等差数列求和及练习题(整理)

合集下载

等差数列的性质、求和知识点及训练

等差数列的性质、求和知识点及训练

等差数列的性质、求和知识点及训练重点:掌握等差数列的通项公式、求和公式以及等差中项的求法难点:对等差数列的综合考察一知识梳理1.定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而mn a a d mn --=;3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2(2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a4.等差数列的前n 项和公式:1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+ (其中A 、B 是常数) (当d ≠0时,S n 是关于n 的二次式且常数项为0) 5.等差数列的判定方法(1)定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.(2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a .(3)数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。

(4)数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。

6.等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.7.提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。

小学数学等差数列求和专项讲义

小学数学等差数列求和专项讲义

等差数列求和(一)一、知识要点数列:若干个数排成一列称为数列。

项:数列中的每一个数称为一项。

其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

特殊的数列——等差数列:数列中任意相邻两项的差相当公差:等差数列中相邻两项的差称为公差。

在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。

通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1二、精讲精练【例题1】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?分析:这个等差数列的首项是3.公差是4,项数是100。

要求第100项总结:通项公式:第n项=首项+(项数-1)×公差所以,第100项=3+(100-1)×4=399.练习1:1.一等差数列,首项=3.公差=2.项数=10,它的末项是多少?2.求1.4,7,10……这个等差数列的第30项。

3.求等差数列2.6,10,14……的第100项。

【例题2】有一个数列:4,10,16,22.…,52.这个数列共有多少项?分析:容易看出这是一个等差数列,公差为6,首项是4,末项是52.总结例1:要求一列数有多少项,可以先求出末项比首项多的公差的个数,再加1.总结:项数公式:项数=(末项-首项)÷公差+1所以,项数=(52-4)÷6+1=9,即这个数列共有9项。

练习2:1.等差数列中,首项=1.末项=39,公差=2.这个等差数列共有多少项?2.有一个等差数列:2.5,8,11.…,101.这个等差数列共有多少项?3.已知等差数列11.16,21.26,…,1001.这个等差数列共有多少项?【例题3】有这样一个数列:1.2.3.4,…,99,100。

请求出这个数列所有项的和。

分析:如果我们把1.2.3.4,…,99,100与列100,99,…,3.2.1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101.一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2.就是所求数列的和。

(完整版)等差等比数列求和与差的练习题

(完整版)等差等比数列求和与差的练习题

(完整版)等差等比数列求和与差的练习题
题目一:等差数列求和
已知等差数列的首项为$a_1$,公差为$d$,求该等差数列的前$n$项和$S_n$。

解答步骤:
1. 根据公式$S_n = \frac{n}{2}(a_1 + a_n)$计算出结果。

题目二:等差数列差的问题
已知等差数列的首项为$a_1$,公差为$d$,依次计算以下问题:
1. $a_3 - a_2$;
2. $a_5 - a_3$;
3. $a_{10} - a_5$。

解答步骤:
1. 利用公式$a_n = a_1 + (n-1)d$计算出各项的值;
2. 按照题目给定的差问题计算出结果。

题目三:等比数列求和
已知等比数列的首项为$a_1$,公比为$r$,求该等比数列的前$n$项和$S_n$。

解答步骤:
1. 如果公比$r=1$,则$S_n = n \cdot a_1$,直接计算结果;
2. 如果公比$r \neq 1$,则$S_n = a_1 \cdot \frac{1 - r^n}{1 - r}$,按照公式计算结果。

题目四:等比数列差的问题
已知等比数列的首项为$a_1$,公比为$r$,依次计算以下问题:
1. $a_2 - a_1$;
2. $a_4 - a_2$;
3. $a_{10} - a_{5}$。

解答步骤:
1. 利用公式$a_n = a_1 \cdot r^{(n-1)}$计算各项的值;
2. 按照题目给定的差问题计算出结果。

以上是关于等差数列求和与差的练题的完整版文档。

等差数列求和及练习题(整理).doc

等差数列求和及练习题(整理).doc

等差数列求和引例:计算 1+2+3+4++97+98+99+100一、有关概念 :像1、2、3、4、5、6、7、8、9、这样连起来的一串数称为数列;数列中每一个数叫这个数列的一项,排在第一个位置的叫首项,第二个叫第二项,第三个叫第三项,,最后一项又叫末项;共有多少个数又叫项数;如果一个数列,从第二项开始,每一项与前一项之差都等于一个固定的数,我们就叫做等差数列。

这个固定的数就叫做“公差”。

二、有关公式:和 =(首项 +末项)×项数÷ 2末项 =首项 +公差×(项数 -1)公差 =(末项 -首项)÷(项数 -1)项数 =(末项 -首项)÷公差 +1三、典型例题:例 1、聪明脑筋转转转:判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项、公差及项数写出来,如果不是请打“×”。

判断首项末项公差项数(1) 1、2、4、8、16、 32.()()()()()(2)42、49、56、63、70、77. ()()()()()(3)5、1、4、1、3、1、2、1. ()()()()()(4)44、55、66、77、88、99、110()()()()()练习1、填空:数列首项末项公差项数2、5、8、 11、140、4、8、 12、163、15、27、39、511、2、3、 4、5、、 48、49、 502、4、6、 8、、 96、 98、100例 2、已知等差数列 1,8,15, , 78.共 12 项,和是多少?(博易 P27例 2)(看 ppt,推出公式)例 3、计算 1+3+5+7++35+37+39练习 2:计算下列各题(1)6+10+14+18+22+26+30 (3)1+3+5+7++95+97+99(2)3+15+27+39+51+63(4)2+4+6+8++96+98+100(3)已知一列数 4,6,8,10 ,,64,共有 31 个数,这个数列的和是多少?例 5、有一堆圆木堆成一堆,从上到下,上面一层有 10 根,每向下一层增加一根,共堆了 10 层。

四年级奥数等差数列求和一

四年级奥数等差数列求和一

等差数列的通项公式
定义:等差数列中任意一项 都等于前一项加上一个常数
公式:an=a1+(n-1)d, 其中an是第n项,a1是第 一项,d是公差
特点:每一项与前一项的差 等于公差,且差值相等
求解方法:根据已知项和公 差,利用通项公式求出任意
一项
02
等差数列求和的方法
公式法求和
适用范围:适用 于已知首项和公 差的等差数列
公式:S_n = n/2 * (2a_1 + (n1)d),其中a_1是 首项,d是公差, n是项数
推导过程:由等 差数列的性质, 可以推导出该公 式
计算步骤:代入 已知数值,计算 出等差数列的和
倒序相加法求和
添加标题
定义:将等差数列从前往后和从后往前分别相加,再除以2得到等差数列 的和
添加标题
适用范围:适用于等差数列求和问题
+(n-1)d)
变形一: Sn=an^2/2+( n-9)an/2nd/2+n^2/4n/4
变形二: Sn=d/2*n^2+ (a1-d/2)*n
拓展:等差数列 求和公式的应用 范围和适用条件
05
等差数列求和的练习题
基础练习题
题目:1+2+3+...+99=? 题目:求1到100的所有偶数的和。 题目:求1到100的所有奇数的和。 题目:已知等差数列的前三项分别为a、b、c,求该等差数列的和。
添加标题
举例:对于数列1, 3, 5, 7, 9,倒序相加得到1+9, 3+7, 5+5,结果为 10+10+5=25
添加标题
优势:可以快速求解等差数列求和问题

