程(m2)x23(m215)xm240的常数项为零,那么m的值为_________随练假设关于x的一元二次方程〔a+1〕x2+x﹣a2+1=0有一个根为0,那么a的值等于〔〕A.﹣1B.0C.1D.1或者﹣1随练方程x2m2xn30的两根分别是2、3,那么mn__________随练假设x=1是关于x的一元二次方程x2+3mx+n=0的解,那么6m+2n=____.随练假设关于x的一元二次方程为ax2+bx+5=0〔a≠0〕的解是x=1,那么2021-a-b的值是〔〕A.2021B.2021C.2021D.20212、直接开平方法知识精讲一.直接开平方法假设x2aa0,那么x叫做a的平方根,表示为x a,这种解一元二次方程的方法叫做直接开平方法.二.直接开平方法的根本类型1.x2a(a0)解为:x a2.(x a)2b(b0)解为:x a b3.(ax2c(c0)解为:ax b c b)4.(ax b)2(cx d)2(ac)解为:ax b(cxd)三点剖析一.考点:直接开平方法.二.重难点:直接开平方法.三.易错点:直接开平方法解一元二次方程时注意一般都有两个解,不要漏解,如果是两个相等的解,也要写成x1x2a的形式.3题模精讲题模一:直接开平方法例求下面各式中x的值:〔1〕4x 2;9〔2〕x225.1例求x的值:1(5x1)2303随堂练习随练解以下方程:〔1〕2x280〔2〕2516x202〔3〕1x90随练解关于x的方程:x26x 9 (5 2x)22随练假设方程x 2 a 4有实数根,那么a的取值范围是________.随练解关于x的方程:2(3x1)2853、配方法知识精讲一.配方法4配方法:把方程化成左边是一个含有未知数的完全平方式,右边是一个非负常数,再利用直接开平方法求解的这样一种方法就叫做配方法.二.配方法的一般步骤:2 运用配方法解形如 ax bx c 0(a 0)的一元二次方程的一般步骤是:1.二次项系数化 1;2.常数项右移;3.配方〔两边同时加上一次项系数一半的平方〕;4.化成(x m) 2n的形式;5.假设n 0 ,选用直接开平方法得出方程的解.2 2b x)c0 b 2b2axbxc0(a0) a(x a a(x)a()c0b2b22a2ab2b24aca(x 2a ) 4a c (x 2a )4a 2 .三点剖析一.考点:配方法.二.重难点:配方法解一元二次方程,配方法求解最值或取值范围.三.易错点:在化成直接开平方法求解的时候需要检验方程右边是否是非负的,如果是那么利用直接开平方法求解即可,如果不是,原方程就没有实数解.题模精讲题模一:配方法2例用配方法解方程: x 6x 4例 用配方法解以下方程:〔1〕2x 21 0 8x 〔2〕x 24x2 0〔3〕x 21 x 1 034〕3y 2123y例 用配方法解方程 x 22x10 时,配方后得到的方程为〔〕A .〔x 22221)0 B .〔x1)0 C .〔x1)2 D .〔x1)2例用配方法解关于 x 的方程x 2pxq0〔p ,q 为常数〕5例22,x、y为实数,求x y的值x y4x6y130题模二:最值问题2例试用配方法说明x2x 3的值恒大于0例x、y为实数,求代数式x2y22x 4y 7的最小值例a,b,c是整数,且 a 2b 4,ab c2 1 0,求a b c的值随堂练习随练用配方法解方程:2x23x 10随练假设把代数式x25x 7化为x m2k的形式,其中m、k为常数,那么k m.随练a,b,c均为实数,且ab4,2c2ab43c10,求ab的值.随练用配方法说明2的值恒小于0 10x7x4622随练x ,y为实数,求代数式5x4y8xy2x4的最小值.4、公式法知识精讲一.公式法2 公式法:一元二次方程 ax bx c 0(a 0),用配方法将其变形为: 根的判别式 b 2 4ac ,x 1,x 2是方程的两根,假设 b 2 4ac 0,那么x 1,2二.公式法解一元二次方程的一般步骤1.把方程化为一般形式;2.确定a 、b 、c 的值; 3.计算b 2 4ac 的值;4.假设b 2 4ac 0,那么代入公式求方程的根; 5.假设b 2 4ac 0,那么方程无解.三.判别式与根的关系1. 0 时,原方程有两个不相等的实数解; 2. 0 时,原方程有两个相等的实数解; 3. 0 时,原方程没有实数解.b2b 2 4ac(x 2a )4a 224ac .bb2a三点剖析一.考点:公式法.二.重难点:利用公式法求解一元二次方程,利用判别式判断根的情况.三.易错点:在用公式法求解方程的解时,一定要判断“ 〞的取值范围,只有当0时,一元二次方程才有实数解.题模精讲7题模一:公式法例用公式法解关于x的一元二次方程m 1x22m 1x m 3 0.例解方程:x2+4x﹣1=0.例1解方程x(6x1)4x32(2x)2例用公式法解关于x的一元二次方程m1x22m1x m30.例解方程:xx 3x 20题模二:判别式与根的关系例以下一元二次方程中,有两个不相等实数根的方程是〔〕A.x2+1=0B.x2﹣3x+1=0C.x2﹣2x+1=0D.x2﹣x+1=0例关于x的一元二次方程mx22x10有两个不相等的实数根,那么m的取值范围是〔〕A.m1B.m1C.m1且m0D.m1且m0例关于x的方程〔a-6〕x2-8x+6=0有实数根,那么整数a的最大值是〔〕8A.6B.7C.8D.9随堂练习2随练用公式法解一元二次方程2x3x 10.随练解方程(x5)(x 7)12随练解关于x的方程:xpxq0.随练解关于x的方程x2x10.随练以下一元二次方程中无实数解的方程是〔〕A.x2+2x+1=0B.x2+1=0C.2D.2x=2x-1x-4x-5=0随练假设关于x的一元二次方程kx22x10有两个不相等的实数根,那么k的取值范围是〔〕A.k1B.k1C.k1且k1且k0k0D.随练关于x的一元二次方程〔m-1〕x2+x+1=0有实数根,那么m的取值范围是〔〕A.m≥-5且m≠1B.m≤5且m≠1 44C.m≥5D.m≤-5且m≠0 4495、因式分解法知识精讲一.因式分解法因式分解法:当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解,这种用分解因式解一元二次方程的方法叫做因式分解法.因式分解法解一元二次方程的依据:如果两个因式的积等于0,那么这两个因式至少有一个为0,即:假设ab0,那么a0或b0.三点剖析一.考点:因式分解法解一元二次方程.二.重难点:利用提公因式法、公式法、分组分解法、十字相乘法等方法解一元二次方程.三.易错点:没有化成ab0的形式,例如由2x121从而导致漏解或x1直接得到2x1者直接得到2x10从而导致错解.题模精讲题模一:因式分解法例用因式分解法解方程:2x34xx30例2用因式分解法解方程:3x4x40.22例用因式分解法解方程:9x216x10.10例用因式分解法解方程:x23mx 2m2mn n20,〔m、n为常数〕随堂练习2随练用因式分解法解方程:2x136x.