2013概率论与数理统计-知识点例题讲解2

合集下载

2013考研数学概率论与数理统计复习.doc

2013考研数学概率论与数理统计复习.doc

数理统计这部分的考查难度也不大,首先基本概念都了解清楚。

χ2分布、t分布和F 分布的概念及性质要熟悉,考题中常会有涉及。

参数估计的矩估计法和最大似然估计法,验证估计量的无偏性是要重点掌握的。

假设检验考查到的不多,但只要是考纲中规定的都不应忽视。

显著性检验的基本思想、假设检验的基本步骤、假设检验可能产生的两类错误以及单个及两个正态总体的均值和方差的假设检验是考点。

总之概率统计部分考题的考查难度不会太大,考题灵活度也不如高等数学,只要参考汤家凤老师的复习大全把基本概念、公式、定理掌握好了,例题、习题多做些,历年真题里的相关题目认真做几遍,这样下来概率统计部分掌握的也差不多了,相信各位考生一定会考出个好成绩。

全国自考概率论与数理统计经管类真题解析

全国自考概率论与数理统计经管类真题解析

全国2013年4月自考概率论与数理统计(经管类)真题讲解一、单项选择题(本大题共10小题,每小题2分,共20分)1.甲,乙两人向同一目标射击,A表示“甲命中目标”,B表示“乙命中目标”,C表示“命中目标”,则C=()A.AB.BC.ABD.A∪B【答案】D【解析】“命中目标”=“甲命中目标”或“乙命中目标”或“甲、乙同时命中目标”,所以可表示为“A∪B”,故选择D.【提示】注意事件运算的实际意义及性质:(1)事件的和:称事件“A,B至少有一个发生”为事件A与B的和事件,也称为A 与B的并A∪B或A+B.性质:①,;②若,则A∪B=B.(2)事件的积:称事件“A,B同时发生”为事件A与B的积事件,也称为A与B的交,记做F=A∩B或F=AB.性质:①,;② 若,则AB=A.(3)事件的差:称事件“A发生而事件B不发生”为事件A与B的差事件,记做A-B.性质:①;②若,则;③.(4)事件运算的性质(i)交换律:A∪B=B∪A, AB=BA;(ii)结合律:(A∪B)∪C=A∪(B∪C), (AB)C=A(BC);(iii)分配律:(A∪B)∩C=(A∩C)∪(B∩C)(A∩B)∪C=(A∪C)∩(B∪C).(iv)摩根律(对偶律),2.设A,B是随机事件,,P(AB)=0.2,则P(A-B)=()A.0.1B.0.2C.0.3D.0.4【答案】A【解析】,,故选择A.【提示】见1题【提示】(3).3.设随机变量X的分布函数为F(X)则()A.F(b-0)-F(a-0)B.F(b-0)-F(a)C.F(b)-F(a-0)D.F(b)-F(a)【答案】D【解析】根据分布函数的定义及分布函数的性质,选择D.详见【提示】.【提示】1.分布函数定义:设X为随机变量,称函数,为的分布函数.2.分布函数的性质:①0≤F(x)≤1;②对任意x1,x2(x1< x2),都有;③F(x)是单调非减函数;④,;⑤F(x)右连续;⑥设x为f(x)的连续点,则f′(x)存在,且F′(x)=f(x).3.已知X的分布函数F(x),可以求出下列三个常用事件的概率:①;②,其中a<b;③.4.设二维随机变量(X,Y)的分布律为A.0B.0.1C.0.2D.0.3【答案】D【解析】因为事件,所以,= 0 + 0.1 + 0.2 = 0.3故选择D【提示】1.本题考察二维离散型随机变量的边缘分布律的求法;2.要清楚本题的三个事件的概率为什么相加:因为三事件是互不相容事件,而互不相容事件的概率为各事件概率之和.5.设二维随机变量(X,Y)的概率密度为,则()A.0.25B.0.5C.0.75D.1【答案】A【解析】积分区域D:0<X≤0.5,0<Y≤1,所以故选择A.【提示】1.二维连续型随机变量的概率密度f(x,y)性质:①f(x,y)≥0;②;③若f(x,y)在(x,y)处连续,则有,因而在f(x,y)的连续点(x,y)处,可由分布函数F(x,y)求出概率密度f(x,y);④(X,Y)在平面区域D内取值的概率为.2.二重积分的计算:本题的二重积分的被积函数为常数,根据二重积分的几何意义可用简单方法计算:积分值=被积函数0.5×积分区域面积0.5.6.设随机变量X的分布律为则E(X)=()A.﹣0.8B.﹣0.2C.0D.0.4【答案】B【解析】E(X)=(﹣2)×0.4+0×0.3+2×0.3=﹣0.2故选择B.【提示】1.离散型一维随机变量数学期望的定义:设随机变量的分布律为, 1,2,….若级数绝对收敛,则定义的数学期望为.2.数学期望的性质:①E(c)=c,c为常数;②E(aX)=aE(x),a为常数;③E(X+b)=E(X+b)=E(X)+b,b为常数;④E(aX+b)=aE(X)+b,a,b为常数.7.设随机变量X的分布函数为,则E(X)=()A. B. C. D.【答案】C【解析】根据连续型一维随机变量分布函数与概率密度的关系得,所以, =,故选择C.【提示】1.连续型一维随机变量概率密度的性质①;②;③;④;⑤设x为的连续点,则存在,且.2.一维连续型随机变量数学期望的定义:设连续型随机变量X的密度函数为,如果广义积分绝对收敛,则随机变量的数学期望为.8.设总体X服从区间[,]上的均匀分布(),x1,x2,…,x n为来自X的样本,为样本均值,则A. B. C. D.【答案】C【解析】,,而均匀分布的期望为,故选择C.【提示】1.常用的六种分布(1)常用离散型随机变量的分布(三种):.两点分布①分布列②数学期望:E(X)=P③方差:D(X)=pq.B.二项分布:X~B(n,p)①分布列:,k=0,1,2,…,n;②数学期望: E(X)=nP③方差: D(X)=npq.C.泊松分布:X~①分布列:, 0,1,2,…②数学期望:③方差:=(2)常用连续型随机变量的分布(三种):A.均匀分布:X~①密度函数:,②分布函数:,③数学期望:E(X)=,④方差:D(X)=.B.指数分布:X~①密度函数:,②分布函数:,③数学期望:E(X)=,④方差:D(X)=.C.正态分布(A)正态分布:X~①密度函数:,-∞+∞②分布函数:③数学期望:=,④方差:=,⑤标准化代换:若X~,,则~.(B)标准正态分布:X~①密度函数:,-∞+∞②分布函数:,-∞+∞③数学期望:E(X)=0,④方差:D(X)=1.2.注意:“样本”指“简单随机样本”,具有性质:“独立”、“同分布”.9.设x1,x2,x3,x4为来自总体X的样本,且,记,,,,则的无偏估计是()A. B. C. D.【答案】A【解析】易知,,故选择A.【提示】点估计的评价标准:(1)相合性(一致性):设为未知参数,是的一个估计量,是样本容量,若对于任意,有,则称为的相合(一致性)估计.(2)无偏性:设是的一个估计,若对任意,有则称为的无偏估计量;否则称为有偏估计.(3)有效性设,是未知参数的两个无偏估计量,若对任意有样本方差,则称为比有效的估计量.若的一切无偏估计量中,的方差最小,则称为的有效估计量.10.设总体~,参数未知,已知.来自总体的一个样本的容量为,其样本均值为,样本方差为,,则的置信度为的置信区间是()A.,B.,C.,D.【答案】A【解析】查表得答案.【提示】关于“课本p162,表7-1:正态总体参数的区间估计表”记忆的建议:①表格共5行,前3行是“单正态总体”,后2行是“双正态总体”;②对均值的估计,分“方差已知”和“方差未知”两种情况,对方差的估计“均值未知”;③统计量顺序:, t, x2, t, F.二、填空题(本大题共15小题,每小题2分,共30分)11.设A,B是随机事件,P (A)=0.4,P (B)=0.2,P (A∪B)=0.5,则P (AB)= _____.【答案】0.1【解析】由加法公式P (A∪B)= P (A)+ P (B)-P (AB),则P (AB)= P (A)+ P (B)-P (A∪B)=0.1故填写0.1.12.从0,1,2,3,4五个数字中不放回地取3次数,每次任取一个,则第三次取到0的概率为________.【解析】设第三次取到0的概率为,则故填写.【提示】古典概型:(1)特点:①样本空间是有限的;②基本事件发生是等可能的;(2)计算公式.13.设随机事件A与B相互独立,且,则________.【答案】0.8【解析】因为随机事件A与B相互独立,所以P (AB)=P (A)P (B)再由条件概率公式有=所以,故填写0.8.【提示】二随机事件的关系(1)包含关系:如果事件A发生必然导致事件B发生,则事件B包含事件A,记做;对任何事件C,都有,且;(2)相等关系:若且,则事件A与B相等,记做A=B,且P (A)=P (B);(3)互不相容关系:若事件A与B不能同时发生,称事件A与B互不相容或互斥,可表示为=,且P (AB)=0;(4)对立事件:称事件“A不发生”为事件A的对立事件或逆事件,记做;满足且.显然:①;②,.(5)二事件的相互独立性:若, 则称事件A, B相互独立;性质1:四对事件A与B,与B,A与,与其一相互独立,则其余三对也相互独立;性质2:若A, B相互独立,且P (A)>0, 则.14.