等差数列的性质及应用 ppt课件

合集下载

等差数列的性质和应用PPT优秀课件

等差数列的性质和应用PPT优秀课件
解 a n: S nS n 1(n2 ) a nn 2 2 n (n 1 )22 (n 1 )2 n 3(n2 ( )* )
又当 n1时, a1 S1 1适合 (*) an 2n3,此a时 n1an 2 an为等差数 . 列
16
思考 :若此题S改 n n为 22n2, 试判断{a数 n}是 列否成数 等列 ?差
解 :由题意得 :
a1 S1 1, a2 1, a3 3 而2a2 a1 a3 ,
故{an }不成等差数列.
事实a上 n 12, n3
n1 n2
17
评注:
1.利用 an S n S n1 (n 2)解题时 一定 要注意 验 证 a1是否适合通项公式 .
19
例3:设等差{数 an}的 列前 n项和S为 n, 若a5 5a3,则SS95 ______
解:
9(a1 a9)
S9 2 9a5 959
S5 5(a1a5) 5 a3 5
2
评注:S在n
a1
an 2
n中可利用性质
将a1 an转换成数列中另外之两和.项
20
例4:若数{a列 n}为等差数列 Sp , Sq,且
(pq, p,qN) 求Spq
解:
Sp
Sq pa1
Sk,S2kSk,S3kS2k成等差数列? 。如何证
略证S:k a1
ak 2
k
(1)
S2kSk
ak1

ak2
a2k
ak1 a2k 2
k
(2)
(S31k )(S23k得 )a2S k: k 12a(S 3k3kkS2k)k 2a1aka2k(13)a3k
解:由推广的通项公 知式 :

等差数列的性质课件(公开课)

等差数列的性质课件(公开课)

所以可以建立一个等差数列{an}来计算车费。
由题意得,
a1=11.2, d=1.2, n=11,
∴a11=11.2+(11-1) ×1.2 =23.2(元)
答:需要支付车费23.2元.
课堂练习
1.等差数列{an}的前三项依次为 a-6,2a -5, -3a +2,则 a 等于( B )
A . -1
你能得出一般结论吗?
性质二、两项和相等关系 数列{an}是等差数列,m、n、p、 q∈N+,若m+n=p+q,则am+an=ap+aq. 推广:若m+n=2p,则am+an=2ap.
思考4.性质二反过来是否成立?
练习:判断对错:
(1)a3 + a5 = a1 + a7
(2)a1 + a4 + a6 = a3 + a8
53 2
an a3 (n 3)d
2 3(n 3)
3n 7
∴{an}的通项公式为an=3n-7
思考5. 在等差数列{an}中,若ap=q, aq=p,其中p,q
为正整数,求ap+q
例3. 某市出租车的计价标准是1.2元/km,起步价 为10元,即最初的4km(不含4km)计费10元. 如果某人乘坐该市的出租车去往14km处的目 的地,且一路畅通,等候时间为0,需要支付 多少车费?
等差数列(二)

知识回顾
1.等差数列 的定义: (1).文字语言:如果一个数列从第2项起, 每一项与它前一项的差等于同一个常数.
(2).数学语言 : an1 an d, n N *
2.等差数列 的通项公式: an a1 (n 1)d, n N *