(完整版)等差数列练习题有答案

(完整版)等差数列练习题有答案

数列A 、等差数列知识点及例题一、数列由与的关系求n a n S na 由求时,要分n=1和n≥2两种情况讨论,然后验证两种情况可否用统一的解析式表示,若不能,则用分段函数的n S n a 形式表示为。

11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩〖例〗根据下列条件,确定数列的通项公式。

{}na 分析:(1)可用构造等比数列法求解;(2)可转化后利用累乘法求解;(3)将无理问题有理化,而后利用与的关系求解。

n a n S 解答:(1)(2)……累乘可得,故(3)二、等差数列及其前n 项和(一)等差数列的判定1、等差数列的判定通常有两种方法:第一种是利用定义,,第二种是利用等差中项,即。

1()(2)n n a a d n --=≥常数112(2)n n n a a a n +-=+≥2、解选择题、填空题时,亦可用通项或前n 项和直接判断。

(1)通项法:若数列{}的通项公式为n 的一次函数,即=An+B,则{}是等差数列;n a n a n a (2)前n 项和法:若数列{}的前n 项和是的形式(A ,B 是常数),则{}是等差数列。

n a n S 2n S An Bn =+n a 注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。

〖例〗已知数列{}的前n 项和为,且满足n a n S 111120(2),2n n n n S S S S n a ---+=≥=A (1)求证:{}是等差数列;1nS (2)求的表达式。

n a 分析:(1)与的关系结论;1120n n n n S S S S ---+=A →1n S 11n S -→(2)由的关系式的关系式1nS →n S →n a 解答:(1)等式两边同除以得-+2=0,即-=2(n≥2).∴{}是以==2为首1n n S S -A 11n S -1n S 1n S 11n S -1n S 11S 11a 项,以2为公差的等差数列。

数列求和方法(带例题和练习题)

数列求和方法(带例题和练习题)

数列的求和数列求和主要思路:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; 数列求和的常用方法一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 11123(1)2nn k S k n n n ===+++++=+∑… 4、2222211123(1)(21)6nn k S k n n n n ===++++=++∑5、 2333331(1)1232nn k n n S kn =+⎡⎤===++++=⎢⎥⎣⎦∑ 公式法求和注意事项(1)弄准求和项数n 的值;(2)等比数列公比q 未知时,运用前n 项和公式要分类。

例1.求和221-++++n xx x (0,2≠≥x n )二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 例2.求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S例3.求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 三、倒序相加法如果一个数列与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列前n 项和即可用倒序相加发,如等差数列的前n 项和就是此法推导的例4.求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值例4变式训练1:求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. 例4变式训练2: 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.例4变式训练3:在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.例5.已知数列{}n a 的通项公式321n n a n =+-,求数列{}n a 的前n 项和n S 。

(完整版)数列求和经典例题

(完整版)数列求和经典例题

数列通项的方法⑴利用观察法求数列的通项.⑵利用公式法求数列的通项:①⎩⎨⎧≥-==-)2()111n S S n S a n nn (;②{}n a 等差、等比数列{}n a 公式。

⑶应用迭加(迭乘、迭代)法求数列的通项:①)(1n f a a n n +=+;②).(1n f a a n n =+ ⑶构造等差、等比数列求通项:① q pa a n n +=+1;②n n n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ⋅+⋅=++12.[示例]已知下列各数列}{n a 的前n 项和n S 的公式为()*223N n n n S n ∈-=,求}{n a 的通项公式。

题型一 利用公式法求通项[例]数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1). (1)求{a n }的通项公式;(2)等差数列{b n }的各项为正数,前n 项和为T n ,且T 3=15,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列,求T n 。

[练3]数列{a n }是公差大于零的等差数列,2a ,5a 是方程2x 02712=+-x 的两根.数列{}n b 的前n 项和为n T ,且n T 211-=n b ()*∈N n ,求数列{}n a ,{}n b 的通项公式。

[例]已知}{n a 的首项11=a ,)(2*1N n n a a n n ∈+=+,,求}{n a 的通项公式,并求100a 的值.题型二 应用迭加(迭乘、迭代)法求通项[练1]数列{}n a 中,)(,111n n n a a n a a -==+,则数列{}n a 的通项=n a ( ).A 12-n .B 2n .C 1)1(-+n nn .D n[练2]已知n S 为数列{}n a 的前n 项和,11=a ,n n a n S ⋅=2,求数列{}n a 的通项公式。

数列求和综合练习题(含答案)

数列求和综合练习题(含答案)

