2018年岳阳市中考数学试卷(含答案解析版)

合集下载

【精校】2018年湖南省岳阳市中考真题数学

【精校】2018年湖南省岳阳市中考真题数学

2018年湖南省岳阳市中考真题数学一、选择题(本大题共8小题,每小题3分,满分24分,在每道小题给出的四个选项中,选出符合要求的一项)1.2018的倒数是( ) A.2018B.12018C.-12018D.-2018解析:2018的倒数是12018. 答案:B2.下列运算结果正确的是( ) A.a 3·a 2=a 5B.(a 3)2=a 5C.a 3+a 2=a 5D.a -2=-a 2解析:A 、a 3·a 2=a 5,正确,故本选项符合题意;B 、(a 3)2=a 6,故本选项不符合题意;C 、不是同类项不能合并,故本选项不符合题意;D 、a -2=21a ,故本选项不符合题意. 答案:A3.函数中自变量x 的取值范围是( ) A.x >3 B.x ≠3 C.x ≥3 D.x ≥0解析:函数中x-3≥0,所以x ≥3. 答案:C4.抛物线y=3(x-2)2+5的顶点坐标是( ) A.(-2,5) B.(-2,-5) C.(2,5)D.(2,-5)解析:抛物线y=3(x-2)2+5的顶点坐标为(2,5). 答案:C5.已知不等式组2010xx-⎧⎨+≥⎩<,,其解集在数轴上表示正确的是( )A. B. C. D.解析:2010xx-⎧⎨+≥⎩<①,②,解①得:x<2,解②得:x≥-1,故不等式组的解集为:-1≤x<2,故解集在数轴上表示如下.答案:D6.在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是( )A.90,96B.92,96C.92,98D.91,92解析:将数据从小到大排列:86,88,90,92,96,96,98;可得中位数为92,众数为96. 答案:B7.下列命题是真命题的是( )A.平行四边形的对角线相等B.三角形的重心是三条边的垂直平分线的交点C.五边形的内角和是540°D.圆内接四边形的对角相等解析:平行四边形的对角线互相平分,A是假命题;三角形的重心是三条边的中线的交点,B是假命题;五边形的内角和=(5-2)×180°=540°,C是真命题;圆内接四边形的对角互补,D是假命题.答案:C8.在同一直角坐标系中,二次函数y=x2与反比例函数y=1x(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为( )A.1B.mC.m2D.1 m解析:设点A、B在二次函数y=x2图象上,点C在反比例函数y=1x(x>0)的图象上.因为AB两点纵坐标相同,则A、B关于y轴对称,则x1+x2=0,因为点C(x3,m)在反比例函数图象上,则x3=1m,∴ω=x1+x2+x3=x3=1m.答案:D二、填空题(本大题共8小题,每小题4分,满分32分)9.因式分解:x2-4= .解析:x2-4=(x+2)(x-2).答案:(x+2)(x-2)10.2018年岳阳市教育扶贫工作实施方案出台,全市计划争取“全面改薄”专项资金120000000元,用于改造农村义务教育薄弱学校100所,数据120000000科学记数法表示为 .解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.120000000=1.2×108.答案:1.2×10811.关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是 . 解析:由已知得:△=4-4k>0,解得:k<1.答案:k<112.已知a2+2a=1,则3(a2+2a)+2的值为 .解析:∵a2+2a=1,∴3(a2+2a)+2=3×1+2=5.答案:513.在-2,1,4,-3,0这5个数字中,任取一个数是负数的概率是 .解析:任取一个数是负数的概率是:P=25.答案:2 514.如图,直线a∥b,∠l=60°,∠2=40°,则∠3= .解析:∵a∥b,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°.答案:80°15.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是步.解析:∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴DE ADBC AC=,∴126051217x xx-==,,∴该直角三角形能容纳的正方形边长最大是6017(步).答案:60 1716.如图,以AB为直径的⊙O与CE相切于点C,CE交AB的延长线于点E,直径AB=18,∠A=30°,弦CD⊥AB,垂足为点F,连接AC,OC,则下列结论正确的是 .(写出所有正确结论的序号)①»»BC BD=;②扇形OBC的面积为274π;③△OCF∽△OEC;④若点P为线段OA上一动点,则AP·OP有最大值20.25. 解析:∵弦CD⊥AB,∴BC=BD,所以①正确;∴∠BOC=2∠A=60°,∴扇形OBC的面积=2609273602π⋅⋅=π,所以②错误;∵⊙O与CE相切于点C,∴OC⊥CE,∴∠OCE=90,∵∠COF=∠EOC,∠OFC=∠OCE,∴△OCF∽△OEC;所以③正确;AP·OP=(9-OP)·OP=-(OP-3)2+9,当OP=3时,AP·OP的最大值为9,所以④错误.答案:①③三、解答题(本大题共8小题,满分64分,解答应写出文字说明,证明过程或演算步骤).17.计算:(-1)2-2sin45°+(π-2018)0|.解析:本题涉及零指数幂、乘方、特殊角的三角函数值、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.答案:原式=12121122-⨯++=+=.18.如图,在平行四边形ABCD中,AE=CF,求证:四边形BFDE是平行四边形.解析:首先根据四边形ABCD是平行四边形,判断出AB∥CD,且AB=CD,然后根据AE=CF,判断出BE=DF,即可推得四边形BFDE是平行四边形.答案:∵四边形ABCD是平行四边形,∴AB∥CD,且AB=CD,又∵AE=CF,∴BE=DF,∴BE∥DF且BE=DF,∴四边形BFDE是平行四边形.19.如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y 轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.解析:(1)把A的坐标代入反比例函数的解析式即可求得;(2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程求得b的值,进而求得a的值,根据待定系数法,可得答案.答案:(1)由题意得,k=xy=2×3=6,∴反比例函数的解析式为y=6x.(2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b),∵反比例函数y=6x 的图象经过点B(a ,b)∴b=6a ,∴AD=3-6a. ∴S △ABC =6311226BC AD a a ⋅=-⎫ ⎪⎝⎭=⎛,解得a=6,∴b=6a=1, ∴B(6,1).设AB 的解析式为y=kx+b ,将A(2,3),B(6,1)代入函数解析式,得2361k b k b +=+=⎧⎨⎩,,解得124k b ⎧=-⎪⎨⎪=⎩,,直线AB 的解析式为y=-12x+4.20.为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为 人; (2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率. 解析:(1)直接利用腰鼓所占比例以及条形图中人数即可得出这次参与调查的村民人数; (2)利用条形统计图以及样本数量得出喜欢广场舞的人数;(3)利用“划龙舟”人数在样本中所占比例得出“划龙舟”所在扇形的圆心角的度数; (4)利用树状图法列举出所有的可能进而得出概率.答案:(1)这次参与调查的村民人数为:24÷20%=120(人);(2)喜欢广场舞的人数为:120-24-15-30-9=42(人),如图所示:(3)扇形统计图中“划龙舟”所在扇形的圆心角的度数为:30120×360°=90°;(4)如图所示:一共有12种可能,恰好选中“花鼓戏、划龙舟”这两个项目的有2种可能,故恰好选中“花鼓戏、划龙舟”这两个项目的概率为:16.21.为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?解析:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据时间=工作总量÷工作效率结合提前11天完成任务,即可得出关于x的分式方程,解之即可得出结论. 答案:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据题意得:3300033000111.2x x-=,解得:x=500,经检验,x=500是原方程的解,∴1.2x=600.答:实际平均每天施工600平方米.22.图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC宽3.9米,门卫室外墙AB上的O点处装有一盏路灯,点O与地面BC的距离为3.3米,灯臂OM长为1.2米(灯罩长度忽略不计),∠AOM=60°.(1)求点M 到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD 保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.( 1.73,结果精确到0.01米)解析:(1)构建直角△OMN ,求ON 的长,相加可得BN 的长,即点M 到地面的距离; (2)左边根据要求留0.65米的安全距离,即取CE=0.65,车宽EH=2.55,计算高GH 的长即可,与3.5作比较,可得结论.答案:(1)如图,过M 作MN ⊥AB 于N ,交BA 的延长线于N , Rt △OMN 中,∠NOM=60°,OM=1.2,∴∠M=30°,∴ON=12OM=0.6, ∴NB=ON+OB=3.3+0.6=3.9;即点M 到地面的距离是3.9米; (2)取CE=0.65,EH=2.55,∴HB=3.9-2.55-0.65=0.7, 过H 作GH ⊥BC ,交OM 于G ,过O 作OP ⊥GH 于P ,∵∠GOP=30°,∴tan30°=3GP OP =,∴GP= 1.730.733OP ⨯=≈0.404, ∴GH=3.3+0.404=3.704≈3.70>3.5,∴货车能安全通过.23.已知在Rt △ABC 中,∠BAC=90°,CD 为∠ACB 的平分线,将∠ACB 沿CD 所在的直线对折,使点B 落在点B ′处,连结AB',BB',延长CD 交BB'于点E ,设∠ABC=2α(0°<α<45°).(1)如图1,若AB=AC ,求证:CD=2BE ;(2)如图2,若AB ≠AC ,试求CD 与BE 的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC 绕点C 逆时针旋转角(α+45°),得到线段FC ,连结EF 交BC 于点O ,设△COE 的面积为S 1,△COF 的面积为S 2,求12S S (用含α的式子表示). 解析:(1)由翻折可知:BE=EB ′,再利用全等三角形的性质证明CD=BB ′即可; (2)如图2中,结论:CD=2·BE ·tan2α.只要证明△BAB ′∽△CAD ,可得1tan 2BB AB CD AC α'==,推出21tan 2BE CD α=,可得CD=2·BE ·tan2α; (3)首先证明∠ECF=90°,由∠BEC+∠ECF=180°,推出BB ′∥CF ,推出EO BE BEOF CF BC===sin(45°-α),由此即可解决问题. 答案:(1)如图1中,∵B 、B ′关于EC 对称,∴BB ′⊥EC ,BE=EB ′,∴∠DEB=∠DAC=90°, ∵∠EDB=∠ADC ,∴∠DBE=∠ACD ,∵AB=AC ,∠BAB ′=∠DAC=90°,∴△BAB ′≌CAD ,∴CD=BB ′=2BE. (2)如图2中,结论:CD=2·BE ·tan2α.理由:由(1)可知:∠ABB ′=∠ACD ,∠BAB ′=∠CAD=90°,∴△BAB ′∽△CAD ,∴1tan 2BB AB CD AC α'==,∴21tan 2BE CD α=,∴CD=2·BE ·tan2α. (3)如图3中,在Rt △ABC 中,∠ACB=90°-2α,∵EC 平分∠ACB ,∴∠ECB=12(90°-2α)=45°-α, ∵∠BCF=45°+α,∴∠ECF=45°-α+45°+α=90°, ∴∠BEC+∠ECF=180°,∴BB ′∥CF ,∴EO BE BE OF CF BC ===sin(45°-α), ∵12S EO S OF =,∴12S S =sin(45°-α). 24.已知抛物线F :y=x 2+bx+c 的图象经过坐标原点O ,且与x 轴另一交点为(-3,0).(1)求抛物线F 的解析式;(2)如图1,直线l :y=3x+m(m >0)与抛物线F 相交于点A(x 1,y 1)和点B(x 2,y 2)(点A 在第二象限),求y 2-y 1的值(用含m 的式子表示);(3)在(2)中,若m=43,设点A ′是点A 关于原点O 的对称点,如图2.①判断△AA ′B 的形状,并说明理由;②平面内是否存在点P ,使得以点A 、B 、A ′、P 为顶点的四边形是菱形?若存在,求出点P 的坐标;若不存在,请说明理由.解析:(1)根据点的坐标,利用待定系数法即可求出抛物线F 的解析式;(2)将直线l 的解析式代入抛物线F 的解析式中,可求出x 1、x 2的值,利用一次函数图象上点的坐标特征可求出y 1、y 2的值,做差后即可得出y 2-y 1的值;(3)根据m 的值可得出点A 、B 的坐标,利用对称性求出点A ′的坐标.①利用两点间的距离公式(勾股定理)可求出AB 、AA ′、A ′B 的值,由三者相等即可得出△AA ′B 为等边三角形;②根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P ,设点P 的坐标为(x ,y),分三种情况考虑:(i)当A ′B 为对角线时,根据菱形的性质(对角线互相平分)可求出点P 的坐标; (ii)当AB 为对角线时,根据菱形的性质(对角线互相平分)可求出点P 的坐标;(iii)当AA ′为对角线时,根据菱形的性质(对角线互相平分)可求出点P 的坐标.综上即可得出结论.答案:(1)∵抛物线y=x 2+bx+c 的图象经过点(0,0)和(-3,0),∴00313c b c =⎧⎪⎨-+=⎪⎩,,解得:30b c ⎧=⎪⎨⎪=⎩,∴抛物线F 的解析式为y=x 2+3x. (2)将代入y=x 2,得:x 2=m ,解得:x 1=-m ,x 2=m ,∴12y m y m ==,, ∴y 2-y 1=m m ⎫⎛⎫⎪ ⎪⎭⎝⎭-=>0). (3)∵m=43,∴点A 的坐标为(233-,),点B 的坐标为(3,2). ∵点A ′是点A 关于原点O 的对称点,∴点A ′的坐标为(233-). ①△AA ′B 为等边三角形,理由如下:∵2223())3)A B A '-,,, ∴888333AA AB A B '=='=,,,∴AA ′=AB=A ′B ,∴△AA ′B 为等边三角形. ②∵△AA ′B 为等边三角形,∴存在符合题意得点P ,且以点A 、B 、A ′、P 为顶点的菱形分三种情况,设点P 的坐标为(x ,y).(i)当A′B为对角线时,有23323xy⎧-=⨯⎪⎪⎨⎪=⎪⎩,,解得:23xy⎧=⎪⎨=⎪⎩,∴点P的坐标为(23,);(ii)当AB为对角线时,有322233xy=--=+⎧⎪⎪⎨⎪⎪⎩,解得:3103xy⎧=-⎪⎪⎨⎪=⎪⎩,∴点P的坐标为103,);(iii)当AA′为对角线时,有322233xy⎧=-⎪⎪⎨⎪+=-⎪⎩,解得:32xy⎧=-⎪⎨⎪=-⎩,∴点P的坐标为,-2).综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(23,)、103,)和,-2).考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。