等差数列的性质(52张PPT)课件

等差数列的性质(52张PPT)课件

第二章 2.2 第2课时
系列丛书
[点评] 本题考查等差数列的两个基本性质.解题时应 注意题中所给各项的关系,注意第(2)题应有两组结果.
人教A版·数学·必修5
进入导航
第二章 2.2 第2课时
系列丛书
变式训练 1 (1)设{an}为等差数列,若 a3+a4+a5+a6 +a7=450,求 a2+a8;
人教A版·数学·必修5
进入导航
第二章 2.2 第2课时
系列丛书
课堂 互 动 探 究
例 练 结 合 ········································· 素 能 提 升
人教A版·数学·必修5
进入导航
第二章 2.2 第2课时
系列丛书
典例导悟
类型一 等差数列的性质及应用 [例 1] 已知等差数列{an}, (1)若 a2+a3+a25+a26=48,求 a14; (2)若 a2+a3+a4+a5=34,a2a5=52,求公差 d.
人教A版·数学·必修5
进入导航
第二章 2.2 第2课时
系列丛书
联立解得 a2=4,a5=13,或 a2=13,a5=4. 当 a2=4,a5=13 时,d=a55--a22=3; 当 a2=13,a5=4 时,d=a55--a22=-3. ∴公差 d 为 3 或-3.
人教A版·数学·必修5
进入导航
(2)在等差数列{an}中,a3+a5+a7+a9+a11=100,求 3a9 -a13 的值.
人教A版·数学·必修5
进入导航
第二章 2.2 第2课时
系列丛书
解:(1)a3+a7=a4+a6=2a5=a2+a8, ∴a3+a4+a5+a6+a7=5a5=450. ∴a5=90,∴a2+a8=2a5=180. (2)由a3+a5+a7+a9+a11=5a7=100得a7=20. ∴3a9-a13=3(a7+2d)-(a7+6d)=2a7=40.

等差数列的性质课件-高二上学期数学人教A版(2019)选择性必修第二册

等差数列的性质课件-高二上学期数学人教A版(2019)选择性必修第二册

典例分析
例 2 (1)三个数成等差数列,其和为 9,前两项之积为后一项的 6 倍,求这三个数; (2)四个数成递增等差数列,中间两项的和为 2,首末两项的积为-8,求这四个数.
解:(1)设这三个数依次为 a-d,a,a+d,则
a-d+a+a+d=9, a-da=6a+d,
解得
a=3, d=-1.
∴这三个数为 4,3,2.
都插入3个数, 使它们和原数列的数一起构成一个新的等差数列{bn }.
(1)求数列{bn}的通项公式;
(2)b29是不是数列{an }的项? 若是, 它是{an }的第几项? 若不是, 说明理由.
解1:
解2:
由(1)知,b29 2 29 58, 令an 2 8(n 1) 58,
解得n 8
思考:其他条件不变,若 am+an=ap+aq,能得到 m+n=p+q 吗?
反例: 常数列
推广:(1)特别地,当 m+n=2k(m, n, k∈N*)时,am+an=2ak.
(2)对有穷等差数列,与首末两项“等距离”的两项之和等于 首末两项的和,即 a1+an=a2+an-1=…=ak+an-k+1=….
解: 设数列{bn}的公差为 d,
由题意知,b1 a1 2, b5 a2 2 8 10,
由b5 10 b1 4d 2 4d, 解得d 2
d 8 d d
31
k 1
所以bn 2 (n 1) 2 2n
所以,数列{bn}的通项公式是 bn 2n.
典例分析
例4 已知等差数列{an}的首项a1 2,公差d 8,在{an}中每相邻两项之间
A.14
B.21
C.28
D.35
3.已知数列{an}是等差数列,若a4+a8=20,a7=12,则a4= 6 .

2.2.2《等差数列的性质》课件(人教A版必修5)

2.2.2《等差数列的性质》课件(人教A版必修5)

(D)-
3
第28页,共46页。
【解析】选D.∵{an}为等差数列,a1+a7+a13=4π, ∴3a7=4π,∴a7= π.4
又∵a2+a12=2a7, 3 ∴a2+a12= 8 π,
∴tan(a2+a312)=- . 3
第29页,共46页。
2.设{an}为公差为-2的等差数列,若a1+a4+a7+…+a97=50,则
m的值为( )
(A)8
(B)4
(C)6
(D)12
【解析】选A.在等差数列{an}中,d>0. ∴数列{an}为递增数列.
又a3+a6+a10+a13=4a8=32,∴a8=8,∴m=8.
第31页,共46页。
二、填空题(每题5分,共10分)
4.(2010·济宁高二检测)在等差数列{an}中,已知公差
第44页,共46页。
【解析】(1)由等方差数列的定义可知:a2n-a2n-1=p(n≥2). (2)∵{an}是等差数列,设公差为d,则an-an-1=an+1-an=d(n≥2).又 {an}是等方差数列,∴a2n-a2n-1=a2n+1-a2n (n≥2),∴(an+ an-1)(an-an-1)=(an+1+an)(an+1-an),即d(an+an-1-an+1-an)=
-2d2=0,∴d=0,故{an}是常数列.
第45页,共46页。
第46页,共46页。
∴lgalg=a-lglbgb,∴ab=1.
答案:1
第42页,共46页。
第43页,共46页。
4.(15分)如果一个数列的各项都是实数,且从第2项开始,每一项与它的 前一项的平方差是相同的常数,则称该数列为等方差数列,这个常数叫做 这个数列的公方差.