数列求和综合练习题一、选择题1.已知数列{}n a 的前n 项和为n S ,若11++=n n a n ,10n S =,则=n ( )A .90B .121C .119D .1202.已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) A.172 B.192C.10D.12 3.数列{}n a 中,1160,3n n a a a +=-=+,则此数列前30项的绝对值的和为 ( )A.720B.765C.600D.630 4.数列{}n a 的前n 项和为n S ,若1(1)n a n n =+,则6S 等于( )A .142 B .45 C .56 D .675.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2·a 4=1,S 3=7,则S 5=( ) A.12 B.314 C.172 D.1526.设是等差数列的前项和,已知,则等于 ( )A. 13B. 35C. 49D. 637.等差数列的前n 项和为= ( ) A .18 B .20 C .21D .228.等差数列{}n a 的前n 项和为n S ,且336,0S a ==,则公差d 等于( ) A.1- B.1 C.2- D.29.设等差数列{}n a 的前n 项和为n S ,若111-=a ,664-=+a a ,则当n S 取最小值时,n 等于( ) A .6 B .7 C .8 D .9 10.在等差数列中,已知,则该数列前11项的和等于( )A .58B .88C .143D . 17611.已知数列}{n a 的前n 项和为)34()1(2117139511--++-+-+-=+n S n n ,则312215S S S -+的值是( )A .-76B .76C .46D .1312.等比数列{a n }的前n 项和为S n ,若a 1+a 2+a 3+a 4=1,a 5+a 6+a 7+a 8=2,S n =15,则项数n 为( ) A .12 B .14 C .15 D .1613.等差数列{}n a 中,若14739a a a ++=,36927a a a ++=,则{}n a 的前9项和为( ) {}n a 5128,11,186,n S a S a ==则{}n a 4816a a +=11S二、解答题14.已知数列{}n a 的前n 项和()2*,n S n n N =∈. (1)求数列{}n a 的通项公式;(2)若数列{}n b 是等比数列,公比为()0q q >且11423,b S b a a ==+,求数列{}n b 的前n 项和n T .15.已知等差数列{}n a 的前n 项和为n S ,且93=S ,731,,a a a 成等比数列. (1)求数列{}n a 的通项公式;(2)若数列{}n a 的公差不为0,数列{}n b 满足nn n a b 2)1(-=,求数列{}n b 的前n 项和n T .16.设数列{}n a 的前n 项和122nn S ,数列{}n b 满足21(1)log n nb n a =+.(1)求数列{}n a 的通项公式; (2)求数列{}n b 的前n 项和n T .17.已知数列}{n a 的各项均为正数,n S 是数列}{n a 的前n 项和,且3242-+=n n n a a S . (1)求数列}{n a 的通项公式;(2)n n n nn b a b a b a T b +++== 2211,2求已知的值.18.已知数列}{n a 的前n 项和nn S 2=,数列}{n b 满足)12(,111-+=-=+n b b b n n ()1,2,3,n =.(1)求数列}{n a 的通项n a ; (2)求数列}{n b 的通项n b ; (3)若nb ac nn n ⋅=,求数列}{n c 的前n 项和n T .19.已知数列{}n a 的前n 项和为n S ,且2n n S n +=2.(1)求数列}{n a 的通项公式; (2)若*)(,1211N n a a a b n n n n ∈-+=+求数列}{n b 的前n 项和n S .20.已知数列{a n }的前n 项和2n n S a =-,数列{b n }满足b 1=1,b 3+b 7=18,且112n n n b b b -++=(n ≥2).(1)求数列{a n }和{b n }的通项公式;(2)若nnn a b c =,求数列{c n }的前n 项和T n.21.已知数列}{n a 的前n 项和为n S ,数列}1{+n S 是公比为2的等比数列,2a 是1a 和3a 的等比中项. (1)求数列}{n a 的通项公式; (2)求数列{}n na 的前n 项和n T .22.设数列{}n a 满足11=a )(211*+∈=-N n a a n n n (1)求数列{}n a 的通项公式;(2)令n n b na =,求数列{}n b 的前n 项和n S三、填空题23.已知等比数列{}n a 的各项均为正数,若11a =,34a =,则2________;a =此数列的其前n 项和__________.n S =24.已知等差数列{}n a 中,52=a ,114=a ,则前10项和=10S .25.设等比数列{}n a 的前n 项和为n S ,已知488,12,S S ==则13141516a a a a +++的值为 . 26.设n S 是等差数列{}n a 的前n 项和,且3613S S =,则912S S = .27.等差数列{}n a 中,10120S =,那么29a a += .28.[2014·北京海淀模拟]在等比数列{a n }中,S n 为其前n 项和,已知a 5=2S 4+3,a 6=2S 5+3,则此数列的公比q =________.29.在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S = . 30.已知等差数列{}n a 中,已知8116,0a a ==,则18S =________________.31.已知等比数列的前项和为,若,则的值是 .32.已知{a n }是等差数列,a 1=1,公差d≠0,S n 为其前n 项和,若a 1,a 2,a 5成等比数列,则S 8= _________ . 33.数列{}n an 项和为9n S =,则n =_________.34.[2014·浙江调研]设S n 是数列{a n }的前n 项和,已知a 1=1,a n =-S n ·S n -1(n≥2),则S n =________.}{n a n n S 62,256382-==S a a a a 1a参考答案1.D【解析】n n n n a n -+=++=111 ,()()111...23)12(-+=-+++-+-=∴n n n S n ,1011=-+n ,解得120=n .【命题意图】本题考查利用裂项抵消法求数列的前n 项和等知识,意在考查学生的简单思维能力与基本运算能力. 2.B 【解析】试题分析:∵公差1d =,844S S =,∴11118874(443)22a a +⨯⨯=+⨯⨯,解得1a =12,∴1011199922a a d =+=+=,故选B. 考点:等差数列通项公式及前n 项和公式3.B 【解析】试题分析:因为13n n a a +=+,所以13n n a a +-=。

