角的平分线的性质的说课稿
人教版八年级数学上册说课稿12.3角的平分线的性质
人教版八年级数学上册说课稿12.3 角的平分线的性质一. 教材分析人教版八年级数学上册第12.3节“角的平分线的性质”是中学数学中的一个重要知识点。
这部分内容主要让学生掌握角的平分线的性质,包括角平分线上的点到角的两边的距离相等,角平分线垂直于角的对边,以及角的平分线段的长度等于对应角的对边的长度。
这些性质在解决几何问题时具有重要的作用。
二. 学情分析学生在学习这一节内容时,已经掌握了角的概念、垂线的性质等基础知识,具备了一定的逻辑思维和推理能力。
然而,对于角的平分线的性质,学生可能还比较难以理解和运用,因此,在教学过程中,需要引导学生通过观察、操作、推理等方式,逐步理解和掌握角的平分线的性质。
三. 说教学目标1.知识与技能:使学生掌握角的平分线的性质,能够运用角的平分线解决一些简单的几何问题。
2.过程与方法:通过观察、操作、推理等过程,培养学生的几何思维和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的耐心和细心。
四. 说教学重难点1.教学重点:角的平分线的性质。
2.教学难点:角的平分线的性质的证明和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、引导发现法、合作交流法等,引导学生主动探究角的平分线的性质。
2.教学手段:利用多媒体课件、几何模型等辅助教学,帮助学生直观地理解角的平分线的性质。
六. 说教学过程1.导入:通过复习角的概念、垂线的性质等基础知识,引出角的平分线的性质。
2.新课导入:介绍角的平分线的定义,引导学生观察和操作,发现角的平分线的性质。
3.性质证明:引导学生运用已知知识,证明角的平分线上的点到角的两边的距离相等。
4.性质拓展:引导学生进一步发现角平分线垂直于角的对边,以及角的平分线段的长度等于对应角的对边的长度。
5.运用练习:安排一些具有代表性的练习题,让学生运用角的平分线的性质解决问题。
6.课堂小结:总结本节课的主要内容,强调角的平分线的性质及其应用。
角平分线性质定理说课稿
一、数学内容的本质、地位、作用分析1.数学内容的本质角的平分线的点到角的两边的距离相等。
2。
数学内容的地位和作用角的平分线的性质是全等三角形知识的运用和延续,它为后面证明线段相等、角相等的几何证明提供了一种新的、更为简单的证明方法。
本节分为两课时:第一课时让学生动手探究角的平分线的画法、角的平分线的性质;第二课时主要探究角的平分线的判定,并在此基础上进行简单应用.本节课是第一课时的内容,它不仅为学生动手操作、观察、交流等活动提供了良好的素材,同时也让学生学习了怎样从实际问题中建立数学模型、解决实际问题.二、教学目标分析1、教学目标根据课程标准要求、教材及学生的实际情况,我从知识与技能、过程与方法、情感态度与价值观三个方面确定教学目标。
1.知识与技能(1)会作已知角的平分线;(2)了解角的平分线的性质,能利用三角形全等证明角的平分线的性质;(3)会利用角的平分线的性质进行证明与计算.2。
过程与方法在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力.3.情感、态度与价值观在探究作角的平分线的方法及角的平分线的性质的过程中,培养学生探究问题的兴趣、合作交流的意识、动手操作的能力与探索精神,增强解决问题的信心,获得解决问题的成功体验.2、目标分析:1.知识与技能(1)所谓“会作已知角的平分线”,就是让学生通过探究角平分仪的原理,从而抽象概括出用尺规做角的平分线的作法;(2)所谓“了解角的平分线的性质,能利用三角形全等证明角的平分线的性质”,就是让学生通过折纸归纳出角的平分线的性质,并能用三角形全等证明这个性质,体会用数学推理的方法证明猜想成立的必要性。