设随机变量服从参数为1的泊松分布,则________.【答案】【解析】参数为泊松分布的分布律为, 0,1,2,3,…因为,所以, 0,1,2,3,…,所以=,故填写.15.设随机变量X的概率密度为,用Y表示对X的3次独立重复观察中事件出现的次数,则________.【答案】【解析】因为,则~,所以,故填写.【提示】注意审题,准确判定概率分布的类型.16.设二维随机变量(X,Y)服从圆域D: x2+ y2≤1上的均匀分布,为其概率密度,则=_________.【解析】因为二维随机变量(X,Y)服从圆域D:上的均匀分布,则,所以故填写.【提示】课本介绍了两种重要的二维连续型随机变量的分布:(1)均匀分布:设D为平面上的有界区域,其面积为S且S>0,如果二维随机变量(X,Y)的概率密度为,则称(X,Y)服从区域D上的均匀分布,记为(X,Y)~.(2)正态分布:若二维随机变量(X,Y)的概率密度为(,),其中,,,,都是常数,且,,,则称(X,Y)服从二维正态分布,记为(X,Y)~.17.设C为常数,则C的方差D (C)=_________.【答案】0【解析】根据方差的性质,常数的方差为0.【提示】1.方差的性质①D (c)=0,c为常数;②D (aX)=a2D (X),a为常数;③D (X+b)=D (X),b为常数;④D (aX+b)= a2D (X),a,b为常数.2.方差的计算公式:D (X)=E (X2)-E2(X).18.设随机变量X服从参数为1的指数分布,则E (e-2x)= ________.【答案】【解析】因为随机变量X服从参数1的指数分布,则,则故填写.【提示】连续型随机变量函数的数学期望:设X为连续性随机变量,其概率密度为,又随机变量,则当收敛时,有19.设随机变量X~B (100,0.5),则由切比雪夫不等式估计概率________.【答案】【解析】由已知得,,所以.【提示】切比雪夫不等式:随机变量具有有限期望和,则对任意给定的,总有或.故填写.20.设总体X~N (0,4),且x1,x2,x3为来自总体X的样本,若~,则常数C=________.【答案】1【解析】根据x2定义得C=1,故填写1.【提示】1.应用于“小样本”的三种分布:①x2-分布:设随机变量X1,X2,…,X n相互独立,且均服从标准正态分布,则服从自由度为n的x2-分布,记为x2~x2(n).②F-分布:设X,Y相互独立,分别服从自由度为m和n的x2分布,则服从自由度为m 与n的F-分布,记为F~F(m,n),其中称m为分子自由度,n为分母自由度.③t-分布:设X~N (0,1),Y~x2(n),且X,Y相互独立,则服从自由度为n的t-分布,记为t~t (n).2.对于“大样本”,课本p134,定理6-1:设x1,x2,…,x n为来自总体X的样本,为样本均值,(1)若总体分布为,则的精确分布为;(2)若总体X的分布未知或非正态分布,但,,则的渐近分布为.21.设x1,x2,…,x n为来自总体X的样本,且,为样本均值,则________.【答案】【解析】课本P153,例7-14给出结论:,而,所以,故填写.【说明】本题是根据例7-14改编.因为的证明过程比较复杂,在2006年课本改版时将证明过程删掉,即本次串讲所用课本(也是学员朋友们使用的课本)中没有这个结论的证明过程,只给出了结果.感兴趣的学员可查阅旧版课本《高等数学(二)第二分册概率统计》P164,例5.8.22.设总体x服从参数为的泊松分布,为未知参数,为样本均值,则的矩估计________.【答案】【解析】由矩估计方法,根据:在参数为的泊松分布中,,且的无偏估计为样本均值,所以填写.【提示】点估计的两种方法(1)矩法(数字特征法)估计:A.基本思想:①用样本矩作为总体矩的估计值;②用样本矩的函数作为总体矩的函数的估计值.B.估计方法:同A.(2)极大似然估计法A.基本思想:把一次试验所出现的结果视为所有可能结果中概率最大的结果,用它来求出参数的最大值作为估计值.B.定义:设总体的概率函数为,,其中为未知参数或未知参数向量,为可能取值的空间,x1,x2,…,x n是来自该总体的一个样本,函数称为样本的似然函数;若某统计量满足,则称为的极大似然估计.C.估计方法①利用偏导数求极大值i)对似然函数求对数ii)对求偏导数并令其等于零,得似然方程或方程组iii)解方程或方程组得即为的极大似然估计.②对于似然方程(组)无解时,利用定义:见教材p150例7-10;(3)间接估计:①理论根据:若是的极大似然估计,则即为的极大似然估计;②方法:用矩法或极大似然估计方法得到的估计,从而求出的估计值.23.设总体X服从参数为的指数分布,x1,x2,…,x n为来自该总体的样本.在对进行极大似然估计时,记…,x n)为似然函数,则当x1,x2,…,x n都大于0时,…,x n=________.【答案】【解析】已知总体服从参数为的指数分布,所以,从而…,=,故填写.24.设x1,x2,…,x n为来自总体的样本,为样本方差.检验假设:,:,选取检验统计量,则H0成立时,x2~________.【答案】【解析】课本p176,8.3.1.25.在一元线性回归模型中,其中~, 1,2,…,n,且,,…,相互独立.令,则________.【答案】【解析】由一元线性回归模型中,其中~, 1,2,…,,且,,…,相互独立,得一元线性回归方程,所以,,则~由20题【提示】(3)得,故填写.【说明】课本p186,关于本题内容的部分讲述的不够清楚,请朋友们注意.三、计算题(本大题共2小题,每小题8分,共16分)26.甲、乙两人从装有6个白球4个黑球的盒子中取球,甲先从中任取一个球,不放回,而后乙再从盒中任取两个球,求(1)甲取到黑球的概率;(2)乙取到的都是黑球的概率.【分析】本题考察“古典概型”的概率.【解析】(1)设甲取到黑球的概率为p,则.(2)设乙取到的都是黑球的概率为p,则.27.某种零件直径X~(单位:mm),未知.现用一种新工艺生产此种零件,随机取出16个零件、测其直径,算得样本均值,样本标准差s=0.8,问用新工艺生产的零件平均直径与以往有无显著差异?()(附:)【分析】本题考察假设检验的操作过程,属于“单正态总体,方差未知,对均值的检验”类型.【解析】设欲检验假设H0:,H1:,选择检验统计量,根据显著水平=0.05及n=16,查t分布表,得临界值t0.025(15)=2.1315,从而得到拒绝域,根据已知数据得统计量的观察值因为,拒绝,可以认为用新工艺生产的零件平均直径与以往有显著差异.【提示】1.假设检验的基本步骤:(1)提出统计假设:根据理论或经验对所要检验的量作出原假设(零假设)H0和备择假设H1,要求只有其一为真.如对总体均值检验,原假设为H0:,备择假设为下列三种情况之一::,其中i)为双侧检验,ii),iii)为单侧检验.(2)选择适当的检验统计量,满足:① 必须与假设检验中待检验的“量”有关;② 在原假设成立的条件下,统计量的分布或渐近分布已知.(3)求拒绝域:按问题的要求,根据给定显著水平查表确定对应于的临界值,从而得到对原假设H0的拒绝域W.(4)求统计量的样本值观察值并决策:根据样本值计算统计量的值,若该值落入拒绝域W内,则拒绝H0,接受H1,否则,接受H0.2.关于课本p181,表8-4的记忆的建议:与区间估计对照分类记忆.四、综合题(本大题共2小题,每小题12分,共24分)28.设二维随机变量(X,Y)的概率密度为(1)求(X,Y)关于X,Y的边缘概率密度;(2)记Z=2X+1,求Z的概率密度.【分析】本题考察二维连续型随机变量及随机变量函数的概率密度.【解析】(1)由已知条件及边缘密度的定义得=,()所以;同理可得.(2)使用“直接变换法”求Z=2X+1的概率密度.记随机变量X、Z的分布函数为Fx(x)、Fz(Z),则,由分布函数Fz(Z)与概率密度的关系有由(1)知,所以= .【提示】求随机变量函数的概率密度的“直接变换法”基本步骤:问题:已知随机变量X的概率密度为,求Y=g(X)的概率密度解题步骤:1.;2..29.设随机变量X与Y相互独立,X~N(0,3),Y~N(1,4).记Z=2X+Y,求(1)E(Z),D(Z);(2)E(XZ);(3)P XZ.【分析】本题考察随机变量的数字特征.【解析】(1)因为X~N(0,3),Y~N(1,4),Z=2X+Y,所以E(Z)=E(2X+Y)=2E(X)+E(Y)=1D(Z)=D(2X+Y)=4D(X)+D(Y)=16(2)而随机变量与相互独立,所以 E(XZ)=6.(3)因为,所以.五、应用题(10分)30.某次考试成绩X服从正态分布(单位:分),(1)求此次考试的及格率和优秀率;(2)考试分数至少高于多少分能排名前50%?(附:)【分析】本题考察正态分布的概率问题.【解析】已知X~N(75,152),设Z~N(0,1),为其分布函数,(1)==即本次考试的及格率为84.13%,优秀率为15.87%.(2)设考试分数至少为x分可排名前50%,即,则=,所以,即,x=75,因此,考试分数至少75分可排名前50%.。