等差数列求和基础题

等差数列求和基础题

等差数列求和基础题一.选择题1. 等差数列{}n a 的前n 项和为n S ,若142,20,a S ==则6S =A.16B.24C.36D.422. 设等差数列{}n a 的前n 项和为n S ,若111a =-,376a a +=-,则当n S 取最小值时, n 等于A.8B.7C.6D.93. 已知n S 是等差数列{}n a 的前n 项和,且63S =,1118S =,则9a 等于A.3B.5C.8D.154. 已知等差数列{a n }前n 项的和为S n , 233=a , S 3=9,则a 1= A.23 B.29 C.-3 D.6 5. 已知等差数列{}n a 中,256,15a a ==,若2n n b a =,则数列{}n b 的前5项和为A. 90B. 45C. 30D. 1866. 等差数列}{n a 的前n 项和为n S ,若119717,170a a a S ++=则的值为A.10B.20C.25D.307. 设等差数列{a n }前n 项和为S n . 若a 1= -11,a 4+a 6= -6 ,则当S n 取最小值时,n 等于A.6B. 7C.8D.98. 设等差数列{}n a 的前n 项和为n S ,246a a +=,则5S 等于A.10B.12C.15D.309. 已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =A.138B.135C.95D.2310. 记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d =A.2B.3C.6D.711. 已知等差数列{}n a 中,26a =,515a =,若2n n b a =,则数列{}n b 的前5项和等于A.30B.45C.90D.18612. 设S n 是等差数列{a n }的前n 项和,若S 5 = S 9,则a 3:a 5 =A.5:9B.9:5C.3:5D.5:313. 在等差数列}{n a 中,已知S 3=9,S 9=54,则}{n a 的通项n a 为A.33-=n a nB.n a n 3=C.2+=n a nD.1+=n a n14. 若等差数列}{n a 的前3项和93=S 且11=a ,则2a 等于A.3B.4C.5D.615. 等差数列{}n a 中,11a =,3514a a +=,其前n 项和100n S =,则n =A.9B.10C.11D.1216. 等差数列{a n }的前n 项和为S n ,若等于则442,10,2S S S ==A.12B.18C.24D.4217. 已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差d =A.23- B.13- C.13 D.2318. 在等差数列{a n }中,若a 4+a 6 =12, S n 是数列{a n }的前n 项和,则S 9的值为A.48B.54C.60D.6619. 一个只有有限项的等差数列,它的前5项的和为34,最后5项和为146,所有项的和为234,则它的第七项等于A.22B.21C.19D.1820. 已知数列{a n }的通项公式是a n =2n –49 (n ∈N ),那么数列{a n }的前n 项和S n 达到最小值时的n 的值是A.23B.24C.25D.2621. 已知等差数列{a n }中,a 2+a 8=8,则该数列前9项和S 9等于A.18B.27C.36D.4522. 设S n 是等差数列{a n }的前n 项和,若S 7=35,则a 4=A.8B.7C.6D.523. 等差数列{}n a 中,n S 是前n 项和,且38S S =,7k S S =,则k 的值为A.4B.11C.2D.1224. 等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则前9项的和S 9等于A.66B.99C.144D.29725. 等差数列{a n }中,a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于A.-1221B.-21.5C.-20.5D.-2026. 等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值为A.95B.100C.115D.12527. 在等差数列}{n a 中,,,83125S S a =-=则前n 项和n s 的最小值为 txjyA.80-B.76-C.75-D.74-28. 等差数列{a n }中,若a 3+ a 4+ a 5+ a 6+ a 7=450 则前9项和S 9=A.1620B.810C.900D.67529. 已知等差数列{}n a 的前n 项和为n S ,若5418a a =-,则8S 等于A.144B.72C.54D.3630. 在等差数列{a n }中,前n 项和S n =36n -n 2,则S n 中最大的是A.S 1B.S 9C.S 17D.S 1831. 将含有k 项的等差数列插入4和67之间,结果仍成一新的等差数列,并且新的等差数列所有项的和为781,则k 的值为A.20B.21C..22D.2432. 设数列{}n a 是等差数列,且n S a a ,6,682=-=是数列 {}n a 的前n 项和,则A.S 4<S 3B.S 4==S 2C.S 6<S 3D.S 6=S 333. 已知等差数列前n 项和为S n ,若S 15<0,S 14>0,则此数列中绝对值最小的项为A.第6项B.第7项C.第8项D.第9项34. 设等差数列{}n a 的前n 项和为n S ,已知20092007120102010,2,20092007S S a S =--==则 A.2008- B.2008 C.2010- D.201035. 已知等差数列{}n a 中,10795=-+a a a ,记n n a a a S +++= 21,则13S 的值为A.130B.260C.156D.16836. 已知等差数列{}n a 的前n 项和为n S ,且424a a -=,39S =,则数列{}n a 的通项公 式为A.n a n =B.2n a n =+C.21n a n =-D.21n a n =+37. 等差数列{}n a 中,14739a a a ++=,36927a a a ++=,则数列{}n a 前9项和9S 等于A.297B.144C.99D.6638. 等差数列{}n a 的前n 项和)3,2,1(⋅⋅⋅=n S n 当首项1a 和公差d 变化时,若1185a a a ++是一个定值,则下列各数中为定值的是A. 15SB. 16SC.17SD.18S39. 在公差为2的等差数列{}n a 中,如果前17项和为1734S =,那么12a 的值为A. 2B. 4C. 6D. 840. 已知等差数列30,240,18,}{49===-n n n n a S S S n a 若项和为的前,则n 的值为A.18B.17C.16D.1541. 已知等差数列854,18,}{S a a S n a n n 则若项和为的前-==A.18B.36C.54D.7242. 设函数()f x =,类比课本推导等差数列的前n 项和公式的推导方法计算(4)(3)...(0)(1)...(4)(5)f f f f f f -+-++++++的值为A.2B. 2C.2D. 243. 在等差数列{a n }中,,3321=++a a a 165302928=++a a a ,则此数列前30项和等于A.810B.840C.870D.90044. 设数列}{n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项为A.1B.2C.4D.645. 已知等差数列{}n a 的公差0<d ,若10,248264=+=⋅a a a a ,则该数列的前n 项和n S 的最大值为A.50B.45C.40D.3546. 等差数列{}n a 中,11a =,3514a a +=,其前n 项和100n S =,则n =A.9B.10C.11D.1247. 若}{n a 是等差数列,首项01>a ,020082007>+a a ,020082007<⋅a a ,则使数列}{n a 的前n 项和n S 为正数的最大自然数n 是A.4013B. 4014C. 4015D. 401648. 设数列{n a }是等差数列,且n S a a ,6,682=-=是数列{n a }的前n 项和,则A.S 4<S 5B.S 4=S 5C.S 6<S 5D.S 6=S 549. 已知等差数列{}n a 的通项公式()211,2,3n a n n =-=,,记11T a =,1121122,,n n n n n n T a n T T a a n -+-++⎧⎪=⎨++⎪⎩为奇数,为偶数(2,3,n =),那么2n T = A.21n + B.1162n - C.25 436n n n n ⎧⎨-+≠⎩,=1,,1D.232n n + 50. 已知数列2),1(2,}{a a S S n a n n n n 则且项和为的前-=等于A.4B.2C.1D.—2 51. 等差数列1062,}{a a a S n a n n ++若项和为的前为一个确定的常数,则下列各个和中,也为确定的常数的是A.S 6B.S 11C.S 12D.S 1352. 设n S 是等差数列{}n a 的前n 项和,若3163=S S 则=126S S A.310 B.13 C.81 D.91 53. 已知等差数列{}n a 的前n 项和为n S ,若9S =18,n S =240,4n a -=30,则n 的值为A.18B.17C.16D.1554. 若等差数列{}n a 的前5项和525S =,且23a =,则7a =A.12B.13C.14D.1555. 已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于A.64B.100C.110D.12056. 等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,且3457-+=n n T S n n ,则使得nn b a 为整数的正整数n 的个数是A.3B.4C.5D.657. 数列{}n a 是公差为2-的等差数列,若509741=+++a a a ,则=++++99963a a a a A.-182 B.-82 C.-148 D.-7858. 设A .B .C 三点共线(该直线不过原点O ),数列{a n }是等差数列,S n 是该数列的前n 项和 =a 1+a 200,则S 200=A.200B.100C.50D.30059. 一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为A.14B.16C.18D.2060. 等差数列{a n }中,a 1>0,公差d <0, S n 为其前n 项和,对任意自然数n ,若点(n, S n )在以下4条曲线中的某一条上,则这条曲线应是61. 已知等差数列{a n }前n 项和S n 有最大值且11011-<a a ,当S n 是最小正数时,n = A.17 B.18 C.19 D.2062. 记等差数列{}n a 的前n 项和为n S ,若112a =,420S =,则6S = A.16 B.24 C.36 D.4863. 设|a n |是等差数列,若a 2=3,a 7=13,则数列{a n }前8项的和为A.128B.80C.64D.5664. 已知等差数列}{n a 的前n 项和为S n ,若OC a OA a OB 20043+=,且A 、B 、C 三点共线(该直线不过原点O ),则S 2006 =A.1003B. 1004C. 2006D.200765. 等差数列{}n a 的前n 项和为n S ,若1697=+a a ,77=S ,则12a 的值是A.15B.30C.31D.6466. 已知数列{a n }、{b n }都是公差为1的等差数列,其首项分别为a 1、b 1,且a 1+b 1=5,a 1、b 1∈N *,设C n =a b (n ∈N *),则数列{C n }前10项和等于A.55B.70C.85D.10067. 已知,)1()1()1(22102nn n x a x a x a a x x x ++++=++++++ 若 ++21a a n a n -=+-291,那么自然数n 的值为A. 3B.4C.5D.668. 已知等差数列{a n }的前n 项和为S n ,若m >1,m ∈N*,且21121,38m m m m a a a S -+-+==,则m 等于A.11B.10C.9D.869. 已知等差数列{a n }中, S n 是它的前n 项和,若S 16>0, S 17<0, 则当S n 取最大值时,n 的值为 A.16 B.9 C.8 D.1070. 已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n na b 为整数的正整数n 的个数是 A.2 B.3 C.4 D.571. 设数列}{n a 是等差数列,且n S a a ,6,673=-=是数列}{n a 的前n 项和,则A.54S S =B.56S S =C.64S S >D.56S S <72. 已知数列{-2n+25},其前n 项和S n 达到最大值时,n 为A.10B.11C.12D.13 73. 若n S 是等差数列{}n a 的前n 项和,其首项10a >,991000a a +>,991000a a ⋅<,则使0n S >成立的最大自然数n 是A.198B.199C.200D.20174. 设等差数列{}n a 满足81335a a =.且10a >.n S 为其前n 项之和.则n S 中最大的是A.10SB.11SC.20SD.21S75. 已知S n 是等差数列{a n }的前n 项和,且a 2+a 4+a 7+a 15=40,则S 13的值为A.20B.65C.130D.26076. 等差数列{}n a 的通项公式是12+=n a n ,其前n 项和为n S ,则数列⎭⎬⎫⎩⎨⎧n S n 的前10项和为A.75B.70C.120D.10077. 在等差数列}{n a 中,若30,240,1849===-n n a S S ,则n 的值为A.14B.15C.16D.1778. 在等差数列{}n a 中,若C a a a =++1383,则其前n 项和n S 的值等于5C 的是A.15SB.17SC.8SD.7S79. 设{}n a 是等差数列,1359a a a ++=,69a =,则这个数列的前6项和等于 A.12 B.24 C.36 D.4880. {}n a 是等差数列,10110,0S S ><,则使n a <0的最小的n 值是A.5B.6C.7D.881. 等差数列}{n a 的前n 项和为n S ,若10173=+a a ,则19S 的值是A.55B.95C.100D.不能确定82. 在等差数列{a n }中,a 1>0,且3a 8=5a 13,则S n 中最大的是A.S 21B.S 20C.S 11D.S 10 83. 设S n 是等差数列前n 项的和,若9535=a a ,则59S S 等于 A.1 B.-1 C.2 D.21 84. 已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为A.180B.-180C.90D.-9085. 若{a n }是等差数列,首项a 1>0,a 2003+a 2004>0,a 2003·a 2004<0,则使前n 项和S n >0成立的最大自然数n 是A.4005B.4006C.4007D.400886. 已知等差数列{}n a 中,247,15a a ==,则前10项的和10S =A.100B.210C.380D.40087. 设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12= A .310 B.13 C.18 D .1988. 设等差数列{a }的前n 项的和为S n ,若a 1>0,S 4=S 8,则当S n 取得最大值时,n 的值为A.5B.6C.7D.889. 已知等差数列{a n }的前n 项和为S n ,若1O a B =200OA a OC +,且A 、B 、C 三点共线(该直线不过原点O ),则S 200=A.100B. 101C.200D.20190. 已知等差数列{a n }的前20项的和为100,那么a 7·a 14的最大值为A.25B.50C.100D.不存在91. 若某等差数列{a n }中,a 2+a 6+a 16为一个确定的常数,则其前n 项和S n 中也为确定的常数 的是A.S 17B.S 15C.S 8D.S 792. 在等差数列{a n }中,a 10<0,a 11>0,且a 11>|a 10|,则{a n }的前n 项和S n 中最大的负数为A.S 17B.S 18C.S 19D.S 2093. 等差数列}{n a 的公差为d ,前n 项的和为S n ,当首项a 1和d 变化时,1182a a a ++是一个定值,则下列各数中也为定值的是A.S 7B.S 8C.S 13D.S 1594. 在等差数列{ a n }中,S 4 =1, S 8 =4,则a 17 + a 18 + a 19+ a 20 的值是A .7B .8C .9D .1095. 设a 1, a 2, a 3,……和b 1, b 2, b 3,……都是等差数列,且a 1=25, b 1=75, a 100+b 100=100,则数列a 1+b 1, a 2+b 2,……的前100项的和是A.0B.100C.10000D.不确定96. 等差数列{a n }中,若前15项的和S 15=90,则a 8等于245D. C.12 445B. 6.A 97. 已知S k 表示数列{a k }前k 项和,且S k + S k+1 = a k +1 (k ∈N*),那么此数列是A .递增数列B . 递减数列C .常数列D . 摆动数列98. 设S n 是等差数列{a n }的前n 项和,若31a a =95,则59S S 等于txjy A.-1 B. 21 C.1 D.2 99. 等差数列{a n }中,a n -4=30,且前9项的和S 9=18,前n 项和为S n =240,则n 等于A.15B.16C.17D.18100. 等差数列{a n }中,若a 10=10,a 19=100,前n 项和S n =0,则n 等于A.7B.9C.17D.19参考答案(仅供参考)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15D C A B A D A C C B C B D A B16 17 18 19 20 21 22 23 24 25 26 27 28 29 30C D B D B C D A B C A C B B D31 32 33 34 35 36 37 38 39 40 41 42 43 44 45A B C C A C C A D D D B B B B46 47 48 49 50 51 52 53 54 55 56 57 58 59 60B B B D A B A D B B B B BC C61 62 63 64 65 66 67 68 69 70 71 72 73 74 75C D C A A C B B C D A C A C C76 77 78 79 80 81 82 83 84 85 86 87 88 89 90A B A B B B B A A B B A B A A91 92 93 94 95 96 97 98 99 100B C C C C A C C A C欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