2018年湖南省岳阳市中考数学试题及参考答案案

2018年湖南省岳阳市中考数学试题及参考答案案

2018年湖南岳阳市初中学业水平考试试卷数学一、选择题(本大题共8小题,每小题3分,满分24分,在每道小题给出的四个选项中,选出符合要求的一项)1.(2018湖南岳阳中考,1,3分,★☆☆)2018的倒数是( )A.2018B.12018C.﹣12018D.﹣20182.(2018湖南岳阳中考,2,3分,★☆☆)下列运算结果正确的是( ) A.a3•a2=a5B.(a3)2=a5C.a3+a2=a5D.a﹣2=﹣a23.(2018湖南岳阳中考,3,3分,★☆☆)函数y=x3-中自变量x的取值范围是( ) A.x>3B.x≠3C.x≥3D.x≥04.(2018湖南岳阳中考,4,3分,★☆☆)抛物线y=3(x﹣2)2+5的顶点坐标是( ) A.(﹣2,5) B.(﹣2,﹣5) C.(2,5) D.(2,﹣5)5.(2018湖南岳阳中考,5,3分,★☆☆)已知不等式组20,10,xx-⎧⎨+≥⎩<其解集在数轴上表示正确的是( )A.B.C.D.6.(2018湖南岳阳中考,6,3分,★☆☆)在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是( )A.90,96B.92,96C.92,98D.91,927.(2018湖南岳阳中考,7,3分,★☆☆)下列命题是真命题的是( ) A.平行四边形的对角线相等B.三角形的重心是三条边的垂直平分线的交点C.五边形的内角和是540°D.圆内接四边形的对角相等8.(2018湖南岳阳中考,8,3分,★★★)在同一直角坐标系中,二次函数y=x2与反比例函数y=1x(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为( )A.1B.m C.m2D.1 m二、填空题(本大题共8小题,每小题4分,满分32分)9.(2018湖南岳阳中考,9,4分,★☆☆)因式分解:x2﹣4= .10.(2018湖南岳阳中考,10,4分,★☆☆)2018年岳阳市教育扶贫工作实施方案出台,全市计划争取“全面改薄”专项资金120000000元,用于改造农村义务教育薄弱学校100所,数据120000000用科学记数法表示为.11.(2018湖南岳阳中考,1,4分,★★☆)关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是.12.(2018湖南岳阳中考,12,4分,★☆☆)已知a2+2a=1,则3(a2+2a)+2的值为.13.(2018湖南岳阳中考,1,4分,★☆☆)在﹣2,1,4,﹣3,0这5个数字中,任取一个数是负数的概率是.14.(2018湖南岳阳中考,14,4分,★☆☆)如图,直线a∥b,∠l=60°,∠2=40°,则∠3= .15.(2018湖南岳阳中考,15,4分,★★★)《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是步.16.(2018湖南岳阳中考,16,4分,★★★)如图,以AB为直径的⊙O与CE相切于点C,CE交AB的延长线于点E,直径AB=18,∠A=30°,弦CD⊥AB,垂足为点F,连接AC,OC,则下列结论正确的是.(写出所有正确结论的序号)①BC=BD;②扇形OBC的面积为274π;③△OCF∽△OEC;④若点P为线段OA上一动点,则AP•OP有最大值20.25.三、解答题(本大题共8小题,满分64分,解答应写出文字说明,证明过程或演算步骤) 17.(2018湖南岳阳中考,17,6分,★☆☆)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣2|.18.(2018湖南岳阳中考,18,6分,★☆☆)如图,在平行四边形ABCD中,AE=CF,求证:四边形BFDE是平行四边形.19.(2018湖南岳阳中考,19,8分,★★☆)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.20.(2018湖南岳阳中考,20,8分,★★☆)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.21.(2018湖南岳阳中考,21,8分,★☆☆)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?22.(2018湖南岳阳中考,22,8分,★★☆)图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC宽3.9米,门卫室外墙AB上的O点处装有一盏路灯,点O与地面BC的距离为3.3米,灯臂OM长为1.2米(灯罩长度忽略不计),∠AOM=60°.(1)求点M到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD 保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:3≈1.73,结果精确到0.01米)23.(2018湖南岳阳中考,23,10分,★★★) 已知在Rt ABC ∆中,90BAC ∠=,CD 为ACB ∠的平分线,将ACB ∠沿CD 所在的直线对折,使点B 落在点'B 处,连结'AB ,'BB ,延长CD 交'BB 于点E ,设2(045)ABC αα∠=<<.(1)如图1,若AB =AC ,求证:CD =2BE ;(2)如图2,若AB ≠AC ,试求CD 与BE 的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC 绕点C 逆时针旋转角(α+45°),得到线段FC ,连结EF 交BC 于点O ,设△COE 的面积为S 1,△COF 的面积为S 2,求12S S (用含α的式子表示).24.(2018湖南岳阳中考,24,10分,★★★)已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣33,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=33x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=43,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形.若存在,求出点P的坐标;若不存在,请说明理由.2018年岳阳市初中学业水平考试试卷数学试题答案全解全析1.答案:B 解析:2018的倒数是12018,故选B . 考查内容:倒数的定义.命题意图:本题考查有理数的相关概念,难度较低. 2.答案:A解析:a 3•a 2=a 5,故选项A 正确;(a 3)2=a 6,故选项B 不正确;不是同类项不能合并,故选项C 不正确;a ﹣2=21a ,故选项D 不正确,故选A . 考查内容:同底数幂的乘法;幂的乘方;合并同类项;负整数指数幂. 命题意图:本题考查整式的相关运算及性质,难度较低. 3.答案:C解析:因为x ﹣3≥0,所以x ≥3.故选C .方法归纳:一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.考查内容:函数自变量的取值范围.命题意图:本题考查学生求函数自变量的范围的能力,难度较低. 4.答案:C解析:抛物线y =3(x ﹣2)2+5是顶点式,所以可确定其顶点坐标为(2,5).故选C . 考查内容:抛物线的顶点坐标.命题意图:本题考查了学生根据二次函数的顶点式确定顶点坐标的能力,难度较低. 5.答案:D解析:解①得,x <2,解②得,x ≥﹣1, 故不等式组的解集为:﹣1≤x <2,故选D .考查内容:解一元一次不等式组;在数轴上表示不等式的解集. 命题意图:本题主要考查学生解一元一次不等式组的能力,难度较低. 6.答案:B解析:将数据从小到大排列:86,88,90,92,96,96,98;可得中位数为92,众数为96.故选B.考查内容:中位数;众数.命题意图:本题考查统计的应用,难度较低.7.答案:C解析:平行四边形的对角线互相平分,但不一定相等,故选项A是假命题;三角形的重心是三条边的中线的交点,故选项B是假命题;五边形的内角和=(5﹣2)×180°=540°,故选项C是真命题;圆内接四边形的对角互补,但不一定相等,故选项D是假命题.故选C.考查内容:命题的真假判断.命题意图:本题考查学生对命题与定理的真假判断能力,难度较低.8.答案:D解析:设点A、B在二次函数y=x2图象上,点C在反比例函数y=1x(x>0)的图象上.因为AB两点纵坐标相同,则A、B关于y轴对称,则x1+x2=0,因为点C(x3,m)在反比例函数图象上,则x3=1m,所以ω=x1+x2+x3=x3=1m.故选D.考查内容:二次函数图象上点的坐标特征;反比例函数图象上点的坐标特征.命题意图:本题考查学生对二次函数图象的轴对称性的理解和运用能力,难度较大.9.答案:(x+2)(x﹣2)解析:x2﹣4=(x+2)(x﹣2).考查内容:用平方差公式分解因式.命题意图:本题主要考查学生用公式法分解因式的能力,难度较低.10.答案:1.2×108解析:120000000=1.2×108.考查内容:科学记数法.命题意图:本题考查学生用科学记数法的表示绝对值大于1的数的能力,难度较小.11.答案:k<1解析:由已知得:△=4﹣4k>0,解得k<1.考查内容:根的判别式.命题意图:本题考查学生对根的判别式以及解一元一次不等式的理解和应用,难度适中.12.答案:5解析:因为a2+2a=1,所以3(a2+2a)+2=3×1+2=5.考查内容:用整体代入法求代数式的值.命题意图:本题考查学生代数式求值的能力,难度较小.13.答案:2 5解析:在这5个数中,负数有2个,故所求概率为25.考查内容:求简单事件的概率.命题意图:本题主要考查了学生对概率公式的识记及运用,难度较低.14.答案:80°解析:如图,∵a∥b,∴∠4=∠l=60°,∴∠3=180°﹣∠4﹣∠2=80°.考查内容:平行线的性质;三角形的内角和.命题意图:本题主要考查了学生对平行线的性质及三角形的内角和的识记及运用,难度较低.15.答案:60 17解析:如图,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12﹣x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴DE AD BC AC=,∴x12x 512-=,x=60 17.考查内容:相似三角形的判定和性质;正方形的性质.命题意图:本题考查学生综合运用相似三角形的判定和性质、正方形的性质解决问题的能力,难度较大.16.答案:①③④解析:∵弦CD⊥AB,∴BC=BD,所以①正确;∴∠BOC=2∠A=60°,∴扇形OBC的面积=260π9360⋅⋅=272π,所以②错误;∵⊙O与CE相切于点C,∴OC⊥CE,∴∠OCE=90,∵∠COF=∠EOC,∠OFC=∠OCE,∴△OCF∽△OEC;所以③正确;AP•OP=(9﹣OP)•OP=﹣(OP﹣92)2+814,当OP=92时,AP•OP的最大值为814,所以④正确.综上所述,①③④正确.考查内容:垂径定理;圆周角定理;切线的性质;扇形面积的计算;相似三角形的判定与性质.命题意图:本题属于圆的综合题,主要考查学生对圆的基本性质与相似三角形判定与性质的综合应用,难度较大.17.解析:原式=1﹣22+12=1﹣2+1+2=2.考查内容:零指数幂;乘方;特殊角的三角函数值;绝对值.命题意图:本题主要考查学生实数的综合运算能力,难度较小.18.解析:证明:∵四边形ABCD是平行四边形,∴AB∥CD,且AB=CD,又∵AE=CF,∴BE=DF,∴BE∥DF且BE=DF,∴四边形BFDE是平行四边形.考查内容:平行四边形的判定与性质.命题意图:本题考查学生对平行四边形的判定和性质的掌握情况,难度较低.19.解析:(1)由题意得,k=xy=2×3=6,∴反比例函数的解析式为y=6x.(2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b).∵反比例函数y=6x的图象经过点B(a,b),∴b=6a,∴AD=3﹣6a.∴S△ABC=12BC•AD=12a(3﹣6a)=6,解得a=6,∴b=6a=1,∴B(6,1).设AB 的解析式为y =kx +b ,将A (2,3),B (6,1)代入函数解析式,得23,6 1.k b k b +=⎧⎨+=⎩ 解得1,24.k b ⎧=-⎪⎨⎪=⎩直线AB 的解析式为y =﹣12x +4. 一题多解:设B 点坐标为(a ,b ),如图,过点A 作AE ⊥y 轴与点E ,过点B 作BD ⊥x 轴与点D ,EA 与DB 交于点F ,则四边形ODFE 为矩形.∵反比例函数y =6x的图象经过点B (a ,b ), ∴S 矩形ODBC =6;又∵△ABC 的面积为6, ∴S 矩形CBFE =2S △ABC =12;∴S 矩形ODFEE = S 矩形ODBC + S 矩形CBFE =6+12=18; ∴OE ×OD =3OD =18, ∴OD =6,∴点B 的横坐标a =6,易得b =1, ∴∴B (6,1).设AB 的解析式为y =kx +b ,将A (2,3),B (6,1)代入函数解析式,得23,6 1.k b k b +=⎧⎨+=⎩解得1,24.k b ⎧=-⎪⎨⎪=⎩直线AB的解析式为y=﹣12x+4.考查内容:求反比例函数和一次函数的解析式.命题意图:本题主要考查函数解析式的求法,难度中等.20.解析:(1)120.(2)喜欢广场舞的人数为:120﹣24﹣15﹣30﹣9=42(人),如图所示:;(3)扇形统计图中“划龙舟”所在扇形的圆心角的度数为:30120×360°=90°;(4)方法一:如图所示:一共有12种可能,恰好选中“花鼓戏、划龙舟”这两个项目的有2种可能,故恰好选中“花鼓戏、划龙舟”这两个项目的概率为16.方法二:列表如下:广场舞腰鼓花鼓戏划龙舟广场舞无(腰鼓,广场舞)(花鼓戏,广场舞)(划龙舟,广场舞)腰鼓(广场舞,腰鼓)无(花鼓戏,腰鼓)(划龙舟,腰鼓)花鼓戏(广场舞,花鼓戏)(腰鼓,花鼓戏)无(划龙舟,花鼓戏)划龙舟(广场舞,划龙舟)(腰鼓,划龙舟)(花鼓戏,划龙舟)无由表格可知,共有12中情况,其中恰好选中“花鼓戏、划龙舟”这两个项目的有2种情况,故概率为:61122 .考查内容:扇形统计图;条形统计图;列表法或树状图法.命题意图:本题主要考查了学生对统计与概率的掌握程度,难度适中.21.解析:设原计划平均每天施工x 平方米,则实际平均每天施工1.2x 平方米.根据题意,得33000x ﹣3300012x.=11, 解得x =500,经检验,x =500是原方程的解, ∴1.2x =600.答:实际平均每天施工600平方米. 考查内容:分式方程的应用.命题意图:本题考查学生列分式方程解决实际问题的能力,难度适中. 22.解析:(1)如图,过M 作MN ⊥AB 于N ,交BA 的延长线于N .Rt △OMN 中,∠NOM =60°,OM =1.2, ∴∠M =30°, ∴ON =12OM =0.6, ∴NB =ON +OB =3.3+0.6=3.9,即点M 到地面的距离是3.9米. (2)取CE =0.65,EH =2.55, ∴HB =3.9﹣2.55﹣0.65=0.7.过H 作GH ⊥BC ,交OM 于G ,过O 作OP ⊥GH 于P . ∵∠GOP =30°,∴tan30°=GPOP=33,∴GP=33OP=173073..≈0.404,∴GH=3.3+0.404=3.704≈3.70>3.5,∴货车能安全通过.考查内容:解直角三角形的应用.命题意图:本题考查学生对解直角三角形的应用、锐角三角函数等知识的综合应用,难度适中.23.解析:(1)如图1中,∵B、B′关于EC对称,∴BB′⊥EC,BE=EB′,∴∠DEB=∠DAC=90°,∵∠EDB=∠ADC,∴∠DBE=∠ACD,∵AB=AC,∠BAB′=∠DAC=90°,∴△BAB′≌CAD,∴CD=BB′=2BE.(2)如图2中,结论:CD=2•BE•tan2α.理由:由(1)可知:∠ABB′=∠ACD,∠BAB′=∠CAD=90°,∴△BAB′∽△CAD,∴BB'CD =AB AC =1tan2α, ∴2BE CD =1tan2α, ∴CD =2•BE •tan2α. (3)如图 3中,在Rt △ABC 中,∠ACB =90°﹣2α, ∵EC 平分∠ACB , ∴∠ECB =12(90°﹣2α)=45°﹣α, ∵∠BCF =45°+α,∴∠ECF =45°﹣α+45°+α=90°, ∴∠BEC +∠ECF =180°, ∴BB ′∥CF , ∴EO OF =BE CF =BEBC =sin (45°﹣α), ∵12S S =EO OF, ∴12S S =sin (45°﹣α). 考查内容:几何变换综合题.命题意图:本题属于几何变换综合题,主要考查等腰直角三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、平行线等分线段定理、锐角三角函数等知识的综合应用,难度较大.24.解析:(1)∵抛物线y =x 2+bx +c 的图象经过点(0,0)和(0),∴0,10,3c c =⎧⎪⎨-+=⎪⎩解得:0,b c ⎧=⎪⎨⎪=⎩∴抛物线F 的解析式为y =x 2. (2)将y+m 代入y =x 2+,得x 2=m , 解得:x 1=x 2∴y 1=m ,y 2+m , ∴y 2﹣y 1m )﹣(mm >0).(3)∵m =43,∴点A 的坐标为(23,),点B 的坐标为,2). ∵点A ′是点A 关于原点O 的对称点, ∴点A ′的坐标为,﹣23). ①△AA ′B 为等边三角形,理由如下: ∵A (23,),B2),A ′,﹣23), ∴AA ′=83,AB =83,A ′B =83, ∴AA ′=AB =A ′B , ∴△AA ′B 为等边三角形. ②∵△AA ′B 为等边三角形,∴存在符合题意的点P ,且以点A 、B 、A ′、P 为顶点的菱形分三种情况,设点P 的坐标为(x ,y ).(i )当A ′B为对角线时,有2,332,3x y ⎧-=⨯⎪⎪⎨⎪=⎪⎩解得:2,3x y ⎧=⎪⎨=⎪⎩∴点P 的坐标为(23,);(ii )当AB为对角线时,有222,33x y ⎧=⎪⎪⎨⎪-=+⎪⎩解得:10,3x y ⎧=⎪⎪⎨⎪=⎪⎩∴点P 的坐标为(103,); (iii )当AA′为对角线时,有222,33x y ⎧=⎪⎪⎨⎪+=-⎪⎩解得:2,x y ⎧=⎪⎨⎪=-⎩∴点P 的坐标为(﹣3,﹣2).综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(233,)、(﹣31033,)和(﹣233,﹣2).考查内容:二次函数综合题.命题意图:本题考查二次函数的综合应用,难度较大.。