《概率论与数理统计》第二章基础知识小结 2

《概率论与数理统计》第二章基础知识小结 2

第二章、基础知识小结一、 离散型分布变量分布函数及其分布律 1. 定义:),3,2,1(}{ ===i p x X P i i2.分布律}{k p 的性质: (1);,2,1,0 =≥k p k (2)11=∑∞=k k p3.离散型随机变量的分布函数:∑≤=≤=xx kk px X P x F }{)(4.分布函数F (X )的性质: (1)1)(0≤≤x F(2))(x F 是不减函数,0)()(}{1221≥-=≤<x F x F x X x P (3)1)(,0)(=+∞=-∞F F ,即1)(lim ,0)(lim ==+∞→-∞→x f x f x x(4))(x F 右连续,即)()(lim )0(0x F x x F x F x =∆+=+→∆(5))()(}{}{}{a F b F a X P b X P b X a P -=≤-≤=≤<)(1}{1}{a F a X P a X P -=≤-=>5.三种常见的离散型随机变量的概率分布(1)0-1分布(),1(~p B X )(2)二项分布(),(~p n B X )n k q p C k X P p kn k k n k ,,2,1,0,}{ ====-(3)泊松分布()(~λP X ),,,2,1,0,!}{n k e k k X P p kk ====-λλ二、连续型随机变量分布函数及其概率密度 1.连续型随机变量的分布函数即概率密度定义:dt t f x X P x F x ⎰∞-=<=)(}{)(其中,)(x F 为X 的分布函数,)(x f 为X 的概率密度。

2.概率密度的性质 (1)0)(≥x f (2)1)(=⎰+∞∞-dx x f(3)dx x f a F b F b X a P ba⎰=-=≤<)()()(}{ (43.三种常见的连续型随机变量 (1)均匀分布(),(~b a U X )⎪⎩⎪⎨⎧≤≤-=其他,0,1)(b x a a b x f(2)指数分布()(~λE X )⎩⎨⎧≤>=-0,00,)(x x e x f x λλ (3)正态分布(),(~2σμN X )+∞<<-∞=--x ex f x ,21)(222)(σμσπ(4)标准正态分布()1,0(~N X )及其性质+∞<<-∞=-x ex f x ,21)(22π性质:A.)(1)(x x ΦΦ-=-B.21)0(=Φ(5)非标准正态分布标准化 设),(~2σμN X ,则三、随机变量函数的概率分布 1.离散型随机变量函数的概率分布 设离散型随机变量X 的分布律为:X 1x 2x3x …k x …P1p 2p 3p … k p …则X的函数)(X g Y =的分布律为:X )(1x g)(2x g )(3x g…)(k x g …P1p 2p 3p … k p …2.连续型随机变量函数的分布设X 的连续型随机变量,其概率密度为)(x f X 。

概率论与数理统计重点总结及例题解析

概率论与数理统计重点总结及例题解析

概率论与数理统计重点总结及例题解析(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--概率论与数理统计重点总结及例题解析一:全概率公式和贝叶斯公式例:某厂由甲、乙、丙三个车间生产同一种产品,它们的产量之比为3:2:1,各车间产品的不合格率依次为8%,9%, 12% 。

现从该厂产品中任意抽取一件,求:(1)取到不合格产品的概率;(2)若取到的是不合格品,求它是由甲车间生产的概率。

(同步45页三、1)解:设A1,A2,A3分别表示产品由甲、乙、丙车间生产,B表示产品不合格,则A1,A2,A3为一个完备事件组。

P(A1)=1/2, P(A2)=1/3, P(A3)=1/6,P(B| A1)=,P(B| A2)=,P(B| A3)=。

由全概率公式P(B) = P(A1)P(B| A1)+ P(A2)P(B| A2)+ P(A3)P(B| A3) = 由贝叶斯公式:P(A1| B)=P(A1B)/P(B) = 4/9练习:市场上出售的某种商品由三个厂家同时供货,其供应量第一厂家为第二厂家的2倍,第二、三两厂家相等,而且第一、二、三厂家的次品率依次为2%,2%,4%。

若在市场上随机购买一件商品为次品,问该件商品是第一厂家生产的概率是多少(同步49页三、1)【】练习:设两箱内装有同种零件,第一箱装50件,有10件一等品,第二箱装30件,有18件一等品,先从两箱中任挑一箱,再从此箱中前后不放回地任取2个零件,求:(同步29页三、5)(1)取出的零件是一等品的概率;(2)在先取的是一等品的条件下,后取的仍是一等品的条件概率。

解:设事件i A ={从第i 箱取的零件},i B ={第i 次取的零件是一等品}(1)P(1B )=P(1A )P(1B |1A )+P(2A )P(1B |2A )=52301821501021=+ (2)P(1B 2B )=194.02121230218250210=+C C C C ,则P(2B |1B )=)()(121B P B B P = 二、连续型随机变量的综合题例:设随机变量X 的概率密度函数为⎩⎨⎧<<=othersx x x f 020)(λ求:(1)常数λ;(2)EX ;(3)P{1<X<3};(4)X 的分布函数F(x)(同步47页三、2)解:(1)由⎰⎰==∞+∞-201)(xdx dx x f λ得到λ=1/2 (2)3421)(22===⎰⎰∞+∞-dx x dx x xf EX (3)⎰⎰===<<31214321)(}31{xdx dx x f x P(4)当x<0时,⎰∞-==xdt x F 00)( 当0≤x<2时,⎰⎰⎰∞-∞-=+==xxx tdt dx dt t f x F 00241210)()( 当x ≥2时,F (x )=1故201()02412x F x x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩练习:已知随机变量X 的密度函数为⎩⎨⎧≤≤+=others x b ax x f 010)( 且E(X)=7/12。

概率论与数理统计习题解答(第2章)

概率论与数理统计习题解答(第2章)