等差数列(巧妙求和)

等差数列(巧妙求和)

等差数列(巧妙求和)若干个数排成一列,称为数列..。

数列中的每一个数称为一项.,其中第一项称为首项..,最后一项称为末项..。

数列中数的个数称为项数..。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)÷项数÷21.有一个数列,4、10、16、22……52,这个数列共有多少项?2.等差数列中,首项=1,末项=39,公差=2。

这个等差数列共有多少项?3.有一个等差数列:2、5、8、11……101,这个等差数列共有多少项?4.已知等差数列11、21、26……1001,问这个数列共有多少项?5.有一等差数列:3、7、11、15……这个等差数列的第100项是多少?6.等差数列中,首项=3,公差=2,项数=10。

它的末项是多少?7.求等差数列1、4、7、10……这个等差数列的第30项?8.求等差数列2、6、10、14……这个等差数列的第100项?9.有这样的一列数,1、2、3、4……99、100。

请你求出这列数各项相加的和。

10.计算下面各题(1)、1+2+3+4+……+49+50(2)、4+5+6+7+8+9+……+73+74(3)、100+99+98+……+61+6011.求等差数列2、4、6……48、50的和。

12.计算下面各题(1)2+6+10+14+18+22(2)5+10+15+20+……+95+100(3)9+18+29+36+……+261+27013.※※计算(2+4+6+......+100)-(1+3+5+ (99)14.※※用简便方法计算下面各题。

(1)(2+4+6+......+200)-(1+3+5+ (199)(2)1+2-3+4+5-6+7+8-9+……+58+59-60内容:巧妙求和(中间数×项数)①、21+22+23+24+25+26+27+28+29=()②、197+198+199+200+201+202+203=()③、76+77+78+79+80+81+82+83+84=()④、14+16+18+20+22+24+26=()⑤、45+50+55+60+65+70+75=()⑥、1+2+3+4+……+97+98+99=()。

等差数列前n项和公式基础训练题(含详解)

