复变函数与积分变换期末考试题
复变函数与积分变换试卷
![复变函数与积分变换试卷](https://img.taocdn.com/s3/m/c925f0195901020206409c27.png)
(2) ;
三、(16分)1.请在奇点处将 展开成罗朗级数;
2.将函数 在圆环 内展开成罗朗源自数。四、(12分)试作保角映射 把 的共公部分映成 ,且
五、(16分)1)求Laplace变换 ,其中 ,;
2)设 ,求Laplace逆变换 。
六(6分)设 是整函数,且 ,求证 是常数。
《复变函数与积分变换》课程期末考试试卷
题序
一
二
三
四
五
六
七
八
总 分
得分
评卷人
一、(每题8分,共32分)
(1)求复数 的实部与虚部;
(2)求解方程 ,写出解的实部与虚部
(3)指出函数 在何处可导,何处解析,并在可导处求出其导数。
(4)找出函数 的孤立奇点,并求出各点的留数。
二、计算积分(每题9分,共18分)
复变函数与积分变换五套试题及答案
![复变函数与积分变换五套试题及答案](https://img.taocdn.com/s3/m/df630ee3dc3383c4bb4cf7ec4afe04a1b071b01e.png)
复变函数与积分变换试题(一)一、填空(3分×10)1.的模 ,幅角 。
)31ln(i --2.-8i 的三个单根分别为: ,,。
3.Ln z 在 的区域内连续。
4.的解极域为:。
z z f =)(5.的导数。
xyi y x z f 2)(22+-==')(z f 6.。
=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s 7.指数函数的映照特点是:。
8.幂函数的映照特点是:。
9.若=F [f (t )],则= F 。
)(ωF )(t f )][(1ω-f 10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。
二、(10分)已知,求函数使函数为解析函222121),(y x y x v +-=),(y x u ),(),()(y x iv y x u z f +=数,且f (0)=0。
三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2)1.⎰=-2||)1(z z z dz2. C :绕点i 一周正向任意简单闭曲线。
⎰-c i z z3)(cos 五、(10分)求函数在以下各圆环内的罗朗展式。
)(1)(i z z z f -=1.1||0<-<i z 2.+∞<-<||1i z 六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。
)(0t t -δo iwt e -(2))(2ωπδ=⎰∞+∞-ω-dt e t i 七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0的解y (t )。
⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1., 2.-i 2i -i22942ln π+ππk arctg 22ln 32+-333.Z 不取原点和负实轴 4. 空集5.2z 6.07.将常形域映为角形域8.角形域映为角形域9.10.⎰∞+∞-ωωπωωd e F i )(21⎰∞+-0)(dte tf st 二、解:∵∴(5分)yu x x v ∂∂-=-=∂∂xuy y v ∂∂==∂∂c xy u +=cxy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴(2分)222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z (2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z 2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s =0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(∴原式=(2分) =23126⨯⨯i πi 63π-四、1.解:原式(3分)z 1=0z 2=1⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221=0(2分)]11[2+-=i π2.解:原式=iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-=1ich π-五、1.解:ni z z f ∑∞⎪⎫⎛--⋅=⋅⋅=⋅=1111111111)(分)(分)(分)((2分)11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)(2分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i 六、1.解:∵(3分)∴结论成立0)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(2)解:∵(2分)1)(2210==ωπδπ=ωω-ω-∞+∞-⎰t i t i e dw e ∴与1构成傅氏对)(2w πδ∴(2分))(2ωπδω=-∞+∞-⎰dt e t i 七、解:∵(3分)⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX S (2)-(1):∴(3分)⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s ∴cht e e t Y t t -=--=-121211)(八、解:①定义;②C-R 充要条件Th ;③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。
复变函数与积分变换五套试题及答案
![复变函数与积分变换五套试题及答案](https://img.taocdn.com/s3/m/4e95603fcc175527072208a1.png)
(2 分) (2 分) (2 分)
7
Re s[ f (z), ] 1
(1 分)
6.解:原式(3
分)
2iRe
s
z
ze z 2
1
,1
Re s
z
ze z 2
1
,1
zi i( cos z)zi i cos i = ich1
五、1.解:
f
(z)
(1分)
1 (z i)
z
1 i
i
(1分) 1 (z i)
1 i 31
1 z
i i
(1分) 1 z
i
1 i
n0
z
i
i n
n1
(3分)2i
e 2
e 1 2
2i ch1
(1 分)
7.解:
原式=(2 分)
1 dz =(1 分)
2i dz
| z | 1
2
z2
1
iz
|z|1 z 2 4z 1
2z
=(1 分)
2i
dz
|z|1 (z 2 3)(z 2 3)
数,且 f(0)=0。
三、(10 分)应用留数的相关定理计算
dz
|z|2 z 6 (z 1)(z 3)
四、计算积分(5 分×2)
dz
1. |z|2 z(z 1)
2. cos z c (z i)3