概率论与数理统计习题解答(第2章)习 题 二(A )三、解答题1.一颗骰子抛两次,以X 表示两次中所得的最小点数(1) 试求X 的分布律; (2) 写出X 的分布函数.解: (1)分析:这里的概率均为古典概型下的概率,所有可能性结果共36种,如果X=1,则表明两次中至少有一点数为1,其余一个1至6点均可,共有1-612⨯C(这里12C 指任选某次点数为1,6为另一次有6种结果均可取,减1即减去两次均为1的情形,因为612⨯C 多算了一次)或1512+⨯C 种,故2{}36113615361-611212=+⨯=⨯==C C X P ,其他结果类似可得.(2)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤=+=+=+=+=<≤=+=+=+=<≤=+=+=<≤=+=<≤=<=6165}5{}4{}3{}2{}1{54 }4{}3{}2{}1{43 }3{}2{}1{32}2{}1{21}1{1 0 )(x x X P X P X P X P X P x X P X P X P X P x X P X P X P x X P X P x X P x x F ,,,,,,,⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<≤<=6 165363554 363243 36273236202136111 0 x x x x x x x ,,,,,,, 2.某种抽奖活动规则是这样的:袋中放红色球及白色球各5只,抽奖者交纳一元钱后得到一次抽奖的机会,然后从袋中一次取出5只球,若5只球同色,则获奖100元,否则无奖,以X 表示某抽奖者在一次抽取中净赢钱数,求X 的分布律.3解:注意,这里X 指的是赢钱数,X 取0-1或100-1,显然{}1261299510===C X P .3.设随机变量X 的分布律为;,2,1,0,!}{>===λλ k k ak X P k为常数,试求常数a .解:因为1!0==-∞=∑λλaek ak k,所以λ-=e a .4.设随机变量X 的分布律为(1) 求X 的分布函数;(2) 求}21{≤X P ,}2523{≤<X P ,}32{≤≤x P . 解: (1)⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤-<=⎪⎪⎩⎪⎪⎨⎧≥<≤=+-=<≤--=<=3x 132432141-1x 03x 132}2{}1{21}1{-1x 0)(,,,,,,,,x x x X P X P x X P x f ,4(2) {}41121=-==⎭⎬⎫⎩⎨⎧≤X p X P 、 {}2122523===⎭⎬⎫⎩⎨⎧≤<X P X P , {}{}{}{}{}{}43323232==+=====≤≤X P X P X X P X P .5.设随机变量X 的分布律为 ,2,1,21}{===k k X P k求: (1) P {X = 偶数} (2) P {X ≥ 5} (3) P {X = 3的倍数} 解:(1) {}3121121121lim 212121222242=⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-=++++==∞→i i iX P 偶数,(2) {}{}16116151415=-=≤-=≥X P X P , (3) {}7121121121lim 21333313=-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-===∞→∞=∑i i i i X P 的倍数.6. 某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为0.5t 的泊松分布,而与时间间隔的起点无关(时间以小时计) (1) 求某一天中午12时至下午3时没有收到紧急呼救的概率.(2) 求某一天中午12时至下午5时至少收到5一次紧急呼救的概率. 解:(1) ()()5.15.0~P t P X = {}5.10-==e X P .(2) 5.25.0=t {}{}5.21011--==-=≥e x P x P .7. 某人进行射击,每次射击的命中率为0.02,独立射击400次,试求至少击中2次的概率.解:设射击的次数为X ,由题意知().20400~,B X , {}{},98.002.0111240010400k k k kC X P X P -=∑-=≤-=≥9972.028.01!81810=-=-≈-=∑e k k K ,其中8=400×0.02.8. 设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号.现进行5次独立试验,试求指示灯发出信号的概率. 解:设X 为事件A 在5次独立重复实验中出现的次数,().305~,B X 则指示灯发出信号的概率{}{})7.03.07.03.07.03.0(131********55005C C C X P X P p ++-=<-=≥=1631.08369.01=-=.9. 设顾客在某银行窗口等待服务的时间X (以分钟计)服从参数为5指数分布.某顾客在6窗口等待服务,若超过10分钟,他就离开.他一个月要到银行5次,以Y 表示他未等到服务而离开窗口的次数.写出Y 的分布律,并求P {Y ≥ 1}. 解:因为X 服从参数为5的指数分布,则51)(xex F --=,{}2)10(110-=-=>e F X P ,()25~-e B Y ,,则50,1,k ,)1()(}{5225=-==---k k k e e Ck Y P .0.516711}0{-1}1{52=--===≥-)(e Y P Y P10.设随机变量X的概率密度为⎪⎩⎪⎨⎧>≤=2||,02||,cos )(ππx x x a x f ,试求:(1) 系数a ;(2) X 落在区间)4,0(π内的概率. 解:(1) 由归一性知:⎰⎰-∞+∞-===222cos )(1ππaxdx a dx x f ,所以21=a . (2) .42|sin 21cos 21}40{404===<<⎰πππx xdx X P . 11.设连续随机变量X的分布函数为7⎪⎩⎪⎨⎧≥<≤<=1,110,0,0)(2x x Ax x x F试求:(1) 系数A ;(2) X 落在区间(0.3,0.7)内的概率;(3) X 的概率密度.解 (1)由F (x )在x =1的连续性可得)1()(lim )(lim 11F x F x F x x ==-→+→,即A=1.(2){}=<<7.03.0X P 4.0)3.0()7.0(=-F F .(3)X 的概率密度⎩⎨⎧<<='=,010,2)()(x x x F x f .12.设随机变量X 服从(0,5)上的均匀分布,求x 的方程02442=+++X Xx x有实根的概率.解:因为X 服从(0,5)上的均匀分布,所以⎪⎩⎪⎨⎧<<=其他05051)(x x f若方程24422=+++X Xx x 有实根,则3216)4(2≥--=∆X X ,即12-≤≥X X ,所以有实根的概率为{}{}53510511252152==+=-≤+≥=⎰⎰-∞-x dx dx X P X P p813.设X ~N (3,4)(1) 求};3{},2{},104{},52{>>≤<-≤<X P X P X P X P (2) 确定c 使得};{}{c X P c X P ≤=>(3) 设d 满足9.0}{≥>d X P ,问d 至多为多少?解: (1) 因为4)(3~,N X 所以 )2()5(}52{F F X P -=≤<5328.016915.08413.01)5.0()1(=-+=-Φ-Φ={})4()10(104--=≤<-F F X P9996.019998.021)5.3(21)5.3()5.3(=-⨯=-Φ=--Φ-Φ={}{}212≤-=>X P X P {}221≤≤--=X P[])2()2(1---=F F [])5.2()5.0(1-Φ--Φ-=[])5.0()5.2(1Φ-Φ-=3023.01-=6977.0={}{}313≤-=>X P X P )3(1F -=)0(1Φ-=5.01-=5.0=. (2){}{}c X P c X P ≤-=>1,则{}21=≤c X P 21)23()(=-Φ==c c F ,经查表得21)0(=Φ,即023=-c ,得3=c ;由概率密度关于9x=3对称也容易看出。

2013年概率统计试题解

2013年概率统计试题解

P(4只中有2只配对)=1 P(4只中没有配对) P(4只配对) 16C54 C52 12 =1 4 4 C10 C10 21
C52 1 P(4只都配对)= 4 C10 21
三、(10 分)玻璃杯成箱出售,每箱 20 只。已知任取一箱,箱 中 0、1、2 只残次品的概率相应为 0.8、0.1 和 0.1,某顾客 欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随 机地察看 4 只,若无残次品,则买下该箱玻璃杯,否则退回。 试求: (1)顾客买下该箱的概率 ; (2)在顾客买下的该箱中, 没有残次品的概率 。
由全概率公式 4 12 P( A) P( Bi ) P( A | Bi ) 0.8 1 0.1 0.1 0.94 5 19 i 0
2
由贝叶斯公式 P( B0 ) P( A | B0 ) 0.8 1 ( B0 | A) 0.85 P( A) 0.94
四、(15)设二维随机变量 X , Y 的概率分布为
解 (1)由概率分布的性质可知, a b c 0.6 1 ,即 a b c 0.4 . 由 EX 0.2 ,可得 a c 0.1 .
P X 0 , Y 0a b 0 . 1 0, .解5 得 再 由 P Y 0 X 0 P X 0 ab 0 . 5
二、 (10 分)从 5 双尺码不同的鞋子中任取 4 只, 求下列事件的概率: (1)所取的 4 只中没有两只成对;(2)所取的 4 只中只有两只成对 (3)所取的 4 只都成对
1 1 1 1 C54C2 C2C2C2 16C54 8 解:P(4只中没有2只配对)= 4 4 C10 C10 21
1 1
4、设随机变量 X 和 Y 的数学期望分别为-2 和 2,方差 分别为 1 和 4,而相关系数为-0.5, 则根据契比雪夫 不等式 P X Y 6 ____

概率论与数理统计作业 2讲解

概率论与数理统计作业 2讲解

第一章随机事件与概率1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。

试写出样本空间及事件C B A ,,中的样本点。

解:{}反正正、正反、反正、反=Ω{}正正、正反=A ,{}正正=B ,{}正正、正反、反正=C 2.设31)(=A P ,21)(=B P ,试就以下三种情况分别求)(A B P :(1)AB =∅,(2)B A ⊂,(3)81)(=AB P解:(1)5.0)()()()()(==-=-=B P AB P B P AB B P A B P(2)6/13/15.0)()()()()()(=-=-=-=-=A P B P AB P B P AB B P A B P (3)375.0125.05.0)()()()(=-=-=-=AB P B P AB B P A B P3.某人忘记了电话号码的最后一个数字,因而随机的拨号,求他拨号不超过三次而接通所需的电话的概率是多少?如果已知最后一个数字是奇数,那么此概率是多少?解: 记H 表拨号不超过三次而能接通。

Ai 表第i 次拨号能接通。

注意:第一次拨号不通,第二拨号就不再拨这个号码。

103819810*********)|()|()()|()()()(2131211211321211=⨯⨯+⨯+=++=∴++=A A A P A A P A P A A P A P A P H P A A A A A A H 三种情况互斥如果已知最后一个数字是奇数(记为事件B )问题变为在B 已发生的条件下,求H 再发生的概率。

)|||)|(321211B A A A B A A B PA B H P ++=)|()|()|()|()|()|(2131211211A A B A P A B A P B A P A B A P B A P B A P ++= 53314354415451=⨯⨯+⨯+=4.进行一系列独立试验,每次试验成功的概率均为错误!未找到引用源。

概率论与数理统计(经管类)第二章知识点总结

概率论与数理统计(经管类)第二章知识点总结

第二章 随机变量及其概率分布1. 离散型随机变量()01k K K KP X x p p ==≥⎧⎪⎨=⎪⎩∑ 例1 设 ,则3.02.05.01=--=c------------------------------------------------------------------------------------------------ 8.知识点:离散型随机变量的分布律性质下列各表中可作为某随机变量分布律的是( ) A . B .C .D .答案:C解:A 事件概率不可能为负值 B ,D1i iP ≠∑返回:第二章 随机变量及其概率分布------------------------------------------------------------------------------------------------2.常见离散型随机变量(1)0—1分布:设X ~),1(p B ,则应用背景:一次抽样中,某事件A 发生的次数X ~),1(p B ,其中EX X P A P p ====)1()(例2 设某射手的命中率为p ,X 为其一次射击中击中目标的次数,则X ~),1(p B(2)二项分布:设X ~),(p n B ,则()(1),0,1,2,,k k n kn P X k C p p k n -==-=应用背景:n 次独立重复抽样中某事件A 发生的次数X ~),(p n B ,其中()p P A =为事件A 在一次抽样中发生的概率。