(3)所谓“会利用角的平分线的性质进行证明与计算”,就是通过变式训练,让学生会利用角的平分线的性质进行证明与计算.2。
过程与方法所谓“在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力”,就是在活动中,让学生通过自主探索、合作交流等方式,帮助学生积累数学活动的经验,发展有条理的思维及初步的演绎推理能力。
八年级数学角平分线的性质说课稿
《角平分线的性质》说课稿本斋中学宋美杰敬爱的各位领导、老师:上午好!我叫宋美杰,来自马本斋回族中学。
今日我讲课的课题是《角的均分线的性质》,下边我将从教材剖析、教法与学法、教课过程等几大方面进行简要说明。
一、教材剖析:1、教材的地位及其作用:角均分线的性质是八年级上册第十一章第三节的内容,是在学生学习了角均分线的观点和全等三角形的基础长进行教课的,它主要学习角均分线的性质定理及其逆定理。
同时角均分线的性质为证明线段和角相等开拓了新的思路,是此后作图、计算、证明的重要工具,为初三的学习作了铺垫,拥有承上启下的作用,所以本节课在教材中据有特别重要的地位。
2、教课目的:本节内容分两个课时进行,依照对教材、教课纲领及学生的剖析确立第一个课时的教课目的以下:( 1)知识与技术目标认识均分角的仪器的制作方法使用方法及其原理。
掌握用尺规作角均分线的的方法。
掌握角均分线的性质和简单应用( 2)过程与方法经过察看,研究做已知角的均分线的方法,培育学生的知识迁徙能力和着手能能力。
在经历均分角的仪器的使用和角的均分线的证明过程中,提升三角形的实质应用。
( 3)感情态度价值观:经过小组研究和合作沟通,培育学生的团队合作的精神。
3、教课的要点、难点:要点是: 1、做已知角的均分线的方法2、角均分线的性质的证明及其直接运用难点:做已知角的均分线的方法的研究。
二、教法与学法:在新课程环境下,教课过程是师生交往、共同发展的互动过程,教师要注意指引、怀疑、察看、研究,使学生在实践中学习。
依据学生的实质状况,联合本节的教材的特色我采纳“启迪引诱—研究发现”的教课方法。
让学生在察看、比较、剖析、归纳等活动中,体验知识的生成、发展与应用。
三、教课准备教师准备多媒体课件、圆规、三角板、均分角的仪器(自制)、纸张、剪刀学生准备预习新课圆规直尺铅笔纸片小刀基于四、教课过程一、创建情境,引入新课第一,我经过向学生展现和教课生使用均分角的仪器,惹起学生的兴趣。
12.3《角的平分线的性质》说课稿
A
C
D
B
A
B
C
12.3
角的平分线的性质 例题
1、角的平分线的作法.
2、角的平分线的性质.
练习
托起绿色的希望
aymath@
2011版义务教育数学课程标准解读
♦教学背景的分析
♦教学目标的确定 ♦教学方法与手段的选择 ♦教学过程的设计
♦教学内容分析
♦学生分析 ♦教学环境分析 ♦教学重点、难点
1、知识与技能: (1)掌握用尺规作已知角的平分线的方法 (2)理解角的平分线的性质并能初步运用。 2、过程方法: 通过让学生经历观察演示,动手操作,合作交流,自主探 究等过程,培养学生用数学知识解决问题的能力。初步了解角的 平分线的性质在生产、生活中的应用。培养学生的数学建模能力。 3、情感、态度与价值观: 充分利用多媒体教学优势,培养学生探究问题的兴趣,增 强解决问题的信心,获得解决问题的成功体验,激发学生应用数 学的热情。
1、如图所示,AC,BC是公园的两道垂直 的围墙,AD是公园里的一排树,AB是一 条路,AD正好平分∠BAC,并且 BC=10m,BD=6m,工作人员想从D点修一 条路到达AB所在的路上,那么怎么修最 近,要修多少米?
2、已知:有一块三角形形状的白铁皮 板,现在要剪下一个最大的圆,做盆 底,如何确定圆心与半径?
E
A
A
E
P P 图2 F B O
E
A P
2、问题:引例中两条管道的 长度有什么关系?理由是什么?