C:绕点 i 一周正向任意简单闭曲线。
复变函数与积分变换期末考试试卷及答案
![复变函数与积分变换期末考试试卷及答案](https://img.taocdn.com/s3/m/69902bdd360cba1aa811daef.png)
一、单项选择题(本大题共15小题,每小题2分,共30分) 1.下列复数中,位于第三象限的复数是( )A. 12i +B. 12i --C. 12i -D. 12i -+ 2.下列等式中,不成立的等式是( )4.34arctan3A i π-+-的主辐角为 .arg(3)arg()B i i -=-2.rg(34)2arg(34)C a i i -+=-+2.||D z z z ⋅=3.下列命题中,正确..的是( ) A. 1z >表示圆的内部B. Re()0z >表示上半平面C. 0arg 4z π<<表示角形区域D. Im()0z <表示上半平面4.关于0limz zz zω→=+下列命题正确的是( ) A.0ω=B. ω不存在C.1ω=-D.1ω=5.下列函数中,在整个复平面上解析的函数是( ).z A z e +2sin .1z B z + .tan z C z e + .sin zD z e +6.在复平面上,下列命题中,正确..的是( )A. cos z 是有界函数B. 22Lnz Lnz =.cos sin iz C e z i z =+.||D z =7.在下列复数中,使得ze i =成立的是( ).ln 223iA z i ππ=++.ln 423iB z i ππ=++.ln 226C z i ππ=++.ln 426D z i ππ=++8.已知31z i =+,则下列正确的是( )12.iA z e π=34.i B z π=712.i C z eπ=3.iD z π=9.积分||342z dz z =-⎰的值为( )A. 8i πB.2C. 2i πD. 4i π10.设C 为正向圆周||4z =, 则10()zC e dz z i π-⎰等于( ) A.110!B.210!iπ C.29!iπ D.29!iπ- 11.以下关于级数的命题不正确的是( )A.级数0327nn i ∞=+⎛⎫⎪⎝⎭∑是绝对收敛的B.级数212(1)n n in n ∞=⎛⎫+ ⎪-⎝⎭∑是收敛的 C. 在收敛圆内,幂级数绝对收敛D.在收敛圆周上,条件收敛12.0=z 是函数(1cos )ze z z -的( )A. 可去奇点B.一级极点C.二级极点D. 三级极点13.1(2)z z -在点 z =∞ 处的留数为( )A. 0.1B C.12D. 12-14.设C 为正向圆周1||=z , 则积分 sin z c e dzz⎰等于( )A .2πB .2πiC .0D .-2π15.已知()[()]F f t ω=F ,则下列命题正确的是( ) A. 2[(2)]()j f t eF ωω-=⋅FB. 21()[(2)]j ef t F ωω-⋅=+FC. [(2)]2(2)f t F ω=FD. 2[()](2)jte f t F ω⋅=-F二、填空题(本大题共5小题,每小题2分,共10分) 16. 设121,1z i z =-=,求12z z ⎛⎫=⎪⎝⎭____________. 17. 已知22()()()f z bx y x i axy y =++++在复平面上可导,则a b +=_________. 18. 设函数)(z f =cos zt tdt ⎰,则)(z f 等于____________.19. 幂极数n n2n 1(2)z n ∞=-∑的收敛半径为_______. 20. 设3z ω=,则映射在01z i =+处的旋转角为____________,伸缩率为____________.20. 设函数2()sin f t t t =,则()f t 的拉氏变换等于____________.三、计算题(本大题共4小题,每题7分,共28分) 21.设C 为从原点到3-4i 的直线段,计算积分[()2]CI x y xyi dz =-+⎰22. 设2()cos ze f z z z i=+-. (1)求)(z f 的解析区域,(2)求).(z f '24.已知22(,)4u x y x y x =-+,求一解析函数()(,)(,)f z u x y iv x y =+,并使(0)3f = 23. 将函数1()(1)(2)f z z z =--在点0=z 处展开为洛朗级数.25. 计算2||3(1)()(4)z dzz z i z =++-⎰.四、综合题(共4小题,每题8分,共32分) 25. 计算201.54cos d πθθ-⎰26. 求分式线性映射()f z ω=,使上半平面映射为单位圆内部并满足条件(2)0f i =,arg (0)1f =.27. 求函数2,10(),010,t f t t t --<≤⎧⎪=<≤⎨⎪⎩其它的傅氏变换。
《复变函数与积分变换》期末考试试卷含答案
![《复变函数与积分变换》期末考试试卷含答案](https://img.taocdn.com/s3/m/e5ed86065727a5e9856a61de.png)
一.填空题(每小题3分,共计15分)1.231i -的幅角是( 2,1,0,23±±=+-k k ππ); 2.)1(i Ln +-的主值是( i 432ln 21π+ ); 3. 211)(z z f +=,=)0()5(f ( 0 ), 4.0=z 是 4sin zzz -的( 一级 )极点; 5.zz f 1)(=,=∞]),([Re z f s (-1 );二.选择题(每题4分,共24分) 1.解析函数),(),()(y x iv y x u z f +=的导函数为(B ); (A ) y x iu u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( D ),则0d )(=⎰Cz z f . (A )23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2)2(3-z .3.如果级数∑∞=1n n nz c 在2=z 点收敛,则级数在(C )(A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;(C )i z +=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( B )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;(B) 如果)(z f 在C 所围成的区域内解析,则0)(=⎰Cdz z f(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v在该区域内均为调和函数.5.下列结论不正确的是( D ).的可去奇点;为、z A 1sin )(∞的本性奇点;为、z B sin )(∞.sin )(的孤立奇点为、z C 11∞的孤立奇点;为、z D sin )(1∞ 三.按要求完成下列各题(每小题10分,共40分) (1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xvy u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。