等差数列前n项和公式基础训练题(含详解)
;③ ;
④ ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.
11.
【解析】
【分析】
根据 得到 , ,计算得到答案.
【详解】
; ,解得
故答案为:
【点睛】
本题考查了等差数列的通项公式和前 项和,意在考查学生对于等差数列公式的灵活运用.
12.
【解析】
【分析】
利用 来求 的通项.
A.18B.36C.45D.60
7.设 为等差数列, , 为其前n项和,若 ,则公差 ()
A. B. C.1D.2
8.等差数列 的前 项和为 ,已知 , ,则当 取最大值时 的值是()
A.5B.6C.7D.8
9.已知 是数列 的前 项和,且 ,则 ().
A.72B.88C.92D.98
10.设 为等差数列 的前 项的和 , ,则数列 的前2017项和为( )
所以 ,所以 .
故答案为: .
【点睛】
本题考查等差数列公差的计算,难度较易.已知等差数列中的两个等量关系,可通过构造方程组求解等差数列的公差,还可以通过等差数列的下标和性质求解公差.
20.已知数列{an}的前n项和为Sn=n2+3n+5,则an=______.
参考答案
1.A
【解析】
设 ,根据 是一个首项为a,公差为a的等差数列,各项分别为a,2a,3a,4a. .
2.B
【解析】
【分析】
根据等差数列的性质,求出 ,再由前n项和公式,即可求解.
【详解】
∵ ,
∴ ,∴
∴由 得 ,∴ .
故选:B.
【点睛】
本题考查等差数列性质的灵活应用,以及等差数列的前n项和公式,属于中档题.

等差数列求和练习题

等差数列求和练习题

等差数列求和练习题一、基础练习题1. 求和公式:已知等差数列的首项为a₁,公差为d,项数为n,求前n项和Sₙ。

解答:Sn = n/2 * (a₁ + an) = n/2 * (a₁ + a₁ + (n-1)d) = n/2 * (2a₁ + (n-1)d)2. 求和公式:已知等差数列的首项为a₁,公差为d,项数为n,求前n项和Sₙ。

解答:Sn = n/2 * (a₁ + an) = n/2 * (a₁ + a₁ + (n-1)d) = n/2 * (2a₁ + (n-1)d)二、练习题1. 求解下列等差数列的前n项和:(1)首项a₁ = 3,公差d = 2,项数n = 5解答:代入求和公式得:S₅ = 5/2 * (3 + 3 + (5-1)*2) = 5/2 * (6 + 8) = 5/2 * 14 = 35(2)首项a₁ = -2,公差d = 3,项数n = 8解答:代入求和公式得:S₈ = 8/2 * (-2 + (-2) + (8-1)*3) = 8/2 * (-4 + 21) = 8/2 * 17 = 68(3)首项a₁ = 1,公差d = 0,项数n = 10解答:代入求和公式得:S₁₀ = 10/2 * (1 + 1 + (10-1)*0) = 10/2 * (2 + 0) = 10/2 * 2 = 102. 求解下列等差数列的前n项和:(1)首项a₁ = 2,公差d = 4,项数n = 6解答:代入求和公式得:S₆ = 6/2 * (2 + 2 + (6-1)*4) = 6/2 * (4 + 20) = 6/2 * 24 = 72(2)首项a₁ = 0,公差d = -3,项数n = 7解答:代入求和公式得:S₇ = 7/2 * (0 + 0 + (7-1)*(-3)) = 7/2 * (0 - 18) = 7/2 * (-18) = -63(3)首项a₁ = 1,公差d = 1,项数n = 100解答:代入求和公式得:S₁₀₀ = 100/2 * (1 + 1 + (100-1)*1) = 100/2 * (2 + 99) = 100/2 * 101 = 5050三、进阶练习题1. 求解下列等差数列的前n项和:(1)首项a₁ = 3,公差d = 2,项数n为首项的二倍解答:由题可知n = a₁ * 2 = 3 * 2 = 6,代入求和公式得:S₆ = 6/2 * (3 + 3 + (6-1)*2) = 6/2 * (6 + 10) = 6/2 * 16 = 48(2)首项a₁ = -2,公差d = 3,项数n为首项的三倍解答:由题可知n = a₁ * 3 = -2 * 3 = -6,代入求和公式得:S₋₆ = -6/2 * (-2 + (-2) + (-6-1)*3) = -6/2 * (-4 + (-21)) = -6/2 * (-25) = 752. 求解下列等差数列的前n项和:(1)首项a₁ = 2,项数n为公差的四倍,公差d = 3解答:由题可知n = d * 4 = 3 * 4 = 12,代入求和公式得:S₁₂ = 12/2 * (2 + 2 + (12-1)*3) = 12/2 * (4 + 33) = 12/2 * 37 = 222(2)首项a₁ = 0,项数n为公差的五倍,公差d = -2解答:由题可知n = d * 5 = -2 * 5 = -10,代入求和公式得:S₋₁₀ = -10/2 * (0 + 0 + (-10-1)*(-2)) = -10/2 * (0 - 18) = -10/2 * (-18) = 90综上所述,通过练习题的求解,我们熟悉了等差数列的求和公式,并能够灵活运用求和公式解决不同条件下的等差数列求和问题。

(完整版)数列求和练习题

(完整版)数列求和练习题

数列求和1.在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S =( ) A.7 B.15 C.20 D.252.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( ). A .15B .12C .-12D .-153.数列112,314,518,7116,…的前n 项和S n 为( ).A .n 2+1-12n -1B .n 2+2-12nC .n 2+1-12nD .n 2+2-12n -14.已知数列{a n }的通项公式是a n =1n +n +1,若前n 项和为10,则项数n 为( ). A .11B .99C .120D .1215. 已知数列{a n }的通项公式为a n =2n +1,令b n =1n(a 1+a 2+…+a n ),则数列{b n }的前10项和T 10=( )A .70B .75C .80D .856.已知数列{a n }的前n 项和S n =an 2+bn (a 、b ∈R),且S 25=100,则a 12+a 14等于( )A .16B .8C .4D .不确定 7.若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为( ).A .1-14nB .1-12n C.23⎝ ⎛⎭⎪⎫1-14n D.23⎝ ⎛⎭⎪⎫1-12n二、填空题8.数列{a n }的通项公式为a n =1n +n +1,其前n 项之和为10,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为________.9.等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n =________.10.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和S n =________.11.定义运算:⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,若数列{a n}满足⎪⎪⎪⎪⎪⎪a 1122 1=1且⎪⎪⎪⎪⎪⎪3 3a n a n +1=12(n ∈N *),则a 3=________,数列{a n }的通项公式为a n =________.12.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,那么数列{b n }=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和S n 为________.三、解答题13.已知等差数列{a n }的前n 项和为S n ,且a 3=5,S 15=225. (1)求数列{a n }的通项公式;(2)设b n =2a n +2n ,求数列{b n }的前n 项和T n .14.设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4. (1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .15.设{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=b 1=1,a 3+b 5=21,a 5+b 3=13.(1)求{a n },{b n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n b n 的前n 项和S n .16.等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960. (1)求a n 与b n ; (2)求1S 1+1S 2+…+1S n.。