O
图1 F B O
图3
B
A
例1 如图,在△ABC中,AD是它的角平分线, E B 且BD=CD,DE⊥AB,DF⊥AC, 垂足分别是E,F。求证:EB=FC。
角平分线的性质说课稿
角平分线的性质说课稿徐庄中学八年级张玉芳今天,我说课的题目是《角的平分线的性质》第一课时,选自新人教版教材《数学》八年级上册第十二章第三节.下面,我从教学背景的分析、教学目标的确定、教学方法与手段的选择、教学过程的设计和教学评价分析等五个方面对我的教学设计加以说明.一、教学背景的分析1.教学内容分析本节内容是全等三角形知识的运用和延续.用尺规作一个角的平分线,其作法原理是三角形全等的“边边边”判定方法和全等三角形的性质;角的平分线的性质证明,运用了三角形全等的“角角边”判定方法和全等三角形的性质.角的平分线的性质证明提供了使用角的平分线的一种重要模式——利用角平分线构造两个全等的直角三角形,进而证明相关元素对应相等.角的平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时为后面角平分线的判定定理的学习奠定了基础.因此,本节内容在数学知识体系中起到了承上启下的作用.同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律.2.教学对象分析刚进入初二的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导.根据学生的认知特点和接受水平,我把第一课时的教学任务定为:掌握角平分线的画法及会用角平分线的性质定理解题,同时为下节判定定理的学习打好基础.3.教学重点、难点本节课的教学重点为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用.难点是:(1)对角平分线性质定理中点到角两边的距离的正确理解;(2)对于性质定理的运用(学生习惯找三角形全等的方法解决问题而不注重利用刚学过的定理来解决,结果相当于对定理的重复证明)教学难点突破方法:(1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理 1正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习.二、教学目标的确定1、知识与技能:(1).会用尺规作一个角的平分线,知道作法的合理性.(2).探索并证明角的平分线的性质.(3).能用角的平分线的性质解决简单问题.2.过程与方法:在经历角平分线的性质定理的推导过程中,提高综合运用三角形的有关知识解决问题的能力,并初步了解角的平分线的性质在生活、生产中的应用。
12.3《角平分线的性质》说课稿
12.3 《角的平分线的性质》说课稿武安市第十三中学邑城校区王艳明尊敬的各位老师,大家好!今天,我说课的题目是《角的平分线的性质》第一课时,选自新人教版教材《数学》八年级上册第十二章第三节。
下面,我从教学背景的分析、教学目标的确定、教学方法与手段的选择、教学过程的设计等四个方面对我的教学设计加以说明。
一、教学背景的分析1、教学内容分析本节课是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的。
内容包括角平分线的作法、角平分线的性质及初步应用。
作角的平分线是基本作图,角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础。
因此,本节内容在数学知识体系中起到了承上启下的作用。
同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律。
2、学生分析刚进入八年级的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导。
根据学生的认知特点和接受水平,我把第一课时的教学任务定为:掌握角平分线的画法及会用角平分线的性质定理解题,同时为下节判定定理的学习打好基础。
3、教学重点、难点教学重点:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用。
教学难点:1、对角平分线性质定理中点到角两边的距离的正确理解;2、对于性质定理的运用。