北京交通大学复变函数和积分变换期末试卷及其答案
![北京交通大学复变函数和积分变换期末试卷及其答案](https://img.taocdn.com/s3/m/ec9182b9a5e9856a57126048.png)
北 京 交 通 大 学2006-2007学年第二学期《复变函数和积分变换》期末试卷(B )学院_____________ 专业_________________ 班级____________ 学号_______________ 姓名_____________ 任课教师一.(1) 方程()t i 1z +=(t 为实参数)给出的曲线是 ; (2) 复数3i 1+的指数形式是 ; (3) 函数()224z z 1z +-,z=0为 级极点,2i z ±=为 级极点;(4)(5) 若∑==0n n n2nz )(z f ,则其收敛半径 ;(6) 计算留数:⎪⎭⎫⎝⎛0,z cosz Res 3 ;(7) 函数()()()y ,x iv y ,x u z f +=在()y ,x z =可微的充要条件为;(8) 曲线y x :=C 在映射z1)(=z f 下的像是 ;(9) C 为以a 为圆心,r 为半径的圆周,计算()⎰-Cna z dz(n 为正整数); (10) 判断n1n 25i 1∑∞=⎪⎭⎫ ⎝⎛+的敛散性 .二、计算题(25分,每小题各5分) (1)、计算积分⎰CRezdz 其中积分路径C 为:①连接由原点到1+i 的直线段;②连接由原点到点1的直线段及连接由点1到点1+i 的直线段所组成的折线.(2)、已知:()()3z e 1zsinzz f -=求:]0),z (f [Re s(3)、计算()()10dz z 1ln rz <<+⎰=r(4)、计算()()dz i z z 9zC2⎰+-,其中2||=z C 为正向圆周:。
(5)计算dz e 1z z 12⎰=.三、求积分()dz 1z z e 4z 22z⎰=-(7分)四、求解析函数),(),()(y x v y x u z f +=,已知()233x y x y ,x u -= ,且()i 0f =.(7分)五、验证()()0x xyarctgy ,x v >=在右半z 平面内满足Laplace 方程,即0,0=∆=∆ψϕ;其中22y x ∂∂+∂∂=∆, 并求以此为虚部的解析函数()z f .(8分)六、(8分)求函数()()()2z 1z 1z f --=分别在如下区域展成洛朗展式(1).1|1|0<-<z (2)0<2z -<1.七、求实轴在映射iz 2i+=ω下的象曲线(8分) 八、求函数()()0t 0,t 1,t f >⎪⎩⎪⎨⎧>≤=δδδ的傅立叶变换(7分)一、(1)直线y=x(2)i32k 2e⎪⎭⎫ ⎝⎛+ππ(3)一;二 (4)()()3i 12;2;3i 12313231--+--(5)2 (6)21-(7)①函数u(x,y),v(x,y)在(x,y)可微②u(x,y),v(x,y)在(x,y)满足C.-R.条件.即x y y x v u ,v u -==. (8)x=-y(9)⎩⎨⎧>=1n ,01n ,i 2π(10发散二、(1) ①连接原点到点1+i 的直线段的参数方程为:z=(1+i)t 1)t (0≤≤故⎰CRezdz =()[]{}()dt i 1t i 1Re 1++⎰=()⎰+1tdt i 1=2i1+ ②连接由原点到点1的直线段的参数方程为: z=t 1)t (0≤≤,连接由点1到点1+i 的直线段参数方程为: z=(1-t)+(1+i)t 1)t (0≤≤, 即 z=1+it 1)t (0≤≤,故⎰CRezdz =()[]⎰⎰++110idt it 1Re Retdt=⎰⎰+110dt i tdt=i 21+ (2)由题可知被积函数只有z=0一个奇点。
北京交通大学复变函数和积分变换期末试卷及其答案
![北京交通大学复变函数和积分变换期末试卷及其答案](https://img.taocdn.com/s3/m/04123a0abe23482fb5da4c1e.png)
北 京 交 通 大 学2006-2007学年第二学期《复变函数和积分变换》期末试卷(B )学院_____________ 专业_________________ 班级____________ 学号_______________ 姓名_____________ 任课教师一.(1) 方程()t i 1z +=(t 为实参数)给出的曲线是 ; (2) 复数3i 1+的指数形式是 ; (3) 函数()224z z 1z +-,z=0为 级极点,2i z ±=为 级极点;(4)(5) 若∑==0n n n2nz )(z f ,则其收敛半径 ;(6) 计算留数:⎪⎭⎫⎝⎛0,z cosz Res 3 ;(7) 函数()()()y ,x iv y ,x u z f +=在()y ,x z =可微的充要条件为;(8) 曲线y x :=C 在映射z1)(=z f 下的像是 ;(9) C 为以a 为圆心,r 为半径的圆周,计算()⎰-Cna z dz(n 为正整数); (10) 判断n1n 25i 1∑∞=⎪⎭⎫ ⎝⎛+的敛散性 .二、计算题(25分,每小题各5分) (1)、计算积分⎰CRezdz 其中积分路径C 为:①连接由原点到1+i 的直线段;②连接由原点到点1的直线段及连接由点1到点1+i 的直线段所组成的折线.(2)、已知:()()3z e 1zsinzz f -=求:]0),z (f [Re s(3)、计算()()10dz z 1ln rz <<+⎰=r(4)、计算()()dz i z z 9zC2⎰+-,其中2||=z C 为正向圆周:。
(5)计算dz e 1z z 12⎰=.三、求积分()dz 1z z e 4z 22z⎰=-(7分)四、求解析函数),(),()(y x v y x u z f +=,已知()233x y x y ,x u -= ,且()i 0f =.(7分)五、验证()()0x xyarctgy ,x v >=在右半z 平面内满足Laplace 方程,即0,0=∆=∆ψϕ;其中22y x ∂∂+∂∂=∆, 并求以此为虚部的解析函数()z f .(8分)六、(8分)求函数()()()2z 1z 1z f --=分别在如下区域展成洛朗展式(1).1|1|0<-<z (2)0<2z -<1. 七、求实轴在映射iz 2i+=ω下的象曲线(8分) 八、求函数()()0t 0,t 1,t f >⎪⎩⎪⎨⎧>≤=δδδ的傅立叶变换(7分) 一、(1)直线y=x(2)i32k 2e⎪⎭⎫ ⎝⎛+ππ(3)一;二 (4)()()3i 12;2;3i 12313231--+--(5)2 (6)21-(7)①函数u(x,y),v(x,y)在(x,y)可微②u(x,y),v(x,y)在(x,y)满足C.-R.条件.即x y y x v u ,v u -==. (8)x=-y (9)⎩⎨⎧>=1n ,01n ,i 2π(10发散二、(1) ①连接原点到点1+i 的直线段的参数方程为:z=(1+i)t 1)t (0≤≤故⎰CRezdz =()[]{}()dt i 1t i 1Re 1++⎰=()⎰+1tdt i 1=2i1+ ②连接由原点到点1的直线段的参数方程为: z=t 1)t (0≤≤,连接由点1到点1+i 的直线段参数方程为: z=(1-t)+(1+i)t 1)t (0≤≤, 即 z=1+it 1)t (0≤≤,故⎰CRezdz =()[]⎰⎰++110idt it 1Re Retdt=⎰⎰+110dt i tdt=i 21+ (2)由题可知被积函数只有z=0一个奇点。