随练用因式分解法解方程:5x210x 5 31 x22随练用因式分解法解方程:6x x 350.222随练x的一元二次方程m1x63m1x7201〕.用因式分解法解关于〔m6、根与系数的关系知识精讲一.韦达定理11如果ax2bx c0(a0)的两根是x1,x2,那么x x b,x1x2c.〔隐含的条件:12a a0〕特别地,当一元二次方程的二次项系数为1时,设x1,x2是方程x2px q0的两个根,那么x1x2p12q.,xx二.韦达定理与根的符号关系在24ac0的条件下,假设x1,x2是ax2bx c0(a0)的两根〔其中x1x2〕我们有b如下结论:1.c0x1x20,假设b0,那么x1x2;假设b0,那么x1x2.a a a2.c0xx20.假设b0,那么x1x20;假设b0,那么x2x10.a1a a更一般的结论是:假设x1,x2是ax2bx c0(a0)的两根〔其中x1x2〕,且m为实数,当0时,一般地:〔1〕(x1m)(x2m)0x1m,x2m〔2〕(x1m)(x2m)0且(x1m)(x2m)0x1m,x2m〔3〕(x1m)(x2m)0且(x1m)(x2m)0x1m,x2m特殊地:当m0时,上述就转化为ax2bxc0(a0)有两异根、两正根、两负根的条件.三点剖析一.考点:韦达定理二.重难点:韦达定理的应用1.方程的一个根,求另一个根以及确定方程参数的值;2.方程,求关于方程的两根的代数式的值;3.方程的两根,求作方程;4.结合根的判别式,讨论根的符号特征;.逆用构造一元二次方程辅助解题:当等式具有相同的结构时,就可以把某两个变元看作某个一元二次方程的两根,以便利用韦达定理.三.易错点:在使用韦达定理的时候没有提前检验0是否成立题模精讲题模一:韦达定理例假设方程x24x c 0的一个根为23,那么方程的另一个根为______,c______.12例设x1、x2是方程x22k1xk220的两个不同的实根,且x11x218,那么k的值是.例如果a,b都是质数,且a213am0,b213bm0,求b a的值.a b随堂练习随练m,n是有理数,并且方程x2mxn0有一个根是52,那么mn_______.随练关于22有两个实数根,并且这两个根的平方和比这x的方程x2(m2)xm50两个根的积大16,求m的值.随练关于x的方程x24x2m80的一个根大于1,另一个根小于1,求m的取值范围.随练如果实数a,b分别满足a22a2,b22b2,求11的值a b13作业1假设|b1|a20,那么以下方程一定是一元二次方程的是〔〕A.ax25xb0B.b21x2a3x50C.a1x2b1x70D.b1x2ax10作业2关于x的方程(xa)2(ax2)2是一元二次方程,求a的取值范围.作业3a b2a、b的值?方程2x xx40是关于x的一元二次方程,求作业4假设n〔n≠0〕是关于x方程x2+mx+2n=0的根,那么 n+m+4的值为〔〕A.1B.2C.-1D.-2作业5关于x的一元二次方程m 2x2x m2 4 0有一根为0,那么m的值为_______.作业62解方程:31x6作业7解关于x的方程:3(x 1)22714作业8 用直接开平方法解以下一元二次方程〔1〕9x 216〔2〕x 2 16 05 〔3〕x23x 251〔4〕42x52293x1作业9解方程:2x 28x 3 0.作业10将方程x 2 4x10化为xm2n 的形式,其中m ,n 是常数,那么mn_____________作业 11 方程 2 6xq0可以配方成xp226xq2可以配成以下x 7的形式,那么 x 的〔 〕A .x 2B .29p5xp29D .xp22C .xp2 5m 2n 21 1作业12mnmn10,那么m n 的值为__________.作业13ab23,bc 23,那么a 2 b 2 c 2 ab bc ac 的值为__________.15作业14实数a ,b ,c 满足a 26b17,b 28c23,c 22a14,那么abc 的值为__________.y 1 z 2作业15 x12322 2设,求代数式xyz的最小值.作业16解方程3x 2 52x 1作业17用公式法解方程:ax 2 bx c0〔a 、b 、c 为常数且a0〕.作业18设方程x 2 2x1 4 0.求满足该方程的所有根之和作业19 一元二次方程 x 2+2x+1=0的根的情况〔〕A .有一个实数根B . 有两个相等的实数根C . 有两个不相等的实数根D . 没有实数根作业20关于x 的一元二次方程 2 2m 的取值范mx+〔2m-1〕x+1=0有两个不相等的实数根,那么围是〔 〕A .k >-1B .m >1且m ≠144 C .m <1且m ≠0 D .m ≥-1且m ≠04416作业21假设关于x 的方程kx 22k1xk10有实数根,求k 的取值范围.作业222xx35x3 的解是〔〕x5B .x32A .x 1522,x23D .xC .5作业23 用因式分解法解方程x 26x 94x 28x 4.作业24解关于x 的方程x 2p 2 q 2x pqpqpq.作业 25方程2x 2mx 2m 4 0的一个解为1,那么另一个解为__________,__________.作业26方程2x 2 mx 30的两根的平方和为 5,那么m=__________.作业27 实数k 为何值时,关于 x 的一元二次方程 x 2(2k 3)x (2k 4)0.1〕有两个正根?2〕两根异号,且正根的绝对值较大?3〕一根大于3,一根小于3?17作业28阅读材料:设一元二次方程ax2bx c0(a 0)的两根是x1、x2,那么根与系数关系为:x1x2b c pq1x1x22p10,1q20,且pq1,求q的值.a,a.pq作业29方程2〔m+1〕x2+4mx+3m=2,根据以下条件之一求m的值.1〕方程有两个相等的实数根;2〕方程有两个相反的实数根;3〕方程的一个根为0.作业30阅读下面的例题,解方程x2﹣|x|﹣2=0解:原方程化为 |x|2﹣|x|﹣2=0.令y=|x|,原方程化成y2﹣y﹣2=0解得:y1=2,y2=﹣1当|x|=2,x=±2;当|x|=﹣1时〔不合题意,舍去〕∴原方程的解是x1=2x2=﹣2请模仿上面的方法解方程:〔x﹣1〕2﹣5|x﹣1|﹣6=0.作业31x2y22x4y0解方程组:y4.2x0作业32观察下表,答复以下问题,第____个图形中“△〞的个数是“○〞的个数的5倍.18作33 察以下方程及其解的特征:1〕x+1=2的解x 1=x 2=1;x 2〕x+1=5的解x 1=2,x 2=1;x 2 2 ( 3〕x+1=10的解x 1=3,x 2=1;x 3 3⋯解答以下:x1〕猜想:方程x+1=26的解____;5( 2〕猜想:关于x 的方程x+1=____的解x 1=a ,x 2=1〔a ≠0〕;x a〔3〕下面以解方程x+1=26例,〔1〕中猜想的正确性.x52解:原方程可化 5x-26x=-5.〔下面大家用配方法写出解此方程的程〕作34三个关于 x 2 2 cxa0,cx2的一元二次方程axbxc 0,bx axb0恰有一个公共数根,a 2b 2c 2的__________bc ca ab19。

