二元一次方程(组)题型分类讲解

合集下载

第五章二元一次方程(组)及其解法(解析版)

第五章二元一次方程(组)及其解法(解析版)

第五章二元一次方程组考点类型大总结【知识点及考点类型梳理】知识点一、二元一次方程(组)考点类型一、二元一次方程(组)考点类型二、用字母表示数考点类型三、二元一次方程(组)的解知识点二、二元一次方程组的求解考点类型一、代入法考点类型二、消元法考点类型三、含参数类型考点类型四、整体思想、换元思想考点类型五、新定义风向知识点一、二元一次方程(组)考点类型一、二元一次方程(组)1.已知关于x ,y 的方程22146m n m n x y --+++=是二元一次方程,则m ,n 的值为()A .,11m n ==-B .1,1m n =-=C .14,33m n ==-D .14,33m n =-=【答案】A根据二元一次方程的定义,得出关于m ,n 的方程组,求出答案.【详解】∵关于x 、y 的方程x 2m﹣n ﹣2+y m +n +1=6是二元一次方程,∴22111m n m n --=⎧⎨++=⎩,解得11m n =⎧⎨=-⎩.故选:A .【点睛】此题考查了二元一次方程的定义和二元一次方程组的解法,熟练掌握二元一次方程的定义是解本题的关键.2.若1335m n m x y --+=是二元一次方程,那么m 、n 的值分别为()A .2m =,3n =B .2m =,1n =C .1m =-,2n =D .3m =,4n =【答案】B【分析】利用二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1的整式方程判断即可.【详解】解:∵1335m n m x y --+=是二元一次方程,∴m -1=1,3n -m =1,解得:m =2,n =1,故选:B .此题考查了二元一次方程的定义,熟练掌握二元一次方程的定义是解本题的关键.3.方程23235,3,3,320,6x y xy x x y z x y y -==+=-+=+=中是二元一次方程的有___个.【答案】1【分析】二元一次方程满足的条件:整式方程;含有2个未知数;未知数的最高次项的次数是1.【详解】解:符合二元一次方程的定义的方程只有2x −3y =5;xy =3,x 2+y =6的未知数的最高次项的次数为2,不符合二元一次方程的定义;x +3y=1不是整式方程,不符合二元一次方程的定义;3x −y +2z =0含有3个未知数,不符合二元一次方程的定义;由上可知是二元一次方程的有1个.故答案为:1.【点睛】主要考查二元一次方程的概念.要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的最高次项的次数是1的整式方程.4.如果2120a b x y -++=是二元一次方程,则a =____,b =_____.【答案】3【分析】根据二元一次方程的定义可知21a -=,11b +=,据此可解出a 、b .解:依题意,得:2111a b -=⎧⎨+=⎩,解得:30a b =⎧⎨=⎩.故答案为:3,0.【点睛】此题考查的是对二元一次方程的定义理解,根据未知数的次数为1,可以列出方程组求解.5.下列方程组中,是二元一次方程组的是()A .35233x y x z +=⎧⎨-=⎩B .12163m n m n +=⎧⎪⎨+=⎪⎩C .56m n mn n +=⎧⎨+=⎩D .321026x y x y +=⎧⎪⎨+=⎪⎩【答案】B【分析】本题根据二元一次方程组的基本形式及特点进行求解即可,即①含有两个二元一次方程,②方程都为整式方程,③未知数的最高次数都为一次.【详解】解:A :含有三个未知数,不是;B :符合条件,是;C :mn 项的次数为2,不是;D :存在不是整式的式子,不是.故选:B .本题主要考查二元一次方程组的判定,解题的关键是熟练掌握二元一次方程组的基本形式及特点.6.下列方程组中是二元一次方程组的是()A .141y x x v ⎧+=⎪⎨⎪-=⎩B .43624x y y z +=⎧⎨+=⎩C .41x y x y +=⎧⎨-=⎩D .22513x y x y +=⎧⎨+=⎩【答案】C【分析】二元一次方程组是由两个未知数且未知数最高次数为一次的两个方程组成;根据二元一次方程组的定义逐项判断即得答案.【详解】解:A 、方程组141y x x v ⎧+=⎪⎨⎪-=⎩中第一个方程不是整式方程,不是二元一次方程组,所以本选项不符合题意;B 、方程组中有三个未知数,不是二元一次方程组,所以本选项不符合题意;C 、该方程组是二元一次方程组,所以本选项符合题意;D 、方程组中第二个方程未知数x 、y 的次数是2,不是二元一次方程组,所以本选项不符合题意.故选:C .【点睛】本题考查了二元一次方程组的定义,属于基础概念题型,熟知二元一次方程组的概念是关键.7.已知方程组2(2)13(3)40m m x x m y -+=⎧⎪⎨--+=⎪⎩是关于x ,y 的二元一次方程组,则()A .2m ≠±B .3m =C .3m =-D .3m ≠【分析】二元一次方程组:由两个整式方程组成,两个方程一共含有两个未知数,且含未知数的项的最高次数是1,这样的方程组是二元一次方程组,根据定义列方程或不等式,从而可得答案.【详解】解: 方程组2(2)13(3)40m m x x m y -+=⎧⎪⎨--+=⎪⎩是关于x ,y 的二元一次方程组,203021m m m ⎧+≠⎪∴-≠⎨⎪-=⎩解得:233m m m ≠-⎧⎪≠⎨⎪=±⎩3.m ∴=-故选:.C 【点睛】本题考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.考点类型二、用字母表示数8.由132x y -=可以得到用x 表示y 的式子为()A .223x y -=B .223x y =-C .2133x y =-D .223x y =-【分析】先移项,后系数化为1,即可得.【详解】解:132x y -=移项,得123y x =-,系数化为1,得223x y =-,故选B .【点睛】本题考查了方程的基本运算技能,解题的关键是熟练掌握方程的基本运算技能.9.在二元一次方程142653x y -=中,用含x 的代数式表示y ,则下面结论正确的是()A .20524xy -=B .52024x y -=C .52024x y +=D .52024x y +=-【答案】B【分析】先把二元一次方程142653x y -=去分母得:52420x y -=,再通过移项合并同类项可得结果.【详解】解:由二元一次方程142653x y -=去分母,得:52420x y -=,移项合并同类项得:52024x y -=,系数化为1得:52024x y -=,故选:B .【点睛】本题考查了二元一次方程的变形,解题的关键是熟练掌握解二元一次方程的基本步骤.10.把方程635x y -=改成用含x 的代数式表示y 为y =__________.【答案】2x -53【分析】把x 看作已知数求出y 即可.【详解】解:6x -3y =5,3y =6x -5,解得:y =2x -53故答案为:y =2x -53【点睛】此题考查了解二元一次方程,解题的关键是将x 看作已知数求出y .考点类型三、二元一次方程(组)的解11.已知14x y =-⎧⎨=⎩是方程mx ﹣y =3的解,则m 的值是()A .﹣1B .1C .﹣7D .7【答案】C【分析】把14xy=-⎧⎨=⎩代入mx﹣y=3,得到关于m的方程,进而即可求解.【详解】解:14xy=-⎧⎨=⎩是方程mx﹣y=3的解,∴-m﹣4=3,解得:m=-7,故选C.【点睛】本题主要考查二元一次方程的解,掌握方程的解的定义,是解题的关键.12.如果方程组23759x yx y+=⎧⎨-=⎩的解是方程716x my+=的一个解,则m的值为()A.0B.1C.2D.3【答案】C【分析】求出方程组的解得到x与y的值,代入方程计算即可求出m的值.【详解】解:23759x yx y+=⎧⎨-=⎩①②{,①+②×3得:17x=34,即x=2,把x=2代入①得:y=1,把x=2,y=1代入方程7x+my=16得:14+m=16,解得:m =2,故选:C .【点睛】此题考查了解二元一次方程组和二元一次方程解的概念,解出二元一次方程组的解代入另一个方程是解决此题的关键.13.二元一次方程210x y +=有______个解,有________个正整数解,它们是___________.【答案】无穷多412348642x x x x y y y y ====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩;;;【分析】将x 看做已知数求出y ,即可确定出正整数解的个数.【详解】解:由方程210x y +=,得到102y x =-,当x =1时,y =8;当x =2时,y =6;当x =3时,y =4;当x =4时,y =2.则正整数解有4个,故答案为:无穷多;4;12348642x x x x y y y y ====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩;;;.【点睛】本题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .14.若二元一次方程组51cx ay x y -=⎧⎨+=⎩和23151x y ax by -=⎧⎨+=⎩解相同,则可通过解方程组()求得这个解.A .151cx ay x y -=⎧⎨+=⎩B .51cx ay ax by -=⎧⎨+=⎩C .23151x y x y -=⎧⎨+=⎩D .23151x y ax by -=⎧⎨+=⎩【答案】C【分析】根据方程组同解,可知方程组的解同时满足四个方程,将两个已知方程组成方程组即可.【详解】解:∵二元一次方程组51cx ayx y-=⎧⎨+=⎩和23151x yax by-=⎧⎨+=⎩解相同,方程组的解同时满足这四个方程;∴解方程组23151x yx y-=⎧⎨+=⎩即可求出方程组的解,故选:C.【点睛】本题考查了方程组同解问题,解题关键是明确方程组的解的意义,把已知方程组成方程组.15.若关于x,y的方程组48ax byax by-=-⎧⎨+=⎩的解是23xy=⎧⎨=⎩,则方程组(3)(1)4(3)(1)8a xb ya xb y+--=-⎧⎨++-=⎩的解是()A.14xy=-⎧⎨=⎩B.23xy=⎧⎨=⎩C.14xy=⎧⎨=-⎩D.52xy=⎧⎨=⎩【答案】A 【分析】通过观察所给方程组的关系可得3213xy+=⎧⎨-=⎩,求出x、y即可.【详解】解:∵关于x,y的方程组48ax byax by-=-⎧⎨+=⎩的解是23xy=⎧⎨=⎩,∴234 238a ba b-=-⎧⎨+=⎩,又∵(3)(1)4(3)(1)8a x b y a x b y +--=-⎧⎨++-=⎩,∴3213x y +=⎧⎨-=⎩,解得14x y =-⎧⎨=⎩,∴方程组(3)(1)4(3)(1)8a x b y a x b y +--=-⎧⎨++-=⎩的解为14x y =-⎧⎨=⎩,故选:A .【点睛】本题考查二元一次方程组的解,解题的关键是要知道两个方程组之间的关系.16.已知关于x 、y 的方程组242x y a x y a -=-⎧⎨-=⎩的解x 与y 互为相反数,则a =__________.【答案】2【分析】直接①-②可得42x y a +=-,由题意可得0x y +=,进而可得420a -=,再解即可.【详解】242x y a x y a-=-⎧⎨-=⎩①②,①-②得:42x y a +=-,x y 、互为相反数,0x y ∴+=,420a∴-=,解得:2a=故答案为:2.【点睛】本题主要考查了加减消元法解二元一次方程组,解题的关键是挖掘出内含在题干中的已知条件x=−y.知识点二、二元一次方程组的求解考点类型一、代入法17.用代入法解下列方程组:(1)3 759 y xx y=+⎧⎨+=⎩;(2)35 5215 s ts t-=⎧⎨+=⎩;(3)3416 5633 x yx y+=⎧⎨-=⎩;(4)4(1)3(1)2223x y yx y--=--⎧⎪⎨+=⎪⎩.【答案】(1)1252xy⎧=-⎪⎪⎨⎪=⎪⎩;(2)25112011st⎧=⎪⎪⎨⎪=⎪⎩;(3)612xy=⎧⎪⎨=-⎪⎩;(4)23xy=⎧⎨=⎩.【分析】根据代入法解二元一次方程组即可,代入消元法是将方程组中的一个方程的未知数用含有另一个未知数的代数式表示,并代入到另一个方程中去,这就消去了一个未知数,代入消元法简称代入法.