复变函数与积分变换五套试题及答案
![复变函数与积分变换五套试题及答案](https://img.taocdn.com/s3/m/c84251f232d4b14e852458fb770bf78a65293abb.png)
复变函数与积分变换五套试题及答案复变函数与积分变换试题(一)一、填空(3分×10)1.)31ln(i --的模,幅角。
2.-8i 的三个单根分别为:,,。
3.Ln z 在的区域内连续。
4.z z f =)(的解极域为:。
5.xyi y x z f 2)(22+-=的导数=')(z f。
6.=??0,sin Re 3z z s。
7.指数函数的映照特点是:。
8.幂函数的映照特点是:。
9.若)(ωF =F [f (t )],则)(t f = F )][(1ω-f。
10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。
二、(10分)已知222121),(y x y x v +-=,求函数),(y x u 使函数),(),()(y x iv y x u z f +=为解析函数,且f (0)=0。
三、(10分)应用留数的相关定理计算=--2||6)3)(1(z z z z dz四、计算积分(5分×2) 1.?=-2||)1(z z z dz2.?-c i z z3)(cos C :绕点i 一周正向任意简单闭曲线。
五、(10分)求函数)(1)(i z z z f -=在以下各圆环内的罗朗展式。
1.1||0<-六、证明以下命题:(5分×2)(1))(0t t -δ与o iwt e -构成一对傅氏变换对。
(2))(2ωπδ=?∞+∞-ω-dt e t i七、(10分)应用拉氏变换求方程组??='+=+'+='++'0401z y z y x z y x 满足x (0)=y (0)=z (0)=0的解y (t )。
八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1. 22942ln π+ ,ππk arctg 22ln 32+-2. 3-i 2i 3-i3. Z 不取原点和负实轴4. 空集5. 2z 6. 07.将常形域映为角形域8. 角形域映为角形域 9.∞+∞-ωωπωωd e F i )(2110. ?∞+-0)(dt e t f st二、解:∵yu x x v ??-=-=?? xuy y v ??==??∴c xy u +=(5分)c xy y x i z f ++??? ??+-=22212 1)(∵f (0)=0 c =0 (3分)∴222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--= (2分)三、解:原式=(2分)??--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z(2分)??---=∑=k k z z z z s i ,)3)(1(1 Re 2643π33=z ∞=4z2312(3,)3)(1(1Re 66?=??--分)z z z s--=∞--0,1)31)(11(11Re 2,)3)(1(1Re 26 6z z z z s z z z s 分)(=0∴原式=(2分) 23126??i π=i 63π- 四、1.解:原式??-π=∑=k k z z z s i ,)1(1Re 221(3分) z 1=0 z 2=1]11[2+-=i π=0 (2分)2.解:原式iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-==1ich π- 五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=--?-=-+-=+-?-=0111111)(111)(11)(分)(分)(分)(11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=(2分)2.解:??-+?-=-+?-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)nn i z i i z ∑∞=??? ??---=2)(120)(11+∞=-=∑n n n i z i 2)(--∞=-=∑n n n i z i (2分)六、1.解:∵00)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-? (3分)∴结论成立(2)解:∵1)(2210==ωπδπ=ωω-ω-∞+∞-?ti t i e dw e(2分)∴)(2w πδ与1构成傅氏对∴)(2ωπδω=-∞+∞-?dt e t i(2分)七、解:∵=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX (3分)S (2)-(1):∴??? ??-?-=s s s Y 111)(2??++--=--=1111211112s s s s s s (3分)∴cht e e t Y t t -=--=-121211)( 八、解:①定义;②C-R 充要条件Th ;③v 为u 的共扼函数 10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。
复变函数与积分变换试题和答案
![复变函数与积分变换试题和答案](https://img.taocdn.com/s3/m/3c6fdd705901020207409cfa.png)
复变函数与积分变换试题(一)一、填空(3分×10)1.)31ln(i --的模.幅角。
2.-8i 的三个单根分别为: . . 。
3.Ln z 在 的区域内连续。
4.z z f =)(的解极域为:。
5.xyi y x z f 2)(22+-=的导数=')(z f。
6.=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s。
7.指数函数的映照特点是: 。
8.幂函数的映照特点是:。
9.若)(ωF =F [f (t )].则)(t f = F )][(1ω-f。
10.若f (t )满足拉氏积分存在条件.则L [f (t )]=。
二、(10分)已知222121),(y x y x v +-=.求函数),(y x u 使函数),(),()(y x iv y x u z f +=为解析函数.且f (0)=0。
三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2) 1.⎰=-2||)1(z z z dz2.⎰-c i z z3)(cos C :绕点i 一周正向任意简单闭曲线。
五、(10分)求函数)(1)(i z z z f -=在以下各圆环内的罗朗展式。
1.1||0<-<i z 2.+∞<-<||1i z六、证明以下命题:(5分×2)(1))(0t t -δ与o iwt e -构成一对傅氏变换对。