一元二次方程的基本概念和解法

一元二次方程的基本概念和解法

一元二次方程的基本概念和解法一元二次方程是代数学中的重要概念,由一次项、二次项和常数项构成,其一般形式为 ax² + bx + c = 0,其中a、b、c为实数且a ≠ 0。

本文将介绍一元二次方程的基本概念及其解法。

一、基本概念一元二次方程是一种含有未知数的方程,其最高次项为二次项。

方程中的未知数通常用x表示,而系数a、b、c则为已知的实数。

二、求解一元二次方程的步骤要求解一元二次方程,首先需要将方程化为标准形式,即将方程中的项按幂次降序排列,然后按照下列步骤进行求解:1. 将一元二次方程化为标准形式:ax² + bx + c = 0;2. 计算判别式Δ = b² - 4ac;3. 若Δ > 0,方程有两个不相等的实数解,可以通过求根公式 x = (-b ± √Δ) / (2a)来求解;4. 若Δ = 0,方程有且仅有一个实数解,解为 x = -b / (2a);5. 若Δ < 0,方程无实数解。

三、示例演示以一元二次方程 x² - 5x + 6 = 0 为例,演示求解过程:1. 将方程化为标准形式:x² - 5x + 6 = 0;2. 计算判别式Δ = (-5)² - 4(1)(6) = 25 - 24 = 1;3. 由于Δ > 0,方程有两个不相等的实数解,应用求根公式计算:x₁ = (-(-5) + √1) / (2(1)) = (5 + 1) / 2 = 3;x₂ = (-(-5) - √1) / (2(1)) = (5 - 1) / 2 = 2;因此,方程的解为 x₁ = 3,x₂ = 2。

四、一元二次方程的图像一元二次方程的图像是一个抛物线,其开口方向取决于二次项系数a的正负。

1. 若a > 0,抛物线开口向上。

以方程 y = x² - 2x + 1 为例:判别式Δ = (-2)² - 4(1)(1) = 0,方程有且仅有一个实数解 x = 1;图像经过点(1, 0),开口向上。

一元二次方程的基本概念

一元二次方程的基本概念

一元二次方程的基本概念一元二次方程是数学中常见的一种方程类型,它的形式为ax^2 + bx + c = 0,其中a、b、c是已知实数系数,而x则是未知数。

在本文中,我们将详细介绍一元二次方程的基本概念,并探讨其性质和解的方法。

一、一元二次方程的性质1. 零点和根:一元二次方程的解又称为方程的根或者零点。

如果一个实数r满足方程ax^2 + bx + c = 0,那么我们就说r是方程的一个根。

一个一元二次方程可能有1个、2个或者0个实根。

2. 判别式:一元二次方程的判别式Δ = b^2 - 4ac,它的值可以用来判断方程的根的情况。

当Δ > 0时,方程有两个不相等的实根;当Δ =0时,方程有两个相等的实根;当Δ < 0时,方程没有实根。

3. 对称性:一元二次方程的图像是一个抛物线,具有对称性。

对于方程ax^2 + bx + c = 0,如果r是它的一个根,那么2r-b是它的另一个根。

二、一元二次方程的解法解一元二次方程的方法主要有以下两种:1. 因式分解法:如果一元二次方程可以因式分解为(ax + b)(cx + d) = 0的形式,其中a、b、c、d是已知实数系数,那么方程的解就是使得(ax + b)和(cx + d)其中之一等于0的根。

这种方法适用于方程可以被因式分解的情况下。

2. 二次公式法:对于一元二次方程ax^2 + bx + c = 0,它的解可以通过以下公式得到:x = (-b ± √Δ) / (2a)其中,±表示取正负号,Δ是方程的判别式。

根据Δ的值,我们可以得到方程的解的情况。

三、一元二次方程的应用一元二次方程在实际问题中有着广泛的应用,例如:1. 物理学中的自由落体问题可以建模为一元二次方程,其中时间t 为未知数,加速度a为已知常数。

解方程可以得到自由落体的时间和运动轨迹。

2. 经济学中的成本和利润问题也可以转化为一元二次方程,帮助分析决策和预测趋势。

函数与方程中的一元二次方程与解法

函数与方程中的一元二次方程与解法

函数与方程中的一元二次方程与解法一元二次方程是数学中常见且重要的方程形式,它在函数与方程的研究中具有广泛的应用。

本文将重点探讨一元二次方程及其解法,帮助读者更好地理解和应用这一概念。

一、一元二次方程的定义与形式一元二次方程是指具有如下形式的方程:ax² + bx + c = 0其中,a、b、c为常数,且a ≠ 0。

二、一元二次方程的解法解一元二次方程可以使用以下几种方法:方法一:因式分解法当一元二次方程可以被因式分解为两个一次因式相乘时,我们可以直接根据因式的零点得到方程的解。

例如,对于方程2x² + 5x + 3 = 0,我们可以将其因式分解为(2x + 1)(x + 3) = 0。

由此可得,方程的两个解为x = -1/2和x = -3。

方法二:配方法配方法是一种常用的解一元二次方程的方法,通过变形使方程左侧成为一个平方的形式,从而得到方程的解。

具体步骤如下:1. 将方程标准形式转化为完成平方的形式。

2. 完成平方后,将方程变形为(x + p)² = q的形式。

3. 对方程进行求根运算,得到方程的解。

例如,对于方程3x² + 4x + 1 = 0,我们可以通过配方法求解:1. 将方程变形为3(x² + 4/3x) + 1 = 0。

2. 完成平方后,得到3[(x + 2/3)² - 4/9] + 1 = 0。

3. 化简得到(x + 2/3)² - 4/3 + 1/3 = 0,即(x + 2/3)² = 1/3。

4. 对方程进行求根运算,得到方程的两个解为x = -2/3 + √(1/3)和x = -2/3 - √(1/3)。

方法三:利用求根公式一元二次方程的求根公式是解一元二次方程的一种常用公式,可以直接得到一元二次方程的精确解。

求根公式如下:x = (-b ± √(b² - 4ac)) / (2a)例如,对于方程x² - 5x + 6 = 0,我们可以直接利用求根公式求解:x = (5 ± √(5² - 4*1*6)) / (2*1),化简得到方程的两个解为x = 2和x = 3。

初中数学知识点总结:一元二次方程的概念及其解法

初中数学知识点总结:一元二次方程的概念及其解法

初中数学知识点总结:一元二次方程的概念及其
解法
知识点总结
一.一元二次方程的概念:
只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方程。

二.一元二次方程的解法:
4.分解因式法:当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,令每个因式分别等于0,得到两个一元一次方程,分别解这两个一元一次方程,得到的解就是原方程的解,这种解一元二次方程的方法称为因式分解法。