二、教学目标的确定(1)知识与技能:掌握作已知角的平分线的方法和角平分线性质;能运用角平分线及其性质解决有关的数学问题。
(2)过程与方法:在经历角平分线的性质定理的推导过程中,提高综合运用三角形的有关知识解决问题的能力,并初步了解角的平分线的性质在生活、生产中的应用;在学习过程中发展几何直觉,培养数学推理能力。
(3)情感态度:培养学生探究问题的兴趣,增强解决问题的自信心。
获得解决问题的成功体验,逐步发展培养学生的理性精神。
角平分线的性质说课稿
(3)训练学生思维的灵活性;
3.情感与价值观目标:
(1)激发学生学习的内在动机;
(2)养成学生学习的良好学习习惯;
三、说教学的重难点
本着《角平分线的性质》新课程标准的要求,在吃透教材基础上,我确定了以下教学重点和难点:
教学重点:角平分线的作图方法、角平分线的性质及应用。重点的依据是只有掌握了这几点,才能理解和掌握角平分线的作用,才能为以后的学习打下基础。
1.直观演示法:
利用图片等手段进行直观演示,激发学生的学习兴趣,活跃课堂
气氛,促进学生对知识的掌握。
2.问题探究法:
引导学生通过创设问题情景并引导学生解决问题的形式获取知识,以学生为主体,使学生的独立探索性得到了充分的发挥,培养学生的自觉能力、思维能力、活动组织能力。
3.集体讨论法:
针对学生提出的问题,组织学生进行集体和分组语境讨论,促使学生在学习中解决问题,培养学生团结协作的精神。
角平分线的性质
各位老师好:
今天我说课的课题是《角平分线的性质》。下面我对本课题进行分析:
一、说教材
(地位与作用)
《角平分线的性质》是人教版必修教材第11章第3节的内容。在此之前,学生们已经学习了全等三角形的判定,这为过度到本节课的学习起到了铺垫的作用。因此,本节课的理论、知识是学好以后课题的基础,它在整个教材中起着承上启下的作用。
八、板书设计:
黑板的中上方给出题目,在左边用尺规作图做出角平
分线、并写出作图过程及证明。在右边写角平分线的第一个性质,画出图形、给出证明。这样设计使板书清晰,便于学生记笔记,也便于最后的总结。
3、学习第一个性质:
有学生喜欢动手的特性,老师先让学生拿出事先准备好的角,然后对折这个角,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?让学生自己独立思考,老师在黑板上画出折痕图形,根据折叠同学们会得出第一个性质;角平分线上的点到角的两边的距离相等。根据这一性质,利用已画好的图形给出条件进行证明,引导学生有由全等三角形进行证明,给出结论:角平分线上的点到角的两边的距离相等。这样设计是让同学们在数学活动中体验数学的乐趣,培养学生对数学的兴趣。让他们独立思考并得出结论是为了让培养学生独立思考的思维能力,让他们体验找出正确结论的快感。最后给出证明,完善该性质,让学生能更加全面的理解该性质。
角平分线的性质说课稿
《角的均分线的性质》讲课稿义马市二中八年级备课组今日我们讲课的内容是人教版八年级数学上册第十二章第三节《角的均分线的性质》第一课时。
下边我们将从教材剖析、教法、学法、教课流程、设计思路等五个方面进行说明,教课程序将是我论述的要点。
第一我们来看教材剖析:一、教材剖析:1、教材的地位及作用:本节课是在学生学习了角均分线的观点和全等三角形的基础长进行教课的,它主要学习角均分线的性质定理。
同时角均分线的性质为证明线段或角相等开拓了新的思路,并为此后在圆一章学习心里作好知识准备。
所以它既是对前面所学知识的应用,又是为后续学习作铺垫 ,拥有举足轻重的作用,所以本节课在教材中据有特别重要的地位。
2、教课目的:在新课程改革背景下的数学教课应以学生的发展为本,学生的能力培育为主,同时从知识教课、技术训练等方面,依据《新课程标准》对本节课内容的要求是:( 1)能用尺规作图做已知角的角均分线;(2)研究并证明角均分线的性质。
针对学生的一般性认知规律及学生个性质量发展的需要,确定教课目的以下:(1)知识与技术:掌握作已知角的均分线的方法和角均分线性质。
(2)过程与方法:在经历角均分线的性质定理的推导过程中,提升综合运用三角形的有关知识解决问题的能力,并会运用角的均分线的性质解决有关问题。
(3)感情态度:培育学生研究问题的兴趣,加强解决问题的自信心。