(2))(2ωπδ=⎰∞+∞-ω-dt e t i七、(10分)应用拉氏变换求方程组⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 满足x (0)=y (0)=z (0)=0的解y (t )。
八、(10分)就书中内容.函数在某区域内解析的具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1. 22942ln π+ .ππk arctg 22ln 32+-2.3-i 2i 3-i3. Z 不取原点和负实轴4. 空集5. 2z 6. 0 7.将常形域映为角形域8. 角形域映为角形域9.⎰∞+∞-ωωπωωd e F i )(2110. ⎰∞+-0)(dt e t f st二、解:∵y ux x v ∂∂-=-=∂∂ xuy y v ∂∂==∂∂∴c xy u += (5分)c xy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0 (3分)∴222222)2(2)(2)(z i xyi y x i y x i xy z f -=+--=--=(2分)三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π 01=z 12=z(2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π 33=z ∞=4z2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) 23126⨯⨯i π=i 63π-四、1.解:原式⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221 (3分) z 1=0z 2=1]11[2+-=i π=0(2分)2.解:原式iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-==1ich π-五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)(11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=(2分)2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i (2分) 六、1.解:∵00)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(3分) ∴结论成立 (2)解:∵1)(2210==ωπδπ=ωω-ω-∞+∞-⎰ti t i e dw e(2分)∴)(2w πδ与1构成傅氏对∴)(2ωπδω=-∞+∞-⎰dt e t i(2分)七、解:∵⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX(3分)S (2)-(1):∴⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s (3分)∴cht e e t Y tt -=--=-121211)( 八、解:①定义;②C-R 充要条件Th ; ③v 为u 的共扼函数 10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的( )条件。
复变函数与积分变换期末试题附有答案
![复变函数与积分变换期末试题附有答案](https://img.taocdn.com/s3/m/cf7f361628ea81c759f578bb.png)
复变函数与积分变换期末试题附有答案Last revision on 21 December 2020复变函数与积分变换期末试题一.填空题(每小题3分,共计15分)1.231i -2.)1(i Ln +-的主值是();3. 211)(z z f +=,=)0()5(f( 0 ),4.0=z 是4sin z z z -的( 一级 )极点;5. zz f 1)(=,=∞]),([Re z f s (-1 );二.选择题(每题3分,共15分)1.解析函数),(),()(y x iv y x u z f +=的导函数为( );(A ) y x iu u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( ),则0d )(=⎰Cz z f .(A )23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ;3.如果级数∑∞=1n nnz c 在2=z 点收敛,则级数在(A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;(C )i z+=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( ).(A) 的可去奇点;为z1sin ∞(B) 的本性奇点;为z sin ∞(C) ;1sin 1的孤立奇点为z∞三.按要求完成下列各题(每小题10分,共40分)(1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。
复变函数与积分变换五套试题及答案
![复变函数与积分变换五套试题及答案](https://img.taocdn.com/s3/m/cce3c50ff12d2af90242e61a.png)
复变函数与积分变换试题(一)一、填空(3分×10)1.)31ln(i --的模,幅角。
2.-8i 的三个单根分别为: , , 。
3.Ln z 在 的区域内连续。
4.z z f =)(的解极域为:。
5.xyi y x z f 2)(22+-=的导数=')(z f。
6.=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s。
7.指数函数的映照特点是: 。
8.幂函数的映照特点是:。
9.若)(ωF =F [f (t )],则)(t f = F )][(1ω-f。
10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。
二、(10分)已知222121),(y x y x v +-=,求函数),(y x u 使函数),(),()(y x iv y x u z f +=为解析函数,且f (0)=0。
三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2) 1.⎰=-2||)1(z z z dz2.⎰-c i z z3)(cos C :绕点i 一周正向任意简单闭曲线。
五、(10分)求函数)(1)(i z z z f -=在以下各圆环内的罗朗展式。
1.1||0<-<i z 2.+∞<-<||1i z六、证明以下命题:(5分×2)(1))(0t t -δ与o iwt e -构成一对傅氏变换对。
(2))(2ωπδ=⎰∞+∞-ω-dt e t i七、(10分)应用拉氏变换求方程组⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 满足x (0)=y (0)=z (0)=0的解y (t )。