分解因式法的理论依据是几个数的积为0,那几个数中至少有一个0。

常见考法
一元二次方程概念和解法是中考命题的重点,一般用填空、选择题来考查概念和有关的基础知识,用解答题来考解法。

且一元二次方程的解法灵活多变,涉及的知识面广,在根的判别式、根与系数的关系淡化后,这是考查本知识的较佳出题点之一。

误区提醒
(1)对一元二次方程的概念不清,导致错误;
(2)利用配方法解方程时,弄错常数项;
(3)利用公式法解方程时,在确定各项系数时漏掉“-”号。

一元二次方程概念与解法

一元二次方程概念与解法

一元二次方程概念与解法教学目标1.了解一元二次方程及其相关概念,会用配方法、公式法、分解因式法解简单的一元二次方程2.能够利用一元二次方程解决简单的实际问题。

教学重点一元二次方程的三种解法:配方法、公式法、分解因式法。

教学难点列一元二次方程解决实际问题。

知识点梳理:一元二次方程知识框图:1.一元二次方程:只含有一个未知数,并且含未知数的项的最高次数是2的整式方程,这样的方程叫做一元二次方程。

2.一元二次方程的一般形式:a 2x+bx+c=0(a ≠0)3.一元二次方程的解法 直接开平方法:适用于(mx+n )2=h (h ≥0)的一元二次方程。

配方法:适用于化为一般形式的一元二次方程。

关键:方程两边都加上一次项系数一半的平方。

公式法:(b 2-4ac ≥0)关键:b 2-4ac ≥0时,方程才有解。

因式分解法:适用于方程右边是0,左边是易于分解成两个一次因式乘积的一元二次方程。

4.一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式是____________,当_______时,它有两个不相等的实数根;当_________时,它有两个相等的实数根;当_______时,•它没有实数根.5.根的判别式及应用(△=b 2-4ac) (1)判定一元二次方程根的情况.△>0⇔有两个不相等的实数根; △=0⇔有两个相等的实数根; △<0⇔没有实数根; △≥0⇔有实数根.6.根与系数的关系(韦达定理)的应用韦达定理:如果一元二次方程ax 2+bx+c=0(a≠0)的两根为x 1、x 2,则x 1+x 2=-b a ,x 1·x 2=c a. (1)已知一根求另一根及未知系数; (2)求与方程的根有关的代数式的值; (3)已知两根求作方程;(4)已知两数的和与积,求这两个数; (5)确定根的符号:(x 1,x 2是方程两根).有两正根⇔12120,0,0x x x x ∆≥⎧⎪+>⎨⎪>⎩有两负根⇔12120,0,0x x x x ∆≥⎧⎪+<⎨⎪>⎩有一正根一负根⇔120,x x ∆>⎧⎨<⎩有一正根一零根⇔12120,00x x x x ∆>⎧⎪+>⎨⎪=⎩有一负根一零根⇔12120,00x x x x ∆>⎧⎪+<⎨⎪=⎩x 1=x 2=0⇔12120,0x x x x ∆>⎧⎨+==⎩一元二次方程的应用解应用题的关键是把握题意,找准等量关系,列出方程.•最后还要注意求出的未知数的值,是否符合实际意义.例题讲解1:一元二次方程基本概念(1)mx 2-3x+x 2=0是关于x 的一元二次方程的条件是 ( )A m=1B m ≠-1C m ≠0D m 为任意实数(2)(k-1)x 2-kx+1=0是关于x 的一元二次方程的条件是 k ≠1 .(3)已知方程mx 2+mx+3m-x 2+x+2=0,当m 时,为一元二次方程;当m 时,为一元一次方程. (4)填写下表. 一元二次方程 一般形式二次项数一次项系数常数项3 x 2-5=2 x (x+1)2=4 πx 2=0 x (x + )=0答案:见下表: 一元二次方程 一般形式 二次项系数一次系数 常数项 3 x 2-5=2 x 3 x 2-2 x-5=0 3 -2 -5 (x+1)2=4 x 2+-3=0 1 2 -3 x 2=0 x 2=0 π 0 0 x (x+ )=0x 2+ x=01练习:1.关于x 的方程(k -3)x 2+2x -1=0,当k 时,是一元二次方程。

一元二次方程的基本概念与常见求解方法

一元二次方程的基本概念与常见求解方法

一元二次方程的基本概念与常见求解方法知识点睛一元二次方程的定义只含有一个未知数,并且未知数的最高次数是 2,最高次数的项系数不为 0 的整式方程叫做一元二次方程.一元二次方程的一般形式2(0)0ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项.(1)要判断一个方程是否是一元二次方程,必须符合以下四个标准:一元二次方程是整式方程,即方程的两边都是关于未知数的整式.一元二次方程是一元方程,即方程中只含有一个未知数.一元二次方程是二次方程,也就是方程中未知数的最高次数是2.一元二次方程最高次数的项系数不为0.(2)任何一个关于x 的一元二次方程经过整理都可以化为一般式2(0)0ax bx c a ++=≠. 要特别注意对于关于 x 的方程2(0)0ax bx c a ++=≠.当0a ≠时,方程是一元二次方程;当00a b =≠且时,方程是一元一次方程. (3)关于x 的一元二次方程2(0)0ax bx c a ++=≠的项与各项的系数.ax 2 为二次项,其系数为a ;bx 为一次项,其系数为b ;c 为常数项.一元二次方程的解法(1)直接开平方法:适用于解形如 (ax +b )2 = ()00a c ≠, 的一元二次方程. (2)配方法:解形如2 )00(ax bx c a ++=≠的一元二次方程,运用配方法解一元二次方程的一般步骤是:① 二次项系数化为1.② 常数项右移.③ 配方 (两边同时加上一次项系数一半的平方).④ 化成 (x +m )2 = n 的形式.⑤ 若0n ≥,直接开平方得出方程的解。