【详解】(1)3759y x x y =+⎧⎨+=⎩①②将①代入②得:75(3)9x x ++=,解得12x =-,将12x =-代入①得,52y =,∴原方程组的解为:1252x y ⎧=-⎪⎪⎨⎪=⎪⎩;(2)355215s t s t -=⎧⎨+=⎩①②由①得,35t s =-③,将③代入②得,52(35)15s s +-=,解得2511s =,将2511s =代入③,得,2011t =,∴原方程组的解为:25112011s t ⎧=⎪⎪⎨⎪=⎪⎩;(3)34165633x y x y +=⎧⎨-=⎩①②由①得344y x =-③,将③代入②得,56(4)334x x 3--=,解得6x =,将6x =代入③,得,12y =-,∴原方程组的解为:612x y =⎧⎪⎨=-⎪⎩;(4)4(1)3(1)2223x y y x y --=--⎧⎪⎨+=⎪⎩①②由①得444332x y y --=--,即45y x =-③,由②可得3212x y +=④,将③代入④得32(45)12x x +-=,解得2x =,将2x =代入③,得,3y =,∴原方程组的解为:23x y =⎧⎨=⎩;【点睛】本题考查了代入法解二元一次方程组,掌握代入法是解题的关键.考点类型二、消元法18.用加减法解下列方程组:(1)29321x y x y +=⎧⎨-=-⎩;(2)52253415x y x y +=⎧⎨+=⎩;(3)258325x y x y +=⎧⎨+=⎩;(4)236322x y x y +=⎧⎨-=-⎩.【答案】(1)272x y =⎧⎪⎨=⎪⎩;(2)50x y =⎧⎨=⎩;(3)9111411x y ⎧=⎪⎪⎨⎪=⎪⎩;(4)6132213x y ⎧=⎪⎪⎨⎪=⎪⎩.【分析】(1)根据加减消元可直接进行求解方程组;(2)根据加减消元法可直接进行求解方程组;(3)根据加减消元法可直接进行求解方程组;(4)根据加减消元法可直接进行求解方程组.【详解】解:(1)29321x y x y +=⎧⎨-=-⎩①②①+②得:48x =,解得:2x =,把2x =代入①式得:229y +=,解得:72y =,∴原方程组的解为272x y =⎧⎪⎨=⎪⎩;(2)52253415x y x y +=⎧⎨+=⎩①②①×2-②得:735x =,解得:5x =,把5x =代入①得:55225y ⨯+=,解得:0y =,∴原方程组的解为50x y =⎧⎨=⎩;(3)258325x y x y +=⎧⎨+=⎩①②①×3-②×2得:1114=y ,解得:1411y =,把1411y =代入①得:1425811x +⨯=,解得:911x =;∴原方程组的解为9111411x y ⎧=⎪⎪⎨⎪=⎪⎩;(4)236322x y x y +=⎧⎨-=-⎩①②①×2+②×3得:136x =,解得:613x =,把613x =代入①得:623613y ⨯+=,解得:2213y =,∴原方程组的解为6132213x y ⎧=⎪⎪⎨⎪=⎪⎩.【点睛】本题主要考查二元一次方程组的解法,熟练掌握加减消元法是解题的关键.考点类型三、含参数类型19.甲、乙两人同解方程组515411ax y x by +=⎧⎨-=-⎩①②时,甲看错了方程①中的a ,解得31x y =-⎧⎨=-⎩,乙看错了②中的b ,解得54x y =⎧⎨=⎩,试求20202021()a b +-的值.【答案】0【分析】将31x y =-⎧⎨=-⎩代入第二个方程可得b 的值,将54x y =⎧⎨=⎩代入第一个方程得a 的值,即可求出所求式子的值.【详解】解:将31x y =-⎧⎨=-⎩代入411x by -=-得:1211-+=-b ,解得1b =将54x y =⎧⎨=⎩代入方程组中的515ax y +=得:52015a +=,即1a =-20202021()ab ∴+-20202021(1)(1)110=-+-=-=.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.20.若关于x 、y 的二元一次方程组13x y x y -=⎧⎨+=⎩与方程组4213mx ny ny mx ⎧+=⎪⎪⎨⎪-=⎪⎩有相同的解.求m 、n 的值.【答案】m =1,n =3【分析】根据题意列不含m 、n 的方程组求解,求出x ,y 值,代入4213mx ny ny mx ⎧+=⎪⎪⎨⎪-=⎪⎩中即可解得m ,n .【详解】解:解方程组13x y x y -=⎧⎨+=⎩得:21x y =⎧⎨=⎩,代入4213mx ny ny mx ⎧+=⎪⎪⎨⎪-=⎪⎩中得:21314m n m n +=⎧⎪⎨-=⎪⎩,解得:13m n =⎧⎨=⎩.【点睛】本题考查了二元一次方程组的解,解决本题的关键是根据题意重新联立方程组.21.已知关于x 、y 的方程组2331x y ax by -=⎧⎨+=-⎩的解和2333211ax by x y +=⎧⎨+=⎩的解相同,求代数式2a +b 的平方根.【答案】代数式2a +b 的平方根是±1.【分析】由已知解方程组2333211x y x y -=⎧⎨+=⎩,解得31x y =⎧⎨=⎩,将31x y =⎧⎨=⎩代入233ax by +=中,得21a b +=,即可求解.【详解】解: 方程组2331x y ax by -=⎧⎨+=-⎩的解和2333211ax by x y +=⎧⎨+=⎩的解相同,∴2333211x y x y -=⎧⎨+=⎩与2331ax by ax by +=⎧⎨+=-⎩的解相同,∴2333211x y x y -=⎧⎨+=⎩①②,①2⨯得,466x y -=③,②3⨯得,9633x y +=④,③+④得,3x =,将3x =代入①得,1y =,∴方程组的解为31x y =⎧⎨=⎩,将31x y =⎧⎨=⎩代入233ax by +=中,得21a b +=,2a b ∴+的平方根为±1.【点睛】本题考查二元一次方程组的解,理解同解二元一次方程组的含义,将所给方程组重新组合新的方程组,灵活运用加减消元法和代入消元法求方程组的解是解题的关键,也考查了平方根的性质.考点类型四、整体思想、换元思想22.材料:解方程组()1045x y x y y --=⎧⎨--=⎩时,可由①得1x y -=③,然后再将③代入②得415y ⨯-=,求得1y =-,从而进一步求得01x y =⎧⎨=-⎩这种方法被称为“整体代入法”请用这样的方法解方程组()()423324x y x y x y -=⎧⎨--=⎩【答案】7656x y ⎧=⎪⎪⎨⎪=⎪⎩【分析】观察方程组的特点,把2x y -看作一个整体,得到322x y -=,将之代入②,进行消元,得到33422x ⎛⎫+= ⎪⎝⎭,解得76x =,进一步解得56y =,从而得解.【详解】解:()()423324x y x y x y -=⎧⎪⎨--=⎪⎩①②由①得322x y -=③,把③代入②得33422x ⎛⎫+⨯= ⎪⎝⎭,解得76x =,把76x =代入③,得73262y ⨯-=,解得56y =,故原方程组的解为7656x y ⎧=⎪⎪⎨⎪=⎪⎩.【点睛】本题考查了二元一次方程组的特殊解法:整体代入法.解方程(组)要根据方程组的特点灵活运用选择合适的解法.23.阅读材料在解方程组253 4115 x y x y +=⎧⎨+=⎩①②时,明明采用了一种“整体代换”的解法.解:将方程②变形:4x +10y +y =5,即2(2x +5y )+y =5③;把方程①代入③得2×3+y =5,∴y =﹣1,把y =﹣1代入①,得x =4,∴方程组的解为41x y =⎧⎨=-⎩.请你解决以下问题;模仿明明的“整体代换”法解方程组436 8718 x y x y -=⎧⎨-=⎩①②.【答案】36x y =-⎧⎨=-⎩【分析】将方程②变形为()24318x y y --=,再将436x y -=整体代入即可求方程组.【详解】解:4368718x yx y-=⎧⎨-=⎩①②中将②变形,得()24318x y y--=③,将①代入③得,2×6﹣y=18,∴y=﹣6,将y=﹣6代入①得,x=﹣3,∴方程组的解为36 xy=-⎧⎨=-⎩.【点睛】本题考查了整体代换法解二元一次方程组的解法,解题的关键是读懂题意,明确整体思想.24.阅读下列材料:小明同学遇到下列问题:解方程组23237432323832x y x yx y x y+-⎧+=⎪⎪⎨+-⎪+=⎪⎩小明发现如果用代入消元法或加减消元法求解,运算量比较大,容易出错.如果把方程组中的(2x+3y)看成一个整体,把(2x﹣3y)看成一个整体,通过换元,可以解决问题.以下是他的解题过程:令m=2x+3y,n=2x﹣3y.原方程组化为743832m nm n⎧+=⎪⎪⎨⎪+=⎪⎩,解的6024mn=⎧⎨=-⎩,把6024mn=⎧⎨=-⎩代入m=2x+3y,n=2x﹣3y,得23602324x yx y+=⎧⎨-=-⎩解得914xy=⎧⎨=⎩所以,原方程组的解为914xy=⎧⎨=⎩.请你参考小明同学的做法解方程组:(1)3 6101 610x y x yx y x y+-⎧+=⎪⎪⎨+-⎪-=-⎪⎩;(2)52113213x y x y⎧+=⎪⎪⎨⎪-=⎪⎩.【答案】(1)137x y =⎧⎨=-⎩;(2)1312x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】认真理解题目中给定的整体代换思路,按照所给的方法求出方程组的解即可.【详解】解:(1)令6x y m +=,10x y n -=,原方程组化为31m n m n +=⎧⎨-=-⎩,解得:12m n =⎧⎨=⎩,∴16210x y x y +⎧=⎪⎪⎨-⎪=⎪⎩,解得:137x y =⎧⎨=-⎩.∴原方程组的解为137x y =⎧⎨=-⎩.(2)令1m x =,1n y=,原方程组可化为:52113213m n m n +=⎧⎨-=⎩,解得:32m n =⎧⎨=-⎩,∴1312x y ⎧=⎪⎪⎨⎪=-⎪⎩,经检验,1312x y ⎧=⎪⎪⎨⎪=-⎪⎩是原方程的解.∴原方程组的解为1312x y ⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查了解二元一次方程组,整体代换是解题的关键.考点类型五、新定义风向25.在平面直角坐标系中,已知点(),A x y ,点()2,2B x my mx y --(其中m 为常数,且0m ≠),则称B 是点A 的“m 系置换点”.例如:点()1,2A 的“3系置换点”B 的坐标为()1232,2312-⨯⨯⨯⨯-,即()11,4B -.(1)点(2,0)的“2系置换点”的坐标为________;(2)若点A 的“3系置换点”B 的坐标是(-4,11),求点A 的坐标.(3)若点(),0A x (其中0x ≠),点A 的“m 系置换点”为点B ,且2AB OA =,求m 的值;【答案】(1)()28,;(2)()21,;(3)1m =±.【分析】(1)根据题中新定义直接将m 的值代入即可得出答案;(2)根据题中新定义列出关于x 、y 的二元一次方程组求解即可得出答案;(3)根据题中新定义可得出点B 的坐标,再根据2AB OA =列方程求解即可得出答案.【详解】解:(1)点(2,0)的“2系置换点”的坐标为()22202220-⨯⨯⨯⨯-,,即()28,;(2)由题意得:2342311x y x y -⨯⨯=-⎧⎨⨯⨯-=⎩解得:21x y =⎧⎨=⎩∴点A 的坐标为:()21,;(3) (),0A x ∴点()2,2B x my mx y --为()20,20x m mx -⨯-即点B 坐标为(),2x mx ∴2AB mx =,OA x= 2AB OA =22mx x∴= m 为常数,且0m ≠∴1m =±.【点睛】本题考查了二元一次方程组的解法、绝对值方程,理解“m 系置换点”的定义并能运用是本题的关键.26.对x ,y 定义一种新的运算A ,规定:()()(),ax by x y A x y ay bx x y ⎧+≥⎪=⎨+<⎪⎩(其中0ab ≠).(1)若已知1a =,2b =-,则()4,3A =_________.(2)已知()1,13A =,()1,20A -=.求a ,b 的值;(3)在(2)问的基础上,若关于正数p 的不等式组()()3,21413,2A p p A p p m ⎧->⎪⎨---≥⎪⎩恰好有2个整数解,求m 的取值范围.【答案】(1)2-;(2)12a b =⎧⎨=⎩;(3)2618m -<-≤【分析】(1)根据新定义就是即可;(2)根据题中的新定义列出方程组,求出方程组的解即可得到a 与b 的值;(3)由(2)化简得A (x ,y )的关系式,先判断括号内数的大小,再转化成不等式求解即可.【详解】解:(1)根据题中的新定义得:1×4+3×(-2)=-2,故答案为-2;(2)根据题中的新定义得:320a b a b +=⎧⎨-=⎩,解得:12a b =⎧⎨=⎩;(3)由(2)化简得:A (x ,y )=()()22x y x y y x x y ⎧+≥⎪⎨+<⎪⎩,∴在关于正数p 的不等式组()()3214132A p p A p p m ⎧->⎪⎨---≥⎪⎩,,中,∴A (3p ,2p -1)=7p -2>4,A (-1-3p ,-2p )=-2p +2(-1-3p )=-8p -2≥m ,∴p >67,p ≤m 28+-∵恰好有2个整数解,∴2个整数解为1,2.∴2≤m28+-<3,∴-26<m≤-18.【点睛】本题主要考查新定义的运算,解决本题的关键是要按照定义式子中列出算式进行解方程和不等式组.。