八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1. 22942ln π+ ,ππk arctg 22ln 32+-2. 3-i 2i 3-i3. Z 不取原点和负实轴4. 空集5. 2z 6. 07.将常形域映为角形域8. 角形域映为角形域 9.⎰∞+∞-ωωπωωd e F i )(2110. ⎰∞+-0)(dt e t f st二、解:∵yu x x v ∂∂-=-=∂∂ xuy y v ∂∂==∂∂∴c xy u +=(5分)c xy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0 c =0 (3分)∴222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=(2分)三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z(2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) 23126⨯⨯i π=i 63π- 四、1.解:原式⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221(3分) z 1=0 z 2=1]11[2+-=i π=0 (2分)2.解:原式iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-==1ich π-五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)(11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=(2分)2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=2)(120)(11+∞=-=∑n n n i z i 2)(--∞=-=∑n n n i z i (2分) 六、1.解:∵00)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰ (3分) ∴结论成立(2)解:∵1)(2210==ωπδπ=ωω-ω-∞+∞-⎰ti t i e dw e(2分)∴)(2w πδ与1构成傅氏对∴)(2ωπδω=-∞+∞-⎰dt e t i(2分)七、解:∵⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX (3分)S (2)-(1): ∴⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s (3分)∴cht e e t Y t t -=--=-121211)( 八、解:①定义; ②C-R 充要条件Th ; ③v 为u 的共扼函数 10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。
复变函数与积分变换期末考试复习题及参考答案-高起本
![复变函数与积分变换期末考试复习题及参考答案-高起本](https://img.taocdn.com/s3/m/99734cdefad6195f302ba642.png)
《复变函数与积分变换》复习题一、判断题1、cos z 与sin z 在复平面内有界. ( )2、若{}n z 收敛,则{Re }n z 与{Im }n z 都收敛. ( )3、若函数()f z 在0z 处解析,则它在该点的某个邻域内可以展开为幂级数. ( )4、若()f z 在区域D 内解析,且'()0f z ,则()f z C (常数).( )5、若()f z 在区域D 内解析, 则对D 内任一简单闭曲线C ()0Cf z dz .( )6、若()f z 在0z 的某个邻域内可导,则函数()f z 在0z 解析. ( )7、若{}n z 收敛,则{Re }n z 与{Im }n z 都收敛. ( )8、若()f z 在区域D 内解析,且'()0f z ,则()f z C (常数).( )9、若0z 是()f z 的m 阶零点,则0z 是1/()f z 的m 阶极点. ( )10、若0lim ()zz f z 存在且有限,则0z 是函数()f z 的可去奇点.( )二、选择题 1.arg13i ( )A.-3π B.3πC.32πD.3n 2π+2 2.2z 在0z 复平面上( )A.不连续B.可导C.不可导D.解析3.设z xyi ,则下列函数为解析函数的是( )A.22()2f z x y xyB.()f z x iyC. ()2f z x i yD.()2f z xiy7.0z 是3sin zz 的极点,其阶数为( ) A.1 B.2 C.3 D.410.整数0k 则Res[cot ,]z =( )A.1kB.0C.1kD.k11、设复数1cossin33z i ,则arg z ( )A.-3B.6C.3D.2312、2w z 将z 平面上的实轴映射为w 平面的( )A.非负实轴B.实轴C.上半虚轴D.虚轴13、下列说法正确的是( )。
复变函数与积分变换期末考试复习题及参考答案-专升本
![复变函数与积分变换期末考试复习题及参考答案-专升本](https://img.taocdn.com/s3/m/396d88347c1cfad6185fa742.png)
《复变函数与积分变换》复习题一、填空题1、写出复数1i +的其他两种表示形式:______________________;______________;2、ln(3)-= __________________;3、221Re [3,]s z z z++∞=___________; 4、映射2w z =,在1z i =+处的旋转角是___________,伸缩率_____________;5、设2()cos f t t t =+,则()f t 的拉氏变换为______________。
6、3270z +=的根为__________;7、1i e -+ 的模__________;8、2213Re [2(1),1](1)1s z z z ++-=--__________; 9、3,02i z e θθπ=≤≤,表示何种曲线_________;10、映射21w z =-,在z i =处的旋转角是________,伸缩率_________。
二、计算题1、解方程 380z +=2、(1Re )Cz dz +⎰,其中C 为沿虚轴从i -到i 3、()21z zdz z =-⎰ 4、112cos z z dz z=⎰ 5、用留数定理计算积分22sin (1)z z dz z z =-⎰,6、()=w F ()()()11i w w πδδ-++的傅氏逆变换式。
7、求幂级数21nnz n ∞=∑的收敛半径,并指出在收敛圆周上的敛散性;8、C z dz ⎰,其中C 为沿虚轴从i -到i 。
9、5sin 2z zdz z π=⎛⎫- ⎪⎝⎭⎰10、74zz e dz z =⎰ 11、用留数定理计算积分21sin (1)z z zdz z e =-⎰,12、已知()2,t f t e cos t =求()f t 的拉普拉斯变换;13、()=w F ()()()22w w πδδ-++的傅氏逆变换式。