例3 某射手的命中率为0.8,X 为其5次射击中命中目标的次数,则X 取的可能值为5,,1,0 ,52()0.80.2k k k P X k C -==,即X ~)8.0,5(B记住:若X ~),(p n B ,则np EX =,)1(p np DX -=------------------------------------------------------------------------------------------------ 9.知识点:事件的关系及二项分布设每次试验成功的概率为)10(<<p p ,则在3次独立重复试验中至少成功一次的概率为( ) A .3)1(1p -- B .2)1(p p - C .213)1(p p C -D .32pp p ++答案:A解: 利用对立事件求解。

概率论与数理统计第二章习题解

概率论与数理统计第二章习题解

x
x
解:(1).当 x <0 时, F (x) = ∫ f (x)dx = ∫ 0dx = 0 ;
−∞
−∞
∫ ∫ ∫ 当
0 ≤ x < 1 时, F (x) =
x
f (x)dx =
0 0dx + x udu = 1 x2 ;
−∞
−∞
0
2
∫ ∫ ∫ ∫ 当1 ≤ x < 2 时, F (x) = x f (x)dx = 0 0dx + 1 xdx + x (2 − t)dt = 2x − 1 x2 −1 ;
14.设连续性随机变量ξ的分布函数为:
⎧ 0 , x<0)
F
(
x)

⎪ ⎨
Ax
2
,0≤ x1)
⎪⎩ 1 , x ≥ 1 )
求:(1).常数 A;(2). P (0.3 < ξ < 0.7);(3).密度函数 f ( x) .
解:(1).由分布函数 F (x) 的连续性:
lim F (x) = lim Ax2 = A , lim F (x) = lim1 = 1 ,则得: A =1,从而ξ的分布函数为:
,(0≤ x<1) ,(1≤ x≤2)
⎪⎩ 1
,(x>2 )
(2).( f (x) 与 F ( x) 图形略).
17.设ξ~ N (3, 22 ),求 P(| ξ |> 2) , P(2 < ξ ≤ 5) , P(ξ > 3) .
解:
P[(ξ
<
−2) ∪

>
2)]
=
P(ξ
<
−2)