3、教课要点、难点:要点:角均分线的性质的证明及运用,难点:角均分线的性质的研究二、教法与学法:《新课程标准》指出:“学生的数学学习活动应该是一个生动开朗的、主动的和富裕个性的过程。
”“着手实践、自主研究与合作沟通是学生学习数学的重要方式。
”本节课创建了现实生活中的教课情境,供学生操作、察看、猜想、议论和体验知识的生成、发展与应用。
逐渐加深对角均分线的作法及其性质的理解和掌握。
在新课程环境下,教课过程是师生交往、共同发展的互动过程,教师要注意指引怀疑、察看、研究,使学生在实践中学习。
角的平分线的性质说课稿
义务教育课程标准实验教科书八年级数学(上)第十一章第三节角的平分线的性质(一)说课稿角的平分线的性质(一)说课稿一、教材分析:1、本节教材的地位和作用:角的平分线的概念在七年级的教材中己介绍过,它的性质很重要,为证明线段相等或角的相等时开辟了新途径,同时在作图中也运用广泛,是直角三角形全等判定的延续,是轴对称图形的基础,并为以后九年级三角形内心的学习作了铺垫,鉴于这种认识,我认为本课不仅有广泛的实际应用,而且起着承上启下的作用,是今后作图、计算、证明的重要工具。
同时,可以培养学生的观察、分析、归纳能力,探究精神和创新意识2、教学目标的确定:(1)知识目标:1、掌握作已知角的平分线的方法;2、掌握角的平分线的性质。
(2)能力目标:1、提高综合运用三角形全等的有关知识解决问题的能力。
2、通过探究性质,培养学生的归纳的能力。
3、通过性质的应用,培养学生的逻辑思维能力及创新能力。
(3)、情感目标:在探讨作角的平分线的方法及角的平分线的性质过程中,培养学生探究问题的兴趣,增强解决问题的信心,通过合作交流、讨论,增强学生合作沟通能力,逐步培养学生的理性精神。
3、教学重、难点重点:角的平分线的性质的证明及运用难点:角的平分线的性质的探究二、学情分析:学生对角平分线的概念有了很好的理解,对证明两个三角形全等的问题已经很熟悉了,所以证题时,不习惯直接应用性质,仍然去找全等三角形,结果相当于重新证明了一次性质,鉴于这种情况,教学应适时引导。
三、教学方法教法:直观演示法、设疑诱导法、操作发现法学法:动手操作法、自主探究法、观察发现法、合作交流法四、教学程序的设计(一)依据教材的编排和学生的认知规律,我设计了下面的教学流程:创设情景,引入新课——实物研究,提高认知——折纸建模,总结规律——模型转化,命题证明——课堂小结,反思升华。
(二)就以下五方面为重点对这节课进行说明:1、创设情景,引入新课(感知角的平分线)开始上课,讲一个小故事,小亮的妈妈是玩具厂的工人,她的工作就是在三角形的钢板上画角的平分线,一天爱动脑筋的小亮替妈妈做了一个平分角的仪器,在这个仪器中:AB=AD,DC=BC,沿AC画一条射线AE,则AE就是∠DAB平分线,同学们能说明它的道理吗?学生们很容易地画出图形,得出AE平分∠DAB,并能通过三角形全等来证明这个结论,我只是纠正证明过程中不严谨的地方,这个问题让学困生参与,以调动他们的学习积极性。
角的平分线的性质说课稿
角的平分线的性质说课稿一、说教材本文《角的平分线的性质》是初中数学课程中的重要内容,它位于平面几何的教学单元中,起着承上启下的作用。
在小学阶段,学生已经对角有了一定的认识,而本节内容将在此基础上,深化学生对角的概念及其性质的理解,为后续学习相似三角形、圆等知识打下坚实的基础。
(1)作用与地位角的平分线作为几何图形中的重要元素,不仅在理论研究中具有基础性地位,而且在解决实际问题时也具有广泛的应用。
本节内容通过探究角的平分线性质,不仅加强了学生对几何图形的直观感知,而且培养了学生的逻辑思维能力和空间想象能力。
(2)主要内容本节课主要围绕角的平分线的性质展开,包括以下三个方面:1. 定义:角的平分线是从角的顶点出发,将角平分成两个相等角的射线。
2. 性质:角的平分线上的点到角的两边的距离相等。
3. 应用:利用角的平分线性质解决相关问题。
二、说教学目标学习本课,希望学生能够达到以下教学目标:1. 知识与技能:(1)理解并掌握角的平分线的定义;(2)掌握角的平分线的性质,并能够运用性质解决相关问题;(3)能够准确画出角的平分线。