14、判断级数112n n i n ∞=⎛⎫+ ⎪⎝⎭∑的收敛性,绝对收敛性;三、解答题1、讨论函数()3223f z x y i =+的连续性、可导性及解析性;2、3cos 1(1)z z z --的奇点?各属何类型?如是极点,指出它的阶数。
复变函数与积分变换期末试题及答案
![复变函数与积分变换期末试题及答案](https://img.taocdn.com/s3/m/fb0f05dead51f01dc281f174.png)
复变函数与积分变换试题与答案一、填空题:(每题3分)1.i 31--的三角表达形式: ; 指数表达形式: ; 几何表达形式: . 2.=-i 2)3( ;3. 设Max =M {}C z z f ∈|)(|,L 为曲线C 的长度,则≤⎰z z f C d )( . 4.级数21n z z z +++++的和函数的解析域是 。
5. 分式线性函数、指数函数、幂函数的映照特点各是 二、解答题(每题8分)1.设22()i f z xy x y =+,则()f z 在何处可导?何处解析?2.已知f (z )的虚部为222121),(y x y x v +-=,求解析函数0)0()(=+=f iv u z f 且.3.求积分 ,C I zdz =⎰ C 为沿单位圆(||1)z =的逆时针一周的曲线。
4.求sin d (1)Czz z z -⎰,其中C 为||2z =。
5.求e d cos zCz z⎰,其中C 为||2z =。
6.把函数)2)(1(12-+z z 在2||1<<z 内展开成罗朗级数。
7.指出 6sin )(z zz z f -= 在有限复平面上的孤立奇点及类型,并求奇点处的留数。
8.求将单位圆 | z | < 1内保形映照到单位圆 | w | < 1内, 且满足0)21(=f ,2)21(arg π='f 的分式线性映照。
四、利用拉氏变换求解微分方程(6分)⎩⎨⎧='==+'+''-1)0()0(34y y e y y y t (提示:1[]1t L e s -=+)试题答案一、填空题:(每题3分) 1.i 31--的三角表达形式:222[cos(2)sin(2)]33k i k ππππ-++-+; 指数表达形式:2(2)32k i eππ-+ ;几何表达形式:|12,-=2(1(2)3Arg k ππ-=-+. 2.=-i 2)3(222ln3k ieππ--+;3. 设Max =M {}C z z f ∈|)(|,L 为曲线C 的长度,则()d Cf z z ML ≤⎰.4.级数21n z z z +++++的和函数的解析域是||1z <。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈尔滨工程大学本科生考试试卷( 2010-2011 年 第一 学期)2011-01-04得分评卷人选择题(每小题2分,共10分)一、1、00Im Im limz z z z z z →-=- ( ).A.i B.i - C.0 D.不存在2、若0(1)n n n a z ∞=-∑在3z =发散,则它在 ( ).A . 1z =-收敛 B.2z =收敛 C . 2z i =发散 D . 均不正确3、已知函数212()1cos f z z z=--,则0z =,z =∞分别是()f z 的 ( ).A.二阶极点、孤立奇点 B.二阶极点、非孤立奇点 C.可去奇点、孤立奇点 D.可去奇点、非孤立奇点4、映射3z iw z i-=+在02z i =处的旋转角为 ( ). A./2π- B.0 C ./2π D . π5、下列命题或论断中,正确的个数是 ( ).I :Ln z Ln z =Ⅱ:设()(,)(,)f z u x y iv x y =+解析,则u -是v 的共轭调和函数III :()(,)(,)f z u x y iv x y =+的导数()f z '存在的充要条件是,u v 的偏导数分别存在Ⅳ:()tan(1/)f z z =在任意圆环域0z R <<不能展开为洛朗级数A.0 B.1 C.2 D.3得分评卷人填空题(每小题2分,共10分)二、6、设z i e i =,则Re z = .7、若函数32(,)v x y x axy =+为某一解析函数的虚部,则常数=a .8、设函数cos ze z 的泰勒展开式为∑∞=0n n n z c ,则它的收敛半径为 .9、设信号()(1)f t t δ=-,则通过Fourier 变换得到的频谱函数()F ω= .10、设1()(1)F s s s =-,则通过Laplace 逆变换得到()f t = . 得分评卷人计算题Ⅰ(每小题5分,共25分)三、11、函数33()23f z x i y =+在何处可导?何处解析?12、设()(,)(,)f z u x y iv x y =+是解析函数,且22()(4)u v x y x xy y -=-++,求()f z .13、计算积分()n Cz z dz +⎰,其中:1C z =为负向,n 为整数.14、计算积分(21)(2)C zdzz z +-⎰,其中:3C z =为正向.15、利用留数定理计算定积分201cos d πθθ+⎰.得分评卷人计算题Ⅱ(每小题6分,共18分)四、16、求函数23()32z f z z z -=-+在下列要求下的级数(泰勒或者洛朗级数)展开:(1) 圆1z <内;(2) 环12z <<内;(3) 环11z <-<∞内.17、设2321sin (),:32C e f z d C z iz ξξξξπξξ=-=-⎰正向,试求:(1) ()f z 在复平面上除去3z =的点处的函数表达式; (2) ()f i '及()f i π.18、按照要求逐步完成下列有关保形映射的问题.(1) Z 平面阴影部分是角形区域/6arg /6z ππ-<<,如下图所示。
通过何种变换,保形映射为1w 平面上的右半平面?在下图方框中填入该变换.1w 平面(2) 21(1)w i w =⋅+,在下图中画出经过该映射后的区域. 得分评卷人应用题(8分)五、19、质量为m 的物体挂在弹簧系数为20k m ω=的弹簧一端(如下图所示),其中常数0ω为固有频率,()f t 为作用在物体上的外力。
若物体从静止平衡位置0x =开始运动,物体的初始位移(0)0,x =初始速度大小(0)0x '=,根据牛顿定律可得到方程:()()()m x t f t kx t ''⋅=-假设在初始时刻0t =时,物体受到外力()()f t t δ=(()t δ为单位冲击函数),应用Laplace 变换,求解物体的运动规律()x t 。