概率论与数理统计例题和知识点总结

概率论与数理统计例题和知识点总结

概率论与数理统计例题和知识点总结概率论与数理统计是一门研究随机现象统计规律的学科,它在自然科学、工程技术、经济管理、社会科学等众多领域都有着广泛的应用。

下面将通过一些例题来帮助大家理解和掌握这门学科的重要知识点。

一、随机事件与概率随机事件是指在一定条件下,可能出现也可能不出现的事件。

概率则是衡量随机事件发生可能性大小的数值。

例 1:抛掷一枚均匀的硬币,求正面朝上的概率。

解:因为硬币只有正反两面,且质地均匀,所以正面朝上的概率为1/2。

知识点:古典概型中,事件 A 的概率 P(A) = A 包含的基本事件数/基本事件总数。

例 2:一个袋子里有 5 个红球和 3 个白球,从中随机取出一个球,求取出红球的概率。

解:袋子里一共有 8 个球,其中 5 个是红球,所以取出红球的概率为 5/8。

知识点:概率的性质:0 ≤ P(A) ≤ 1;P(Ω) = 1,P(∅)= 0。

二、条件概率与乘法公式条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。

例 3:已知在某疾病的检测中,阳性结果中真正患病的概率为 09,而总体人群中患病的概率为 001。

如果一个人的检测结果为阳性,求他真正患病的概率。

解:设 A 表示患病,B 表示检测结果为阳性。

则 P(A) = 001,P(B|A) = 09,P(B|A')= 1 P(B|A) = 01。

根据全概率公式:P(B) =P(A)×P(B|A) + P(A')×P(B|A')= 001×09 +099×01 ≈ 0108。

再根据贝叶斯公式:P(A|B) = P(A)×P(B|A) / P(B) = 001×09 /0108 ≈ 0083。

知识点:条件概率公式:P(B|A) = P(AB) / P(A);乘法公式:P(AB) = P(A)×P(B|A)。

三、独立性如果两个事件的发生与否互不影响,那么称它们是相互独立的事件。

概率论与数理统计第2章复习题解答

概率论与数理统计第2章复习题解答

《概率论与数理统计》第二章复习题解答1. 将4只球(1-4号)随机放入4只盒子(1-4号)中去,一只盒子只放一球. 如一只球装入了与之同号的盒子, 称形成了一个配对. 记X 为总的配对数, 求X 的分布律. 解:241!41)4(===X P ; 0)()3(===ΦP X P ——因为当3个球形成配对时,另1个球一定也形成配对;41!41)2(24=⨯==C X P ——当4个球中的某2个形成配对时,另2个球(标号a,b )都不形成配对的放法只1种,即分别放入标号b,a 的盒中;31!42)1(14=⨯==C X P ——当4个球中的某1个形成配对时,另3个球都不形成配对的放法只2种:以abc 记3个空盒的号码排列,则3个球只能以bca 或cab 的次序对应放入3个盒中;249314102411)0(=----==X P . 于是,分布律为2. 盒中装有10个大小相等的球, 编号为0-9. 从中任取一个, 在号码“小于5”、“等于5”、“大于5”三种情况下,分别记随机变量.2,1,0=X 求X 的分布律、分布函数、分析2)1(-=X Y 服从什么分布.解:(1)10个球中号码“小于5”、“等于5”、“大于5”分别有5、1、4个,于是X 的分布律为(2)X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=2,1 21 ,6.010 ,.500 ,0 )(x x x x x F X ; (3)2)1(-=X Y 分布律为即2)1(-=X Y 服从参数为0.9的0-1分布.3. 设随机变量X 的分布密度为∞<<∞-=-x Aex f x X ,)(. 求(1)A 的值;(2))21(<<-X P ;(3)X的分布函数;(4)21X Y -=的分布密度. 解:(1)122)(0===⎰⎰∞-∞∞-A dx Ae dx x f x X , 21=∴A ,⎪⎪⎩⎪⎪⎨⎧≤>=∴-0,21 0,21)(x e x e x f x x X ; (2))(2112121)21(212001----+-=+=<<-⎰⎰e e dx e dx e X P x x ; (3)⎪⎪⎩⎪⎪⎨⎧≥-=+<===--∞-∞-∞-⎰⎰⎰⎰0 ,21121210 ,2121 )()(00x e dt e dt e x e dt e dt t f x F x x t t x x t xX X ; (4))1(1)1()1()()(222y X P y X P y X P y Y P y F Y -<-=-≥=≤-=≤=⎪⎩⎪⎨⎧≥-<-<<---=1 ,01 1,)11(1y y y X y P ⎪⎩⎪⎨⎧≥<--+--=1 ,11,)1()1(1y y y F y F X X 求导得⎪⎩⎪⎨⎧≥<---+-=1 ,0 1,121)]1()1([)(y y y y f y f y f X X Y⎪⎩⎪⎨⎧≥<-+=----1 ,0 1 ,121]2121[11y y y e e y y ⎪⎩⎪⎨⎧≥<-=--1 ,01,1211y y e y y .4. 根据历史资料分析, 某地连续两次强地震间隔的年数X 的分布函数为⎩⎨⎧<≥-=-0 ,00,1)(1.0x x e x F x ,现在该地刚发生了一次强地震,求(1)今后3年内再发生强地震的概率;(2)今后3-5年内再发生强地震的概率;(3)X 的分布密度)(x f ,指出X 服从什么分布.解:(1)26.01)3()3(31.0=-==≤⨯-e F X P ;(2)13.0)1()1()3()5()53(31.051.0=---=-=≤<⨯-⨯-e eF F X P . (3)X 的分布密度⎪⎩⎪⎨⎧≤>=⎩⎨⎧≤>=--0,0 0,1010 ,0 0,1.0)(1011.0x x e x x e x f x x ,故X 服从参数为10的指数分布. 5.(1)设),2(~p b X , ),3(~p b Y , 且95)1(=≥X P , 求)1(≥Y P .(2)设)(~λP X , 且)2()1(===X P X P , 求)4(=X P .(3)设),(~2σμN X ,试分析当↑σ时,概率)(σμ<-X P 的值将如何变化. 解:(1)),2(~p b X ,95)1(1)0(1)1(2=--==-=≥∴p X P X P ,故321=-p ,31=p . 从而)31,3(~b Y , 2719)32(1)1(1)0(1)1(33=-=--==-=≥∴p Y P Y P . (2))(~λP X , 且)2()1(===X P X P , 即λλλλ--=e e !2!121, 亦即λλ22=, 又0>λ, 2=∴λ.从而)2(~P X , 2!2)(-==e k k X P k, .2,1,0 =k 于是22432!42)4(--===e e X P . (3)),(~2σμN X ,故6826.01)1(2)1()1()()(=-Φ=-Φ-Φ=+<<-=<-σμσμσμX P X P . 故当↑σ时,概率)(σμ<-X P 的值.6. 设某城市男子的身高(单位:cm))6,170(~2N X .(1)应如何设计公共汽车的车门高度, 才能使该地男子与车门碰头的概率小于0.01?(2)若车门高度为182cm, 求100个男子中会与车门碰头的人数至多是1的概率.解:(1)设公共汽车的车门高度应为x cm. 则 要使01.0)6170(1)(1)(<-Φ-=≤-=>x x X P x X P , 只须)33.2(99.0)6170(Φ=>-Φx , 从而只要33.26170>-x , 于是98.183>x 即可.(2)若车门高度为182cm, 则1个男子会与车门碰头的概率为 0228.0)2(1)6170182(1)182(1)182(=Φ-=-Φ-=≤-=>=X P X P p 设100个男子中会与车门碰头的人数为Y , 于是)0228.0,100(~b Y , 从而34.09772.00228.09772.00228.0)1()0()1(991110010000100=+==+==≤C C Y P Y P Y P .7. 设带有3颗炸弹的轰炸机向敌人的铁路投弹, 若炸弹落在铁路两旁40米以内, 即可破坏铁路交通. 记弹落点与铁路的距离为X (单位: 米), 落在铁路一侧时X 的值为正, 落在另一侧时为负. X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-<≤-+=其它 ,0 1000 ,100001000100,10000100)(x x x x x f若3颗炸弹全部使用, 求敌人铁路交通受到破坏的概率.解:1颗炸弹落在铁路两旁40米以内的概率为64.01000010010000100)()40(4000404040=-++==<=⎰⎰⎰--dx x dx x dx x f X P p 设3颗炸弹中落在铁路两旁40米以内的颗数为Y , 则)64.0,3(~b Y ,从而至少1颗炸弹落在铁路两旁40米以内(可破坏铁路交通)的概率为95.0)64.01(1)0(1)1(3=--==-=≥Y P Y P8. 设),(~b a U X , 证明: 当0>k 时, l kX Y +=仍服从均匀分布.证明:),(~b a U X ,⎪⎩⎪⎨⎧<<-=∴其它,0 ,1)(b x a a b x f X ,而)()()()()(k l y F k l y X P y l kX P y Y P y F X Y -=-≤=≤+=≤= 求导得k k l y f y f X Y 1)()(-=. 又因为⇔≠-0)(k l y f X l bk y l ak b kl y a +<<+⇔<-<,故 ⎪⎩⎪⎨⎧+<<+-=其它,0 ,)(1)(l bk y l ak ka b y f Y . 即当0>k 时, l kX Y +=在),(l bk l ak ++上服从均匀分布. 证毕.9.(1)设X 的分布密度⎩⎨⎧<<--=其它 ,0 11,1)(x x x f X , 用分布函数法求X Y =的分布密度;(2)设)1,0(~U X , 用公式法求XY +=11的分布密度. 解:(1)⎩⎨⎧≤>--=<<-=≤=≤=0 ,00,)()()()()()(y y y F y F y X y P y X P y Y P y F X X Y , 求导得 ⎩⎨⎧≤>-+=0 ,0 0,)()()(y y y f y f y f X X Y 注意到当且仅当10<<y 时)(),(y f y f X X -取非零表达式,故⎩⎨⎧<<-=--+-=其它 ,010),1(2)1()1()( y y y y y f Y (2))1,0(~U X ,⎩⎨⎧<<=∴其它,0 10,1 )(x x f X ,而当10<<x 时x y +=11单调可导;反函数为11)(-=y y h ,21)('y y h -=;21)1(,1)0(==y y ,由定理知⎪⎩⎪⎨⎧<<=其它 ,0 121 ,)('))(()( y y h y h f y f X Y ⎪⎩⎪⎨⎧<<=其它 ,0 121 ,12y y 10. 试证明:若 ,3,2,1,)1()(1=-==-k p p k X P k , 则)()(t X P s X t s X P >=>+>, 其中t s ,是非负整数.(即几何分布具有“无记忆性”) 证明:t t t k k t k k p p p p p p p p t X P )1()1(1)1()1()1()(1111-=---=-=-=>∑∑∞+=-∞+=-, )()()(),()(s X P t s X P s X P s X t s X P s X t s X P >+>=>>+>=>+>,由上一步结果知 t s ts p p p s X t s X P )1()1()1()(-=--=>+>+,故)()(t X P s X t s X P >=>+>对任意非负整数t s ,成立. 即几何分布与指数分布一样,具有“无记忆性”. 证毕.第 1 页:第二章 随机变量及其分布习 题 课**************************************************第二章随机变量及其分布习 题 课第 2 页:**************************************************随 机 变 量离 散 型随机变量连 续 型随机变量分 布 函 数分 布 律密 度 函 数均匀分布指数分布正态分布两点分布二项分布泊松分布随机变量的函数的分布定义知识结构特征数第 3 页:随机变量与普通的函数不同**************************************************随机变量与普通的函数不同随机变量随机变量的取值具有一定的概率规律设 ={}为某随机现象的样本空间,称定义在上的实值函数 X=X() 为随机变量.用来表示随机现象结果的变量。

概率论与数理统计考试知识点汇总及疑难解析

概率论与数理统计考试知识点汇总及疑难解析

疑难解析系统(概率论与数理统计中的疑难问题)目录第一章事件与概率………………………………………………3-4第二章条件概率与独立性………………………………………5-6第三章随机变量及其分布………………………………………7-8第四章多维随机变量及其分布…………………………………9-10第五章数字特征…………………………………………………11-14第六章数理统计的基本概念……………………………………15-17第七章参数估计…………………………………………………18-21第八章假设检验…………………………………………………22-23第一章 概率论基本概念1.什么是统计规律性?什么是随机现象?答 在一定条件下发生,其结果是多样的,因而在现象发生前不能预知确切结果的不确定现象,其结果在大量重复试验中呈现出一种规律性. 由于这种规律是根据统计数据分析出来的,因而称为统计规律性。

在一次试验或观察中结果不能预先确定,而在大量重复试验中结果具有统计规律性的现象称为随机现象. 随机现象是概率论与数理统计的主要研究对象.2.如何理解互逆事件与互斥事件?答 如果两个事件A 与B 必有一个发生,且至多有一个发生,则、A B 为互逆事件. B A =.如果两个事件A 与B 不能同时发生,则、A B 为互斥事件.如考试及格与不及格是互逆也是互斥的,但考试70分和80分互斥却不互逆. 区别互逆与互斥的关键是,当样本空间只有两个事件时,两事件才可能互逆. 而互斥适用于多个事件的情形. 互斥事件的特征是,在一次试验中两者可以都不发生,而互逆事件必发生一个且至多发生一个.3.如何用已知事件来表达与其有关的其它事件?答 首先要了解所讨论试验中事件的构成,所需表达事件与已知事件的关系,然后运用这些关系与运算法则将事件表达出来.例如,设S 为事件05x ≤≤,A 为事件12x ≤≤,B 为事件02x ≤≤,则 02x ≤≤为事件B 或A B U ,12x ≤≤为事件A 或BA ,25x <≤为事件S B -或B ,01x ≤<为B A -.4.样本空间与必然事件之间有什么关系?答 样本空间是随机试验E 的所有可能结果的集合,而必然事件是指随机试验中一定会出现的结果. 虽然在一次试验中只有样本空间的一个元素发生,但在把样本空间视作一个整体时,我们说它在每次试验中都发生了. 因此,可以说样本空间是必然事件.5.在什么情况下,随机事件A 的频率可以作为它的概率的近似值? 答 随机事件A 的频率()n f A 反映事件A 在多次重复试验中发生的频繁程度. 当n 增大时,频率在概率()P A 附近摆动. 因此,每一个从独立重复试验中测得的频率,都可以作为概率()P A 的近似值. 而且,一般n 越大,近似程度越好.事实上,当n 增大时,频率大量集中于包含()P A 的一个小区间. 任选区间中一值作为概率的近似值,称为统计概率. 在解题时,当n 较大时,可取统计概率为()/A P A n n ≈.6.概率是否可以看做频率的极限?答 这样理解是不恰当的. 因为如上题所述,当n →∞时,()n f A 在()P A 附近摆动,与高等数学中极限的N ε-概念是不同的. 由于概率是随机现象的可能性的赋值,对于任给的0ε>,存在偶然的因素,可能找不到()N ε,从而得不到|()()|n f A P A ε-<.7.怎样理解古典概型的等可能假设?答 等可能性是古典概型的两大假设之一,有了这两个假设,给直接计算概率带来了很大的方便. 但在事实上,所讨论问题是否符合等可能假设,一般不是通过实际验证,而往往是根据人们长期形成的“对称性经验”作出的. 例如,骰子是正六面形,当质量均匀分布时,投掷一次,每面朝上的可能性都相等;装在袋中的小球,颜色可以不同,只要大小和形状相同,摸出其中任一个的可能性都相等. 因此,等可能假设不是人为的,而是人们根据对事物的认识——对称性特征而确认的.8.概率为0的事件是否为不可能事件?概率为1的事件是否为必然事件?答 有关概念:不可能事件φ的概率为0,即()0P φ=,但其逆不真;同样,必然事件Ω的概率()1P Ω=,但其逆也不真。