高考数列求和专项训练及解答

高考数列求和专项训练及解答

高考数列求和专项训练及解答一.选择题〔共3小题〕1.数列1,3,5,7,…那么其前n项和S n为〔〕A.n2+1﹣B.n2+2﹣C.n2+1﹣D.n2+2﹣2.项数为奇数的等差数列{a n}共有n项,其中奇数项之和为72,偶数项之和为60,那么项数n的值是〔〕A.9B.10C.11D.133.等差数列{a n}的前n项和为S n,S3=6,S5=15.设数列{}的前n项和为T n,假设T n=,那么n=〔〕A.19B.20C.21D.22二.解答题〔共5小题〕4.数列{a n}的通项是a n=2n﹣1.〔1〕求数列{a n}的前n项和为S n〔2〕设数列的前n项和为T n,求T n.5.正项数列满足4S n=a n2+2a n+1.〔1〕求数列{a n}的通项公式;〔2〕设b n=,求数列{b n}的前n项和T n.6.等比数列{a n}的公比q>0,a1a5=8a2,且3a4,28,a6成等差数列.〔1〕求数列{a n}的通项公式;〔2〕记b n=,求数列{b n}的前n项和T n.7.在数列{a n}中,a1=1,.〔1〕求a2,a3,a4,猜测a n,无需证明;〔2〕假设数列,求数列{a n}的前n项和S n.8.数列{a n}的前n项和为S n,a1=1,a n+1=2a n+2n.〔1〕证明数列{}是等差数列,并求出a n;〔2〕求S n;〔3〕令b n=,假设对任意正整数n,不等式b n<恒成立,XX数m 的取值X围.2018年10月20日克拉玛****高级中学的高中数学组卷参考答案与试题解析一.选择题〔共3小题〕1.数列1,3,5,7,…那么其前n项和S n为〔〕A.n2+1﹣B.n2+2﹣C.n2+1﹣D.n2+2﹣【分析】利用等差数列与等比数列的前n项和公式即可得出.【解答】解:S n=1+3+5+…+〔2n﹣1〕++…+=+=n2+.应选:A.【点评】此题考察了等差数列与等比数列的前n项和公式,属于根底题.2.项数为奇数的等差数列{a n}共有n项,其中奇数项之和为72,偶数项之和为60,那么项数n的值是〔〕A.9B.10C.11D.13【分析】利用项数为奇数的等差数列{a n}共有n项,求出奇数项之和,偶数项之和,然后通过比值求解即可.【解答】解:由题意,;;∴,∴n=11.应选:C.【点评】此题考察数列求和,数列的应用,考察计算能力.3.等差数列{a n}的前n项和为S n,S3=6,S5=15.设数列{}的前n项和为T n,假设T n=,那么n=〔〕A.19B.20C.21D.22【分析】等差数列{a n}的公差设为d,由等差数列的通项公式和求和公式,解方程可得首项、公差,求得==﹣,由裂项相消求和可得前n项和T n,解方程可得n的值.【解答】解:等差数列{a n}的公差设为d,前n项和为S n,S3=6,S5=15,可得3a1+3d=6,5a1+10d=15,解得a1=d=1,即a n=1+n﹣1=n,==﹣,前n项和为T n=1﹣+﹣+…+﹣=1﹣,由T n=,可得n=20,应选:B.【点评】此题考察等差数列的通项公式和求和公式的运用,考察数列的求和方法:裂项相消求和,考察运算能力,属于中档题.二.解答题〔共5小题〕4.数列{a n}的通项是a n=2n﹣1.〔1〕求数列{a n}的前n项和为S n〔2〕设数列的前n项和为T n,求T n.【分析】〔1〕利用等差数列的通项公式求解数列的和即可.〔2〕利用错位相减法求解数列的和即可.【解答】〔12分〕解:〔1〕∵a n=2n﹣1,∴a1=1,∴〔2〕①,②①减②得:==,∴.【点评】此题主要考察数列通项公式和前n项和的求解,利用错位相减法的应用,考察计算能力.5.正项数列满足4S n=a n2+2a n+1.〔1〕求数列{a n}的通项公式;〔2〕设b n=,求数列{b n}的前n项和T n.【分析】〔1〕由,可知当n≥2时,,两式作差可得a n﹣a n﹣1=2〔n≥2〕,再求出首项,代入等差数列的通项公式可得数列{a n}的通项公式;〔2〕把数列{a n}的通项公式代入b n=,再由裂项相消法求数列{b n}的前n 项和T n.【解答】解:〔1〕由,可知当n≥2时,,两式作差得a n﹣a n﹣1=2〔n≥2〕,又,得a1=1,∴a n=2n﹣1;〔2〕由〔1〕知,,∴T n=b1+b2+…+b n==.【点评】此题考察等差数列的通项公式,训练了利用裂项相消法求数列的前n 项和,是中档题.6.等比数列{a n}的公比q>0,a1a5=8a2,且3a4,28,a6成等差数列.〔1〕求数列{a n}的通项公式;〔2〕记b n=,求数列{b n}的前n项和T n.【分析】〔1〕利用等差数列以及等比数列的通项公式列出方程组,求出数列的首项与公比,然后求解数列的通项公式;〔2〕化简通项公式,利用错位相减法求解数列的和即可.【解答】解:〔1〕由a1a5=8a2得:a1q3=8,即a4=8,又∵3a4,28,a6成等差数列,∴3a4+a6=56,将a4=8代入得:a6=32.从而:a1=1,q=2.∴a n=2n﹣1;〔2〕b n==2n•〔〕n﹣1,T n=2×〔〕0+4×〔〕1+6×〔〕2+…+2〔n﹣1〕•〔〕n﹣2+2n•〔〕n﹣1……………………①T n=2×〔〕1+4×〔〕2+6×〔〕3+…+2〔n﹣1〕•〔〕n﹣1+2n•〔〕n……………………②①﹣②得:T n=2×[〔〕0+2〔〕1+〔〕2+…+〔〕n﹣1]﹣2n•〔〕n=2+2×﹣2n•〔〕n=4﹣〔n+2〕•〔〕n﹣1.∴T n=8﹣〔n+2〕•〔〕n﹣2.【点评】此题考察等差数列以及等比数列的应用,数列求和的方法,考察转化首项以及计算能力,是中档题.7.在数列{a n}中,a1=1,.〔1〕求a2,a3,a4,猜测a n,无需证明;〔2〕假设数列,求数列{a n}的前n项和S n.【分析】〔1〕利用条件通过递推关系式求解a2,a3,a4,猜测a n;〔2〕化简数列,利用裂项消项法求数列{a n}的前n项和S n.【解答】解:〔1〕∵a1=1,a n+1=,∴a2==,a3=═,a4=═.猜测:a n=.〔2〕由〔1〕知:b n===2[﹣],从而s n=b1+b2+…+b n=2[〔1﹣〕+〔﹣〕+…+〔﹣〕]=2[1﹣]=.【点评】此题考察数列求和,数列的递推关系式的应用,考察计算能力.8.数列{a n}的前n项和为S n,a1=1,a n+1=2a n+2n.〔1〕证明数列{}是等差数列,并求出a n;〔2〕求S n;〔3〕令b n=,假设对任意正整数n,不等式b n<恒成立,XX数m 的取值X围.【分析】〔1〕两边同除以2n+1,结合等差数列的定义和通项公式,即可得到所求;〔2〕运用数列的求和方法:错位相减法,结合等比数列的求和公式,化简可得所求和;〔3〕求得b n==〔〕n+〔n﹣1〕•〔〕n,讨论b n的单调性,求得最大值,可得m2﹣m﹣6>0,解不等式即可得到所求X围.【解答】解:〔1〕证明:a1=1,a n+1=2a n+2n,可得=+,可得数列{}是首项和公差均为的等差数列,可得=n,即a n=n•2n﹣1;〔2〕S n=1•20+2•2+3•22+…+n•2n﹣1,2S n=1•2+2•22+3•23+…+n•2n,相减可得﹣S n=1+2+22+…+2n﹣1﹣n•2n,=﹣n•2n,化简可得S n=1+〔n﹣1〕•2n;〔3〕b n==〔〕n+〔n﹣1〕•〔〕n,b n+1﹣b n=〔〕n+1+n•〔〕n+1﹣〔〕n﹣〔n﹣1〕•〔〕n=,当n=1时,b2﹣b1=;n=2时,b3﹣b2=;即b1<b2<b3,当n≥3时,b n+1﹣b n<0,即b3>b4>b5>…,那么n=3时,b n的最大值为b3=,不等式b n<恒成立,可得<,即为m2﹣m﹣6>0,解得m>3或m<﹣2.那么m的取值X围是〔﹣∞,﹣2〕∪〔3,+∞〕.【点评】此题考察等差数列的定义和通项公式、求和公式的运用,考察数列的求和方法:错位相减法,以及数列的单调性的运用:解不等式,考察化简整理的运算能力,属于中档题.。