(3)公式法:设一元二次方程为2 )00(ax bx c a ++=≠,其根的判别式为:2124b ac x x ∆=-,, 是方程的两根,则:1. ∆ > 0 ⇔ 方程 2)00(ax bx c a ++=≠有两个不相等的实数根 x = 2. ∆ = 0 ⇔ 方程 2 )00(ax bx c a ++=≠有两个相等的实数根 122b x x a==-; 3. ∆ < 0 ⇔ 方程2 )00(ax bx c a ++=≠ 没有实数根.运用公式法解一元二次方程的一般步骤是:① 把方程化为一般形式.② 确定 a 、b 、c 的值.③ 计算24b ac -的值.④ 若 240b ac -≥,则代入公式求方程的根.⑤ 若240b ac -<,则方程无实数根.(4)因式分解法:适用于方程一边是零,另一边是一个易于分解的多项式.因式分解法的一般步骤:① 将方程化为一元二次方程的一般形式;② 把方程的左边分解为两个一次因式的积;③ 令每一个因式分别为零,得到两个一元一次方程;④ 解出这两个一元一次方程得到原方程的解. 一元二次方程解法的灵活运用直接开平方法,公式法,配方法,因式分解法.在具体解题时,应当根据题目的特点选择适当的解法.(1)直接开平方法:用于缺少一次项以及形如 ax 2 = b 或 (x +a )2 = b (0)b ≥ 或 (ax +b )2 =(cx +d )2 的方程,能利用平方根的意义得到方程的解.(2)配方法:配方法是解一元二次方程的基本方法,而公式是由配方法演绎得到的.把一元二次方程的一般形式 ax 2 +bx +c = 0(a 、b 、c 为常数,0a ≠) 转化为它的简单形式 Ax 2 = B ,这种转化方法就是配方,之后再用直接开平方法就可得到方程的解.(3)公式法:适用于任何形式的一元二次方程,但必须先将方程化为一般形式,并计算 24b ac -的值.(4)因式分解法:适用于右边为 0(或可化为 0),而左边易分解为两个一次因式积的方程,缺常数项或含有字母系数的方程用因式分解法较为简便,它是一种最常用的方法.【例 1】(1) 若 x 2a +b -3x a-b +1 = 0 是关于 x 的一元二次方程,求 a 、b 的值.(2) 若 n (n ≠0) 是关于 x 的方程 x 2 +mx +2n = 0 的根,则 m +n 的值为 ( )A. 1B. 2C. -1D. -2(3) 已知 43x =,则2421x x x ++的值是 .(4) 当 111552n n x -⎛⎫=- ⎪⎝⎭时,(.n x = ( n 为自然数)【例 2】(1) 用直接开平方法解方程:2269(5) 2x x x -+=-. (2) 用配方法解方程:22310x x ++=.(3) 用分解因式法解方程:2()2136x x -=-. (4) 用公式法解方程:161432)2(2x x x x ⎛⎫++-=+ ⎪⎝⎭例 3】(1) 解关于 x 的方程: 21 213()()0m x m x m -+-+-=. (2) 解关于 x 的方程22656223200x xy y x y --++-=. 【例 4】(1)如果方程 22()2020x px q x qx p p q -+=-+=≠和 有公共根,则该公共根为 .(2)若方程2222100ax ax x ax a +-=--=和有公共根,求a 的值例 5】(1) 解方程:22132(10)|2|x x ---+=.(2) 解方程:221|4|x x +-=.练习2 高次方程和无理方程知识点睛1.特殊高次方程的解法:一般的高次方程没有统一的求解方法. 对于一些特殊的高次方程, 可通过降次, 转化为一元二次方程或一元一次方程求解,转化的方法有因式分解法(因式定理)、换元法、变换主元法等.2. 特殊分式方程的解法:求解分式方程总的原则是通过去分母或换元, 使其转化为整式方程, 然后再求解. 在这个过程中离不开分式的恒等变形, 如通分、约分及降低分子的次数等等, 这就有可能使方程产生增根(或遗根).3. 特殊无理方程的解法:解无理方程的基本思路是把根式转化为有理方程求解. 转化过程中常用的方法有: 乘方、配方、因式分解、等价变换、换元、增元、对偶、利用比例性质等. 如果变形过程是非等价变形(如方程两边平方), 可能产生增根, 因此应注意验根.精讲精练【例 6】(1) 解方程:43225122560x x x x --++=.(2)解关于 x 的方程 ()()322212 0x t x tx t t +--+-=.(3)解方程 321010x x ++++=【例 7】(1)解方程:(8x + 7)2 (4x + 3)(x + 1)= 29 ;(2)解方程: x x x x x x +-=------2221120102910451069. (3)解方程:222234112283912x x x x x x x x ++-+=+-+.【例 8】(1)解方程:()()222323322x x x x x =+-++--. (2)解方程:22252x x x ⎛⎫+= ⎪+⎝⎭. (3)方程()()3232232?47615180x x x x x x x x -+---++-+=全部实根是 .【例 9】(12=.(2)解方程 266 0x x --+=.【例 10】(1)已知 2x =,求.(2)无理方程 221518x x -=-的解是 。