2. 过程与方法:(1)通过实际操作,培养学生的动手能力;(2)通过探究角的平分线性质,提高学生的逻辑思维能力;(3)通过小组讨论,培养学生的合作意识。
3. 情感态度与价值观:(1)激发学生对几何学习的兴趣,培养学生的自主学习意识;(2)培养学生严谨、细致的学习态度。
三、说教学重难点1. 教学重点:(1)角的平分线的定义;(2)角的平分线的性质;(3)角的平分线的应用。
2. 教学难点:(1)角的平分线性质的推导过程;(2)如何准确画出角的平分线;(3)如何运用角的平分线性质解决实际问题。
四、说教法在教学《角的平分线的性质》这一节时,我计划采用以下几种教学方法,旨在提高学生的学习兴趣,增强理解和记忆,以及提升解决问题的能力。
1. 启发法:- 以生活中的实例引入角的平分线的概念,例如将一块蛋糕平均分给两个人,让学生感受到平分的重要性。
角平分线的性质的说课稿
角平分线的性质的说课稿一、说教材《角平分线的性质》是初中数学课程中几何学模块的重要组成部分,位于平面几何的教学单元。
本节内容主要围绕角平分线的定义、性质及其应用进行展开,具有承前启后的作用。
在小学阶段,学生已经对角有了一定的认识,而本节内容旨在深化学生对角的概念的理解,并为后续学习相似三角形、圆等相关知识打下坚实基础。
(1)作用与地位:角平分线作为基本的几何概念,不仅有助于学生进一步理解角的性质,而且在解决实际问题时具有重要作用。
它是连接几何图形中的点、线、面关系的重要桥梁,是培养学生空间想象能力、逻辑推理能力的关键知识点。
(2)主要内容:本节课主要包含以下内容:a. 角平分线的定义:从一个角的顶点出发,把这个角分成两个相等的角的射线叫做这个角的平分线。
b. 角平分线的性质:角的平分线上的点到这个角的两边的距离相等。
c. 角平分线的判定定理:到角的两边距离相等的点,在这个角的平分线上。
二、说教学目标学习本课,学生需要达到以下教学目标:(1)理解并掌握角平分线的定义、性质及判定定理。
(2)能够运用角平分线的性质解决实际问题,提高解决问题的能力。
(3)通过自主探究、合作交流,培养空间想象能力和逻辑推理能力。
(4)激发学习兴趣,培养良好的学习习惯,增强团队合作意识。
三、说教学重难点(1)重点:角平分线的定义、性质及判定定理。
(2)难点:如何运用角平分线的性质解决实际问题,以及如何将角平分线与其他几何知识相结合,提高解题能力。
在后续的说教法和说学法中,我将着重突出教学亮点,通过创新的教学方法和手段,帮助学生更好地掌握本节课的重难点。
四、说教法在本节课的教学过程中,我计划采用以下几种教学方法,旨在激发学生的学习兴趣,提高他们的主动参与度和思考能力。
1. 启发法:- 我将以生活中常见的实例引入角平分线的概念,如折纸艺术中的对角线折叠,让学生直观感受角平分线的作用。
- 通过提问方式引导学生思考:如何准确地将一个角平分成两个相等的角?为什么这样的线具有特殊的性质?2. 问答法:- 在讲解角平分线的性质时,我会设计一系列问题,让学生通过回答问题来深入理解性质的本质。
角平分线的性质说课稿
角平分线的性质说课稿一、说教材(一)作用与地位角平分线是几何学中的一个重要概念,它不仅是初中数学教学的重点,也是学生形成严谨逻辑推理能力的关键知识点。
角平分线的性质不仅是解决各类几何问题的基础,而且对于培养学生的空间想象能力和抽象思维能力具有不可忽视的作用。
(二)主要内容本文主要围绕角平分线的性质展开,包括角的平分线的定义、性质以及应用。
具体内容包括:1. 角平分线的定义:从角的顶点出发,将角分为两个相等角的射线称为该角的平分线。
2. 角平分线的性质:角的平分线上的任意一点到角的两边的距离相等。
3. 角平分线的判定定理:在三角形中,如果一条射线从一个顶点出发,且与对边相交,使得相交点到另外两个顶点的距离相等,则该射线为角的平分线。
(三)与其他知识点的联系角平分线的性质与三角形全等、相似,以及圆的相关性质等都有着密切的联系。
掌握角平分线的性质对于后续学习这些知识点具有重要的铺垫作用。
二、说教学目标(一)知识与技能1. 理解并掌握角平分线的定义。
2. 掌握并运用角平分线的性质。
3. 能够运用角平分线的判定定理解决实际问题。
(二)过程与方法(三)情感态度与价值观激发学生对几何学习的兴趣,培养学生严谨、认真的学习态度。
三、说教学重难点(一)重点1. 角平分线的定义及其性质。