2018年湖南岳阳中考数学试题及答案

2018年湖南岳阳中考数学试题及答案

【导语】将在本次湖南岳阳中考过后,考后发布2018年湖南岳阳中考数学试卷及答案解析,⽅便考⽣对照估分,⼤家可收藏并随时关注、栏⽬,中考信息持续更新!中考科⽬:语⽂、数学、英语、物理、化学、政治、历史、地理、⽣物、体育(各地区有所不同,具体以地区教育考试院公布为准。

)考试必读:中考所⽤的2B铅笔、0.5mm⿊⾊墨⽔签字笔、橡⽪、垫板、圆规、尺⼦以及准考证等,都应归纳在⼀起,在前⼀天晚上就准备好,放⼊⼀个透明的塑料袋或⽂件袋中。

涂答题卡的2B铅笔要提前削好(如果是⾃动笔,要防⽌买到假冒产品)。

不要⾃⼰夹带草稿纸,不要把⼿机、⼩灵通等通讯⼯具带⼊考场,如果带了的话⼀定要关机(以免对⾃⼰造成影响)。

有些地区禁⽌携带⼿机等通讯⼯具进⼊考场,否则将以作弊论处。

避免违规:中考是中国重要的考试之⼀,直接决定着考⽣升⼊⾼中后的学习质量,对⾼考成绩有着⾮常重⼤的影响。

因此,中国教育部门对于中考违规、作弊的处罚⼒度是相当⼤的。

视违规情节的不同,轻则对试卷进⾏扣分处理,重则取消违规科⽬或全科的成绩并将其记⼊考⽣档案伴随终⽣,对于涉嫌犯罪的⼈员要追究刑事责任。

中考对于复读⽣也有⼀定的惩罚措施,例如禁⽌报考热点⾼中、对试卷进⾏扣分处理、取消额外加分等等。

因此,在中考的过程中要绝对避免出现违规、作弊的情况,不能铤⽽⾛险,酿成终⾝的遗憾。

参加2018中考的考⽣可直接查阅2018年湖南岳阳中考试题及答案信息!—→以下是湖南岳阳2018年各科中考试题答案发布⼊⼝:相关推荐:为⽅便⼤家及时获取岳阳2018年中考成绩、2018年中考录取分数线信息,为⼴⼤考⽣整理了《全国2018年中考成绩查询、2018年中考录取分数线专题》考⽣可直接点击进⼊以下专题进⾏中考成绩及分数线信息查询。

