浙江省温州市2019届九年级上学期期末测试数学试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019 学年第一学期九年级期末测试
数 学 试 题 卷
一、单选题(共 10 题,共 40 分)
1. 若
35a b =,则a b b
+的值为( ) A .85 B .35 C . D .5
8
2. 在平面直角坐标系中,若⊙O 是以原点为圆心,2 为半径的圆,则点 M (1,1)在( )
A .⊙O 内
B .⊙O 外
C .⊙O 上
D .不能确定
3. 抛物线 y = x 2 + 2x 的对称轴是(
)
A .直线 x =1
B .直线 x =2
C .直线 x =-1
D .直线 x =-2
4. 如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于 3 的数的概率是 ( ) A .
23 B .16 C .13 D .1
2
第 4 题图
第 5 题图
第 6 题图
第 7 题图
5. 如图,在 Rt △ABC 中,∠C =90°,BC =4,AC =3,则 cos B 的值是( )
A .
43 B .34 C .45 D .35
6. 如图,⊙O 是△ABC 的内切圆,D ,E ,F 是切点,∠A =40°,∠C =60°,则∠DOE =( ) A .80° B .90° C .100° D .110° 7. 如图,AB 是⊙O 的直径,且 AB =6,D ,C 为⊙O 上两点,∠D =30°,则扇形 AOC 的面
积为( ) A .1.5π B .3π C .4.5π D .6π
32
8.如图,一条抛物线的对称轴是直线x=-1,点A(-3,3),B(1.5,5.25),C(-1,-1)在该抛物线上,当-3≤x≤1.5 时,则下列说法正确的是( )
A.有最小值-1,有最大值3 B.有最小值-1,有最大值5.25
C.有最小值3,有最大值5.25 D.有最小值-1,没有最大值
9.如图,⊙O 中,AB 是直径,AC 是弦,D 是AC 上一点,若弧BC 的度数和∠ADO 都是60°,CD=2,则AB 的长是( )
A.4 B.3C.3D.12
第8 题图第9 题图第10 题图
10.如图,在Rt△ABC 中,∠ACB=90°,AB=10,BC=6,里面放置有两个大小相同的正方形CDEF 与正方形MNGH,点D 在BC 上,点F,M 在AC 上,点N,G 在AB 上,点
H 在EF 上.则正方形CDEF 的边长DE 为( )
A.30
13B.
36
13C.
18
5D.
12
5
二、填空题(共6 题,共30 分)
11.计算:sin30°+ tan45°=.
12.已知点A(-2,y1),B(3
2
,y2)在二次函数y =x2 - 2x -m 的图象上,则y1y2
(填“>”、“=”或“<”).
13.如图,在等边△ABC 中,AB=3,D 为BC 上一点,E 为AC 上一点,且∠ADE=60°,BD=1,则CE=.
A
P
M
E
G
B D C
第13 题图第15 题图第16 题图
14.一个不透明的布袋中,装有红、黄两种只有颜色不同的小球,其中红色小球有20 个,为估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色后放回,再
次搅匀……若经过大量试验后发现摸到黄球的频率是2
7,则可估计黄色小球的数目是
个.
15.如图,AB,CD 是⊙O 的弦,且AB∥CD,AB=6,CD=4,AO= 13(两个弓形)的面积之和为.
16.在△ABC 中,AB=AC= 5BC=4,P 是AB 上一点,连结PC,以PC 为直径作⊙M 交BC 于 D ,连结PD ,作DE ⊥AC 于点 E ,交PC 于点G ,已知PD =P G .则BD=.
三、解答题(共8 题,共80 分)
17.(8 分)如图,在⊙O 中,
AC =C B ,CD⊥OA 于D,CE⊥OB 于E,求证:AD=BE.18.(8 分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其
中红球有1 个,若从中随机摸出一个球,这个球是白球的概率为2
3
.
(1)求袋子中白球的个数;(请通过列式或列方程解答)
(2)随机摸出一个球后,不放回,再随机摸出一个球,求两次都摸到相同颜色的小球的概
率.(请结合树状图或列表解答)
19.(8 分)已知二次函数y =x2 +bx +c 的图象过A(1,0),B(3,0)两点.
(1)求b,c 的值;
(2)画出函数的大致图象;
(3)当x 取何值时,函数值y 随x 的增大而增大.
20.(8 分)如图在△ABC 中,已知DE∥BC,AD=3,DB=6,DE=4.
(1)求BC 的长;A
(2)若△ADE 的面积为4,求四边形BCED 的面积.
D E
B C 21.(10 分)如图,在一条河的北岸有两个目标M、N,现在在它的对岸设定两个观测点
A、B.已知AB∥MN,在A 点测得∠MAB=60°,在B 点测得∠MBA=45°,AB=600 米.
(1)求点M 到AB 的距离;(结果保留根号)
(2)在B 点又测得∠NBA=53°,求MN 的长.(结果精
确到1 3≈1.732,sin53°≈0.8,
cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)