等差数列与等比数列的求和题

等差数列与等比数列的求和题

等差数列与等比数列的求和题数列是数学中的重要概念,是由一系列数按照特定规律排列而成的。

在数列中,等差数列和等比数列是最常见的两种形式。

等差数列是指数列中相邻两项之差相等的数列,而等比数列是指数列中相邻两项之比相等的数列。

求和题则是要求计算数列的前n项和。

一、等差数列的求和公式对于等差数列a1, a2, a3, ... , an,其公差为d,则数列的前n项和Sn可以通过以下公式来计算:Sn = (n/2)(a1 + an)或者Sn = (n/2)[2a1 + (n-1)d]其中,a1代表数列的首项,an代表数列的第n项,n代表数列的项数。

二、等比数列的求和公式对于等比数列a1, a2, a3, ... , an,其公比为r(不等于1),则数列的前n项和Sn可以通过以下公式来计算:当r=1时,Sn = na1当r不等于1时,Sn = a1 * (1 - r^n) / (1 - r)三、等差数列求和题示例下面通过一个简单的例子来演示等差数列的求和过程。

例题:计算等差数列1,3,5,7,9的前10项和Sn。

解析:首先,我们可以观察出这个等差数列的首项a1=1,公差d=2。

然后,根据等差数列的求和公式Sn = (n/2)(a1 + an),带入相应的值进行计算。

Sn = (10/2)(1 + 19) = 5 * 20 = 100所以,等差数列1,3,5,7,9的前10项和为100。

四、等比数列求和题示例下面通过一个简单的例子来演示等比数列的求和过程。

例题:计算等比数列2,4,8,16,32的前5项和Sn。

解析:首先,我们可以观察出这个等比数列的首项a1=2,公比r=2。

然后,根据等比数列的求和公式Sn = a1 * (1 - r^n) / (1 - r),带入相应的值进行计算。

Sn = 2 * (1 - 2^5) / (1 - 2) = 2 * (1 - 32) / (-1) = (2/(-1)) * (-31) = -2 * 31 = -62所以,等比数列2,4,8,16,32的前5项和为-62。

小学奥数等差数列求和习题及答案

小学奥数等差数列求和习题及答案

等差数列求和知识精讲一、定义:一个数列的前n 项的和为这个数列的和。

二、表达方式:常用n S 来表示 。

三:求和公式:和=(首项+末项)⨯项数2÷,1()2n n s a a n =+⨯÷。

对于这个公式的得到可以从两个方面入手:(思路1)1239899100++++++11002993985051=++++++++共50个101()()()() 101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)100 2 10150 5050=+⨯÷=⨯=。

四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。

譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯。

例题精讲:例1:求和:(1)1+2+3+4+5+6 = (2)1+4+7+11+13=(3)1+4+7+11+13+ (85)分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

例如(3)式项数=(85-1)÷3+1=29和=(1+85)×29÷2=1247答案:(1)21 (2)36 (3)1247例2:求下列各等差数列的和。

(1)1+2+3+4+…+199(2)2+4+6+…+78(3)3+7+11+15+…+207分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列求和
引例:计算1+2+3+4+……+97+98+99+100
一、有关概念:
像1、2、3、4、5、6、7、8、9、……这样连起来的一串数称为数列;数列中每一个数叫这个数列的一项,排在第一个位置的叫首项,第二个叫第二项,第三个叫第三项,……,最后一项又叫末项;共有多少个数又叫项数;如果一个数列,从第二项开始,每一项与前一项之差都等于一个固定的数,我们就叫做等差数列。

这个固定的数就叫做“公差”。

二、有关公式:
和=(首项+末项)×项数÷2
末项=首项+公差×(项数-1)
公差=(末项-首项)÷(项数-1)
项数=(末项-首项)÷公差+1
三、典型例题:
例1、聪明脑筋转转转:
判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项、公差及项数写出来,如果不是请打“×”。

判断首项末项公差项数
(1)1、2、4、8、16、32. ()()()()()(2)42、49、56、63、70、77. ()()()()()(3)5、1、4、1、3、1、2、1. ()()()()()(4)44、55、66、77、88、99、110()()()()()
例2、已知等差数列1,8,15,…,78.共12项,和是多少?(博易P27例2)(看ppt,推出公式)
例3、计算1+3+5+7+……+35+37+39
练习2:计算下列各题
(1)6+10+14+18+22+26+30 (3)1+3+5+7+……+95+97+99
(2)3+15+27+39+51+63 (4)2+4+6+8+……+96+98+100
(3)已知一列数4,6,8,10,…,64,共有31个数,这个数列的和是多少?
例5、有一堆圆木堆成一堆,从上到下,上面一层有10根,每向下一层增加一根,共堆了10层。

这堆圆木共有多少根?(博易P27例3)(看ppt)
练习3:
丹丹学英语单词,第一天学了6个单词,以后每一天都比前一天多学会一个,最后一天学会了26个。

丹丹在这些天中共学会了多少个单词?
等差数列求和练习题
一、判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项及公差写出来,如果不是请打“×”。

判断首项末项公差
1. 2、4、6、8、10、12、14、16.()()()()
2. 1、3、6、8、9、11、12、14. ()()()()
3. 5、10、15、20、25、30、35. ()()()()
4. 3、6、8、9、12、16、20、26.()()()()
二、请计算下列各题。

(1)3+6+9+12+15+18+21+24+27+30+33
(2)4+8+12+16+20+24+28+32+36+40
(3)求3、6、9、12、15、18、21、这个数列各项相加的和。

(4)2+4+6+8+……+198+200
★(5)求出所有三位数的和。

(其他作业:练习册B 1题、4题、6题)。

相关文档
最新文档