2018湖南岳阳中考数学解析

2018湖南岳阳中考数学解析

2018年湖南省岳阳市初中学业水平考试试卷数学(满分120分,考试时间90分钟)一、选择题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018湖南岳阳,1,3分)2018的倒数是A.2018B.20181 C.20181- D.-2018 【答案】D.【解析】解:0)2018(-=1.故选D.【知识点】零指数幂2.(2018湖南岳阳,2,3分) 下列运算结果正确的是A .325a a a ⋅=B .325()a a =C .325a a a +=D .22a a -=- 【答案】A.【解析】解:A 选项,a 3·a 2=a 3+2=a 5,故正确;B 选项(a 3)2=a 3×2=a 6,故错误;C 选项,a 3和a 2不是同类项,不能合并,故错误;D 选项,a -2=21a,故错误. 故选A.【知识点】同底数幂的乘法,幂的乘方,合并同类项,负整数指数幂3.(2018湖南岳阳,3,3分) 函数3-=x y 中自变量x 的取值范围是( )A .3x >B .3x ≠C .3x ≥D .0x ≥【答案】C.【解析】解:根据题意可得x -3≥0,解答x ≥3,故选C.【知识点】函数的自变量的取值范围4.(2018湖南岳阳,4,3分) 抛物线23(2)5y x =-+的顶点坐标是( )A .(2,5)-B .(2,5)--C .(2,5)D .(2,5)-【答案】C.【解析】解:因为23(2)5y x =-+为抛物线的顶点式, 根据顶点式的坐标特点可知,顶点坐标为(2,5).故选C.【知识点】二次函数的性质5.(2018湖南岳阳,5,3分) 已知不等式组2010x x -<⎧⎨+≥⎩,其解集在数轴上表示正确的是( )A .B .C .D .【答案】D.【解析】解:⎩⎨⎧≥+-②01①02x x <,解不等式①,得x <2,解不等式②,得x ≥-1,不等式组的解集为-1≤x <2,不等式组的解集在数轴上表示为:故选D .【知识点】解一元一次不等式组6.(2018湖南岳阳,6,3分) 在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是( )A .90,96B .92,96C .92,98D .91,92【答案】 B【解析】解:将这组数按从小到大的顺序排列为:86,88,90,92,96,96,98,故该组数中的中位数为92,众数为96.故选B.【知识点】中位数,众数7.(2018湖南岳阳,7,3分) 下列命题是真命题的是( )A .平行四边形的对角线相等B .三角形的重心是三条边的垂直平分线的交点C .五边形的内角和是540oD .圆内接四边形的对角相等【答案】C.【解析】解:A 选项,平行四边形的对角线不一定相等,如菱形是平行四边形,但对角线不相等,故错误;B 选项,三角形的重心是三条边的中线的交点,故错误;C 选项,五边形的内角和为(5-2)×180°=540°,故正确;D 选项,圆内接四边形的对角互补,不一定相等,故错误.故选C.【知识点】平行四边形的性质,三角形重心的定义,多边形内角和,圆内接四边形的性质8.(2018湖南岳阳,8,3分) 在同一直角坐标系中,二次函数2y x =与反比例函数1(0)y x x=>的图象如图所示,若两个函数图象上有三个不同....的点1(,)A x m ,2(,)B x m ,3(,)C x m ,其中m 为常数,令123x x x ω=++,则ω的值为( )A .1B .mC .2mD .1m【答案】D.【解析】解:根据题意可得A ,B ,C 三点有两个在二次函数图象上,一个在反比例函数图象上,不妨设A ,B 两点在二次函数图象上,点C 在反比例函数图象上,∵二次函数2y x =的对称轴是y 轴,∴21x x +=0.∵点C 在反比例函数1(0)y x x =>上, ∴3x =m1, ∴m x x x 1321=++=ω. 故选D.【知识点】二次函数的性质,反比例函数的性质二、填空题:本大题共8小题,每小题4分,共32分.9.(2018湖南岳阳,9,4分) 因式分解:24x -= .【答案】(x -2)(x +2).【解析】解:原式=x 2-22=(x -2)(x +2).故答案为(x -2)(x +2).【知识点】应用公式法进行因式分解10.(2018湖南岳阳,10,4分)2018年岳阳市教育扶贫工作实施方案出台,全市计划争取“全面改薄”专项资金120000000元,用于改造农村义务教育薄弱学校100所.数据120000000用科学记数法表示为 .【答案】1.2×108.【解析】解:120000000=1.2×108.故答案为1.2×108.【知识点】科学记数法11.(2018湖南岳阳,11,4分)关于x 的一元二次方程220x x k ++=有两个不相等的实数根,则k 的取值范围是 . 【答案】k <1.【解析】解:∵一元二次方程220x x k ++=有两个不相等的实数根,∴△=22-4k >0,解得k <1.故答案为k <1..【知识点】一元二次方程根的判别式的应用12.(2018湖南岳阳,12,4分)已知221a a +=,则23(2)2a a ++的值为 . 【答案】5.【解析】解:∵221a a +=,∴23(2)2a a ++=3+2=5.故答案为5.【知识点】求代数式的值——整体代入法的应用13.(2018湖南岳阳,13,4分) 在-2,1,4,-3,0这5个数字中,任取一个数是负数的概率是 . 【答案】52. 【解析】解:∵在-2,1,4,-3,0这5个数字中负数有2个,∴任取一个数是负数的概率P=52. 故答案为52. 【知识点】古典概率的计算14.(2018湖南岳阳,14,4分)如图,直线//a b ,160∠=o ,240∠=o,则3∠= .【答案】80°.【解析】解:如图,∵a ∥b ,∴∠1=∠4.∵∠1=60°,∴∠4=60°.∵∠2=40°,∴∠3=180°-∠4-∠2=180°-60°-40°=80°.故答案为80°.【知识点】平行线的性质,三角形内角和定理15.(2018湖南岳阳,15,4分)《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是 步.【答案】1760. 【解析】解:如图.设该直角三角形能容纳的正方形边长为x ,则AD=12-x ,FC=5-x根据题意易得△ADE ∽△EFC ,∴FCDE EF AD =, ∴x x x x -=-512,解得:x =1760. 故答案为1760.【知识点】相似三角形的性质16.(2018湖南岳阳,16,4分).如图,以AB 为直径的O e 与CE 相切于点C ,CE 交AB 的延长线于点E ,直径18AB =,30A ∠=o,弦CD AB ⊥,垂足为点F ,连接AC ,OC ,则下列结论正确的是 .(写出所有正确结论的序号)①»»BC BD =;②扇形OBC 的面积为274π;③OCF OEC ∆∆:;④若点P 为线段OA 上一动点,则AP OP ⋅有最大值20.25.【答案】①③④.【解析】解:∵AB 是⊙O 的直径,且CD ⊥AB ,∴»»BCBD =,故①正确; ∵∠A=30°,∴∠COB=60°,∴扇形OBC=ππ227)2(360602=AB ··,故②错误; ∵CE 是⊙O 的切线,∴∠OCE=90°,∴∠OCD=∠OFC ,∠EOC=∠COF ,∴OCF OEC ∆∆:,故③正确;设AP=x ,则OP=9-x ,∴AP ·OP=x (9-x )=-x 2+9x =481)29(2+-x -, ∴当x =29时,AP ·OP 的最大值为481=20.25,故④正确. 故答案为①③④.【知识点】垂径定理,扇形面积计算公式,相似三角形的判定,二次函数的性质三、解答题(本大题共8小题,满分64分,解答应写出文字说明、证明过程或演算步骤)17.(2018湖南岳阳,17,6分) 计算:20(1)2sin 45(2018)2π--+-+-o .【思路分析】首先利用乘方运算,特殊角的三角函数值,零指数幂以及绝对值的性质进行化简,然后将化简后的式子进行加减即可.【解题过程】解:原式=1-2×22+1+2=2. 【知识点】乘方运算,特殊角的三角函数值,零指数幂,绝对值的性质18.(2018湖南岳阳,18,6分)如图,在平行四边形ABCD 中,AE CF =,求证:四边形BFDE 是平行四边形.【思路分析】首先根据四边形ABCD 是平行四边形,可得AD=BC ,∠A=∠C ,AB=CD ,然后根据AE=CF 可得△ADE ≌△CBF ,进而得出DE=BF ,进而证明出结论.【解题过程】证明:∵四边形ABCD 是平行四边形,∴AD=BC ,∠A=∠C ,AB=CD.∵AE=CF ,∴BE=DF.∵在△ADE 和△CBF 中,⎪⎩⎪⎨⎧=∠=∠=BC AD C A CF AE ,∴△ADE ≌△CBF (SAS )∴DE=BF ,∴四边形BFDE 是平行四边形.【知识点】平行四边形的判定与性质,全等三角形的判定与性质19.(2018湖南岳阳,19,8分) 如图,某反比例函数图象的一支经过点(2,3)A 和点B (点B 在点A 的右侧),作BC y ⊥轴,垂足为点C ,连结AB ,AC.(1)求该反比例函数的解析式;(2)若ABC ∆的面积为6,求直线AB 的表达式.【思路分析】(1)首先设反比例函数的解析式为xk y =,然后把A 的坐标代入反比例函数的解析式即可求出答案;(2)根据三角形的面积求出B 的坐标,设直线AB 的解析式是y =mx +n ,把A 、B 的坐标代入得到方程组,求出方程组的解即可.【解题过程】解:(1)设反比例函数的解析式为xk y =, ∵点A 在反比例函数的图象上, ∴将(2,3)A 代入xk y =,得k =2×3=6, ∴反比例函数的解析式为xy 6=. (2)设B(x ,x 6),则C(0,x 6),点A 到BC 的距离d =3-x 6,BC=x, S △ABC =232)63(6-x x x =-, ∵S △ABC =6,∴623=6-x ,解得x =6, ∴B (6,1).设AB 的表达式为y =mx +n ,则⎩⎨⎧=+=+3216b k b k ,解得⎪⎩⎪⎨⎧==421b -k , ∴直线AB 的表达式为421+-=x y . 【知识点】待定系数法求一次函数的解析式和反比例函数的解析式,三角形的面积计算公式20.(2018湖南岳阳,20,8分)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队.现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为_______人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.【思路分析】(1)根据条形统计图中喜欢腰鼓的人数和扇形统计图中腰鼓所占的比例即可计算出总人数;(2)根据总人数和腰鼓,花鼓戏,划龙舟以及其他的项目的人数可计算出广场舞的人数,进而画出条形图;(3)根据“划龙舟”的人数以及总人数计算出“划龙舟”的人占总数的百分比,进而得出所在扇形的圆心角;(4)首先列出表格,然后根据表格得出所有的情况和恰好选中“花鼓戏、划龙舟”这两个项目的情况,进而得出概率.【解题过程】解:(1)∵从条形图中可以看出喜欢腰鼓的有24人,从扇形图中可以看出喜欢腰鼓占的比例为20%,∴这次参与调查的村民人数为24÷20%=120人.故答案为240人.(2)喜欢广场舞的人数为120-24-15-30-9=42人,补充如图所示.(3)图中“划龙舟”所在的扇形的圆心角的度数为:360°×12030=90°. (4)列表如下:广场舞 腰鼓 花鼓戏 划龙舟 广场舞无 (腰鼓,广场舞) (花鼓戏,广场舞) (划龙舟,广场舞) 腰鼓(广场舞,腰鼓) 无 (花鼓戏,腰鼓) (划龙舟,腰鼓) 花鼓戏(广场舞,花鼓戏) (腰鼓,花鼓戏) 无 (划龙舟,花鼓戏) 划龙舟 (广场舞,划龙舟) (腰鼓,划龙舟) (花鼓戏,划龙舟)无 由表格可知,共有12中情况,其中恰好选中“花鼓戏、划龙舟”这两个项目的有2种情况,故概率为:612=. 【知识点】列表法求概率,求扇形的圆心角 21.(2018湖南岳阳,21,8分) 为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?【思路分析】首先设原计划平均每天施工x 平方米,根据题意列出分式方程11213300033000=-x.x ,解出分式方程,然后根据“实际工作效率比原计划每天提高了20%”得出答案.【解题过程】解:设原计划平均每天施工x 平方米,则 11213300033000=-x.x ,解得x =500, 经检验,x =500是原分式方程的解,∴实际平均每天施工为500×(1+20%)=600平方米.答:实际平均每天施工为600平方米.【知识点】分式方程的应用22.(2018湖南岳阳,22,8分)图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC 宽3.9米,门卫室外墙AB 上的O 点处装有一盏路灯,点O 与地面BC 的距离为3.3米,灯臂OM 长为1.2米(灯罩长度忽略不计),60AOM ∠=o .(1)求点M 到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD 保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:3 1.73≈,结果精确到0.01米)【思路分析】(1)首先过点M 作MN ⊥AB 于N ,根据三角函数的定义可得出ON 的长,然后根据线段的加减运算即可得出M 到地面的距离;(2)首先根据题意可得货车的右端应该在图中E 点处,此时BE=0.7m ,过E 点作EF ⊥BC 交OM 于F 点,过O 点作OG ⊥DF ,然后根据含30°角的直角三角形的性质可得出FG 的长,进而得出EF 的长,进而得出答案.【解题过程】解:(1)过点M 作MN ⊥AB 于N ,∵OM=1.2,∠MON=60°,∴ON=OM ·sin60°=533, ∴M 到地面的距离d =ON+OB=533+3.3=103633+. (2)根据题意可得货车的右端应该在图中E 点处,此时BE=0.7m ,∴EF=FG+GE=3.3+0.404=3.704>3.5,∴能通过.【知识点】锐角三角函数的定义,含30°角的直角三角形的性质23.(2018湖南岳阳,23,10分) 已知在Rt ABC ∆中,90BAC ∠=o,CD 为ACB ∠的平分线,将ACB ∠沿CD 所在的直线对折,使点B 落在点'B 处,连结'AB ,'BB ,延长CD 交'BB 于点E ,设2(045)ABC αα∠=<<o o.(1)如图1,若AB AC =,求证:2CD BE =;(2)如图2,若AB AC ≠,试求CD 与BE 的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC 绕点C 逆时针旋转角(45α+o ),得到线段FC ,连结EF 交BC 于点O ,设COE ∆的面积为1S ,COF ∆的面积为2S ,求12S S (用含α的式子表示). 【思路分析】(1)首先根据轴对称的性质可得CE ⊥BB ′且BE=21BB ′,进而得出∠B ′=∠ADC ,进而得出△ABB ′≌△ACD ,然后根据全等三角形的性质可得BB ′=CD ,进而证明出结论; (2)首先根据(1)可得出∠B ′=∠ADC ,进而得出△ABB ′∽△ACD ,进而得出AC AB CD BB =',然后根据锐角三角函数的定义得出CD 与BE 的数量关系;(3)首先根据题意可得出∠ECF=90°,进而得出△OBE ∽△OCF ,然后根据等高的三角形的面积比等于底的比可得出OFOE S S =21,最后利用锐角三角函数的定义得出答案. 【解题过程】解:(1)根据题意可得CE ⊥BB ′且BE=21BB ′, ∵CE ⊥BB ′,∴∠EBD+∠BDE=90°.∵∠BDE=∠ADC ,∴∠ADC+∠EBD=90°.∵∠BAB ′=90°,∴∠EBD+∠B ′=90°,∴∠B ′=∠ADC ,在△ABB ′和△ACD 中⎪⎩⎪⎨⎧∠='∠=∠='∠ADC B ACAB CAD BAB ∴△ABB ′≌△ACD (ASA ),∴BB ′=CD ,∴CD=2BE.(2)由(1)可知,∠B ′=∠ADC ,∵∠BAB ′=∠CAD=90°,∴△ABB ′∽△ACD , ∴AC AB CD BB ='. ∵AB=BC ·cos ∠ABC==BCcos2α,AC=BC ·sin ∠ABC=BCsin2α,∴ααsin2cos CD BB 2=', ∴CD=BE cos 2sin2αα2. (3)由(1)(2)可知,CE ⊥BB ′,∠B ′BA=∠BCE ,∵∠EBC+∠BCE=90°,即∠B ′BA+∠ABC+∠BCE=90°,∴∠BCE=45°-α.∵∠BCF=45°+α,∴∠ECF=∠BCE+∠BCF=90°,∴CF ∥BE ,∴△OBE ∽△OCF ,∴CFBE OF OE =. ∵OF OE S S =21,sin ∠BCE=BCBE ,BC=CF , ∴21S S =sin (45°-α). 【知识点】轴对称的性质,锐角三角函数的定义,相似三角形的判定与性质,全等三角形的判定与性质24.(2018湖南岳阳,24,10分)已知抛物线F :2y x bx c =++的图象经过坐标原点O ,且与x 轴另一交点为3(,0)-.(1)求抛物线F 的解析式;(2)如图1,直线l :3(0)3y x m m =+>与抛物线F 相交于点11(,)A x y 和点22(,)B x y (点A 在第二象限),求21y y -的值(用含m 的式子表示);(3)在(2)中,若43m =,设点'A 是点A 关于原点O 的对称点,如图2. ①判断'AA B ∆的形状,并说明理由;②平面内是否存在点P ,使得以点A 、B 、'A 、P 为顶点的四边形是菱形.若存在,求出点P 的坐标;若不存在,请说明理由.【思路分析】(1)将原点和点3(3-代入抛物线2y x bx c =++,解出b 和c 即可; (2)首先联立m x y +=33与x x y 332+=,解出x 1和x 2,然后将x 1和x 2代入m x y +=33解出y 1和y 2,进而得出结果;(3)①首先根据题意得出A ′的坐标,进而得出A ′B 的长度,根据点A 的坐标得出OA 的长,进而得出AA ′,然后根据三角函数的定义得出sin ∠A ′,进而得出∠A ′的度数,进而得出△AA ′B 的形状;②分别以AA ′,A ′B 和AB 为菱形的对角线,根据菱形的性质得出点P 的坐标即可.【解题过程】解:(1)根据题意,得⎪⎩⎪⎨⎧=+-=033310c b c ,解得⎪⎩⎪⎨⎧==033c b , ∴F 的解析式为x x y 332+=. (2)联立m x y +=33与x x y 332+=,解得m x -=1,m x =2, ∴m m m x y +-=+=333311,m m m x y +=+=333322, ∴m m m m m y y 332333312=+--+=-)(, (3)①当43m =时,3321-=x ,3322=x , ∴321=y ,22=y∴A (332-,32),B (332,2). ∵点A 与点A ′关于原点对称,∴A ′(332,32-), ∴A ′B=2-(32-)=38. ∵OA=343233222=⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-, ∴OA ′=34, ∴AA ′=38, ∴A ′B=AA ′.∵点A 到BA ′的距离d =332+332=334, ∴sin ∠A ′=2338334='AA d , ∴∠A ′=60°,∴△AA ′B 是等边三角形.②存在.若以AA ′为菱形的对角线,则点P 与点B 关于原点对称,此时点P 坐标为(-332,-2); 若以A ′B 为菱形的对角线,则点P 为将点A 向右移动2d 个单位长度,此时点P 的坐标为(334,32); 若以AB 为菱形的对角线,则点P 为将点A 向上移动A ′B 个单位长度,此时点P 的坐标为(332-,310).【知识点】待定系数法求二次函数的解析式,一次函数与二次函数的交点问题,中心对称图形的性质,锐角三角函数的定义,等边三角形的判定,在平面直角坐标平面内的点的平移,菱形的性质。

2018年湖南省岳阳市中考数学试卷含答案解析

2018年湖南省岳阳市中考数学试卷含答案解析


.
12.已知 a2 2a 1,则 3(a2 2a) 2 的值为
.
13.在 2 ,1,4, 3 ,0 这 5 个数字中,任取一个数是负数的概率是
.
14.如图,直线 a∥b ,∠1 60 ,∠2 40 ,则∠3
.
15.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步, 股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短 直角边)长为 5 步,股(长直角边)长为 12 步,问该直角三角形能
第2页
徐老师
容纳的正方形边长最大是多少步?”该问题的答案是
步.
16.如图,以 AB 为直径的 O 与 CE 相切于点 C , CE 交 AB 的延长线于点 E ,直径
AB 18 ,∠A 30 ,弦 CD⊥AB ,垂足为点 F ,连接 AC , OC ,则下列结论正
确的是
(写出所有正确结论的序号).
① BC BD ;②扇形 OBC 的面积为 27 ;③ △OCF∽△OEC ;④若点 P 为线段 OA 4
上一动点,则 APOP 有最大值 20.25 .
三、解答题(本大题共 8 小题,共 64 分.解答应写出必要的文字说明、证明过程或演 算步骤)
17.(本小题满分 6 分) 计算: (1)2 2sin 45 (π 2 018) | 2 | .
(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;
(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加
端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏
徐老师
21.(本小题满分 8 分) 为落实党中央“长江大保护”新发展理念,岳阳市持续推进长江岸线保护,还 洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为 33000 平方米 的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增 加了人力和设备,实际工作效率比原计划每天提高了 20% ,结果提前 11 天完成 任务,求实际平均每天施工多少平方米?