(完整版)二元一次方程组知识点及典型例题

(完整版)二元一次方程组知识点及典型例题

二元一次方程组小结与复习一、知识梳理(一)二元一次方程组的有关概念1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫作二元一次方程。

2.二元一次方程的一个解:适合一个二元一次方程的一对未知数的值,叫这个二元一次方程的一个解。

任何一个二元一次方程都有无数个解。

3.方程组和方程组的解(1)方程组:由几个方程组成的一组方程叫作方程组。

(2)方程组的解:方程组中各个方程的公共解,叫作这个方程组的解。

4.二元一次方程组和二元一次方程组的解(1)二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫作二元一次方程组。

(2)二元一次方程组的解:二元一次方程组中各个方程的公共解,叫作这个二元一次方程组的解。

(二)二元一次方程组的解法: 1.代入消元法 2.加减消元法二、典例剖析题型一1.二元一次方程及方程组的概念。

二元一次方程的一般形式:任何一个二元一次方程经过整理、化简后,都可以化成0=++c by ax (a,b,c 为已知数,且a ≠0,b ≠0)的形式,这种形式叫二元一次方程的一般形式。

练习1、下列方程,哪些是二元一次方程,哪些不是?12).().(711)(6526)(=++-=++=-y x xy D y x C yx B x z x A练习2、若方程的值。

的二元一次方程,求、是关于)(n n mm y x y xm 43195=+--练习3、(1)若方程(2m -6)x |n |-1+(n +2)y 82-m =1是二元一次方程,则m =_______,n =__________.专题二:二元一次方程组的解法:解二元一次方程组的基本思想是消元转化。