小学数学《 等差数列及其应用》ppt

小学数学《 等差数列及其应用》ppt
1+2+3+4+5+…+98+99+100。
【例1】:计算 1+2+3+4+5+6+7+8+9+10+11+12+13 +14的和是多少?
解答:(1+14)×(14÷2) =15×7 =105
【变式题1】: 数列2,5,8,11,14,17,20,23,26, 29的和是多少?
1.在括号中填入适当的数。
如:数列1,3,5,7,9。第二 项与第一项的差是3-1=2;第三项与第 二项的差是5-3=2;第四项与第三项的 差是7-5=2;第五项与第四项的差是97=2。2就是这个数列的公差。
一个数列的所有项的个数称为这个数 列的项数。
如数列2,4பைடு நூலகம்6,8,10,12。 有6个数,这个数列的项数是6。
高斯的老师写出的这个数列是 不是等差数列呢?
1+2+3+4+5+…+ 98+99+100。
像1,3,5,7,9,11,13,……这样按 一定的次序排列的数,我们称它为数列。顾 名思义,数列就是数的排列。它的特点就是 这列数在排列时是按照一定规律排列的。在 数列中的每一个数称为数列的项,并且根据 它们所在的位置,第一个数叫做首项,第二 个数叫做第二项,第三个数叫做第三项,依 次类推,最后一个数称为末项。
例如数列:2,4,6,8,10,12。 2是这个数列的首项,4是这个
数列的第二项,12是这个数列的末项。
请你说说在高斯的故事中,这位老 师出的题目的第一项是几?第二项是几? 最后一项是几?一共有多少项?
1+2+3+4+5+…+98+99+100。
如果一个数列中从第二项开始,每
一项与前面一项的差都相等,这样的数 列叫做等差数列。这个相等的差叫做这 个等差数列的公差。公差的意思就是公 有的差,因为在一个等差数列中每一项 与前一项的差都是相等的。

人教A版高中数学选择性必修第二册第四章4-2-1第2课时等差数列的性质及应用课件

人教A版高中数学选择性必修第二册第四章4-2-1第2课时等差数列的性质及应用课件

【链接·教材例题】 例5 已知数列{an}是等差数列,p,q,s,t∈N*,且p+q=s+t.求 证ap+aq=as+at. 分析:只要根据等差数列的定义写出ap,aq,as,at,再利用已知条 件即可得证.
[证明] 设数列{an}的公差为d,则 ap=a1+(p-1)d, aq=a1+(q-1)d, as=a1+(s-1)d, at=a1+(t-1)d. 所以
[母题探究] 本例(1)中条件变为“已知等差数列{an}中,a3+a6= 8”,求5a4+a7的值.
[解] 法一:设等差数列{an}的公差为d, 则a3+a6=2a1+7d=8, 所以5a4+a7=6a1+21d=3(2a1+7d)=24.
法二:在等差数列中,若m+n=p+q, 则am+an=ap+aq, ∴a2+a6=a3+a5=2a4, ∴5a4+a7=a2+a3+a4+a5+a6+a7. 又a2+a7=a3+a6=a4+a5, ∴5a4+a7=3(a3+a6)=3×8=24.
[新知生成] 等差数列的性质
(1){an}是公差为d的等差数列,若正整数m,n,p,q满足m+n=p+ q,则am+an=__a_p_+__a_q_. ①特别地,当m+n=2k(m,n,k∈N*)时,am+an=2ak. ②对有穷等差数列,与首末两项“等距离”的两项之和等于首末两 项的__和__,即a1+an=a2+an-1=…=ak+an-k+1=…. (2)从等差数列中,每隔一定的距离抽取一项 ,组成的数列仍为 _等__差___数列.
[讨论交流] 问题1.等差数列的子数列是如何定义的? 问题2.等差数列的子数列有什么样的性质? 问题3.等差数列的任意两项间有什么样的数量关系? 问题4.等差数列的“下标和”性质是什么?
[自我感知] 经过认真的预习,结合对本节课的理解和认知,请画 出本节课的知识逻辑体系.