岳阳市中考数学试卷

岳阳市中考数学试卷

2018年湖南省岳阳市中考数学试卷一、选择题(本大题共8小题,每小题3分,满分24分,在每道小题给出的四个选项中,选出符合要求的一项)1.(3.00分)(2018•岳阳)2018的倒数是()A.2018 B.C.﹣D.﹣20182.(3.00分)(2018•岳阳)下列运算结果正确的是()A.a3•a2=a5 B.(a3)2=a5C.a3+a2=a5 D.a﹣2=﹣a23.(3.00分)(2018•岳阳)函数y=中自变量x的取值范围是()A.x>3 B.x≠3 C.x≥3 D.x≥04.(3.00分)(2018•岳阳)抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5) D.(2,﹣5)5.(3.00分)(2018•岳阳)已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.6.(3.00分)(2018•岳阳)在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是()A.90,96 B.92,96 C.92,98 D.91,927.(3.00分)(2018•岳阳)下列命题是真命题的是()A.平行四边形的对角线相等B.三角形的重心是三条边的垂直平分线的交点C.五边形的内角和是540°D.圆内接四边形的对角相等8.(3.00分)(2018•岳阳)在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A.1 B.m C.m2D.二、填空题(本大题共8小题,每小题4分,满分32分)9.(4.00分)(2018•桂林)因式分解:x2﹣4=.10.(4.00分)(2018•岳阳)2018年岳阳市教育扶贫工作实施方案出台,全市计划争取“全面改薄”专项资金120000000元,用于改造农村义务教育薄弱学校100所,数据120000000科学记数法表示为.11.(4.00分)(2018•岳阳)关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是.12.(4.00分)(2018•岳阳)已知a2+2a=1,则3(a2+2a)+2的值为.13.(4.00分)(2018•岳阳)在﹣2,1,4,﹣3,0这5个数字中,任取一个数是负数的概率是.14.(4.00分)(2018•岳阳)如图,直线a∥b,∠l=60°,∠2=40°,则∠3=.15.(4.00分)(2018•岳阳)《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是步.16.(4.00分)(2018•岳阳)如图,以AB为直径的⊙O与CE相切于点C,CE交AB的延长线于点E,直径AB=18,∠A=30°,弦CD⊥AB,垂足为点F,连接AC,OC,则下列结论正确的是.(写出所有正确结论的序号)①=;②扇形OBC的面积为π;③△OCF∽△OEC;④若点P为线段OA上一动点,则AP•OP有最大值20.25.三、解答题(本大题共8小题,满分64分,解答应写出文字说明,证明过程或演算步骤)17.(6.00分)(2018•岳阳)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣| 18.(6.00分)(2018•岳阳)如图,在平行四边形ABCD中,AE=CF,求证:四边形BFDE是平行四边形.19.(8.00分)(2018•岳阳)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.20.(8.00分)(2018•岳阳)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.21.(8.00分)(2018•岳阳)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?22.(8.00分)(2018•岳阳)图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC宽3.9米,门卫室外墙AB上的O点处装有一盏路灯,点O与地面BC的距离为3.3米,灯臂OM长为1.2米(灯罩长度忽略不计),∠AOM=60°.(1)求点M到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:≈1.73,结果精确到0.01米)23.(10.00分)(2018•岳阳)已知在Rt△ABC中,∠BAC=90°,CD为∠ACB的平分线,将∠ACB沿CD所在的直线对折,使点B落在点B′处,连结AB',BB',延长CD交BB'于点E,设∠ABC=2α(0°<α<45°).(1)如图1,若AB=AC,求证:CD=2BE;(2)如图2,若AB≠AC,试求CD与BE的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC绕点C逆时针旋转角(α+45°),得到线段FC,连结EF交BC于点O,设△COE的面积为S1,△COF的面积为S2,求(用含α的式子表示).24.(10.00分)(2018•岳阳)已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.2018年湖南省岳阳市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,满分24分,在每道小题给出的四个选项中,选出符合要求的一项)1.(3.00分)(2018•岳阳)2018的倒数是()A.2018 B.C.﹣D.﹣2018【分析】直接利用倒数的定义进而分析得出答案.【解答】解:2018的倒数是,故选:B.【点评】此题主要考查了倒数,正确把握倒数的定义是解题关键.2.(3.00分)(2018•岳阳)下列运算结果正确的是()A.a3•a2=a5 B.(a3)2=a5C.a3+a2=a5 D.a﹣2=﹣a2【分析】根据积的乘方,幂的乘方,负指数幂的定义一一判断即可解决问题;【解答】解:A、a3•a2=a5,正确,故本选项符合题意;B、(a3)2=a6,故本选项不符合题意;C、不是同类项不能合并,故本选项不符合题意;D、a﹣2=,故本选项不符合题意,故选:A.【点评】本题考查积的乘方,幂的乘方,负指数幂的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.3.(3.00分)(2018•岳阳)函数y=中自变量x的取值范围是()A.x>3 B.x≠3 C.x≥3 D.x≥0【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:函数y=中x﹣3≥0,所以x≥3,故选:C.【点评】本题考查了求函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.(3.00分)(2018•岳阳)抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5) D.(2,﹣5)【分析】根据二次函数的性质y=a(x+h)2+k的顶点坐标是(﹣h,k)即可求解.【解答】解:抛物线y=3(x﹣2)2+5的顶点坐标为(2,5),故选:C.【点评】本题考查了二次函数的性质,正确记忆y=a(x+h)2+k的顶点坐标是(﹣h,k)(a≠0)是关键.5.(3.00分)(2018•岳阳)已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.【分析】分别解不等式组进而在数轴上表示出来即可.【解答】解:,解①得:x<2,解②得:x≥﹣1,故不等式组的解集为:﹣1≤x<2,故解集在数轴上表示为:.故选:D.【点评】此题主要考查了解一元一次不等式组,正确掌握解题方法是解题关键.6.(3.00分)(2018•岳阳)在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是()A.90,96 B.92,96 C.92,98 D.91,92【分析】根据中位数,众数的定义即可判断.【解答】解:将数据从小到大排列:86,88,90,92,96,96,98;可得中位数为92,众数为96.故选:B.【点评】本题考查众数、中位数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.7.(3.00分)(2018•岳阳)下列命题是真命题的是()A.平行四边形的对角线相等B.三角形的重心是三条边的垂直平分线的交点C.五边形的内角和是540°D.圆内接四边形的对角相等【分析】根据平行四边形的性质、三角形的重心的概念、多边形内角和的计算公式、圆内接四边形的性质判断即可.【解答】解:平行四边形的对角线互相平分,A是假命题;三角形的重心是三条边的中线的交点,B是假命题;五边形的内角和=(5﹣2)×180°=540°,C是真命题;圆内接四边形的对角互补,D是假命题;故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.(3.00分)(2018•岳阳)在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A.1 B.m C.m2D.【分析】三个点的纵坐标相同,由图象可知y=x2图象上点横坐标互为相反数,则x1+x2+x3=x3,再由反比例函数性质可求x3.【解答】解:设点A、B在二次函数y=x2图象上,点C在反比例函数y=(x>0)的图象上.因为AB两点纵坐标相同,则A、B关于y轴对称,则x1+x2=0,因为点C(x3,m)在反比例函数图象上,则x3=∴ω=x1+x2+x3=x3=故选:D.【点评】本题考查二次函数图象的轴对称性,二次函数图象上点纵坐标相同时,对应点关于抛物线对称轴对称.二、填空题(本大题共8小题,每小题4分,满分32分)9.(4.00分)(2018•桂林)因式分解:x2﹣4=(x+2)(x﹣2).【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.10.(4.00分)(2018•岳阳)2018年岳阳市教育扶贫工作实施方案出台,全市计划争取“全面改薄”专项资金120000000元,用于改造农村义务教育薄弱学校100所,数据120000000科学记数法表示为 1.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.120000000=1.2【解答】解:120000000=1.2×108,故答案为:1.2×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(4.00分)(2018•岳阳)关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是k<1.【分析】由方程有两个不等实数根可得出关于k的一元一次不等式,解不等式即可得出结论.【解答】解:由已知得:△=4﹣4k>0,解得:k<1.故答案为:k<1.【点评】本题考查了根的判别式以及解一元一次不等式,解题的关键是得出关于k的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出不等式(或不等式组)是关键.12.(4.00分)(2018•岳阳)已知a2+2a=1,则3(a2+2a)+2的值为5.【分析】利用整体思想代入计算即可;【解答】解:∵a2+2a=1,∴3(a2+2a)+2=3×1+2=5,故答案为5.【点评】本题考查代数式求值,解题的关键是学会用整体代入的思想解决问题,属于基础题.13.(4.00分)(2018•岳阳)在﹣2,1,4,﹣3,0这5个数字中,任取一个数是负数的概率是.【分析】根据概率公式:P(A)=事件A可能出现的结果数:所有可能出现的结果数可得答案.【解答】解:任取一个数是负数的概率是:P=,故答案为:.【点评】此题主要考查了概率公式,关键是掌握公式.14.(4.00分)(2018•岳阳)如图,直线a∥b,∠l=60°,∠2=40°,则∠3=80°.【分析】根据平行线的性质求出∠4,根据三角形内角和定理计算即可.【解答】解:∵a∥b,∴∠4=∠l=60°,∴∠3=180°﹣∠4﹣∠2=80°,故答案为:80°.【点评】本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.15.(4.00分)(2018•岳阳)《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是步.【分析】如图1,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论;如图2,同理可得正方形的边长,比较可得最大值.【解答】解:如图1,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12﹣x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴,∴,x=,如图2,四边形DGFE是正方形,过C作CP⊥AB于P,交DG于Q,设ED=x,S△ABC=AC•BC=AB•CP,12×5=13CP,CP=,同理得:△CDG∽△CAB,∴,∴,x=,∴该直角三角形能容纳的正方形边长最大是(步),故答案为:.【点评】此题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.16.(4.00分)(2018•岳阳)如图,以AB为直径的⊙O与CE相切于点C,CE交AB的延长线于点E,直径AB=18,∠A=30°,弦CD⊥AB,垂足为点F,连接AC,OC,则下列结论正确的是①③④.(写出所有正确结论的序号)①=;②扇形OBC的面积为π;③△OCF∽△OEC;④若点P为线段OA上一动点,则AP•OP有最大值20.25.【分析】利用垂径定理对①进行判断;利用圆周角定理得到∠BOC=2∠A=60°,则利用扇形的面积公式可计算出扇形OBC的面积,于是可对②进行判断;利用切线的性质得到OC⊥CE,然后根据相似三角形的判定方法对③进行判断;由于AP•OP=﹣(OP﹣)2+,则可利用二次函数的性质对④进行判断.【解答】解:∵弦CD⊥AB,∴=,所以①正确;∴∠BOC=2∠A=60°,∴扇形OBC的面积==π,所以②错误;∵⊙O与CE相切于点C,∴OC⊥CE,∴∠OCE=90,∵∠COF=∠EOC,∠OFC=∠OCE,∴△OCF∽△OEC;所以③正确;AP•OP=(9﹣OP)•OP=﹣(OP﹣)2+,当OP=时,AP•OP的最大值为,所以④正确.故答案为①③④.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了垂径定理、圆周角定理和切线的性质.三、解答题(本大题共8小题,满分64分,解答应写出文字说明,证明过程或演算步骤)17.(6.00分)(2018•岳阳)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣|【分析】本题涉及零指数幂、乘方、特殊角的三角函数值、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣2×+1+=1﹣+1+=2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6.00分)(2018•岳阳)如图,在平行四边形ABCD中,AE=CF,求证:四边形BFDE是平行四边形.【分析】首先根据四边形ABCD是平行四边形,判断出AB∥CD,且AB=CD,然后根据AE=CF,判断出BE=DF,即可推得四边形BFDE是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,且AB=CD,又∵AE=CF,∴BE=DF,∴BE∥DF且BE=DF,∴四边形BFDE是平行四边形.【点评】此题主要考查了平行四边形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等.②判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.③判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.④判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.⑤判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等.19.(8.00分)(2018•岳阳)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.【分析】(1)把A的坐标代入反比例函数的解析式即可求得;(2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程求得b的值,进而求得a的值,根据待定系数法,可得答案.【解答】解:(1)由题意得,k=xy=2×3=6∴反比例函数的解析式为y=.(2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b)∵反比例函数y=的图象经过点B(a,b)∴b=∴AD=3﹣.=BC•AD∴S△ABC=a(3﹣)=6解得a=6∴b==1∴B(6,1).设AB的解析式为y=kx+b,将A(2,3),B(6,1)代入函数解析式,得,解得,直线AB的解析式为y=﹣x+4.【点评】本题考查了反比例函数,利用待定系数法求反比例函数的解析式,正确利用a,b表示出BC,AD的长度是关键.20.(8.00分)(2018•岳阳)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为120人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.【分析】(1)直接利用腰鼓所占比例以及条形图中人数即可得出这次参与调查的村民人数;(2)利用条形统计图以及样本数量得出喜欢广场舞的人数;(3)利用“划龙舟”人数在样本中所占比例得出“划龙舟”所在扇形的圆心角的度数;(4)利用树状图法列举出所有的可能进而得出概率.【解答】解:(1)这次参与调查的村民人数为:24÷20%=120(人);故答案为:120;(2)喜欢广场舞的人数为:120﹣24﹣15﹣30﹣9=42(人),如图所示:;(3)扇形统计图中“划龙舟”所在扇形的圆心角的度数为:×360°=90°;(4)如图所示:,一共有12种可能,恰好选中“花鼓戏、划龙舟”这两个项目的有2种可能,故恰好选中“花鼓戏、划龙舟”这两个项目的概率为:.【点评】此题主要考查了扇形统计图以及条形统计图的应用和树状图法求概率,正确列举出所有可能是解题关键.21.(8.00分)(2018•岳阳)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?【分析】设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据时间=工作总量÷工作效率结合提前11天完成任务,即可得出关于x的分式方程,解之即可得出结论.【解答】解:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据题意得:﹣=11,解得:x=500,经检验,x=500是原方程的解,∴1.2x=600.答:实际平均每天施工600平方米.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(8.00分)(2018•岳阳)图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC宽3.9米,门卫室外墙AB上的O点处装有一盏路灯,点O与地面BC的距离为3.3米,灯臂OM长为1.2米(灯罩长度忽略不计),∠AOM=60°.(1)求点M到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:≈1.73,结果精确到0.01米)【分析】(1)构建直角△OMN,求ON的长,相加可得BN的长,即点M到地面的距离;(2)左边根据要求留0.65米的安全距离,即取CE=0.65,车宽EH=2.55,计算高GH的长即可,与3.5作比较,可得结论.【解答】解:(1)如图,过M作MN⊥AB于N,交BA的延长线于N,Rt△OMN中,∠NOM=60°,OM=1.2,∴∠M=30°,∴ON=OM=0.6,∴NB=ON+OB=3.3+0.6=3.9;即点M到地面的距离是3.9米;(2)取CE=0.65,EH=2.55,∴HB=3.9﹣2.55﹣0.65=0.7,过H作GH⊥BC,交OM于G,过O作OP⊥GH于P,∵∠GOP=30°,∴tan30°==,∴GP=OP=≈0.404,∴GH=3.3+0.404=3.704≈3.70>3.5,∴货车能安全通过.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会添加常用辅助线,在直角三角形解决问题,属于中考常考题型.23.(10.00分)(2018•岳阳)已知在Rt△ABC中,∠BAC=90°,CD为∠ACB的平分线,将∠ACB沿CD所在的直线对折,使点B落在点B′处,连结AB',BB',延长CD交BB'于点E,设∠ABC=2α(0°<α<45°).(1)如图1,若AB=AC,求证:CD=2BE;(2)如图2,若AB≠AC,试求CD与BE的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC绕点C逆时针旋转角(α+45°),得到线段FC,连结EF交BC于点O,设△COE的面积为S1,△COF的面积为S2,求(用含α的式子表示).【分析】(1)由翻折可知:BE=EB′,再利用全等三角形的性质证明CD=BB′即可;(2)如图2中,结论:CD=2•BE•tan2α.只要证明△BAB′∽△CAD,可得==,推出=,可得CD=2•BE•tan2α;(3)首先证明∠ECF=90°,由∠BEC+∠ECF=180°,推出BB′∥CF,推出===sin(45°﹣α),由此即可解决问题;【解答】解:(1)如图1中,∵B、B′关于EC对称,∴BB′⊥EC,BE=EB′,∴∠DEB=∠DAC=90°,∵∠EDB=∠ADC,∴∠DBE=∠ACD,∵AB=AC,∠BAB′=∠DAC=90°,∴△BAB′≌CAD,∴CD=BB′=2BE.(2)如图2中,结论:CD=2•BE•tan2α.理由:由(1)可知:∠ABB′=∠ACD,∠BAB′=∠CAD=90°,∴△BAB′∽△CAD,∴==,∴=,∴CD=2•BE•tan2α.(3)如图3中,在Rt△ABC中,∠ACB=90°﹣2α,∵EC平分∠ACB,∴∠ECB=(90°﹣2α)=45°﹣α,∵∠BCF=45°+α,∴∠ECF=45°﹣α+45°+α=90°,∴∠BEC+∠ECF=180°,∴BB′∥CF,∴===sin(45°﹣α),∵=,∴=sin(45°﹣α).【点评】本题考查几何变换综合题、等腰直角三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、平行线等分线段定理、锐角三角函数等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.24.(10.00分)(2018•岳阳)已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)根据点的坐标,利用待定系数法即可求出抛物线F的解析式;(2)将直线l的解析式代入抛物线F的解析式中,可求出x1、x2的值,利用一次函数图象上点的坐标特征可求出y1、y2的值,做差后即可得出y2﹣y1的值;(3)根据m的值可得出点A、B的坐标,利用对称性求出点A′的坐标.①利用两点间的距离公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B为等边三角形;②根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P,设点P 的坐标为(x,y),分三种情况考虑:(i)当A′B为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(ii)当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(iii)当AA′为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标.综上即可得出结论.【解答】解:(1)∵抛物线y=x2+bx+c的图象经过点(0,0)和(﹣,0),∴,解得:,∴抛物线F的解析式为y=x2+x.(2)将y=x+m代入y=x2+x,得:x2=m,解得:x1=﹣,x2=,∴y1=﹣+m,y2=+m,∴y2﹣y1=(+m)﹣(﹣+m)=(m>0).(3)∵m=,∴点A的坐标为(﹣,),点B的坐标为(,2).∵点A′是点A关于原点O的对称点,∴点A′的坐标为(,﹣).①△AA′B为等边三角形,理由如下:∵A(﹣,),B(,2),A′(,﹣),∴AA′=,AB=,A′B=,∴AA′=AB=A′B,∴△AA′B为等边三角形.②∵△AA′B为等边三角形,∴存在符合题意的点P,且以点A、B、A′、P为顶点的菱形分三种情况,设点P 的坐标为(x,y).(i)当A′B为对角线时,有,解得:,∴点P的坐标为(2,);(ii)当AB为对角线时,有,解得:,∴点P的坐标为(﹣,);(iii)当AA′为对角线时,有,解得:,∴点P的坐标为(﹣,﹣2).综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(2,)、(﹣,)和(﹣,﹣2).【点评】本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、等边三角形的判定与性质以及菱形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)将一次函数解析式代入二次函数解析式中求出x1、x2的值;(3)①利用勾股定理(两点间的距离公式)求出AB、AA′、A′B的值;②分A′B为对角线、AB为对角线及AA′为对角线三种情况求出点P的坐标.。