(一)、代入消元法:1、直接代入 例1 解方程组②①y x x y ⎩⎨⎧=--=.134,32跟踪训练:解方程组:(1)90152x y x y+=⎧⎨=-⎩ (2)⎩⎨⎧-==+73825x y y x2、变形代入 例2 解方程组②①y x y x ⎩⎨⎧=+=-.1043,95跟踪训练:(1)⎩⎨⎧-=--=-.2354,42y x y x (2)⎩⎨⎧=+=+②①77322y x y x(3) ⎩⎨⎧=-=+.123,205y x y x (4) ⎩⎨⎧=-=+②①5231284y x y x(二)、加减消元法例题、解方程组(1)⎩⎨⎧=+=-524y x y x (2)⎩⎨⎧=-=-322543y x y x (3).⎩⎨⎧=+=+.1034,1353y x y x跟踪训练:(1) (2) (3)⎩⎨⎧=+=-1023724y x y x(4) (5)⎪⎩⎪⎨⎧=++-=--9275320232y y x y x (6)11,233210;x y x y +⎧-=⎪⎨⎪+=⎩(三)、选择适当的方法解下列方程组 (1)⎩⎨⎧=+---=+.5)3()1(2),1(32x y x y (2)⎩⎨⎧-=+---=+--23)3(5)4(44)3()4(2y x y x(3)⎪⎩⎪⎨⎧-=+-++=+3)43(4)1(3)2(311y x y x (4)x 2y+2=02y+22x536⎧⎪⎨⎪⎩---=题型三:代数式的变形 1、在方程=5中,用含的代数式表示为:= ,当=3时,= 。

二元一次方程组的12种应用题型归纳(可编辑修改word版)

二元一次方程组的12种应用题型归纳(可编辑修改word版)

二元一次方程组的 12 种应用题型归纳类型一:行程问题【例 1】甲、乙两人相距 36 千米,相向而行,如果甲比乙先走 2 小时,那么他们在乙出发2.5 小时后相遇;如果乙比甲先走 2 小时,那么他们在甲出发 3 小时后相遇,甲、乙两人每小时各走多少千米?解:设甲的速度为 x 千米/时,乙的速度为 y 千米/时。

(2.5 + 2)x + 2.5y = 36 3x + (3 + 2)y = 36 x = 6 y = 3.6答:甲的速度为 6 千米/时,乙的速度为 3.6 千米/时。

【例 2】两地相距 280 千米,一艘船在其间航行,顺流用 14 小时,逆流用 20 小时,求这艘船在静水中的速度和水流速度。

解:设这艘船在静水中的速度为 x 千米/时,水流速度为 y 千米/时。

14(x + y ) = 280 20(x ‒ y ) = 280 x = 17 y = 3答:这艘船在静水中的速度为 17 千米/时,水流速度为 3 千米/时。

类型二:工程问题【例】小明家准备装修一套新住房,若甲、乙两个装饰公司合作 6 周完成,需工钱 5.2 万元;若甲公司单独做 4 周后,剩下的由乙公司来做,还需 9 周完成,需工钱 4.8 万元。

若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。

{解得{ {解得{{ y = { b = 解:设甲公司每周的工作效率为 x ,乙公司每周的工作效率为 y 。

x = 1 6x + 6y = 1 4x + 9y = 110 1 解得 151 1 ∴1÷10=10(周) 1÷15=15(周)∴甲公司单独完成这项工程需 10 周,乙公司单独完成这项工程需 15 周。

设甲公司每周的工钱为 a 万元,乙公司每周的工钱为 b 万元。

a = 3 6a + 6b = 5.2 4a + 9b = 4.8 5 4 解得 15此时 10a=6(万元) 15b=4(万元) 6>4答:从节约开支的角度考虑,小明家应选择乙公司。

二元一次方程组【四大题型】—2024年中考数学高频考点精讲(全国通用)(解析版)

二元一次方程组【四大题型】—2024年中考数学高频考点精讲(全国通用)(解析版)

二元一次方程组【四大题型】一、解二元一次方程组【高频考点精讲】1.用“代入法”解二元一次方程组的一般步骤(1)从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来; (2)将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程; (3)解这个一元一次方程,求出x (或y )的值;(4)将求得未知数的值代入变形后的关系式,求出另一个未知数的值; (5)把求得的x 、y 的值写在一起,用的形式表示,就是方程组的解。

2.用“加减法”解二元一次方程组的一般步骤(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程; (3)解这个一元一次方程,求得x (或y )的值;(4)将求得未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值; (5)把求得的x 、y 的值写在一起,用的形式表示,就是方程组的解。

【热点题型精练】1.(2023•无锡)下列4组数中,不是二元一次方程2x +y =4的解的是( ) A .{x =1y =2B .{x =2y =0C .{x =0.5y =3D .{x =−2y =4解:A 、把x =1,y =2代入方程,左边=2+2=右边,所以是方程的解; B 、把x =2,y =0代入方程,左边=右边=4,所以是方程的解; C 、把x =0.5,y =3代入方程,左边=4=右边,所以是方程的解; D 、把x =﹣2,y =4代入方程,左边=0≠右边,所以不是方程的解. 答案:D .2.(2023•南通)若实数x ,y ,m 满足x +y +m =6,3x ﹣y +m =4,则代数式﹣2xy +1的值可以是( ) A .3B .52C .2D .32解:由题意可得{x +y =6−m 3x −y =4−m,解得:{x =5−m 2y =7−m 2, 则﹣2xy +1=﹣2×5−m 2×7−m2+1=−(5−m)(7−m)2+1 =−m 2−12m+352+1=−(m 2−12m+36)−12+1=−(m−6)22+32≤32,∵3>52>2>32,∴A ,B ,C 不符合题意,D 符合题意, 答案:D .3.(2023•眉山)已知关于x ,y 的二元一次方程组{3x −y =4m +1x +y =2m −5的解满足x ﹣y =4,则m 的值为( )A .0B .1C .2D .3解:∵关于x 、y 的二元一次方程组为{3x −y =4m +1①x +y =2m −5②,①﹣②,得:2x ﹣2y =2m +6, ∴x ﹣y =m +3, ∵x ﹣y =4, ∴m +3=4, ∴m =1. 答案:B .4.(2022•株洲)对于二元一次方程组{y =x −1①x +2y =7②,将①式代入②式,消去y 可以得到( )A .x +2x ﹣1=7B .x +2x ﹣2=7C .x +x ﹣1=7D .x +2x +2=7解:{y =x −1①x +2y =7②,将①式代入②式,得x +2(x ﹣1)=7, ∴x +2x ﹣2=7, 答案:B .5.(2022•雅安)已知{x =1y =2是方程ax +by =3的解,则代数式2a +4b ﹣5的值为 .解:把{x =1y =2代入ax +by =3得:a +2b =3,则原式=2(a +2b )﹣5=2×3﹣5=6﹣5=1. 答案:1.6.(2023•杭州二模)已知二元一次方程x +3y =14,请写出该方程的一组整数解 . 解:x +3y =14, x =14﹣3y , 当y =1时,x =11,则方程的一组整数解为{x =11y =1.答案:{x =11y =1(答案不唯一).7.(2023•苏州一模)若一个二元一次方程的一个解为{x =2y =−1,则这个方程可能是 .解:这个方程可能是:x +y =1,答案不唯一. 答案:x +y =1,答案不唯一. 8.(2023•连云港)解方程组{3x +y =8①2x −y =7②.解:{3x +y =8①2x −y =7②,①+②得:5x =15, 解得:x =3,将x =3代入①得:3×3+y =8, 解得:y =﹣1,故原方程组的解为:{x =3y =−1.二、由实际问题抽象出二元一次方程组【高频考点精讲】1.由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系;2.一般来说,有几个未知量就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相符。

二元一次方程题型分类

二元一次方程题型分类

二元一次方程题型分类二元一次方程分类题型讲解一、定义类例1、下列方程组中为二元一次方程组的是()A .12x y xy -=??=? B .4123x y y x -=??=+? C .2201x x y x ?--=?=+? D .1130y x x y ?-=+=? 1、下列方程:(1)21x=31x-1;(2)5y x -=1;(3)m 2-1=n;(4)5xy=7;(5)7x 2+5y=2(6)11x=6y+5;其中是二元一次方程的有2、下列方程组中,不是二元一次方程组的是( )A. 123x y =??+=?B. 12x y x y +=??-=?C. 10x y xy -=??=?D. 21y x x y =??-=? 3、若方程x m-1+2y 3n+1=1是二元一次方程,则m= ,n= .二、解的个数问题例2、二元一次方程5x -11y=21 ()A .有且只有一解B .有无数解C .无解D .有且只有两解1、二元一次方程x+2y=12在正整数范围内的解有( )组.A. 3B. 4C. 5D. 无数2、方程x+2y =5的正整数解的个数是( )(A)一个 (B)二个 (C)三个 (D)四个三、已知方程组的解求待定字母的值例3、甲、乙两人共同解方程组-=-=+24155by x y ax 由于甲看错了方程①中的a ,得到方程组的解为?-=-=13y x ;乙看错了方程②中的 b ,得到方程组的解为==45y x ,求a+b1、若方程2x-ay=4的一组解是==,2y ,0x 那么a= .2、方程组=+=+32y x a y x 的解为==b y x 2,则a = ,b = 。

3、已知b kx y +=.如果x = 4时,=y 15;x =7时,y =24,则k =;b =四、方程(组)有相同解问题例4、二元一次方程组x+y=5a 2x+3y=13的解也是二元一次方程5x-3y=1的解,则a 的值是()1、若下列三个二元一次方程:3x-y=7;2x+3y=1;y=kx-9有公共解,那么k 的取值应是()A 、k=-4B 、k=4C 、k=-3D 、k=32、已知方程组=-=-1y 7x 45y x 3的解也是方程组==-5by -x 34y 2ax 的解,则a=_______,b=________ ,3a+2b=___________。

二元一次方程组的应用题,总结了十个题型,学透很容易!