概率论与数理统计习题二答案

概率论与数理统计习题二答案

概率论与数理统计习题二答案概率论与数理统计习题二答案概率论与数理统计是一门重要的数学学科,广泛应用于各个领域。

习题是学习这门学科的重要方式之一,通过解答习题可以巩固理论知识,提高问题解决能力。

本文将针对概率论与数理统计习题二给出详细的答案解析。

1. 设事件A和事件B为两个相互独立的事件,且P(A) = 0.3,P(B) = 0.4。

求P(A并B)和P(A或B)。

解析:由于事件A和事件B是相互独立的,所以P(A并B) = P(A) * P(B) = 0.3 * 0.4 = 0.12。

而P(A或B) = P(A) + P(B) - P(A并B) = 0.3 + 0.4 - 0.12 = 0.58。

2. 一批产品中有10%的次品,从中随机抽取5个产品进行检验,求恰好有3个次品的概率。

解析:设事件A为恰好有3个次品,事件B为抽取的5个产品中有3个次品。

根据二项分布的概率公式,P(B) = C(5, 3) * (0.1)^3 * (0.9)^2 = 10 * 0.001 * 0.81 = 0.0081。

因此,恰好有3个次品的概率为0.0081。

3. 一批产品的质量服从正态分布,已知平均值为μ,标准差为σ。

从中随机抽取一个样本,样本容量为n。

求样本均值的期望值和方差。

解析:样本均值的期望值为总体均值μ,样本均值的方差为总体方差除以样本容量n。

因此,样本均值的期望值为μ,方差为σ^2/n。

4. 设X和Y是两个随机变量,它们的协方差为Cov(X, Y) = 5,方差分别为Var(X) = 9,Var(Y) = 16。

求随机变量Z = 2X + 3Y的方差。

解析:根据随机变量的性质,Var(Z) = Var(2X + 3Y) = 4Var(X) + 9Var(Y) +12Cov(X, Y) = 4 * 9 + 9 * 16 + 12 * 5 = 36 + 144 + 60 = 240。

5. 设X服从参数为λ的指数分布,即X ~ Exp(λ)。

(完整版)概率论与数理统计知识点总结(免费超详细版)

(完整版)概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P(A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk k n k k A P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk k nk k A P A P 11)()( (n 可以取∞)(iii )设A,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv)对于任意事件A,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi)对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

概率论与数理统计知识点

概率论与数理统计知识点

概率论与数理统计知识点概率论和数理统计是数学中的两个重要分支,研究随机现象的规律性和推断问题的方法。

概率论主要研究随机事件的概率及其计算方法,数理统计则是利用概率论的理论和方法,通过对数据进行收集、处理和分析,从中得到有关总体的参数估计和假设检验结果。

本文将介绍一些常见的概率论与数理统计的知识点。

一、随机事件与概率1. 随机事件的定义:随机事件指在一次试验中可能发生也可能不发生的事件。

2. 必然事件与不可能事件:必然事件是指在每次试验中一定发生的事件,而不可能事件则是指在每次试验中一定不会发生的事件。

3. 事件的运算:事件的运算包括并、交、补三种基本运算,分别表示两个事件的并集、交集以及一个事件的补集。

4. 概率的定义与性质:概率是度量随机事件发生可能性的数值,其范围介于0和1之间。

对于任意一个事件,其概率不小于0且不大于1,且必然事件的概率为1,不可能事件的概率为0。

二、概率分布1. 离散型随机变量及其概率分布:离散型随机变量的取值是可以数出来的,其概率分布由概率质量函数(Probability Mass Function,简称PMF)给出。

2. 连续型随机变量及其概率分布:连续型随机变量的取值是连续的,其概率分布由概率密度函数(Probability Density Function,简称PDF)给出。

3. 常见概率分布:- 二项分布:描述了一系列独立的伯努利试验中成功次数的概率分布。

- 正态分布:也称为高斯分布,是最重要的概率分布之一,常用于自然科学和社会科学的统计分析。

- 泊松分布:用于描述在一段固定时间或空间内事件发生的次数的概率分布。

- 指数分布:用于描述连续时间上事件发生的间隔时间的概率分布。

- t分布:用于小样本情况下对总体均值的推断。

三、参数估计1. 点估计与区间估计:参数估计分为点估计和区间估计两种方法。

点估计是通过样本数据直接估计出总体参数的取值,而区间估计是通过样本数据给出总体参数的一个区间估计范围。

2013概率统计讲义.pdf介绍

2013概率统计讲义.pdf介绍
i =1 n
若 A1 , A2 ,L, An ,L 为一列事件,则“ A1 , A2 ,L, An ,L 同时发生”作 记作:A1 I A2 ILI An IL , 为事件, 称之为 A1 , A2 ,L, An ,L 的交事件, 简记为: I An ; (可列交)
n =1 ∞
若 A, B 两事件不可能同时发生, 则称 A, B 互不相容 (互斥) , 记作: A I B = Φ ;若 A1 , A2 ,L, An 互不相容(两两互不相容) ,则 又称 A1 , A2 ,L, An 的并为 A1 , A2 ,L, An 的和,记作: ∑ Ai ;即有:
5
事件, “命中目标三次”就是不可能事件。常用大写英文(拉 丁)字母 A, B, C 等或 Ai , B j , Ck 等表示;有时也用{ LL }、 “ LL ” 表示事件,花括弧中和双引号下指明事件的内容。 随机试验的共同特点为; 1、在相同的条件下可重复进行; 2、每次试验的结果可能不止一个,但事先明确所有可能的 结果; 3、试验之前不能确定那个结果会出现。 概率论只关心在随机试验中可能会观察到的那些事件 以及每次具体的试验中出现了的事件;因此,与每个随机试 验相联系的有一个事件的集合,即在试验中可以观察到的事 件的全体。至于这个事件集应该具备什么性质,以后将会讨 论。既然数学本身从来不只研究那些只由孤立元素组成的集 合,我们就有必要在上述事件集中定义事件之间的各种关系 与运算。 【注 5】自从集合论进入了概率论,概率论才真正进入了现 代化门槛。 事件的关系 1. 【包含关系】若事件 A 出现必然会导致事件 B 出现,则称 ,记作 A ⊂ B ; “ A 是 B 的特款”或“ A 包含于 B ” 易见对任意事件 A ⊂ Ω ,这里规定 Φ ⊂ A ; 2. 【等价(相等)关系】若事件 A, B 满足 A ⊂ B 且 B ⊂ A ,则称 事件 A, B 等价或相等; 【注 6】在概率论中,对同一事件给出不同的等价表示是一 种主要的技巧。 事件的运算 1【事件的并运算】设 A, B 为两事件,则“ A, B 至少一个发生” 这种情况可能出现也可能不出现,其作为一个随机事件,称 ,记作: A U B ; 之为 A, B 的并(事件) 若 A1 , A2 ,L, An 均为事件,则“ A1 , A2 ,L, An 至少一个发生”作 为事件,称之为 A1 , A2 ,L, An 的并事件,记作: A1 U A2 ULU An ,简 记为: U Ai ;

2013张宇考研数学辅导讲义理工类、经济类概率论与数理统计第1-2章习题详解

2013张宇考研数学辅导讲义理工类、经济类概率论与数理统计第1-2章习题详解
6
.
#! 2! ," #! 3! % 2! ," " " #! 2! , 3! % ! " " #! 3! %
, 0 , 0 % % %$ 5 + 0 , ) # )% , 0 % ) $ * ,. # 0 % $ 0 # 0 )% # # /$ ! ! $ )% 5 ,! %# %" # % . $ , 0 % )% 0 ) 5 . % # 解 仪器需进一步调试" # 仪器能出厂" # 则!"! # ! " "!! ! ""! "# !!!! # # # #$ "% !#$ ! "% "#$ ! "% !#$ !% #$ " !% "#$ !% #$ " !% " "
而若$ 正确则$ % 也正确# 故应选$ % -% + + 3
$% 分析 则 + 必发生# 意谓着 故 #$ ! # " 2 同时发生# 2 (% ! "% !#$ !% 0#$ " $ !-# %+# &#$ 故应选$ % + $
% + % 故应选$ % & #% 分析 ! $ " !% ! # 0#$ ! ! # 0 %! $ -$ !#$ * + $ # 分析 意谓着' 第)次射击命中# 前*次射击中一次$ ! % " !第)次射击恰好第%次命中# # $ %* %$ % 故应选$ % 则 #$ !% !) + 0 * # 0 $ +$ * )# )% )! ) )%
! $ / ( . . $ $ $ % #! " $% $ % % #$ ! " ! $ " $% #"