小学数学认识一元二次方程

小学数学认识一元二次方程

小学数学认识一元二次方程一元二次方程是小学数学中较为复杂的一个概念,需要对数学概念有一定的了解才能理解和解决。

一元二次方程包含一个未知数和其次方的方程,通常写作ax^2 + bx + c = 0,其中a、b、c为已知系数,a不等于0。

本文将介绍一元二次方程的基本概念、解法以及应用。

一、基本概念在学习一元二次方程之前,我们需要了解一些基本概念。

1.1 平方数:一个数的平方,例如1、4、9、16等。

1.2 二次方程:方程中含有未知数的平方项的方程,例如x^2 + 2x + 1 = 0就是一个二次方程。

1.3 一元二次方程:方程中只有一个未知数的平方项的方程,例如3x^2 - 2x + 1 = 0就是一个一元二次方程。

二、解法解一元二次方程通常有以下两种方法:因式分解法和求根公式法。

2.1 因式分解法:对于一些特殊的一元二次方程,可以通过因式分解的方法得到方程的解。

例如,对于方程x^2 - 4x + 3 = 0,我们可以将其分解为(x - 3)(x - 1) = 0,从而得到x的解为x = 3或x = 1。

2.2 求根公式法:对于一般的一元二次方程,我们可以使用求根公式来求解。

求根公式为x = (-b ± √(b^2 - 4ac)) / (2a)。

例如,对于方程2x^2 + 5x + 2 = 0,我们可以代入a = 2,b = 5,c = 2,然后计算得到x的解为x = -1/2或x = -2。

三、应用一元二次方程在现实生活中有着广泛的应用。

3.1 抛物线运动:抛出的物体在空中的运动轨迹可以用一元二次方程来表示。

例如,投掷一颗子弹的运动轨迹可以表示成y = -5x^2 + 10x + 3的形式,其中y为高度,x为时间。

3.2 建模和预测:一元二次方程可以用来对一些现实问题进行建模和预测。

例如,根据某商品的销售数据,可以建立销售量和价格之间的一元二次方程,从而预测不同价格下的销售量。

3.3 几何问题:一元二次方程也可以用来解决几何问题。

一元二次方程的概念及解法

一元二次方程的概念及解法

一元二次方程的概念及解法要点一、一元二次方程的概念1.一元二次方程只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 2.一元二次方程的一般形式()ax bx c a 2++=0≠0,a 为二次项系数,b 为一次项系数,c 为常数项.3.要点归纳(1)要判断一个方程是一元二次方程,必须符合以下三个标准:①一元二次方程是整式方程,即方程的两边都是关于未知数的整式. ②一元二次方程是一元方程,即方程中只含有一个未知数. ③一元二次方程是二次方程,也就是方程中未知数的最高次数是2.(2)任何一个关于x 的一元二次方程经过整理都可以化为一般式ax bx c 2++=0 (a ≠0).要特别注意对于关于x 的方程ax bx c 2++=0.当a ≠0时,方程是一元二次方程;当a =0且b ≠0时,方程是一元一次方程.(3)关于x 的一元二次方程式()ax bx c a 2++=0≠0的项与各项的系数.ax 2为二次项,其系数为a ;bx 为一次项,其系数为b ;c 为常数项.【例1】下面关于x 的方程中:①ax bx c 2++=0;②()()x x 223−9−+1=1;③x x21++5=0;④x x 23−2+5−6=0;⑤||x x 2−3−3=0;⑥x kx 2++3=0(k 为常数)是一元二次方程_________. 【解析】(1)②⑥.【变式1】判断下列各式哪些是一元二次方程. ①;②;③;④; ⑤ ;⑥ ;⑦ .【答案】②③⑥.【解析】①不是方程;④不是整式方程;⑤ 含有2个未知数,不是一元方程;⑦ 化简后没有二次项,不是2次方程. ②③⑥符合一元二次方程的定义.【例2】关于x 的方程2x 2−(a +1)x =x (x −1)−1的一次项系数是-1,则a .【答案】原方程化简为x 2-ax+1=0,则-a=-1,a=1.21x x ++2960x x −=2102y =215402x x −+=2230x xy y +−=232y =2(1)(1)x x x +−=21x x ++215402x x −+=2230x xy y +−=2(1)(1)x x x +−=【变式2-1】若一元二次方程()()m x m x m 222−2+3+15+−4=0的常数项为零,则m 的值为_________.由题意可知,m 2−4=0,m −2≠0,故m =−2【变式2-2】若a b a b x x 2+−−3+1=0是关于x 的一元二次方程,求a 、b 的值.分以下几种情况考虑: ①a b 2+=2,a b −=2,此时a 4=3,b 2=−3;②a b 2+=2,a b −=1,此时a =1,b =0; ③a b 2+=1,a b −=2,此时a =1,b =−1;【例3】(1)已知关于x 的一元二次方程()m x x m 22−1+2+−1=0有一个根是x =0,则m 的值为_______.(1)由于为一元二次方程,∴m −1≠0,而x =0代回方程得到:m 2−1=0.综上可知m =−1.(2)x=1是x 2−ax +7=0的根,则a= .【答案】当x=1时,1-a+7=0,解得a=8.(3)已知关于x 的一元二次方程 有一个根是0,求m 的值. 由题意得【变式3-1】如果关于x 的一元二次方程x 2+px+q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是( ) A .-3,2 B .3,-2 C .2,-3 D .2,3 【答案】A ;【解析】∵ x =2是方程x 2+px+q =0的根,∴ 22+2p+q =0,即2p+q =-4 ①同理,12+p+q =0,即p+q =-1 ②联立①,②得 解之得:【变式3-2】已知a 是一元二次方程x x 2−2−1=0的根,求下列各式的值:①a a 1−;②a a221+;③a a a 22−3−3++52. (2)①由a a 2−2−1=0知,a ≠0,故a a 1−2−=0,即a a1−=2;②a a a a 22211⎛⎫+=−+2=6 ⎪⎝⎭;③由于a a 2=2+1,代入所求得,原式a a a 2+1−3=2+1−3++5=52. 22(1)210m x x m −++−=24,1,p q p q +=−⎧⎨+=−⎩3,2.p q =−⎧⎨=⎩【例4】关于x 的方程2()0a x m b ++=的解是12x =−,21x =,(a ,m ,b 均为常数,0a ≠),则方程2(2)0a x m b +++=的解是__________.(3)14x =−,21x =−.【变式4-1】关于x 的方程a (x+m )2+n=0(a ,m ,n 均为常数,m≠0)的解是x 1=﹣2,x 2=3,则方程a (x+m ﹣5)2+n=0的解是( )A .x 1=﹣2,x 2=3B .x 1=﹣7,x 2=﹣2C .x 1=3,x 2=﹣2D .x 1=3,x 2=8 【答案】D ;【思路点拨】把后面一个方程中的x ﹣5看作整体,相当于前面一个方程中的x 求解.【解析】∵关于x 的方程a (x+m )2+n=0的解是x 1=﹣2,x 2=3,(m ,n ,p 均为常数,m≠0), ∴方程a (x+m ﹣5)2+n=0变形为a[(x ﹣5)+m]2+n=0,即此方程中x ﹣5=﹣2或x ﹣5=3, 解得x=3或x=8.故选D .要点二、一元二次方程的解法1. 直接开平方法:适用于解形如()(),≥ax b c a c 2+=≠00的一元二次方程. 2. 配方法:解形如()ax bx c a 2++=0≠0的一元二次方程,运用配方法解一元二次方程的一般步骤是: ① 将二次项系数化为1. ② 将常数项右移.③配方(两边同时加上一次项系数一半的平方). ④化成()x m n 2+=的形式.⑤若≥n 0,直接开平方得出方程的解.【例5】解方程:(1)()x x x 22−6+9=5−2 (2)()()x x 224−2−3−1=0【解析】(1)()()x x 22−3=5−2,()x x −3=±5−2,x 1=2,x 28=3.(2)()()x x 224−2=3−1,()()x x 2−2=±3−1,x 1=−3,x 2=1【变式5】解方程: (1) 3x+2)2=4(x ﹣1)2;(2)(x-2)2=25.【答案】解:(1) 3x+2=±2(x ﹣1),∴3x+2=2x ﹣2或3x+2=﹣2x+2, ∴x 1=﹣4;x 2=0.