二元一次方程组的应用题,总结了十个题型,学透很容易!

初学二元一次方程组的应用,好多同学会遇到会解不会列的尴尬局面。

为此,特把二元一次方程组应用中常见的题型整理出来,希望能对同学们有所帮助。

类型一:行程问题例:甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇.问甲、乙两人每小时各走多少千米?【分析】设甲,乙速度分别为x,y千米/时,根据甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么在甲出发后3小时相遇可列方程求解。

类型二:工程问题例:小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由.分析:需先算出甲乙两公司独做完成的周数.等量关系为:甲6周的工作量+乙6周的工作量=1;甲4周的工作量+乙9周的工作量=1;还需算出甲乙两公司独做需付的费用.等量关系为:甲做6周所需钱数+乙做6周所需钱数=5.2;甲做4周所需钱数+乙做9周所需钱数=4.8类型三:商品销售利润问题例:李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?分析:由题意得出两个相等关系为:甲、乙两种蔬菜共10亩和共获利18000元,依次列方程组求解类型四:银行储蓄问题例:小明的爸爸为了给他筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期存取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期存取,这种存款银行利率为年息2.70%.三年后同时取出共得利息303.75元.问小明的爸爸两种存款各存入了多少元?分析:利用两种方式共计存了4000元钱以及两笔存款三年内共得利息303.75元得出等式求出即可类型五:生产配套问题例:现用190张铁皮做盒,一张可以做8个盒身或22个盒底,1个盒身与2个盒底配一个盒子,问用多少张铁皮制盒身、多少张铁皮制盒底,可制成一批完整的盒子?分析:本题的等量关系是:制盒身的铁皮+制盒底的铁皮=190张;盒底的数量=盒身数量的2倍.据此可列方程组求解类型六:增长率问题例:某城市现有人口42万人.计划一年后城镇人口增加0.8%,农村人中增加1.1%,这样全市人口得增加1%,求这个城市现有城镇人口和农村人口分别是多少人?分析:根据题意可得出的等量关系为:现有的城镇人口+现有的农村人口=42万,计划一年后城镇人口增加的数量+农村人口的增加的数量=全市人口增加的数量,然后列出方程组求解类型七:数字问题例:一个两位数的十位数字与个位数字和为6,十位数字比个位数字大4,求这个两位数字.分析:设这个两位数十位上的数字为x,个位上的数字为y,根据十位数字与个位数字和为6,十位数字比个位数字大4,列方程组求解类型八:几何问题用长48厘米的铁丝弯成一个矩形,若将此矩形的长边分别折3厘米,补较短边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?分析:设矩形的长为x,宽为y,则可得x-3=y+3,再由矩形的周长为48,可得出2(x+y)=48,联立方程组求解即可类型九:年龄问题例:今年,小李的年龄是他爷爷的1/5,小李发现,12年后,他的年龄变成爷爷的1/3,求今年小李的年龄.分析:通过理解题意可知本题的等量关系,12年之后他爷爷的年龄x1/3=12年之后小李的年龄.根据这两个等量关系,可列出方程,再求解类型十:方案优化问题例:某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同类型的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场用9万元同时购进甲、乙两种不同型号的电视机共50台,求应购进甲、乙两种电视机各多少台?(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.试问:同时购进两种不同型号电视机的方案可以有几种(每种方案必须刚好用完9万元)?为使销售时获利最多,应选择哪种进货方案?并说明理由.分析:(1)本题的等量关系是:甲乙两种电视的台数和=50台,买甲乙两种电视花去的费用=9万元.依此列出方程求出正确的方案;(2)根据(1)得出的方案,分别计算出各方案的利润,然后判断出获利最多的方。

干货丨二元一次方程组的8个类型

干货丨二元一次方程组的8个类型

干货丨二元一次方程组的8个类型,专治各类应用题!今天,数姐为大家整理了二元一次方程的应用题,赶快来看~~二元一次方程大战应用题一、实际问题与二元一次方程组的思路1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系。

一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数要相等。

2.列二元一次方程组解应用题的一般步骤设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;答:写出答案。

3.要点诠释(1)“设”、“答”两步,都要写清单位名称;(2)一般来说,设几个未知数就应该列出几个方程并组成方程组。

二、八大典型例题详解01.和差倍数问题知识梳理和差问题是已知两个数的和或这两个数的差,以及这两个数之间的倍数关系,求这两个数各是多少。

典型例题思路点拨:由甲乙两人2分钟共打了240个字可以得到第一个等量关系式2(x+y)=240,再由甲每分钟比乙多打10个字可以得到第二个等量关系式x-y=10,组成方程组求解即可。

变式拓展思路点拨:由甲组学生人数是乙组的3倍可以得到第一个等量关系式x=3y,由乙组的学生人数比甲组的3倍少40人可以得到第二个等量关系式3x-y=40,组成方程组求解即可。

02.产品配套问题知识梳理总人数等于生产各个产品的人数之和;各个产品数量之间的比例符合整体要求。

典型例题思路点拨:本题的第一个等量关系比较容易得出:生产螺钉和螺母的工人共有22名;第二个等量关系的得出要弄清螺钉与螺母是如何配套的,即螺母的数量是螺钉的数量的2倍(注意:别把2倍的关系写反)。

变式拓展思路点拨:根据共有170名学生可得出第一个等量关系x+y=170,根据每个树坑对应一棵树可得第二个等量关系3x=7y,组成方程组求解即可。

完整版)二元一次方程组常考题型分类总结(超全面)

完整版)二元一次方程组常考题型分类总结(超全面)

完整版)二元一次方程组常考题型分类总结(超全面)二元一次方程组常见题型二元一次方程组是初中数学中的重要内容,常见的题型包括分配调运问题、行程问题、百分数问题、分配问题、浓度分配问题和金融分配问题等。

其中,分配调运问题是指在不同的地方分配人员或物品,需要根据条件求出各个地方的人数或物品数量。

例如,某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,需要求出到两个工厂的人数各是多少。

行程问题是指两个人或物体在不同的路程上移动,需要根据条件求出它们的速度或路程。

例如,甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。

需要求出甲、乙的平均速度各是多少。

百分数问题是指在数量变化中涉及到百分数的计算,需要根据条件求出各个数量的值。

例如,某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%,需要求出这个市现在的城镇人口与农村人口。

分配问题是指在已知总量和每份数量的情况下,需要求出总量或份数。

例如,某幼儿园分萍果,若每人3个,则剩2个;若每人4个,则有一个少1个,需要求出幼儿园有几个小朋友。

浓度分配问题是指在不同浓度的物质中混合,需要根据条件求出各个物质的数量或浓度。

例如,要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少。

金融分配问题是指在不同价格的商品中混合,需要根据条件求出各个商品的数量或价格。

例如,需要用多少每千克售4.2元的糖果才能与每千克售3.4元的糖果混合成每千克售3.6元的杂拌糖200千克。

几何分配问题)用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?解:设小长方形的长是x厘米,宽是y厘米。

可以列出以下两个方程:1、8x = 482、4y = 48解方程得到x = 6,y = 12,因此每块小长方形的长是6厘米,宽是12厘米。

二元一次方程8大题型解题方法

二元一次方程8大题型解题方法

二元一次方程8大题型解题方法一、题型一:两个未知数为整数的方程这种类型的方程一般可以通过列举法解决。

我们假设未知数为x和y,先分别选取一个合适的整数值代入方程,通过逐步加减等操作来确定x和y的值,从而得到方程的解。

二、题型二:两个未知数为小数的方程这类方程可以通过代入法解决。

我们首先将方程中的一个未知数用另一个未知数表示出来,然后将其代入方程,通过化简得到一个关于一个未知数的一次方程。

然后将这个一次方程解出来,再代入原方程,求得另一个未知数的值。

三、题型三:两个未知数为分数的方程解决这种类型的方程可以通过通分法。

首先将方程中的分数化为通分后的形式,然后通过移项、合并同类项等步骤化简方程,最后解一个关于未知数的一次方程得到一个未知数的值,再代入原方程求得另一个未知数的值。

四、题型四:两个未知数为整数和小数的方程这类方程可以通过消元法解决。

我们将方程的两个未知数系数相等的两个方程相减,从而消去其中一个未知数,得到一个只包含另一个未知数的一次方程,解出这个一次方程后,再代入原方程求得另一个未知数的值。

五、题型五:两个未知数为整数和分数的方程解决这类方程可以通过通分法和消元法相结合。

我们先将方程中的分数化为通分的形式,然后通过消元法消去其中一个未知数,得到一个关于另一个未知数的一次方程,解出这个一次方程后,再代入原方程求得另一个未知数的值。

六、题型六:两个未知数为小数和分数的方程这种类型的方程可以通过代入法和通分法相结合解决。

我们首先将方程中的小数用分数形式表示出来,然后通过代入法和通分法解方程,最后得到两个未知数的值。

七、题型七:两个未知数为整数、小数和分数的方程这类方程比较复杂,需要综合运用列举法、代入法、通分法和消元法等解题方法。

具体的解题过程需要结合具体的方程来进行推导。

八、题型八:两个未知数中一个为常数的方程解决这类方程可以通过代入法。

我们首先将常数用一个字母表示出来,然后代入方程,通过化简得到关于另一个未知数的一次方程,求解这个一次方程,再代入原方程求得常数的值。

二元一次方程(组)应用题专题讲解及练习(附答案)