等差数列的性质PPT课件

等差数列的性质PPT课件
2.等差数列{an}中,通项是 n 的一次函数,可借助直线方 程的斜率知识理解 d=amm--ann及相关性质.
3.若数列{an}是公差为 d 的等差数列,当 d=0 时,{an} 为常数列,当 d>0 时,{an}递增,当 d<0 时,{an}递减.
命题方向 等差数列的性质
[例 1] 等差数列{an}中,a4+a5+a6+a7=56,a4·a7= 187,求 a1 和 d.
[点评] 在求得 d=2 后,可直接由 an=a18+(n-18)·d 得 199=95+2(n-18),∴n=70.
[例 2] 设公差为-2 的等差数列,如果 a1+a4+a7+…+
a97=50,那么 a3+a6+a9+…+a99=( )
A.-182
B.-78
C.-148
D.-82
[分析] 观察其下标的构成规律:1,4,7,…,97,2,5,8,…,
(7)等差数列{an}的相邻 k 项的和仍为等差数列.如 a1+a2, a2+a3,a3+a4,…,an-1+an,……成等差数列;a1+a2,a3 +a4,a5+a6,…,an+an+1,……成等差数列;a1+a2+…+ am,a2+a3+…+am+1,a3+a4+…+am+2,…,ak+ak+1+…+ ak+m-1…成等差数列等等.
在等差数列{an}中,a18=95,a32=123,an=199,则 n= ________.
[答案] 70
[解析] ∵a32-a18=(32-18)d=123-95,∴d=2,又 a18 =a1+17d=95,∴a1=61,∴an=a1+(n-1)d=61+2(n-1) =199,∴n=70.
乙调查表示:由第 1 年养鸡场个数 30 个减少到第 6 年的 10 个.

PPT教学课件等差数列与等比数列

PPT教学课件等差数列与等比数列

A.20
B.22
C.24
D.28
返回
能力·思维·方法
1.四个正数成等差数列,若顺次加上2,4,8,15后成等比 数列,求原数列的四个数.
【解题回顾】本题是利用等差数列、等比数列的条件设未 知数,充分分析题设条件中量与量的关系,从而确定运用 哪些条件设未知数,哪些条件列方程是解这类问题的关键 所在.
2.{an}是等差数列,且a1-a4-a8-a12+a15=2,求a3+a13的值.
【解题回顾】本题若用通项公式将各项转化成a1、d关系后再
求,也是可行的,但运算量较大.
3. 已 知 点 An(n,an) 为 函 数 F1∶y=√x2+1 上 的 点 , Bn(n,bn) 为 函 数F2∶y=x上的点,其中n∈N+,设cn=an-bn(n∈N+). (1)求证:数列{cn}既不是等差数列也不是等比数列; (2)试比较cn与cn+1的大小.
返回
课前热身
1.观察数列:30,37,32,35,34,33,36,( 点,在括号内适当的一个数是__3_1__.
),38的特
2.若关于x的方程x2-x+a=0和x2-x+b=0(a,b∈R且a≠b)的四个根
组成首项为1/4的等差数列,则a+b的值为( D)
A. 3/8 B. 11/24 C. 13/24 D. 31/72
【解题回顾】本题将函数、不等式穿插到数列中考查,用到 了数学中重要的思想方法.
返回
延伸·拓展
4.若a1,a2,a3成等差数列,公差为d;sina1,sina2,sina3 成等比数列,公比为q,则公差d=kπ,k∈Z
【解题回顾】本题对sin2a2降次非常关键,不宜盲目积化和差