[重点推荐]湖南省岳阳市2018年中考数学试题(含解析)

[重点推荐]湖南省岳阳市2018年中考数学试题(含解析)
专项资金120000000元,用于改造农村义务教育薄弱学校100所,数据120000000
科学记数法表示为.
11.(4分)关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取
值范围是.
12.(4分)已知a2+2a=1,则3(a2+2a)+2的值为.
13.(4分)在﹣2,1,4,﹣3,0这5个数字中,任取一个数是负数的概率是.
3.(3分)函数y=中自变量x的取值范围是()
A.x>3B.x≠3C.x≥3D.x≥0
4.(3分)抛物线y=3(x﹣2)2+5的顶点坐标是()
A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)
5.(3分)已知不等式组,其解集在数轴上表示正确的是()
A.B.
C.D.
6.(3分)在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,
的式子表示).
24.(10分)已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交
点为(﹣,0).
(1)求抛物线F的解析式;
(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点
第5页(共22页)
B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);
三、解答题(本大题共8小题,满分64分,解答应写出文字说明,证明过程或
演算步骤)
17.(6分)计算:(﹣1)2﹣2sin45°+(π ﹣2018)0+|﹣|
18.(6 分)如图,在平行四边形ABCD中,AE=CF,求证:四边形BFDE是平行
四边形.
19.(8分)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点

2018年湖南岳阳中考数学试卷及答案解析版

2018年湖南岳阳中考数学试卷及答案解析版

2018年岳阳市中考试题数学(满分120分,考试时间90分钟)一、选择题(本大题共8小题,每小题3分,满分24分,在每道小题给出的四个选项中,选出符合要求的一项)1.(2018湖南岳阳,1,3分)—2018的相反数是()A.-2018B.2018C.12003D.12003-【答案】B2.(2018湖南岳阳,2,3分)计算a3﹒a2的结果是()A.a5B.a3C.a3+a2 D.3a2【答案】A3.(2018湖南岳阳,3,3分)一个正方体的平面展开图如图所示,将它折成正方体后,与汉字“岳”相对的汉字是()A.建B.设C.和D.谐【答案】4. (2018湖南岳阳,4,3分)不等式2<10x的解集在数轴上表示正确的是()IA.B.C.D.【答案】D5.(2018湖南岳阳,5,3分)关于x的分式方程7311+=--mx x有增根,则增根为()A.x=1 B.x=-1 C.x=3 D.x=-3【答案】A6.(2018湖南岳阳,6,3分)两圆半径分别是3cm和7cm,当圆心距d=10cm时,两圆的位置关系为()A.外离B.内切C.相交D.外切【答案】D7.(2018湖南岳阳,7,3分)某组7名同学在一学期里阅读课外书籍的册数分别是:14,12,13,12,17,18,16.则这组数据的众数和中位数分别是()A.12,13 B.12,14 C.13,14 D.13,16【答案】B8.(2018湖南岳阳,8,3分)二次函数2=++y ax bx c的图象如图所示,对于下列结论:①<0;a②<0;b③0;>c④20;+=b a⑤0++<a b c.其中正确的个数是()。

2018学年湖南省岳阳中考数学年试题

2018学年湖南省岳阳中考数学年试题

批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?
(总成本=放养总费用+收购成本;利润=销售总额-总成本)
24.(本小题满分 12 分)
如图,抛物线 y ax2 bx c a 0 与 x 轴交于原点及点 A ,且经过点 B 4,8 ,对
称轴为直线 x 2 .
(1)求抛物线的解析式;
之间的距离.如图,无人机所在位置 P 与岚光阁阁顶 A 、湖心亭 B 在同一铅垂面内, P 与 B 的垂直距离为 300 米, A 与 B 的垂直距离为150 米,在 P 处测得 A 、 B 两点
的俯角分别为 、 ,且 tan 1 , tan 2 1,试求岚光阁与湖心亭之间的
2 距离 AB .(计算结果若含有根号,请保留根号)
(2)设直线
y

kx 4 与抛物线两交点的横坐标分别为
x1,
x2
x1

x2 ,当
1 x2

1 x1

1 2
时,求 k 的值;
(3)连接 OB ,点 P 为 x 轴下方抛物线上一动点,过点 P 作 OB 的平行线交直线 AB 于点 Q ,当 SPOQ : SBOQ 1: 2 时,求出点 P 的坐标.
则实数 m 的取值范围是( )
A. 4 m 7
B. 4 m 7
C. 4 m 7
D. 4 m 7
8.甲、乙两名同学分别进行 6 次射击训练,训练成绩(单位:环)如下表
第一次 第二次 第三次 第四次 第五次 第六交