二元一次方程(组)应用题专题讲解及练习(附答案)

实际问题与二元一次方程组(一) 要点一.常见的一些等量关系 1.和差倍分问题:增长量=原有量×增长率 较大量=较小量+多余量,总量=倍数×倍量. 2.产品配套问题:解这类问题的基本等量关系是:加工总量成比例.3.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量.4.利润问题:商品利润=商品售价-商品进价,=100% 利润利润率进价. 要点二.实际问题与二元一次方程组 1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等.2.列二元一次方程组解应用题的一般步骤: 设:用两个字母表示问题中的两个未知数; 列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组); 解:解方程组,求出未知数的值; 验:检验求得的值是否正确和符合实际情形; 答:写出答案.例题讲解题型一.和差倍分问题例1.电子商务的快速发展逐步改变了人们的生活方式,网购已悄然进入千家万户.李阿姨在淘宝网上花220元买了1个茶壶和10个茶杯,已知茶壶的单价比茶杯的单价的4倍还多10元.请问茶壶和茶杯的单价分别是多少元?【跟踪训练】根据如图提供的信息,可知一个热水瓶的价格是( )A .7元B .35元C .45元D .50元题型二.配套问题例2. 某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?【跟踪训练】某家具厂生产一种方桌,设计时13m的木材可做50个桌面或300条桌腿.现有103m的木材,怎样分配桌面和桌腿使用的木材,才能使桌面和桌腿刚好配套,并指出可生产多少张方桌?(提示:一张方桌有一个桌面,4条桌腿). 题型三.工程问题例3.一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问:两人每天各做多少个零件?题型4.利润问题例4.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲24 36乙33 48(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?【跟踪训练】王师傅下岗后开了一家小商店,上周他购进甲乙两种商品共50件,甲种商品的进价是每件35元,利润率是20%,乙种商品的进价是每件20元,利润率是15%,共获利278元,你知道王师傅分别购进甲乙两种商品各多少件吗专题练习(一)一、选择题1.有一些苹果箱,若每只装苹果25 kg,则剩余40 kg无处装;若每只装30 kg,则还有20个空箱,这些苹果箱有( ) .A.12只 B.6只 C.112只 D.128只2.幸福中学七年级学生到礼堂开会,若每条长椅坐5人,则少10条长椅,若每条长椅坐6人,则又多余2条长椅,设学生有x人,长椅有y条,依题意得方程组 ( ) .A.5105662x yx y=+⨯⎧⎨=-⨯⎩B.51062x yx y=-⎧⎨=+⎩C.5105662x yx y=-⨯⎧⎨=+⨯⎩D.51062x yx y=+⎧⎨=-⎩3.十一旅游黄金周期间,某景点举办优惠活动,成人票和儿童票均有较大折扣,王明家去了3个大人和4个小孩,共花了400元,李娜家去了4个大人和2个小孩,共花了400元,王斌家计划去3个大人和2个小孩,请你帮助他算一下,需要准备多少门票钱?()A.300元 B.310元 C.320元 D.330元4.王力在一天内以每件80元的价格卖了两件上衣,其中一件赢利20%,一件赔了20%,则在这次买卖中他( ) .A.赔了10元 B.赚了10元C.赔了约7元 D.赚了约7元5.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺帽和生产螺栓的数分别为()A.50人,40人 B.30人,60人C.40人,50人 D.60人,30人6.某校七年级(2)班40名同学为四川地震灾区捐款,共捐了100元,捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可列方程组( ) .A.272366x yx y+=⎧⎨+=⎩B.2723100x yx y+=⎧⎨+=⎩C.273266x yx y+=⎧⎨+=⎩D.2732100x yx y+=⎧⎨+=⎩二、填空题7.端午节时,王老师用72元钱买了荷包和五彩绳共20个.其中荷包每个4元,五彩绳每个3元,设王老师购买荷包x个,五彩绳y个,根据题意,列出的方程组是________.8.根据图中所给的信息,每件T恤和每瓶矿泉水的价格分别是元和元.9.一张试卷有25道题,做对一道得4分,做错一道扣1分,小明做了全部试题共得70分,则他做对了______道题.10.已知甲数的2倍比乙数大30,乙数的3倍比甲数的4倍少20,求甲、乙两数,若设甲、乙两数分别为x、y,可得方程组________,这两数分别为________.11.如图,3个纸杯整齐地叠放在一起,总高度约为9cm,8个纸杯整齐地叠放在一起,总高度约为14cm,则100个这样的纸杯整齐叠放在一起时,它的高度约是________ cm.12.“六一”儿童节,某动物园的成人门票每张8元,儿童门票半价(即每张4元),全天共售出门票3000张,共收入15600元,则这一天售出了成人票张儿童票张。

初中数学中考复习考点知识与题型专题讲解06 二元一次方程组(解析版)

初中数学中考复习考点知识与题型专题讲解06 二元一次方程组(解析版)

初中数学中考复习考点知识与题型专题讲解专题06 二元一次方程组【知识要点】考点知识一二元一次方程(组)有关概念二元一次方程的概念:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。

【注意】1)二元:含有两个未知数;2)一次:所含未知数的项的次数都是1。

例如:xy=1,xy的次数是二,属于二元二次方程。

2)方程:方程的左右两边必须都是整式(分母不能出现未知数)。

二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.【注意】1)在二元一次方程中,给定其中一个未知数的值,就可以求出另一个未知数的值。

2)二元一次方程有无数个解,满足二元一次方程使得方程左右相等都是这个方程的解,但并不是说任意一对数值就是它的解。

二元一次方程组的概念:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.【注意】1)二元一次方程组的“二元”和“一次”都是针对整个方程组而言的,组成方程组的各个方程不必同时含有两个未知数,如⎩⎨⎧2x +1=0,x +2y =2也是二元一次方程组。

这两个一次方程不一定都是二元一次方程,但这两个一次方程必须一共含有两个未知数。

3) 方程组中的各个方程中,相同字母必须代表同一未知量。

4)二元一次方程组中的各个方程应是整式方程。

二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

【注意】1)二元一次方程组的解是方程中每个方程的解。

2)一般情况下二元一次方程组的解是唯一的,但是有的方程组有无数个解或无解。

如:⎩⎨⎧x +y =5,4x +4y =20.有的方程组无解,如:⎩⎨⎧x +y =5,x +y =2.考点知识二 解二元一次方程组消元的思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为熟悉的一元一次方程,即可先求出一个未知数,然后再求另一个未知数。

这种将未知数的个数由多化少、逐一解决的思想,叫做消元的思想。

二元一次方程计算题经典题型

二元一次方程计算题经典题型

二元一次方程计算题经典题型二元一次方程是初中阶段数学学习中的一个重要内容,掌握二元一次方程的解题方法有助于培养学生的逻辑思维能力和解决问题的能力。

下面将通过几个经典题型来介绍二元一次方程的计算方法。

题型一:解二元一次方程组给定方程组:$$ \\begin{cases} 2x + y = 5 \\\\ x - 3y = -7 \\end{cases} $$求方程组的解。

解析:首先我们可以通过消元法或代入法解方程组。

通过消元法将第二个方程乘以2,得到2x−6y=−14,然后将第一个方程与这个方程相加消去x项,得到−5y=−9,解得$y = \\frac{9}{5}$,将y的值代入第一个方程,可以得到x的值为1。

因此,方程组的解为x=1,$y=\\frac{9}{5}$。

题型二:应用题某商店销售苹果和橙子,已知苹果每斤售价为3元,橙子每斤售价为2元,现共售出50斤,收入为130元。

设苹果销售量为x斤,橙子销售量为y斤,则可以建立如下方程组:$$ \\begin{cases} 3x + 2y = 130 \\\\ x + y = 50 \\end{cases} $$求苹果和橙子的销售量各是多少?解析:同样可以通过消元法或代入法来解决此题。

通过消元法将第二个方程改写为y=50−x,代入第一个方程中得到3x+2(50−x)=130,解得x=20,再将x的值代入y=50−x,可以得到y=30。

因此,苹果的销售量为20斤,橙子的销售量为30斤。

题型三:图形解题已知二元一次方程x+y+1=0,表示一条直线AB,A(1,−2)和B(−1,0)是直线上的两点,求这条直线的方程。

解析:首先通过已知两个点的坐标可以确定直线的斜率。

直线的斜率k可以表示为$\\frac{y_2 - y_1}{x_2 - x_1}$,代入A(1,−2)和B(−1,0)的坐标得到$k =\\frac{0 - (-2)}{(-1) - 1} = 1$。