xx =0mxkxf (t )得分评卷人证明题(5+4=9分)六、20、假设()f z 在给定区域D 解析,且()0f z ≠,若()f z 为常数,证明:()f z 为常数.21、若1n n a ∞=∑收敛而级数1n n a ∞=∑发散,证明:幂级数1n n n a z ∞=∑的收敛半径为1.题号一二三总分分数评卷人得分评卷人填空题(每小题2分,共20分)一、1. 3i = .2. 设3223()33f z x x yi xy y i =+--,则()f z '= .3. 幂级数0(cos )n n in z +∞=∑的收敛半径R = .4. 设C 为正向圆周32z =,则积分22d (1)(4)Cz z z =++⎰ . 5. 设C 为包含原点的任意一条正向简单闭曲线,则12e d zCz z =⎰. 6. z =0是函数5cos 1()z f z z -=的孤立奇点,其类型为 . (如果是极点,则要说明阶数) 7. 函数21()(1)f z z z =-在复平面内的所有有限奇点处留数的和为 .8. 映射1w z =将z 平面内的圆域11z -<映射到w 平面内的区域为 .9. 函数sin w z =在4z π=处的转动角为 .10. 已知函数0,0,()1,0.t u t t <⎧=⎨>⎩,0,0,()e ,0.t t f t t -<⎧=⎨>⎩,则()*()u t f t = .得分评卷人单项选择题(每小题2分,共20分)二、哈尔滨工程大学本科生考试试卷( 2012 年 秋季 学期)说明:请将以下单项选择题的答案按题号写入下表中.1 2 3 4 5 6 7 8 9 101.方程2Re 1z =所表示的平面曲线为( ).(A) 圆 (B) 直线 (C) 椭圆 (D) 双曲线2.极限0limz zz z→+的值为( ). (A) 0 (B) 1 (C) 1- (D)不存在3.设Ln(1)w i =-,则Im w 为( ).(A) 4-π(B) 2,0,1,4k k ππ=±- (C)4π (D) 2,0,1,4k k ππ+=±4.下列等式中,不成立的是( ).(A) 4arg(34)arctan 3i π-+=-(B) arg(3)arg()i i -=- (C) 2arg(34)2arg(34)i i -+=-+(D) 2||z z z ⋅=5.下列函数中,在整个复平面上解析的函数是( ).(A) e z z +(B) tan e z z +(C) sin e z z +(D)2sin 1zz + 6.在复平面内,下列命题正确的是( ).(A) e cos sin iz z i z =+ (B)2||z z =(C) cos z 是有界函数(D) 2Ln 2Ln z z =7.下列积分中,积分值不为零的是( ).(A) 3(23)d Cz z z ++⎰,其中C 为正向圆周|1|2z -= (B) e d z Cz ⎰,其中C 为正向圆周||5z =(C)sin d C zz z ⎰,其中C 为正向圆周||1z =(D)cos d 1C zz z -⎰,其中C 为正向圆周||2z =8.设C 为正向圆周||4z =, 则积分10e d ()zC z z i π-⎰的值为( ). (A)110!(B)210!iπ (C)29!iπ (D)29!iπ- 9.3z π=是函数sin()3()3z f z z ππ-=-的( ).(A) 可去奇点 (B) 一阶极点(C) 本性奇点(D)一阶零点10.已知[()]()f t F ω=F ,则下列命题中正确的是( )(A) 2[(2)]e ()i f t F ωω-=F (B) 2[e ()](2)it f t F ω=-F (C) [(2)]2(2)f t F ω=F (D) 12[(2)]e ()it F f t ω-+=F得分评卷人计算题(每小题5分,共30分)三、1. 已知e sin x v y =为调和函数,求以v 为虚部的解析函数()f z .2. 求()(1)(2)zf z z z =--在圆环域12z <<和12z <-<+∞内的洛朗展开式.3. 利用留数计算积分22cos d 45xx x x +∞-∞++⎰.4. 求分式线性映射()w f z=,使下半平面映射为单位圆内部,并满足条件(2)0f i-=,(0)1f=-.5. 利用拉氏变换解常微分方程初值问题62(0)1,(0)0 y y yy y'''--=⎧⎨'==⎩.6. 求函数()()(3)f t u t t δ=+-的傅氏变换,其中()u t 为单位阶跃函数,()t δ为单位脉冲函数.复变函数与积分变换期末考试A 卷标准答案与评分标准一、 填空题(每小题2分,共20分)1.3ln 2i k e +-π或2ln3k i e π+;2. 23z 或22336x y xyi -+;3. e1; 4. 0; 5. 0; 6. 三阶极点; 7. 0; 8. ()1Re 2w >或12u >; 9. 0; 10. 1t e --二、 选择题(每小题2分,共20分)1. D ;2. D ;3. B ;4. C ;5. C ;6. A ;7. D ;8. D ;9. A ; 10. B三、 计算题(每小题5分,共30分)1. 解答:因为sin x v e y =是调和函数,则由C-R 方程,e cos x u v y x y∂∂==∂∂, 则(,)e cos e cos ()x x u x y ydx y C y ==+⎰, ……………….2分 又由u vy x∂∂=-∂∂,即e sin ()e sin x x y C y y '-+=-,故()0C y '=, 所以()C y C =。
……………….2分则 ()e cos e sin x x f z y i y C =++. ……………………………….………...….1分2. 解答: (1) 在12z <<内:11000111111()()(()())()21222n n n n n n n n z z f z z z z z z z z +∞∞∞+====-=--=-+--∑∑∑ …….3分(2) 在1|2|z <-<∞内:1111()(1)(1)12212(2)(1)2f z z z z z z =+=+--+--+-2011(1)2(2)n n n z z ∞+==+---∑ …………………………………...…2分 3. 解答:被积函数分母最高次数比分子最高次数高二次,且在实轴上无奇点,在上半平面有一个一阶极点2i -+, 故2222Res[,2]454545ixiz izCe e e dx dz i i x x z z z z π+∞-∞==-+++++++⎰⎰…..………2分222lim [(2)](cos 2sin 2)45iz z i e i z i i z z eππ→-+=--+=-++ ……….2分故 2cos 254Re 254cos 222edx x x e dx x x x ix π=++=++⎰⎰∞+∞-∞+∞-. …………………..….1分4. 解答: (2)0f i -=,由对称性知(2)f i =∞,设2=2z iw kz i+-, …………..…2分 由(0)1f =-,即02102ik i+-=-,解得1k =, …………………….……2分 于是22z iw z i+=-. ………………………………………..………………1分 5. 解答:方程两边取拉氏变换,有[]22()(0)(0)()(0)6()s Y s sy y sY s y Y s s'⎡⎤-----=⎣⎦ …………….2分 整理得22148()(2)(3)35(2)15(3)s s Y s s s s s s s -+==-+++-+- ……………1分123148()[()]3515t t y t L F s e e --==-++. ……………………..…………………2分6. 解答:1[()]()u t i πδωω=+F ,()()3[3][3]i t t e ωδδ--=-=F F , ……………3分从而()31[]()i f t e i ωπδωω-=++F . ………………………..…………………2分。