9
8
6
7
8
10

8
7
9
7
8
8

2018岳阳中考数学试卷解析

2018岳阳中考数学试卷解析

2018年湖南省岳阳市中考数学试卷满分:120分 版本:人教版一、选择题(每小题3分,共8小题,合计24分) 1.(2018湖南岳阳,1,3分)6的相反数是 A .-6B .61C .6D .±6答案:A ,解析:考察相反数概念,只有符号不同的两个数互为相反数,因此6和-6互为相反数.2.(2018湖南岳阳,2,3分)下列运算正确的是 A .(x 3)2= x 5B .(x)5=- x 5C .x 3·x 2= x 6D .3 x 2+2 x 3= 5x 5答案:B ,解析:考察幂运算,单项式乘法,合并同类项,A 项的答案应为x 6,C 项的答案应为x 5,D 项不是同类项,不能合并.3.(2018湖南岳阳,3,3分)据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39 000 000 000吨油当量,将39 000 000 000用科学记数法表示为 A .3.9×1010B .3.9×109C .0.39×1011D .39×109答案:A ,解析:考察科学记数法,将比较大的数写成a ×10n (1≤a <10)的形式.4.(2018湖南岳阳,4,3分)下列四个立体图形中,主视图、左视图、俯视图都相同的是A .B .C .D .答案:B ,解析:考察三视图,球体的主视图、俯视图、左视图是面积相等的圆,三视图相同.5.(2018湖南岳阳,5,3分)从2,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是 A .51B .52 C .53D .54答案:C ,解析:这5个数中,0、3.14、6是有理数,总共有5个数,因此概率是53.6.(2018湖南岳阳,6,3分)解分式方程2111x xx x -=--,可知方程的解为 A .x =1B .x =3C .x =21 D .无解答案:C ,解析:考察分式方程,先去分母,将方程化为x -2x =x -1,解得x =21,经检验,x =21是原方程的解.7.(2018湖南岳阳,7,3分)观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,…,根据这个规律,则21+22+23+24+…22018的末尾数字是 A .0 B .2 C .4 D .6答案:B ,解析:找规律,21末尾数字为2,21+22末尾数字为6,21+22+23末尾数字为4,21+22+23+末尾数字为0,21+22+23+24+25末尾数字为2,发现周期为4,2018÷4的余数是1,因此21+22+23+24+…22018的末尾数字与21末尾数字相同,为2. 8.(2018湖南岳阳,8,3分)已知点A 在函数y 1=x1-(x >0)的图像上,点B 在直线y 2=kx +1+k (k 为常数,且k ≥0)上,若A ,B 两点关于原点对称,则称点A ,B 为函数y 1,y 2图像上的一对“友好点”.请问这两个函数图像上的“友好点”对数的情况为 A .有1对或2对 B .只有1对 C .只有2对 D .有2对或3对答案:A ,解析:①K =0时,y 2=1,y 1=x1-(x >0),则“友好点”,坐标为A (1,-1),B (-1,1) ②K ≠O 时,设A 点坐标为(x ,x1-),由于A ,B 关于原点对称,则可设B 点坐标为 (-x ,-kx +1+k ).A 、B 两点纵坐标互为相反数,因此x1=-kx +1+k ,将其化为一元二次方程,得到kx 2-(1+k )x +1=0,△=(k -1)2≥0,因此,当k =1时,有1对“友好点”,坐标为A (1,-1),B (-1,1)当k >0且k ≠1时,有两对“友好点”,因此答案为A . 二、填空题:(本大题共8小题,每小题4分,满分32分) 9.(2018湖南岳阳,9,4分)函数1y 7x =-中自变量x 的取值范围是 .答案:x ≠7,解析:分母不为0有意义,则x -7≠0,解得,x ≠7.10.(2018湖南岳阳,10,4分)因式分解:x 2-6x +9 = .答案:(x -3)2,解析:完全平方公式.11.(2018湖南岳阳,11,4分)在环保整治行动中,某市环保局对辖区内的单位进行了抽样检查,他们的综合得分如下:95,85,83,95,92,90,96,则这组数据的中位数是 ,众数是 .答案:92,95.解析:这组数据从小到大排列顺序为83,85,90,92,95,95,96.则中位数为92.众数为95(出现次数最多).12.(2018湖南岳阳,12,4分)如右图,点P 是NOM ∠的边OM 上一点,PD ⊥ON 于点D , 30OPD ∠=︒, PQ ∥ON ,则MPQ ∠的度数是 .O答案:60°,解析:因为PQ ∥ON ,PD ⊥ON ,所以∠QPD = ∠ODP =90°, 又因为∠OPD =30°,所以则∠MPQ =180°-30°-90°=60°.13.(2018湖南岳阳,13,4分)不等式组()()303129x x x -≥⎧⎪⎨->+⎪⎩的解集是 .答案:x <-5,解析:由第一个不等式解得x ≤3,由第二个不等式解得x <-5;则解集为x <-5.14.(2018湖南岳阳,14,4分)在△ABC 中BC =2,AB=AC =b ,且关于x 的方程x 2-4x+b=0有两个相等的实数根,则AC 边上的中线长为 .答案:2解析:因为x 的方程x 2-4x+b=0有两个相等的实数根,所以△=(-4)2-4b =16-4b =0,得AC =b =4;有因为BC =2,AB=BC 2+AB 2=AC 2,三角形ABC 为直角三角形,AC 为斜边,则AC 边上中线长为斜边的一半,取值为2.15.(2018湖南岳阳,15,4分)我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值.设半径为r 的圆内接正n 边形的周长为L ,圆的直径为d . 如右图所示,当n =6时,632L rd rπ≈==,那么当n =12时,Ldπ≈= .(结果精确到0.01,参考数据:sin 15°=cos 75°≈0.259)答案:3.11,解析:如右图所示,则∠AOB =30°,∠AOC =15°.在直角三角形AOC 中,sin 15°=rAC ACAO ==0.259,所以AC =0.259r , AB =2AC =0.518r ,L =12AC =6.216r ,所以 6.216r3.108 3.112L d rπ≈==≈ 16.(2018湖南岳阳,16,4分)如右图,e O 为等腰△ABC 的外接圆,直径AB =12,P为弧»BC 上任意一点(不与B ,C 重合),直线CP 交AB 延长线于点Q ,e O 在点P 处切线PD交BQ 于点D ,下列结论正确的是 .(写出所有正确结论得序号)①若∠P AB =30°,则弧»BP的长为π; ②若PD ∥BC ,则AP 平分∠CAB ; ③若PB =BD ,则PD=; ④无论点P 在弧»BC上的位置如何变化,CP ·CQ 为定值.AAA答案:③④,解析:直径AB =12,则半径长6. ∠APB =90°;等腰△ABC ,则CO ⊥AB . AC =BC =①因为∠P AB =30°,则弧»BP 的圆心角为60°,弧»BP 长为606180π⨯⨯=2π,故①错误. ②PD ∥BC,DP为切线,则∠QPD=∠BCP=∠P AB,得不到AP平分∠CAB,故②错误. ③PB=BD,DP为切线,则∠BPD=∠BDP=∠P AB,因为△APQ内角和180°,∠APB=90°,所以∠BPD=∠BDP=∠P AB=30°.因为AB=12,所以PB=BD=6.过B作BE⊥PD于E点,则BE=3,PE=DE=PD=故③正确. ④过O作OF⊥CP于F点,则∠COP=2∠COF=2∠CAP,∠COF=∠CAP;因为∠COF+∠OCF=∠Q+∠OCF,所以∠Q=∠COF=∠CAP,则△CAP∽△CQA,CP·CQ=AC2=(2=72,故④正确.三、解答题:(本大题共8小题,满分64分,解答应写出文字说明、证明过程或演算步骤)17.(2018湖南岳阳,17,6分)计算:2sin60°+ 3-+(π-2)0--1 1 2⎛⎫ ⎪⎝⎭思路分析:sin60°= ,a0=1(a≠0),a-p= 1 p a解:原式=21 1 2=218.(2018湖南岳阳,18,6分)求证:对角线互相垂直的平行四边形是菱形.小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程.已知:如图,在□中,对角线AC,BD交于点O,.求证:.思路分析:,DB已知:如图,在□中,对角线AC,BD交于点O,AC⊥BD.求证:平行四边形ABCD是菱形.证明:Q四边形ABCD是平行四边形∴OA=OCQ AC⊥BD∴AD=CD又Q四边形ABCD是平行四边形∴四边形ABCD是菱形.19.(2018湖南岳阳,本题满分8分)如图,直线y=x+b与双曲线y=kx(k为常熟,k≠0)在第一象限内交于点A(1,2),且与x轴、y轴交于B ,C 两点.(1)求直线和双曲线的解析式;(2)点P 在x 轴上,且△BCP 的面积等于2,求P 点的坐标.思路分析:(1)把点A (1,2)分别代入直线y =x +b 与双曲线y =kx可以求得参数b 和k 的值,得到解析式;(2)S △BCP =12·OC ·BP ,代入可求得BP ,然后分类讨论P 在B 的左边或者右边. 解:(1)∵直线y =x +b 与双曲线y =kx交于点A (1,2), ∴2121x k =+⎧⎪⎨=⎪⎩,解得k =2,b =1.∴y =x +1,y =2x. (2)分别将x =0,y =0代入y =x +1求得C (0,1),B (-1,0);∴OC =1,S △BCP =12·OC ·BP =2,代入解得BP =4. ∴当P 在B 左边时,P (-5,0); 当P 在B 右边时,P (3,0).20.(2018湖南岳阳,本题满分8分)我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.每一次他们领来这批书的23,结果打了16个包还多40本;第二次他们把剩下的书全部取来,联通第一次打包剩下的书一起,刚好又打了9个包.那么这批书共有多少本?思路分析:两个关键的未知量,两个等量关系,可以列方程组求解. 解:设每包x 本书,共有y 本书,则有,21640319403y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩,解之得601500x y =⎧⎨=⎩;答:这批书共有1500本.21.(2018湖南岳阳,本题满分8分)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动.学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:请根据图标信息回答下列问题:(1)频数分布表中的a=________,b=________;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生评为“阅读之星”的有多少人?思路分析:(1)根据频数÷频率=总数,先计算出统计的全体,然后计算出a,b;(3)利用总体×频率计算出8小时以上阅读时间的人数.解:(1)a=25,b=0.1;(2)(3)能评为“阅读之星”的人数为:2000×0.1=200.22.(2018湖南岳阳,本题满分8分)某太阳能热水器的横截面示意图如图所示,已知真空热水管AB与支架CD所在直线相交于点O,且OB=OD.支架CD与水平线AE垂直,∠BAC=∠CDE=30°,DE=80cm,AC=165cm.(1)求支架CD 的长;(2)求真空热水管AB 的长.(结果均保留根号)思路分析:首先Rt △CDE 可解,得到CD ;Rt △OAC 可解,得到OC 、OA ,然后利用图中关系OB =OD =OC -CD ,AB =OA -OB ,解得AB .解:(1)在Rt △CDE 中,∠CDE =30°,DE =80cm ,所以cos 30°=80CD,解得CD =;(2)在Rt △OAC 中,∠BAC =60°,AC =165cm ,所以tan 30°=165OC,解得OC =55cm , ∴OA =2OC =110cm ,OB =OD =OC -CD =55-cm ,AB =OA -OB =55+cm .23.(2018湖南岳阳,本题满分10分)问题背景:已知∠EDF 的顶点D在△ABC 的边AB 上(不与A ,B 重合).DE 交AC 所在直线于点M ,DF 交BC 所在直线于点N .记△ADM 的面积为1S ,△BND 的面积为2S . (1) 初步尝试:如果①,当△ABC 是等边三角形,6AB =,EDF A ∠=∠,且D E B C ∥,2AD =时,则12_______S S ⋅=;(2) 类比探究:在(1)的条件下,先将点D 沿AB 平移,使4AD =,再将EDF ∠绕点D 旋转至如图②所示位置,求12S S ⋅的值;(3) 延伸拓展:当△ABC 为等腰三角形时,设B A EDF α∠=∠=∠=.(Ⅰ)如图③,当点D 在线段AB 上运动时,设AD a =,BD b =,求12S S ⋅的表达式(结果用a ,b 和α的三角函数表示).(Ⅱ)如图④,当点D 在BA 的延长线上运动时,设AD a =,BD b =,直接写出12S S ⋅的表达式,不必写出解答过程.③图②图①图ADB DD解:(1)(2)过M ,N 分别作MG AB ⊥,NH AB ⊥垂足为G ,H∵180ADM MDN NDB ∠+∠+∠=︒180ADM MDN NDB ∠+∠+∠=︒EDF A ∠=∠∴NDB DMA ∠=∠ 又∵A B ∠=∠ ∴△NDB ∽△DMA ∴AD AMBN BD=∵6AB =,4AD = ∴2BD =∴8BN AM AD BD ⋅=⋅=在Rt △AMG 中,MG =AM ·sinA AM∴112S AD MG =⨯⨯同理:2S∴123122S S AM BN ⋅=⋅=. (3)过M ,N 分别作MG AB ⊥,NH AB ⊥垂足为G ,H∵180ADM MDN NDB ∠+∠+∠=︒180ADM MDN NDB ∠+∠+∠=︒EDF A ∠=∠∴NDB DMA ∠=∠ 又∵A B ∠=∠ ∴△NDB ∽△DMA ∴AD AMBN BD=∵AD a =,BD b = ∴BN AM AD BD ab ⋅=⋅= 在Rt △AMG 中,MG =AM ·sin α∴111sin 22S AD MG a AM α=⨯⨯=⋅⋅同理:21sin 2S b BN α=⋅⋅∴222121sin 4S S a b α⋅=.(4)222121sin 4S S a b α⋅=.24.(2018湖南岳阳,本题满分10分)如图,抛物线223y x bx c =++经过点()3,0B ,()0,2C -,直线l :2233y x =--交y 轴于点E ,且与抛物线交于A ,D 两点.P 为抛物线上一动点(不与A ,D 重合). (1) 求抛物线的解析式;(2) 当点P 在直线l 下方时,过点P 作PM x ∥轴交l 于点M ,PN y ∥轴交l 于点N .求P M P N +的最大值;(3) 设F 为直线l 上的点,以E ,C ,P ,F 为顶点的四边形能否构成平行四边形?若能,求出点F 的坐标;若不能,请说明理由.备用图解:(1)将()3,0B ,()0,2C -代入223y x bx c =++,得:6302b c c ++=⎧⎨=-⎩解得:432b c ⎧=-⎪⎨⎪=-⎩∴抛物线的解析式为:224233y x x =--;(2)设()224,21233P a a a a ⎛⎫---<< ⎪⎝⎭,则22,33N a a ⎛⎫-- ⎪⎝⎭∴222242133=3333222PN a a a ⎛⎫=-++--+≤ ⎪⎝⎭∵M ,N 在直线l :2233y x =--上,PM x ∥,PN y ∥∴23PN PM =∴51524PM PN PN +=≤即:PM PN +的最大值为:154; (3)能 设22,33F m m ⎛⎫-- ⎪⎝⎭ ① 当EC 为边时,有224,233P m m m ⎛⎫-- ⎪⎝⎭,EC PF = 即:22244=3333m m -++解得:m =0m =时不成立,舍去; ② 当EC 为对角线时,PF 中点即为EC 中点(0,43-) 2,23P m m ⎛⎫-- ⎪⎝⎭在抛物线上 所以,224222333m m m +-=- 解得:01m =-或,其中0m =时不成立,舍去;综上所述:F 点的坐标为:41,3⎛⎫- ⎪⎝⎭、()1,0-、⎝⎭、⎝⎭.。

2018年湖南省岳阳市中考数学真题试卷及参考解析 (2)

2018年湖南省岳阳市中考数学真题试卷及参考解析 (2)

湖南省岳阳市二○一八年初中学业考试暨高中阶段统一招生考试数学试题注意事项:1.答题前,考生务必先核对条形码上的姓名、准考证号和座号,然后用0.5毫米黑色墨水签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置。