二元一次方程组题型归纳

二元一次方程组题型归纳

二元一次方程组题型归纳二元一次方程组,是中学数学课程中的重要组成部分,也是最基础的知识之一,必须掌握四则运算,能够解决二元一次方程组,这是一项必备的基本能力。

因此,归纳二元一次方程组的题型、解题技巧,对于学生在学习、考试中解决类似题型具有十分重要的意义。

二元一次方程组题型可以归纳为以下几类:一、解一元二次方程组解一元二次方程组时,一般可以先求出其解的表达式,然后做图解法求出解的值。

解方程组时,要注意四种情况:1、可解;2、无确定解;3、重根;4、无实根。

二、把不等式转化为相等式当解决一元二次不等式时,要先转换为一元二次相等式,再求解,出现的结果分为三种:1、无解;2、有解;3、无限解。

三、解一元一次方程组解一元一次方程组时,可以用变量只出现一次的方法来求解,或用消元法,以及用矩阵求解。

四、解析方程组解析方程组的方法有两种:1、用代数的方法求出结论;2、用几何的方法求出结论,即先画出方程组的几何图形,再用相应的理论分析方程组的结果。

五、解不定方程组解不定方程组的方法是在赋值原理的基础上,把不定方程组转换为定方程组,然后再求解。

并列方程组并列方程组是一类特殊的方程组,它由两个或以上的方程组组成,要求求出满足所有方程组的共同解。

实际上,二元一次方程组的解题方法并不难,但是在实际解题中,学生往往面临着各种各样的问题,可能因为没有把握解题方法,也可能因为不能够及时解决问题,而无法正确解出题目。

为了解决这一问题,我们可以采用以下技巧:一、抓住关键,熟悉二元一次方程组的性质在解决二元一次方程组题型时,首先要抓住方程组的关键点,了解方程组的解的性质,如正负性、无穷多个解情况等,才能正确的解决题目。

二、动手试题训练只有通过大量的实际试题训练,才能真正掌握解决二元一次方程组的方法。

实践中可以根据不同情况分析,并用已熟悉的方法解决问题,有效提高解题能力。

三、结合几何图形求解结合几何图形,也可以更快准确地求解方程组的解的性质,或者把不等式转化为相等式。

二元一次方程组的12种应用题型归纳

二元一次方程组的12种应用题型归纳

二元一次方程组的12种应用题型归纳类型一:行程问题【例1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲的速度为x 千米/时,乙的速度为y 千米/时。

{(2.5+2)x +2.5y =363x +(3+2)y =36解得{x =6y =3.6 答:甲的速度为6千米/时,乙的速度为3.6千米/时。

【例2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求这艘船在静水中的速度和水流速度。

解:设这艘船在静水中的速度为x 千米/时,水流速度为y 千米/时。

{14(x +y)=28020(x −y)=280解得{x =17y =3 答:这艘船在静水中的速度为17千米/时,水流速度为3千米/时。

类型二:工程问题【例】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。

若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。

解:设甲公司每周的工作效率为x ,乙公司每周的工作效率为y 。

{6x +6y =14x +9y =1 解得{x =110y =115 ∴1÷110=10(周) 1÷115=15(周)∴甲公司单独完成这项工程需10周,乙公司单独完成这项工程需15周。

设甲公司每周的工钱为a 万元,乙公司每周的工钱为b 万元。

{6a +6b =5.24a +9b =4.8 解得{a =35b =415此时10a=6(万元) 15b=4(万元) 6>4答:从节约开支的角度考虑,小明家应选择乙公司。

类型三:商品销售利润问题【例1】李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年种植甲、乙蔬菜各多少亩?解:设李大叔去年种植甲蔬菜x 亩,乙蔬菜y 亩。

二元一次方程应用题专题讲解

二元一次方程应用题专题讲解

二元一次方程组(应用题)专题讲解现将常见的几种题型归纳如下:一、数字问题例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x,个位上的数为y,则这个两位数及新两位数及其之间的关系可用下表表示:解方程组109101027x y x yy x x y+=++⎧⎨+=++⎩,得14xy=⎧⎨=⎩,因此,所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x,或只设十位上的数为x,那将很难或根本就想象不出关于x的方程.一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.二、利润问题例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x元,进价为y元,则打九折时的卖出价为0.9x元,获利(0.9x-y)元,因此得方程0.9x-y=20%y;打八折时的卖出价为0.8x元,获利(0.8x-y)元,可得方程0.8x-y=10.解方程组0.920%0.810x y yx y-=⎧⎨-=⎩,解得200150xy=⎧⎨=⎩,因此,此商品定价为200元.点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念.三、配套问题例3 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩. 故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即a b=甲产品数乙产品数; (2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:a b c==甲产品数乙产品数丙产品数. 四、行程问题例4 在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.五、货运问题典例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x 吨,乙种货物装y 吨,则300621200x y x y +=⎧⎨+=⎩,整理,得3003600x y x y +=⎧⎨+=⎩,解得150150x y =⎧⎨=⎩, 因此,甲、乙两重货物应各装150吨.点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.六、工程问题例 6 某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩. 点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.【典题精析】例1(2006年南京市)某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?解析:设中型汽车有x 辆,小型汽车有y 辆.由题意,得⎩⎨⎧=+=+.23046,50y x y x 解得,⎩⎨⎧==.35,15y x 故中型汽车有15辆,小型汽车有35辆.例2(2006年四川省眉山市)某蔬菜公司收购蔬菜进行销售的获利情况如下表所示:现在该公司收购了140吨蔬菜,已知该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行).(1)如果要求在18天内全部销售完这140吨蔬菜,请完成下列表格:(2)如果先进行精加工,然后进行粗加工,要求在15天内刚好加工完140吨蔬菜,则应如何分配加工时间?解:(1)全部直接销售获利为:100×140=14000(元);全部粗加工后销售获利为:250×140=35000(元);尽量精加工,剩余部分直接销售获利为:450×(6×18)+100×(140-6×18)=51800(元).(2)设应安排x 天进行精加工, y 天进行粗加工.由题意,得⎩⎨⎧=+=+.140166,15y x y x解得,⎩⎨⎧==.5,10y x 故应安排10天进行精加工,5天进行粗加工.二、典型例题讲解题型一、列二元一次方程组解决生产中的配套问题1、 某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只,计划用132米这样布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套题型二、列二元一次方程组解决行程问题2、 甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇。

二元一次方程组的应用题10大题型

二元一次方程组的应用题10大题型

类型一:行程问题例:甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇.问甲、乙两人每小时各走多少千米?【分析】设甲,乙速度分别为x,y千米/时,根据甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么在甲出发后3小时相遇可列方程求解。

类型二:工程问题例:小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由.分析:需先算出甲乙两公司独做完成的周数.等量关系为:甲6周的工作量+乙6周的工作量=1;甲4周的工作量+乙9周的工作量=1;还需算出甲乙两公司独做需付的费用.等量关系为:甲做6周所需钱数+乙做6周所需钱数=5.2;甲做4周所需钱数+乙做9周所需钱数=4.8类型三:商品销售利润问题例:李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?分析:由题意得出两个相等关系为:甲、乙两种蔬菜共10亩和共获利18000元,依次列方程组求解类型四:银行储蓄问题例:小明的爸爸为了给他筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期存取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期存取,这种存款银行利率为年息2.70%.三年后同时取出共得利息303.75元.问小明的爸爸两种存款各存入了多少元?分析:利用两种方式共计存了4000元钱以及两笔存款三年内共得利息303.75元得出等式求出即可类型五:生产配套问题例:现用190张铁皮做盒,一张可以做8个盒身或22个盒底,1个盒身与2个盒底配一个盒子,问用多少张铁皮制盒身、多少张铁皮制盒底,可制成一批完整的盒子?分析:本题的等量关系是:制盒身的铁皮+制盒底的铁皮=190张;盒底的数量=盒身数量的2倍.据此可列方程组求解类型六:增长率问题例:某城市现有人口42万人.计划一年后城镇人口增加0.8%,农村人中增加1.1%,这样全市人口得增加1%,求这个城市现有城镇人口和农村人口分别是多少人?分析:根据题意可得出的等量关系为:现有的城镇人口+现有的农村人口=42万,计划一年后城镇人口增加的数量+农村人口的增加的数量=全市人口增加的数量,然后列出方程组求解类型七:数字问题例:一个两位数的十位数字与个位数字和为6,十位数字比个位数字大4,求这个两位数字.分析:设这个两位数十位上的数字为x,个位上的数字为y,根据十位数字与个位数字和为6,十位数字比个位数字大4,列方程组求解类型八:几何问题用长48厘米的铁丝弯成一个矩形,若将此矩形的长边分别折3厘米,补较短边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?分析:设矩形的长为x,宽为y,则可得x-3=y+3,再由矩形的周长为48,可得出2(x+y)=48,联立方程组求解即可类型九:年龄问题例:今年,小李的年龄是他爷爷的1/5,小李发现,12年后,他的年龄变成爷爷的1/3,求今年小李的年龄.分析:通过理解题意可知本题的等量关系,12年之后他爷爷的年龄x1/3=12年之后小李的年龄.根据这两个等量关系,可列出方程,再求解类型十:方案优化问题例:某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同类型的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场用9万元同时购进甲、乙两种不同型号的电视机共50台,求应购进甲、乙两种电视机各多少台?(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.试问:同时购进两种不同型号电视机的方案可以有几种(每种方案必须刚好用完9万元)?为使销售时获利最多,应选择哪种进货方案?并说明理由.分析:(1)本题的等量关系是:甲乙两种电视的台数和=50台,买甲乙两种电视花去的费用=9万元.依此列出方程求出正确的方案;(2)根据(1)得出的方案,分别计算出各方案的利润,然后判断出获利最多的方。