高一数学必修5等差数列前n项和性质及应用2PPT课件

高一数学必修5等差数列前n项和性质及应用2PPT课件
A.85 B.145 C.110 D.则它的前110项的和 为 -110 .
例4.两等差数列{an} 、{bn}的前n项和分
别是Sn和Tn,且 Sn 7n1
求a5 和 an
b5
bn
.
Tn 4n 27
a 5 6 4 an 14n 6 b 5 6 3 bn 8n 23
2: 若数列{an}的前n项和Sn满足 Sn=an2+bn,试判断{an}是否是等差数列。
3、设等差数列{an}的前n项和为Sn, 已知a3=12, S12>0, S13<0。 (1)求公差d的取值范围; (2)指出S1 , S2, … , S12中哪个值最大,
1、 设Sn=an2+bn, 则有: 9250 0265a4a5b8b。
Sn
d 2
n2
(a1
d )n的二次函数配方法求得最值时的n的取值; 2
②是当ad100时,Sn有最大值,并利用aann1 00求得n值;
当ad100时,Sn有最小值,并利用aann1 00求得n值.
高 一 数 学 必 修5等差 数列前 n项和 性质及 应用2P PT课件
高 一 数 学 必 修5等差 数列前 n项和 性质及 应用2P PT课件
解之得:
a b
2 9
,∴Sn=3n2+n。
2、是。
简单提示:利用公式: a an 1 S S1 nSn1
(n1) (n2)
3、(1)
274d,3(2)S6最大。
4. 已知数列{an}是正数数列,且
Sn1 8(an2)2(nN) (1)求证{an}是等差数列 ;
(2)若bn=1 2an-30, 则 数 列 {bn}的 前 n项 和 有 最 什 么 值 , 并 求 该 最 值 ; ( 3) 求 数 列 {bn}的 前 n项 和 Tn

【数学】等差数列的概念第2课时等差数列的性质及应用课件-高二上数学人教A版2019选择性必修第二册

【数学】等差数列的概念第2课时等差数列的性质及应用课件-高二上数学人教A版2019选择性必修第二册


Q(q,aq)

p
∵p q s t ,∴p s t q .
∴a p a s at aq ,即a p aq a s at .


图4.2-2
qtBiblioteka n课本P154. 已知在等差数列{an}中,a4+a8=20,a7= 12. 求a4.
(a1 3d ) (a1 7d ) 20
解:数列的图象如图示.
an
18 •
15
12
9
6
由等差数列定义可知,数列{an }是等差数列,且a1 18,d 3. 3
∴an 18 3( n 1) 3n 21.
∴由通项公式可得通过图象上所有点的直线斜率为 3.
O





1 2 3 4 56
n
课本P18
3. 在等差数列{an}中, an = m,am = n,且n ≠ m,求am+n .
2
21
7 35
∴a2 a1 d
,a3 a1 2d 14,a4 a1 3d 7
.
2
2 2
21
35
∴在7和21中插入 ,14, ,可使这5个数成等差数列.
2
2
解 2 : 设a1 7,a5 21,则由2a3 a1 +a5 ,得a3 14,
21
35
-6.5
《同步导练》9页 “初试身手” 第3题和例2
3.在等差数列{an}中,a3=2,d=6.5,求a7?
例2.(1)在等差数列{an}中,已知a4=7,a10=25,求通项公式an;

等差数列(优秀课件)

等差数列(优秀课件)
星期路程km131619相差3为迎接世界田径锦标赛刘翔的教练为他安排了为期一周的赛前热身逐渐加大慢跑路程前牙反颌和开颌的原因多由于不良喂养方式和吮指等不良习惯造成也可因多颗乳磨牙过早缺失迫使儿童用前牙咀嚼下颌逐渐前伸移位造成
2021/6/27
第二章 数列 2.2 等差数列
第一课时
复习
一、数列的定义,通项公式: 按一定次序排成的一列数叫做数列。一般写成 a1,a2,a3 ,… an,… 如果数列{an}的第n项an与n的关系可以用一个 公式来表示,那么这个公式就叫做这个数列的 通项公式。
首项 a1 p q ,公差为 p。
2021/6/27
5、等差数列的通项及图象特征
思考: 已知数列的通项公式是an pn q (其中p,q是常数),那么这个数列 是否一定是等差数列?
取数列{an}中的任意相邻两项an1与a(n n 2), an an1 ( pn q) [ p(n 1) q]
2021/6/27
3.等差中项 如果 a, A, b 成等差数列,那么 A 叫做 a 与 b 的
等差中项 . 由等差中项的定义可知, a, A, b 满足关系:
b A A a A a b b 2A a( 或a 2A b ) 2
意义: 任意两个数都有等差中项,并且这个等差中项
是唯一的.当 a=b 时,A = a = b .
注意:上面的命题的逆命题 是不一定成立 的;
= = = 5. 在等差数列{an}中a1+an a2+ an-1 a3+ an-2 …
2021/6/27
思考:已知数列{an}是等差数列,
则数列{bn}为等差数列的是( D )
A、bn an B、bn an
C、bn an2