2. 角平分线判定定理的运用。
(二)难点1. 理解角平分线性质的本质。
2. 在实际问题中灵活运用角平分线的性质和判定定理。
四、说教法(一)教学方法1. 启发法:在教学过程中,我将以问题驱动的形式引导学生思考,通过提出与角平分线相关的问题,激发学生的好奇心,促使他们主动探索角平分线的性质。
- 例如,我会提出问题:“如果一个点在角平分线上,那么它到角的两边的距离会有什么特殊的关系?”- 通过这样的问题,引导学生观察、猜想、验证,最终得出角平分线的性质。
2. 问答法:在讲解角平分线的判定定理时,我将采用问答法,通过师生互动,帮助学生理解定理的证明过程。
角的平分线的性质说课稿
角的平分线的性质说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是角的平分线的性质。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析角的平分线的性质是初中数学中非常重要的一个知识点,它是三角形全等知识的延续和深化,同时也为后续学习圆的相关知识奠定了基础。
本节课在教材中起着承上启下的作用,通过对角平分线性质的探究和应用,能够培养学生的逻辑推理能力和空间观念。
二、学情分析在学习本节课之前,学生已经掌握了角平分线的定义和三角形全等的判定方法,具备了一定的推理能力和动手操作能力。
但是,对于如何从几何图形中发现和证明性质,学生可能会存在一定的困难。
因此,在教学过程中,要注重引导学生观察、思考和探究,帮助他们逐步掌握解决问题的方法。
三、教学目标1、知识与技能目标(1)理解角平分线的性质定理和逆定理。
(2)能够运用角平分线的性质定理和逆定理解决简单的几何问题。
2、过程与方法目标(1)通过动手操作、观察、猜想、验证等活动,培养学生的探究能力和创新精神。
(2)经历角平分线性质定理的证明过程,提高学生的逻辑推理能力。
3、情感态度与价值观目标(1)通过合作学习,培养学生的团队意识和合作精神。
(2)在探究活动中,让学生体验成功的喜悦,增强学习数学的信心。
四、教学重难点1、教学重点角平分线的性质定理和逆定理的理解和应用。
2、教学难点角平分线性质定理的证明和应用。
五、教法与学法1、教法(1)启发式教学法:通过设置问题,引导学生思考和探究,激发学生的学习兴趣。
(2)演示法:通过演示几何图形的变化,帮助学生直观地理解角平分线的性质。
(3)讲练结合法:在讲解知识的同时,及时进行练习,巩固所学知识。
2、学法(1)自主探究法:让学生通过自主思考和探究,发现问题、解决问题。
(2)合作学习法:组织学生进行小组合作学习,共同讨论和交流,培养学生的合作精神。
六、教学过程1、导入新课(1)复习角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
12.3角的平分线的性质说课稿
12.3角的平分线的性质说课稿一、说教材12.3角的平分线的性质是初中数学教学中的一个重要内容,它位于平面几何的学习单元中。
本节内容不仅在几何学中具有举足轻重的地位,而且在培养学生逻辑推理能力和空间观念方面起着关键作用。
角的平分线概念的引入,是学生对角进行深入理解和操作的开端,为后续学习相似三角形、圆等相关知识打下坚实的基础。
本文主要内容包括:角的平分线的定义、角的平分线的性质及其证明、以及通过实际例子来展示如何应用这一性质解决实际问题。
具体来说:(1)角的平分线定义:从一个角的顶点出发,把这个角分成两个相等角的射线叫做这个角的平分线。
(2)角的平分线性质:角的平分线上的点到这个角的两边的距离相等。
(3)性质的证明:通过严谨的几何推理,让学生理解并掌握角的平分线性质的证明过程。
(4)应用举例:将性质应用于实际问题的解决中,如构造等腰三角形、解决角度问题等。
二、说教学目标学习本课,学生应达到以下教学目标:1. 知识技能目标:- 掌握角的平分线的定义,并能够准确地画出角的平分线。
- 理解并记忆角的平分线的性质,能够进行简单的应用。
- 学会通过逻辑推理证明角的平分线性质,增强几何证明能力。
2. 过程与方法目标:- 通过直观演示和动手操作,培养学生的空间观念和动手能力。
- 通过合作交流,提高学生的团队协作能力和问题解决能力。