(2) (x-2)=±5 ∴x-2=5或x-2=-5 ∴x 1=7,x 2=-3.【例6】用配方法解方程:(1)x x 2−4−1=0(2)x x 22−8−3=0(3)x x 24−6−4=0【解析】(1)x x 2−4−1=0,()x 2−2=5,x =2±,x 1=2x 2=2;(2)x x 22−8−3=0,()x 22−2=11,x =2,x 1=2x 2=2; (3)x x 24−6−4=0,x 2325⎛⎫−= ⎪416⎝⎭,x 1=2,x 11=−2.【变式6】用配方法解方程:(1)2x 2﹣4x ﹣3=0; (2)3x 2﹣12x ﹣3=0. 【思路点拨】方程(1) (2)的的次项系数不是1,必须先化成1,才能配方,这是关键的一步.配方时,方程左右两边同时加上一次项系数一半的平方,目的是把方程化为的形式,然后用直接开平方法求解. 【答案与解析】解:(1)∵2x 2﹣4x ﹣3=0,∴,∴,∴x ﹣1=±,∴.(2)3x 2﹣12x ﹣3=0,3x 2﹣12x=3, x 2﹣4x=1, x 2﹣4x+4=1+4,2()(0)mx n P P +=≥(x ﹣2)2=5, x ﹣2=, x 1=2+,x 2=2﹣;(3)2x 2+3=5x (4) 【答案】(3). (4)①当时,此方程有实数解,;②当时,此方程无实数解.3.公式法:将()ax bx c a 2++=0≠0进行配方可以得到:b b ac x a a 222−4⎛⎫+= ⎪24⎝⎭. 当≥b ac 2−40时,两个根为,x 12=b ac 2−4=0时,两根相等为bx x a12−==2;当b ac 2−4<0时,没有实数根.可以用△表示b ac 2−4,△称为根的判别式.20x px q ++=2235x x +=2253x x −=−25322x x −=−2225535()()2424x x −+=−+251()416x −=5144x −=±123,12x x ==20x px q ++=222()()22p px px q ++=−+224()24p p qx −+=240p q −≥12x x ==240p q −<运用公式法解一元二次方程的一般步骤是: ①把方程化为一般形式; ②确定a 、b 、c 的值; ③计算b ac 2−4的值;④若≥b ac 2−40,则代入公式求方程的根; ⑤若b ac 2−4<0,则方程无实数根. 【例7】解方程:(1)()x x 2−5=2+1(2)()x x x x 1⎛⎫6+1+4−3=22+ ⎪2⎝⎭【解析】(1)()x x x x 22−5=2+1⇒−2−7=0,()2=2−4⨯1⨯−7=32△,∴原方程的解为:x 1=1+,x 2=1−(2)()x x x x x x 21⎛⎫6+1+4−3=22+⇒6+−4=0 ⎪2⎝⎭,()△2=1−4⨯6⨯−4=97故,x 12,∴原方程的解为:x 1=,x 2=. 【教师备课提示】这道题主要是想让孩子们练习用公式法去解一元二次方程,牢记解一元二次方程的公式.4.因式分解法:适用于方程一边是零,另一边是一个易于分解的多项式.因式分解法的一般步骤:② 将方程化为一元二次方程的一般形式;③ 把方程的左边分解为两个一次因式的积,方程右边是零; ③令每一个因式分别为零,得到两个一元一次方程; ④解出这两个一元一次方程的解可得到原方程的解.【例8】解方程:(1)22320x x −−= (2)2(21)36x x −=−(3)26x −=−【解析】(1)22320x x −−=,(21)(2)0x x +−=,112x =−,22x =;(2)2(21)36x x −=−,2(21)3(12)x x −=−,2(21)(1)0x x −+=,112x =,21x =−.(3)1x =,2x =. 【教师备课提示】这道题主要是想让孩子们练习用因式分解的方法去解一元二次方程. 【变式8】解方程:(1)﹣3x 2+22x ﹣12=12.(2)3x 2﹣x ﹣4=0【思路点拨】先把方程变形,然后利用因式分解法解方程,注意对于二次项系数的分解. 【答案与解析】解:(1)原式变形得:3x 2﹣22x+24=0,(3x ﹣4)(x ﹣6)=0, 3x ﹣4=0或x ﹣6=0, ∴ x 1=,x 2=6. (2)3x 2﹣x ﹣4=0,分解因式得:(3x ﹣4)(x+1)=0, ∴(3x ﹣4)=0或(x+1)=0 ∴ x 1=,x 2=﹣1;【例9】选择合适的方法求解下列方程:(1)x x 2547−25−572=0(2)x 23=1【解析】(1)方程系数较大,公式法过于麻烦,考虑用因式分解,由于572−547=25,故可以简单分解为:()()x x 547−572+1=0,解为x 1=−1,x 2572=547.(2)公式法解决:()△2=−4⨯3⨯−1=18>0,所以由公式法知x =解为x 1,x 2【课后作业】1.(北京市第十三中学2010-2011九年级数学期中)如果关于x 的方程()a x x 2−1+5−6=0是一元二次方程,则( ) A .a >1 B .a =1 C .a <1 D .a ≠12.如果关于x 的方程()m m x x 2−7−3−+3=0是关于x 的一元二次方程,则m 的值为______.3.关于x 的一元二次方程x ax a 2++=0的一个根是x =3,则a =________.4.若实数a ,b ,c 满足a b c 4−2+=0,则关于x 的一元二次方程()ax bx c a 2++=0≠0一定有一个根_________.5.三角形两边的长是3和4,第三边的长是方程x x 2−12+35=0的根,则该三角形的周长为( ) A .14 B .12 C .12或14 D .以上都不对【解析】1.D ;2.−3;3.9−4;4.x =−2;5.B6.已知a 是方程x x 2+−1=0的根,求a a a 32−−3+1的值.【解析】由题意a a 2+−1=0,∴a a 2=−+1,∴原式()()a a a a a a 22=−+1−−3+1=−2++1=−1.7.解方程:(1)()x 22−4−6=03(2)x x 22−8−198=0 (3)()()x x −5−7=1【解析】(1)1x 1=,x 2=7;(2)x 1=2,x 2=2;(3)()()x x x x 2−5−7=1⇒−12+34=0,△2=12−4⨯1⨯34=8,故,x 1212±==628.解关于x 的方程:(1)x mx m n 222−2+−=0(2)x a ax a 22+3=4−2+1(3)()()a b c x ax a b c 2−++2++−=0【解析】(1)原式可以因式分解为:()()x m n x m n −−−+=0,解为x m n 1=+,x m n 2=−.(2)x a 1=3−1,x a 2=+1.(3)二次项系数中含有字母,所以要加以讨论, ①若a b c −+=0,则原方程成为()ax a b c 2++−=0若a =0,则c b −=0,原方程为x 0+0=0,x 可为一切实数. 若a ≠0,则a b c ax a a−−+−2===−122. ②若a b c −+≠0,则原方程成为[]()()()x a b c x a b c +1−+++−=0,得x 1=−1,c a bx a b c2−−=−+.9.解方程:()()x x x x 2222+−22+=3.【解析】设x x m 22+=,则原方程化为m m 2−2−3=0,即()()m m −3+1=0,代回可得:()()x x x x 222+−32++1=0,即x x 22+−3=0或x x 22++1=0.x x 22+−3=0,可化为()()x x 2+3−1=0,解得x 1=1,x 23=−2;x x 22++1=0,用公式法解决,△2=1−4⨯2⨯1=−7<0,故此方程无实数根.综上方程解为:x 1=1,x 23=−2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题型切片(四个)对应题目题型目标一元二次方程的概念例1;例2;演练1;例8直接开平方法解一元二次方程例3;例4;演练2;配方解一元二次方程例5;例6;演练3;演练4;因式分解法解一元二次方程例7;演练5.模块一一元二次方程的概念知识互联网一元二次方程的基本解法题型切片定 义示例剖析一元二次方程定义:只含有一个未知数,且未知数的最高次数为2的整式方程叫做一元二次方程.判断一个方程是否是一元二次方程,必须符合以下四个标准: ⑴整式方程.