二元一次方程组解决生活常见问题的题型及分类

二元一次方程组解决生活常见问题的题型及分类

二元一次方程组解决生活常见问题的题型及分类方程是刻画现实世界数量关系的有效模型,生活中许多实际问题都可以转化为方程问题。

在初中数学中二元一次方程组有着广泛的应用,学生要学会从实际问题中找出等量关系,并建立二元一次方程组解决问题,进一步发展模型思想和应用意识。

初中阶段利用二元一次方程解决问题常见类型有:古代童趣问题、利息利润问题、数字问题、里程碑问题等。

如何利用二元一次方程组解决实际问题?下面对常见的几种题型进行分类讨论。

一、古代童趣问题今有雉兔同笼,上有三十五头,下有九十四足,问雉兔个几何?分析:由“上有三十五头,下有九十四足。

”可得等量关系:解:设笼中有鸡x只,兔y只,由题意得方程组:解得这个方程组得:所以笼中有鸡23只,兔12只。

“雉兔同笼”问题是古代童趣问题中,最经典也是最简单的有关二元一次方程组的应用问题,一般可直接从题目中找到两个等量关系,然后根据等量关系列出方程组求解即可。

二、利息利润问题越来越多的人在用微信付款、转账,把微信账户里得钱转到银行卡叫做提现。

自2016年3月1日起,每个微信账户终身享有1000元得免费提现额度。

当累计提现金额超出1000元时,超出部分需支付0.1%得手续费,以后每次提现支付手续费均为提现金额得0.1%小亮自2016年3月1日至今共提现三次,提现金额和手续费如下,那么小亮前两次提现金额分别是多少?分析:由第一次手续费为0,可知a<1000由第二次手续费为0.2,可知a+b>1000,则第二次需要收取手续费的部分为:a+b-1000那么第三次全部提现金额都需要收取手续费。

由此可得等量关:解:由题意得:解这个方程组得:所以小亮第一次提现金额为500,第二次提现金额为700。

本题对一般学生来说,在寻找等量关系时,有一定难度,一般在这类问题中我们会选择列表格来找等量关系,而这道题我们从表格所给信息中找到等量关系就容易多了。

在解决利润利息问题时涉及到的有关公式我们必须要熟知,利息问题常用的公式。

【初中数学】初中数学知识点:二元一次方程组应用题的五种题型

【初中数学】初中数学知识点:二元一次方程组应用题的五种题型

【初中数学】初中数学知识点:二元一次方程组应用题的五种题型【—:二元一次方程组应用题的五种题型】二元一次方程组应用题的五种题型知识点的内容学习哦。

二元一阶方程组的五类应用问题一、一、列二元一次方程组解应用题的一般步骤可概括为"审、找、列、解、答"五步,即:2.考试:通过考试,将实际问题抽象为一道数学题,分析已知数和未知数,并用字母表示这两个未知数;3、找:找出能够表示题意两个相等关系;4.列:根据这两个等式列出必要的代数公式,以便列出方程式;5、解:解这个方程组,求出两个未知数的值;6.答案:在对方程的解做出合理判断的基础上写出答案二、典型例题讲解问题类型1:一系列二元一阶方程,用于解决生产中的支持问题1、某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只,贤计划用132米这样布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套问题类型2:用一系列二元一阶方程解决旅行问题2、甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇。

相遇后,拖拉机继续前进,汽车在相遇处停留1小时候后调转车头原速返回,在汽车再次出发后半小时后追上乐拖拉机,这时,汽车、拖拉机各行驶了多少千米?3.一艘船从a地顺流而下航行到B地需要4小时,从B地顺流而下航行到a地需要6小时。

一只木筏从a地漂流到B地需要多长时间?题型三、列二元一次方程解决商品问题4.“五一”期间,超市有打折促销活动。

众所周知,商品a的折扣为7.5%,商品B的折扣为8%。

购买20件商品a和10件商品B时,折扣前的价格比折扣后高460元。

打折后,10货a和10货B的股份为1090元。

打折前询问商品a和B的价格。

题型四、列二元一次方程组解决工程问题5.为了缓解水资源短缺问题,a市实施了饮用水项目,即将200公里外的一条大河的水引至该市,并将该项目移交给施工队a和B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

元一次方程分类题型讲解
、定义类
(6) 11x=6y+5;其中是二元一次方程的有
3、下列方程组中,不是二元一次方程组的是 () A. x 1
B.
x y 1
C.
x y 1
D. y 2 3 x y 2 xy 0
4、若方程x m-1+2y 3n+1=1是二元一次方程,则m=
二、解的个数问题
2、二元一次方程x+2y=12在正整数范围内的解有()
3、方程x+2y = 5的正整数解的个数是(
4、下列说法正确的是(
三、解二元一次方程组
1、 下列方程组中为二元一次方程组的是(
x y 1 xy 2 4X y 1
c . y
2x 3
X 2
X 2
0 D . y x 1
A.
1
1 y
x 3x y 0
2、 下列方程: (1) -x=-x-1; (2) 2 3
x
— =1; (3) m-仁n; (4) 5xy=7; (5)
7x 2
+5y=2 y x
x 2y 1 ,n=
1、 元一次方程5x — 11y=21 () A .有且只有一解 B .有无数解 C .无解 D .有且只有两解
A. 3
B. 4
C. 5
D.
无数
组.
(A ) 一个 (B ) 二个 (C )
三个
(D)
四个
A 、 元一次方程只有一个解
B 、 元一次方程组有无数个解
C 、 元一次方程组的解必是它所含的二元一次方程的解
D 、 兀一次方程组一定由三个三元一次方程组成
x 2、
1、将方程5x-6y=12变形,若用含x 的式子表示y ,则 y x y 2x
2x
3m 2n 5 4m 2n 9
11x 4x 9y 3y
12 5
1 -x 5 0.5x
1 1y
(8)3x 4y 2 5 0.3y 0.2 8x 4x 3y 5y
3(x y) 4(x X y X y 2 6
y) 4
5a 3a (其中a 为常数)
(9
)
x 2x 2x
2z z 3z 5 4 10
四、已知方程组的解求待定字母的值 1、
若方程2x-ay=4的一组解是
,那么
a=
3

方程组2x x
y y
3a
的解为x
已知y kx
b .如果x = 4时, y 15; x = 7 时,y = 24,求 k,b 的值
五、方程(组)有相同解问题 1

元一次方程组2篇=13的解也是二元一次方程
5x-3
y=1的解,则a
的值
若下列三个二元一次方程:3x-y=7 ; 2x+3y=1 ; y=kx-9有公共解,那么k 的
取值应是( ) A
、 k=-4
B 、 k =4 C
、k=-3 D 、k=3
3、 已知方程组 3x y 5 5的解也是方程组
ax 2y
4
的解,则a=
4x 7y 1 3x - by 5
b= ,3a+2b= 。

2x 5y 6
3x 5y 16
4已知方程组 1 '和方程组
的解相同,求(a
ax by 4 bx ay 8
2、 b )2
的值
六、隐藏方程组问题 1、 若 3a+2b=4,且 2a — b=5,贝^( a+b ) 2009 的值是 2、 若(5x 2y 12)2
|3x 2y 6 0,则 2x+4y 的值是 3、 如果2x b5y 2a 与
4x 2a y 24b 是同类项,那么a = 4、
对于x 、y 定义一种新运算“ *”: x*y=ax+by,其中a 、b 为常数,等式右边是
通常的加法和乘法运算.已知3*5=15, 4*7=28,求1*1的值.

方程组解应用题

1、2辆大卡车和5 辆小卡车工作2 小时可运送垃圾36 吨,3 辆大卡车和2 辆

卡车工作5小时可运输垃圾80吨,那么1辆大卡车和1辆小卡车各运多少吨垃圾。

2、某班同学去18 千米的北山郊游。

只有一辆汽车,需分两组,甲组先乘车、乙
组步行。

车行至A 处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站。

已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距
离。

A B两地相距80千米。

一艘船从A地出发,顺水航行4时到B,而从B出发
3

逆水航行5时到A。

(1)求船在静水中的速度和水流速度;(2)—只救生圈从A顺水漂到B需要几小时
4
已知甲、乙两种商品的原价和为200 元。

因市场变化,甲商品降价10%,乙

商品提高10%,调价后甲、乙两种商品的单价和比原单价和提高了5%。

求甲、乙两种商品的原单价各是多少
元。

5
初一级学生去某处旅游,如果每辆汽车坐4 5人,那么有15个学生没有座

位;如果每辆汽车坐6 0人,那么空出1辆汽车。

问一工多少名学生、多少
辆汽车。

6某学校积极组织捐款支援灾区,初三(1)班55名同学共捐款274元,捐款情
况如右表.表中捐款2元和5元的人数不小心被墨水污染已看不清楚,请你帮助确定表中数据,并说明理由.
7、某市公园的门票价格如下表所示:
某校七年级甲乙两个班共100多人,去该公园举行联欢活动,其中甲班有50多人而乙班不足50人,如果以班为单位购买门票,一共要付920元;如果两个班起购买门票,一共要付515元.问甲、乙两班分别有多少人。

相关文档
最新文档