高二上学期数学人教A版选择性必修第二册4.2.2等差数列的性质及其应用课件

高二上学期数学人教A版选择性必修第二册4.2.2等差数列的性质及其应用课件

台设备的使用年限为10年,超过10年,它的价值将低于购进价值的5%,设备将报
废. 请确定 d 的取值范围.
解:设使用年后,这台设备的价值为 万元,则可得数列{ }.
由已知条件, = −1 − ( ≥ 2ሻ.由于是与无关的常数,所以
数列{ }是一个公差为−的等差数列.因为购进设备的价值为220万元,所以
这个数列是等差数列吗?取出所有的奇数项呢?序号为7的倍数的项呢?
答案:
• 如果将无穷等差数列{ }中的前项去掉,其余各项仍然组成一个等差数列,首项
为1 ,公差为;
• 若取出所有奇数项1 ,3 ,5 ,…,就形成一个首项为1 ,公差为2的等差数列;
若取出所有偶数项2 ,4 ,6 ,…,就形成一个首项为2 ,公差为2的等差数列;
项之间都插入个数,使它们和原数列的数一起构成一个新的等差数列{ } .
当 = 1时,就是在原数列的每相邻两项间都插入1个数,插入的数字是原
数列每相邻两项的等差中项.
当 = 2时,就是在原数列的每相邻两项间都插入2个数.
当 = 3时,就是本例.
知识应用
例2
追问1即:已知等差数列{ }的首项1 = 2,公差 = 8 ,在数列{ }中每相邻两
的两条底边的长, + 和 + 可以
看作这两个梯形的中位线长的二倍.由于
+ = + ,所以这两个梯形有相同的
中位线,因此 + = + .
知识应用
练习
在 − 1与7之间插入三个数,,,使这五个数成等差数列,求 + + 的值.
答案:9
值会逐年减少.经验表明,每经过一年,其价值就会减少 d (d为正常数)万元.已知这

等差数列ppt课件

等差数列ppt课件
课前探究学习
课堂讲练互动
第2课时 等差数列的性质及其应用
【课标要求】 1.进一步了解等差数列的项与序号之间的规律. 2.理解等差数列的性质. 3.掌握等差数列的性质及其应用. 【核心扫描】 1.等差数列的性质及证明.(重点) 2.运用等差数列定义及性质解题.(难点)
课前探究学习
课堂讲练互动
自学导引
课前探究学习
课堂讲练互动
名师点睛
1.等差数列的公差与斜率的关系 (1) 一次函数 f(x)=kx+b(k≠0)的图象是一条直线,斜率
(2) k=fxx22--xf1x1(x1≠x2). 当k=0时,对于常数函数f(x)=b,上式仍然成立. (2)等差数列{an}的公差本质上是相应直线的斜率. 如am,an是等差数列{an}的任意两项,由an=am+(n-m)d, 类比直线方程的斜率公式得 d=ann--mam.
(2)若a15=8,a60=20,则a75=________.
解析 (1)a1+2a4=a1+(a3+a5)=(a1+a5)+a3=2a3+a3=
3a3=15.
(2)法一 设首项为a1,公差为d.
∵a15=8,a60=20,
aa11+ +1549dd= =82,0,
解得a1=1654, d=145.
课前探究学习
课堂讲练互动
题型一 等差数列性质的应用
【例1】 (1)已知等差数列{an}中,a2+a6+a10=1,求a4+a8.
(2)设{an}是公差为正数的等差数列,若a1+a2+a3=15, a1a2a3=80,求a11+a12+a13的值. [思路探索] 分析题目,可利用等差数列性质,也可利用通 项公式求解.
1.等差数列的项与序号的关系
两项关系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档