3. 情感态度与价值观目标:- 激发学生学习几何的兴趣,培养严谨的学习态度。
- 引导学生体会数学的对称美,增强对数学学科的好奇心和探索欲。
三、说教学重难点本节课的重点是使学生掌握角的平分线的定义和性质,能够运用这些知识解决实际问题。
难点在于角的平分线性质的证明过程,这要求学生有较强的逻辑思维能力和几何直观。
1. 教学重点:- 角的平分线的定义。
- 角的平分线的性质。
2. 教学难点:- 角的平分线性质的推理和证明。
- 学生在实际问题中灵活运用性质的能力。
四、说教法在教学12.3角的平分线的性质时,我计划采用以下几种教学方法,旨在提高学生的理解和应用能力,同时突出我的教学特色:1. 启发法:- 我将通过提出引导性问题,激发学生的思考,例如:“如何准确地定义一个角的平分线?”或“为什么角的平分线上的点到角的两边的距离相等?”- 利用生活实例或几何模型,引发学生对角的平分线性质的探究,从而加深理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《12.3角的平分线的性质》(第一课时)说课稿
雄县双堂乡中学胡玥
本节课内容是人教版义务教育教科书《数学》八年级下册第十二章的《角的平分线的性质》(第一课时)。
1.设计理念
以PPT软件为制作平台,运用多媒体手段,在不破损学科知识的科学性、系统性的前提下,依据课标要求,对教科书相关内容进行了适当整编,激发学生的求知欲,以展示学生思维的训练过程。
2.知识背景分析
本节课是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的。
内容包括角平分线的作法、角平分线的性质及初步应用。
作角的平分线是基本作图,角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础。
因此,本节内容在数学知识体系中起到了承上启下的作用。
同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律。
3.学情背景分析
刚进入初二的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导。
根据学生的认知特点和接受水平,我把第一课时的教学任务定为:掌握角平分线的画法及会用角平分线的性质定理解题,同时为下节判定定理的学习打好基础。
4.学习目标
4.1 知识与技能目标
1.会作已知角的平分线。
2.了解角的平分线的性质,能利用三角形全等证明角的平分线的性质。
3.会利用角的平分线的性质进行证明与计算。
4.2 过程与方法目标
在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学
生的推理证明意识和能力。
4.3 情感、态度与价值观目标
在探究作角的平分线的方法及角的平分线的性质的过程中,培养学生探究问题的兴趣、合作交流的意识、动手操作的能力与探索精神,增强解决问题的信心,获得解决问题的成功体验。
5.教学重点.难点
5.1 教学重点:
角的平分线的性质的证明及应用。
5.2 教学难点:
角的平分线的性质的探究。
6.教法设计与学法指导
6.1 教法选择
针对八年级学生的认知结构和心理特征,为了突出重点,突破难点,本课题的教学坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,以“自主学习,同伴互助”教学法为主,辅之直观演示、讨论交流,让学生动脑思考,动口交流,动心关注。
6.2学法指导
本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与数学活动的时间和空间。
通过本课的教学,在教师的组织引导下,以学生自主学习为主,尝试学习、探究学习、合作交流学习相结合。
7.教学流程安排
在教学流程设计中,以“问题情境”、“师生互动”、“设计意图及媒体运用”三栏并行;在课堂教学活动进程中,以“创设情境,导入新课——自主学习——合作探究——反馈提升——推荐作业,运用达标”等五个有层次梯度的活动序列展开。
教学活动活动意图
活动1 创设情境,导入新课通过对角平分仪的介绍和认识,激发兴趣,引入
新课。