⑵方程中只含有一个未知数.⑶化简后方程中未知数的最高次数是2. ⑷二次项的系数不为0 22210x x -+= 此方程满足: 整式方程;只含有一个未知数x ;x 的最高次数是2,系数是2所以这个方程是一个一元二次方程.一元二次方程的一般式:20ax bx c ++=()0a ≠. 其中2ax 为二次项,其系数为a ;bx 为一次项,其系数为b ;c 为常数项.一元二次方程22210x x -+=,其中221a b c ==-=,,.一元二次方程的根:如果0x 满足2000(0)ax bx c a ++=≠,则0x 就是方程20(0)ax bx c a ++=≠的一个根.1满足2110-=,则1是方程20x x -=的一个根.0满足2000-=,则0是方程20x x -=的另一个根.∴0,1是方程20x x -=的两个根,表示为12=0, =1x x一元二次方程都可化成如下形式:20ax bx c ++=(0a ≠). 1.“可化成”是指对整式方程进行去分母,去括号,移项、合并同类项等变形.2.一般形式中,b 、c 可以是任意实数,而二次项系数0a ≠,若0a =,方程就不是一元二次方程了,也未必是一次方程,要对b 进行讨论.3.要确认一元二次方程的各项系数必须先将此方程化为一般形式,然后确定a 、b 、c 的值,不要漏掉..符号... 4.项及项的系数要区分开.建议 强调掌握一元二次方程一般形式对学习一元二次方程很重要,这种从形式上认识数学概念的方法,在今后学习基本初等函数时也要使用.【例1】 1. 判断下列方程是不是一元二次方程. 【例2】 ⑴ 2210x kx --=(k 为常数) ⑵413x =+ ⑶ 210x -=; 【例3】 ⑷ 250x = ⑸ 20x y += ⑹ ()()2233x x +=-; 【例4】夯实基础知识导航⑺ 2320mx x -+=(m 为常数) ⑻ ()()2212150a x a x a ++-+-=(a 为常数).2. 将下列一元二次方程化成一般形式,并写出其中的二次项系数、一次项系数和常数项. ⑴ 2216x x -=; ⑵ ()()3213x x x -+=-;⑶ ()()()3253115x x x x ++--=; ⑷ 23323x x x ++=-.【例5】 ⑴关于x 的方程()()2293510m x m x m -+++-=,当m ________时,方程为一元二次方程;当m =_________时,方程为一元一次方程;⑵已知m 是方程210x x --=的一个根,求代数式2552008m m -+的值;⑶已知a 是2200910x x -+=的根,求22120082009a a a +--的值.定 义示例剖析直接开平方法:对于形如2x m =或()2ax b m+=()211x +=11x +=或11x +=-知识导航模块二 直接开平方法解一元二次方程能力提升()00a m ≠≥,的一元二次方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用直接开平方法求解.1202x x ==-,【例6】 用直接开平方法解关于x 的方程: 【例7】 ⑴ ()()323212x x +-=; ⑵()22463x -=;⑶ ()2x m n -=; ⑷ ()2214x b c -=+【例8】 解关于x 的方程:⑴ ()()222332x x +=+; ⑵ ()()225293x x -=+;⑶ ()()22425931x x -=-.定 义实例剖析知识导航模块三 配方法解一元二次方程能力提升夯实基础配方法:通过配方把一元二次方程转化成形如()2ax b m +=的方程,再运用直接开平方的方法求解.⑴220x x += ⑵2+2=1x x -22101x x ++=+ 2+2+1=0x x()211x += ()2+1=0x 11x +=± 12==1x x - 11x +=或11x +=- 1202x x ==-,总结:用配方法解一元二次方程的一般步骤:①移项:把一元二次方程中含有未知数的项移到方程的左边,常数项移到方程的右边; ②“系数化1”:根据等式的性质把二次项的系数化为1;③配方:将方程两边分别加上一次项系数一半的平方,把方程变形为2()x m n +=的形式;④求解:若0n ≥时,方程的解为x m n =-±,若0n <时,方程无实数解配方法是一种重要的数学方法,运用配方法解一元二次方程,就是通过配方把方程变成2()x m n +=(0n ≥)的形式,再用直接开平方法求解,当0n <时,方程无实数解.... (1)“将二次项系数化为1”是配方的前提条件,第三步配方是关键也是难点.(2)配方法是一种重要的数学方法,它不仅表现在一元二次方程的解法中,在今后学习二次函数以及到高中学习二次曲线时还会经常用到,应予以重视.避免后续学习二次函数时出错.【例9】 用配方法解方程:⑴ 2420x x ++=; ⑵ 211063x x +-=; ⑶ 23123y y +=;⑷ 221233x x += ⑸ 2++5=0x x【例10】 用配方法解关于x 的方程 ⑴ 20x px q ++=(p q ,为已知常数);能力提升夯实基础⑵ 20ax bx c ++=(a 、b 、c 为常数且0a ≠)定 义示例剖析因式分解法:因式分解法解一元二次方程的依据:如果两个因式的积等于0,那么这两个因式至少有一个为0,即:若0ab =,则0a =或0b =;解方程:20x x -= 解:()10x x -= 则0x =或10x -= ∴0x =或1x =因式分解法的一般步骤:⑴ 将方程化为一元二次方程的一般形式;⑵ 把方程的左边分解为两个一次因式的积,右边等于0;⑶ 令每一个因式都为零,得到两个一元一次方程; ⑷ 解出这两个一元一次方程的解,即可得到原方 程的两个根.总结:1.因式分解法把一元二次方程作为两个一元一次方程来求解,体现了一种“降次”的思想.2.将方程右边变形为0,左边化为()()0ax b cx d ++=的形式.3.因式分解法是比前两种简单的一种方法,若能用此法优先考虑. 4.便于计算,先把方程整理成一般形式且首项为正号... 注意:1.解方程时,不能两边同时约去含未知数的代数式2.因式分解法的前提是方程一边等于0,此前提不成立时常得出错误答案知识导航模块四 因式分解法解一元二次方程【例11】 用因式分解法解方程:⑴ 23x x =; ⑵ 22230x x -=;⑶ ()()21210x x -+-=; ⑷ ()23242x x x -=-⑸ ()()21211x x ---=- ⑹ ()()224320x x +--=【例12】 已知a 是一元二次方程2210x x --=的根,求223352a a a --++的值.真题赏析夯实基础知识模块一 一元二次方程的概念 课后演练【演练1】 ⑴ 已知2x =是一元二次方程220x mx ++=的一个解,则m 的值是___________. 【演练2】 ⑵ 若方程2220kx x k k +-+=有一个根是0,则k 的值是____________.【演练3】 ⑶ 如果12x =是关于x 的方程22320x ax a +-=的根,那么关于y 的方程23y a -=的根是________________.【演练4】 ⑷ 已知3-是关于x 的方程22310x x a --+=的一个根,则31a -的值是_____________.⑸ 已知方程20x bx a ++=有一个根是()0a a -≠,则a b -的值是_________________.知识模块二 直接开平方法解一元二次方程 课后演练【演练5】 ⑴已知一元二次方程20ax bx c ++=的一个根为1,且a b 、满足等式223b a a =-+--,求方程2104y c -=的根.⑵用直接开平方法解方程:① ()22340x +-= ② ()241x k +=知识模块三 配方法解一元二次方程 课后演练【演练6】 用配方法解方程:【演练7】 ⑴ 2210x x --=; ⑵ 2660y y -+=;⑶ 23610x x -+=; ⑷ 2568x x =+实战演练【演练8】 用配方法解关于x 的方程:220x x k -+= 【演练9】知识模块四 因式分解法解一元二次方程 课后演练【演练10】 选择适当的方法解方程:【演练11】 ⑴ ()190x x x +--=; ⑵ 22224x x -=; ⑶ ()()222x x x -=-;⑷(20x x -+=; ⑸ 2414x x +=; ⑹ ()()23230x x x -+-=;。

相关文档
最新文档