2013概率论与数理统计-知识点例题讲解2

2013概率论与数理统计-知识点例题讲解2

xy
C . 联合分布 边缘分布
离散型 :
连续型 :
fX (x)
f ( x, y)dy
fY ( y)
f ( x, y)dx
D. 边缘分布+独立性 联合分布
X,Y离散型且相互独立, 则:
P{ X xi ,Y y j } P{ X xi }P{Y y j } Pi• P• j
X,Y连续型且相互独立, 则:f ( x, y) f X ( x) fY ( y)
第二章 随机变量习题课
内容小结 作业点评 典例分析 综合练习
一、内容小结
r.v及其概率分布
离散型r.v 的分布律
分布函数 的性质
连续型r.v的 概率密度
分布律 与分布函数
的关系
概率密度 与分布函数
的关系
二项分布 泊松分布
正态分布 指数分布 均匀分布
1. 重点概念: 随机变量, 分布函数,
分布律(离散型),概率密度函数(连续型)。
布.
Z X2 Y2
证明
fZ
(z)
z
2
e z2的/ 2概 2率密度为z
0
0
其它
解: (X,Y)的联合概率密度函数
f (x, y)
f X (x) fY ( y)
1
e ( x 2 y2 ) / 2 2
2 2
FZ (z) P{Z z} P{ X 2 Y 2 z}
z 0 时, FZ (z) 0
解: (1) Y X 0 1
2
3
0 0 0 3/35 2/35
1 0 6/35 12/35 2/35
2 1/35 6/35 3/35 0
(2) X
Pk
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

X
x
x
F. 二维正态分布
二、作业点评
课本P70,T5 (2)
(2)设r.vX的分布律为
PX k b 2k , k 1,2,
3
试确定常数b;
解:
k 1
Pk
1
k 1
PX
k
b k1
2 k
3
b
1
2 3
b1
2 3
2b 1
2
n
n
错解: Pk 1 P X k
f
( x)
1 5
ex/5
0
x0 其它
某顾客的习惯是,等待时间超过10分钟便离开.现知他一个月要到银
行5次,求他未受到服务的次数不少于1的概率.
分析: 顾客一个月内未受到服务的次数为Y, 要求的是P{Y1};
“未受到服务”的事件A为{X>10};
P{ X 10}
f ( x)dx
1 e x / 5dx e 2
3. 主要方法
A. 利用分布函数及概率密度函数的性质解题.
B. 利用概率密度函数计算概率, 随机变量X(或(X,Y))落在某区间I(或某区 域 G)的概率为
f ( x)dx 或( f ( x, y)dxdy)
I
G
C. 求随机变量的函数的分布,先求分布函数,再求导,求概率密度函数.
X 连续型, y=g(x)为连续函数,则Y= g(X)为连续型.
P{X2-4Y0} .这样,该题可看作二维r.v(X,Y)的
y x2 4
概率计算,先求(X,Y)的联合概率密度. 已知
1, 0 x 1
1, 0 y 1
fX (x)
0,
其它
fY ( y)
0, 其它
O
G 1x
1 , 0 x 1 且 0 y 1 X与Y相互独立 f ( x, y) fX ( x) fY ( y) 0 , 其它
解: 由X,Y相互独立, 易得
Pk 1/3 2/3
(X,Y) (0,0) (0,1) (1,0) (1,1) (2,0) (2,1)
Pij
1/6 1/3
X+Y 0 1
1/8 1/4 1/24 1/12
1
2
2
3
X+Y 0 Pk 1/6
1
2
3
11/24 7/24 1/12
P76T51 设X,Y为相互独立的随机变量,它们都服从N (0, 2 ) 分
(2)某人通过品尝区分两种酒,他连续试验10次,结果成功3次,
解: (1)所问求此概人是率否为确:1有/ 品C尝84=区1/分70的能力.
(2)假设此人无品尝区分的能力,记X为10次试验中成功次数
X~b(10,1/70)
P{ X
3}
C130
( 1 )3 ( 69)7 70 70
3.16 104
y 0 时 FY(y)=0 y>0 时 FY(y)=P{X lny}=(lny)
0,
y0
fY
(
y
)
1
e , (ln y)2 / 2 y 0
y 2
(2) FY(y)=P{2X2 +1y}同(1)类似讨论.
P67T45 X,Y相互独立, 求X+Y的分布律
X01 2
Y0 1
Pk 1/2 3/8 1/8
积分变量y的取值范围与x有关,讨论x

0 x 1时 f X ( x)
x
f ( x, y)dy
x
-1
意 取
注意积分限
x
3x
/
2dy
3x2
x
1x y x

3x2 , 0 x 1
范 围
f
X
(
x)
0
,
其它
这样做对吗?
解:f X ( x)
x
f ( x, y)dy
x
x
3x
/
2dy
3x2
x
k 1
k 1
n
b
2
k
b
k1 3
2
2 n1
3
3
1
2 3
1
再对上式取极限得:
lim b
2 3
2 3
n1
b
2 3
2b 1 b 1
n
1
2 3
1
2 3
2
P70T6(2)
(2)设随机变量的分布律为 PX k k , k 1,2,3,4,5
15
其分布函数为F(x) 求2P1 X 2.
解:P1 X 2 PX 2 PX 1
2Ax, 0 x 1
f
(x)
F'(X
)
0
,
其它

1
1
f ( x)dx 2 Axdx A
知道分布函0数,求落在
某A区间1的概率,没有必 要对概率密度积分了,
以下因同为解这法一样麻烦,直接用
分布函数即可.
P72,T17 已知r.vX的概率密度为:
x , 0 x1 f ( x) 2 x , 1 x 2 ,
:C
k n
pk (1
p)nk
k e
k!
(
np)
C.
均匀分布
f
( x)
b
1
a
,
0 ,
a xb 其它
D.
指数分布
e x
f (x)
,
0 ,
x0 x0
E. 正态分布
f (x)
1
e
(
x )2 2 2
,
x
2
X ~ N(, 2 )
Z X ~ N (0,1)
FX x
PX
x
P
G
G
P75T46设X和Y是相互独立的随机变量,其概率密度为
ex x 0
fX (x)
0
x0
e y
fY ( y)
0
其中>0, >0 为常数,求X+Y的概率密度
y0 y0
解:
Z=X+Y的概率密度 fZ (z)
第二章 随机变量习题课
内容小结 作业点评 典例分析 综合练习
一、内容小结
r.v及其概率分布
离散型r.v 的分布律
分布函数 的性质
连续型r.v的 概率密度
分布律 与分布函数
的关系
概率密度 与分布函数
的关系
二项分布 泊松分布
正态分布 指数分布 均匀分布
1. 重点概念: 随机变量, 分布函数,
分布律(离散型),概率密度函数(连续型)。
z 0 时, FZ (z) P{ X 2 Y 2 z2 }
f ( x, y)dxdy
x2 y2z2
极坐标变换
2
z
d
1 e r2 / 2 2 rdr 1 e z2 / 2 2
0
0 2 2
fZ(z)
f ( x, y)dxdy f (r cos , r sin )rdrd
解: (1) Y X 0 1
2
3
0 0 0 3/35 2/35
1 0 6/35 12/35 2/35
2 1/35 6/35 3/35 0
(2) X
Pk
01
23
1/35 12/35 18/35 4/35
Y012
Pk 1/7 4/7 2/7
(3) P{X=2,Y=1}=12/35 P{X=2}=18/35 P{Y=1}=4/7 P{X=2}P{Y=1}=72/245 12/35=84/245
{(x, y) : g(x, y) z}
4. 常见的重要分布
A . 二项分布, X服从b(n,p)
P{ X
k}
C
k n
pk (1
p)nk
(k
0,1,
, n) 其 中p
P( A)
B. Poisson分布, X服从()
k e
P{ X k}
,
k!
k 0,1,2, ( 0)
n较

,p较

xy
C . 联合分布 边缘分布
离散型 :
连续型 :
fX (x)
f ( x, y)dy
fY ( y)
f ( x, y)dx
D. 边缘分布+独立性 联合分布
X,Y离散型且相互独立, 则:
P{ X xi ,Y y j } P{ X xi }P{Y y j } Pi• P• j
X,Y连续型且相互独立, 则:f ( x, y) f X ( x) fY ( y)
0 , 其它
求其分布函数F(x)
解:
x
F( x) P{X x} f (u)du
0,
x0
y
x
udu
0
x2 2
,
1
x
0 udu 1 (2 u)du
1 (2 x)2 / 2,
0 x1
1 x2
0 12
x
1 ,
x2
P72T20 设顾客在某银行的窗口等待服务的时间X服从指数分
布, 其概率密度为
0,
其它
(x,y)
注:当我们对概率密度函数积分求分布函数时,一定要 全面考虑被积函数的定义域。如上题,有的同学只 考虑x>0,y>0与x<0,y<0是不全面的。
P66T34 设X,Y是相互独立的随机变量,且都服从(0,1)上的分布。
试求方程x2+Xx+Y=0有实根的概率.
分析: x2+Xx+Y=0有实根 X2-4Y0 所以,所求为 y
相关文档
最新文档