2.答第Ⅰ卷时,必须使用2B铅笔填涂答题卡上相应题目的答案标号,如需改动,必须先用橡皮擦干净,再改涂其它答案。

3.答第Ⅱ卷时,必须使用0.5毫米黑色墨水签字笔在答题卡上书写。

务必在题号所指示的答题区域内作答。

4.考试结束后,将本试卷和答题卡一并交回。

第 1 页(共24 页)一、选择题(本题共12 小题,每小题 3 分,共36 分)1.(3 分)﹣4 的相反数是()A.4 B.﹣4 C.﹣D.2.(3 分)2018 年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000 用科学记数法表示为()A.18×108 B.1.8×108C.1.8×109D.0.18×10103.(3 分)下列生态环保标志中,是中心对称图形的是()A.B.C.D.4.(3 分)如图是由5 个大小相同的小正方体摆成的立体图形,它的主视图是()A.B.C.D.5.(3 分)已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是()A.连续抛一枚均匀硬币2 次必有1 次正面朝上B.连续抛一枚均匀硬币10 次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100 次出现正面朝上50 次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的6.(3 分)下列各式中正确的是()A.=±3 B.=﹣3C.=3 D.﹣=7.(3 分)下面运算结果为a6 的是()第 2 页(共24 页)A.a3+a3 B.a8÷a2 C.a2•a3 D.(﹣a2) 38.(3 分)衡阳市某生态示范园计划种植一批梨树,原计划总产值30 万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的 1.5 倍,总产量比原计划增加了 6 万千克,种植亩数减少了10 亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为()A.﹣=10 B.﹣=10C.﹣=10 D. + =109.(3 分)下列命题是假命题的是()A.正五边形的内角和为540°B.矩形的对角线相等C.对角线互相垂直的四边形是菱形D.圆内接四边形的对角互补10.(3 分)不等式组的解集在数轴上表示正确的是()A.B .C.D.11.(3 分)对于反比例函数y=﹣,下列说法不正确的是()A.图象分布在第二、四象限B.当x>0 时,y 随x 的增大而增大C.图象经过点(1,﹣2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2 12.(3 分)如图,抛物线y=ax2+bx+c 与x 轴交于点A(﹣1,0),顶点坐标(1,n)与y 轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②﹣1≤a≤﹣;③对于任意实数m,a+b≥am2+bm 总成立;④关于x 的方程ax2+bx+c=n﹣1 有两个不相等的实数根.其中结论正确的个数为()第 3 页(共24 页)A.1 个B.2 个C.3 个D.4 个二、填空题(本题共 6 小题,每小题 3 分,共18 分)13.(3 分)如图,点A、B、C、D、O 都在方格纸的格点上,若△COD 是由△AOB绕点O 按顺时针方向旋转而得到的,则旋转的角度为.14.(3 分)某公司有10 名工作人员,他们的月工资情况如表,根据表中信息,15.(3 分)计算:= .16.(3 分)将一副三角板如图放置,使点A 落在DE 上,若BC∥DE,则∠AFC 的度数为.17.(3 分)如图,▱ABCD 的对角线相交于点O,且AD≠CD,过点O 作OM⊥AC,交AD 于点M.如果△CDM 的周长为8,那么▱ABCD 的周长是.第 4 页(共24 页)18.(3 分)如图,在平面直角坐标系中,函数y=x 和y=﹣x 的图象分别为直线l1,l2,过点A1(1,﹣)作x 轴的垂线交11 于点A2,过点A2 作y 轴的垂线交l2 于点A3,过点A3作x 轴的垂线交l1 于点A4,过点A4 作y 轴的垂线交l2 于点A5,…依次进行下去,则点A2018 的横坐标为.三、解答题(本题共8 个小题,19-20 题每题6 分,21-24 题每题8 分,25 题10分,26 题12 分)19.(6 分)先化简,再求值:(x+2)(x﹣2) +x(1﹣x),其中x=﹣1.20.(6 分)如图,已知线段AC,BD 相交于点E,AE=DE,BE=CE.(1)求证:△ABE≌△DCE;(2)当AB=5 时,求CD 的长.21.(8 分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50 名学生参加决赛,根据测试成绩(成绩都不低于50 分)绘制出如图所示的部分频数分布直方图.第 5 页(共24 页)请根据图中信息完成下列各题.(1)将频数分布直方图补充完整人数;(2)若测试成绩不低于80 分为优秀,则本次测试的优秀率是多少;(3)现将从包括小明和小强在内的 4 名成绩优异的同学中随机选取两名参加市级比赛,求小明与小强同时被选中的概率.22.(8 分)一名徒步爱好者来衡阳旅行,他从宾馆C 出发,沿北偏东30°的方向行走2000 米到达石鼓书院 A 处,参观后又从 A 处沿正南方向行走一段距离,到达位于宾馆南偏东45°方向的雁峰公园 B 处,如图所示.(1)求这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆之间的最短距离;(2)若这名徒步爱好者以100 米/分的速度从雁峰公园返回宾馆,那么他在15 分钟内能否到达宾馆?23.(8 分)如图,⊙O 是△ABC 的外接圆,AB 为直径,∠BAC 的平分线交⊙O于点D,过点 D 作DE⊥AC 分别交AC、AB 的延长线于点E、F.(1)求证:EF 是⊙O 的切线;(2)若AC=4,CE=2,求的长度.(结果保留π)第 6 页(共24 页)24.(8 分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10 元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16 元/件,市场调查发现,该产品每天的销售量y(件)与销售价x (元/件)之间的函数关系如图所示.(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?25.(10 分)如图,已知直线y=﹣2x+4 分别交x 轴、y 轴于点A、B,抛物线过A,B 两点,点P 是线段AB 上一动点,过点P 作PC⊥x 轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB 于点N.①求点M、N 的坐标;②是否存在点P,使四边形MNPD 为菱形?并说明理由;(2)当点P 的横坐标为 1 时,是否存在这样的抛物线,使得以B、P、D 为顶点的三角形与△AOB 相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.第7 页(共24 页)26.(12 分)如图,在Rt△ABC 中,∠C=90°,AC=BC=4cm,动点P 从点C 出发以1cm/s 的速度沿CA 匀速运动,同时动点Q 从点 A 出发以cm/s 的速度沿AB匀速运动,当点P 到达点 A 时,点P、Q 同时停止运动,设运动时间为t(s).(1)当t 为何值时,点 B 在线段PQ 的垂直平分线上?(2)是否存在某一时刻t,使△APQ 是以PQ 为腰的等腰三角形?若存在,求出t 的值;若不存在,请说明理由;(3)以PC 为边,往CB 方向作正方形CPMN,设四边形QNCP 的面积为S,求S关于t 的函数关系式.第8 页(共24 页)2018 年湖南省衡阳市中考数学试卷参考答案与试题解析一、选择题(本题共12 小题,每小题3 分,共36 分)1.(3 分)﹣4 的相反数是()A.4 B.﹣4 C.﹣D.【解答】解:﹣4 的相反数是4.故选:A.2.(3 分)2018 年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000 用科学记数法表示为()A.18×108 B.1.8×108C.1.8×109D.0.18×1010【解答】解:1800000000=1.8×109,故选:C.3.(3 分)下列生态环保标志中,是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.4.(3 分)如图是由5 个大小相同的小正方体摆成的立体图形,它的主视图是()第9 页(共24 页)A.B.C.D.【解答】解:从正面看易得第一层有 3 个正方形,第二层有 1 个正方形,且位于中间.故选:A.5.(3 分)已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是()A.连续抛一枚均匀硬币2 次必有1 次正面朝上B.连续抛一枚均匀硬币10 次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100 次出现正面朝上50 次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的【解答】解:A、连续抛一均匀硬币 2 次必有 1 次正面朝上,不正确,有可能两次都正面朝上,也可能都反面朝上,故此选项错误;B、连续抛一均匀硬币10 次都可能正面朝上,是一个有机事件,有可能发生,故此选项正确;C、大量反复抛一均匀硬币,平均100 次出现正面朝上50 次,也有可能发生,故此选项正确;D、通过抛一均匀硬币确定谁先发球的比赛规则是公平的,概率均为,故此选项正确.故选:A.6.(3 分)下列各式中正确的是()A.=±3 B.=﹣3C.=3 D.﹣=【解答】解:A、原式=3,不符合题意;B、原式=|﹣3|=3,不符合题意;第10 页(共24 页)C、原式不能化简,不符合题意;D、原式=2 ﹣= ,符合题意,故选:D.7.(3 分)下面运算结果为a6 的是()A.a3+a3 B.a8÷a2 C.a2•a3 D.(﹣a2) 3【解答】解:A、a3+a3=2a3,此选项不符合题意;B、a8÷a2=a6,此选项符合题意;C、a2•a3=a5,此选项不符合题意;D、(﹣a2)3=﹣a6,此选项不符合题意;故选:B.8.(3 分)衡阳市某生态示范园计划种植一批梨树,原计划总产值30 万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的 1.5 倍,总产量比原计划增加了 6 万千克,种植亩数减少了10 亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为()A.﹣=10 B.﹣=10C.﹣=10 D. + =10【解答】解:设原计划每亩平均产量x 万千克,则改良后平均每亩产量为 1.5x 万千克,根据题意列方程为:﹣=10.故选:A.9.(3 分)下列命题是假命题的是()A.正五边形的内角和为540°B.矩形的对角线相等C.对角线互相垂直的四边形是菱形D.圆内接四边形的对角互补第11 页(共24 页)【解答】解:正五边形的内角和=(5﹣2)×180°=540°, A 是真命题;矩形的对角线相等, B 是真命题;对角线互相垂直的平行四边形是菱形, C 是假命题;圆内接四边形的对角互补, D 是真命题;故选:C.10.(3 分)不等式组的解集在数轴上表示正确的是()A.B .C.D.【解答】解:,解①得x>﹣1,解②得x≤3,所以不等式组的解集为﹣1<x≤3.故选:C.11.(3 分)对于反比例函数y=﹣,下列说法不正确的是()A.图象分布在第二、四象限B.当x>0 时,y 随x 的增大而增大C.图象经过点(1,﹣2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2 【解答】解:A、k=﹣2<0,∴它的图象在第二、四象限,故本选项正确;B、k=﹣2<0,当x>0 时,y 随x 的增大而增大,故本选项正确;C、∵﹣=﹣2,∴点(1,﹣2)在它的图象上,故本选项正确;D、点A(x1,y1)、B(x2、y2)都在反比例函数y=﹣的图象上,若x1<x2<0,则y1<y2,故本选项错误.。

2018年湖南省岳阳市中考数学试卷(带解析)

2018年湖南省岳阳市中考数学试卷(带解析)

股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长
为 5 步,股(长直角边)长为 12 步,问该直角三角形能容纳的正方形边长最大
是多少步?”该问题的答案是
60 17
步.
【解答】解:如图 1,∵四边形 CDEF 是正方形, ∴CD=ED,DE∥CF, 设 ED=x,则 CD=x,AD=12﹣x, ∵DE∥CF, ∴∠ADE=∠C,∠AED=∠B, ∴△ADE∽△ACB,
22.(8 分)图 1 是某小区入口实景图,图 2 是该入口抽象成的平面示意图.已 知入口 BC 宽 3.9 米,门卫室外墙 AB 上的 O 点处装有一盏路灯,点 O 与地面 BC 的距离为 3.3 米,灯臂 OM 长为 1.2 米(灯罩长度忽略不计),∠AOM=60°.
第 11页(共 17页)
(1)求点 M 到地面的距离; (2)某搬家公司一辆总宽 2.55 米,总高 3.5 米的货车从该入口进入时,货车 需与护栏 CD 保持 0.65 米的安全距离,此时,货车能否安全通过?若能,请通
2.(3 分)下列运算结果正确的是( ) A.a3•a2=a5 B.(a3)2=a5 C.a3+a2=a5 D.a﹣2=﹣a2 【解答】解:A、a3•a2=a5,正确,故本选项符合题意; B、(a3)2=a6,故本选项不符合题意; C、不是同类项不能合并,故本选项不符合题意;
D、a﹣2=
1 2,故本选项不符合题意,
; (3)扇形统计图中“划龙舟”所在扇形的圆心角的度数为:13200×360°=90°; (4)如图所示:
第 10页(共 17页)
, 一共有 12 种可能,恰好选中“花鼓戏、划龙舟”这两个项目的有 2 种可能, 故恰好选中“花鼓戏、划龙舟”这两个项目的概率为:16.

湖南省岳阳市2018年中考数学真题试题(pdf,含解析)

湖南省岳阳市2018年中考数学真题试题(pdf,含解析)

E,直径 AB=18,∠A=30°,弦 CD⊥AB,垂足为点 F,连接 AC,OC,则下列结论
正确的是
.(写出所有正确结F∽△OEC; ④若点 P 为线段 OA 上一动点,则 AP•OP 有最大值 20.25.
三、解答题(本大题共 8 小题,满分 64 分,解答应写出文字说明,证明过程或 演算步骤) 17.(6 分)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣ | 18.(6 分)如图,在平行四边形 ABCD 中,AE=CF,求证:四边形 BFDE 是平行 四边形.
还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为 33000 平方
米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增
加了人力和设备,实际工作效率比原计划每天提高了 20%,结果提前 11 天完成
任务,求实际平均每天施工多少平方米?
22.(8 分)图 1 是某小区入口实景图,图 2 是该入口抽象成的平面示意图.已
8.(3 分)在同一直角坐标系中,二次函数 y=x2 与反比例函数 y= (x>0)的图
象如图所示,若两个函数图象上有三个不同的点 A(x1,m),B(x2,m),C(x3, m),其中 m 为常数,令 ω=x1+x2+x3,则 ω 的值为( )
第 1 页(共 22 页)
A.1 B.m C.m2 D.

15.(4 分)《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,
股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长
为 5 步,股(长直角边)长为 12 步,问该直角三角形能容纳的正方形边长最大
是多少步?”该问题的答案是

2018年湖南岳阳数学中考试题

2018年湖南岳阳数学中考试题

2018年湖南省岳阳市数学中考试卷学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共8小题)1.2018的倒数是()A.2018 B.C.﹣D.﹣20182.下列运算结果正确的是()A.a3•a2=a5B.(a3)2=a5C.a3+a2=a5D.a﹣2=﹣a23.函数y=中自变量x的取值范围是()A.x>3 B.x≠3 C.x≥3 D.x≥04.抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)5.已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.6.在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是()A.90,96 B.92,96 C.92,98 D.91,927.下列命题是真命题的是()A.平行四边形的对角线相等B.三角形的重心是三条边的垂直平分线的交点C.五边形的内角和是540°D.圆内接四边形的对角相等8.在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A.1 B.m C.m2D.二、填空题(共8小题)9.因式分解:x2﹣4=﹣.10.2018年岳阳市教育扶贫工作实施方案出台,全市计划争取“全面改薄”专项资金120000000元,用于改造农村义务教育薄弱学校100所,数据120000000科学记数法表示为.11.关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是.12.已知a2+2a=1,则3(a2+2a)+2的值为.13.在﹣2,1,4,﹣3,0这5个数字中,任取一个数是负数的概率是.14.如图,直线a∥b,∠l=60°,∠2=40°,则∠3=.15.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是步.16.如图,以AB为直径的⊙O与CE相切于点C,CE交AB的延长线于点E,直径AB=18,∠A=30°,弦CD⊥AB,垂足为点F,连接AC,OC,则下列结论正确的是.(写出所有正确结论的序号)①=;②扇形OBC的面积为π;③△OCF∽△OEC;④若点P为线段OA上一动点,则AP•OP有最大值20.25.三、解答题(共8小题)17.计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣|18.如图,在平行四边形ABCD中,AE=CF,求证:四边形BFDE是平行四边形.19.如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.20.为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.21.为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线生态保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?22.图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC宽3.9米,门卫室外墙AB上的O点处装有一盏路灯,点O与地面BC的距离为3.3米,灯臂OM长为1.2米(灯罩长度忽略不计),∠AOM=60°.(1)求点M到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:≈1.73,结果精确到0.01米)23.已知在Rt△ABC中,∠BAC=90°,CD为∠ACB的平分线,将∠ACB沿CD所在的直线对折,使点B落在点B′处,连结AB',BB',延长CD交BB'于点E,设∠ABC=2α(0°<α<45°).(1)如图1,若AB=AC,求证:CD=2BE;(2)如图2,若AB≠AC,试求CD与BE的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC绕点C逆时针旋转角(α+45°),得到线段FC,连结EF交BC于点O,设△COE的面积为S1,△COF的面积为S2,求(用含α的式子表示).24.已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.2018年湖南省岳阳市数学中考试卷参考答案一、单选题(共8小题)1.【分析】直接利用倒数的定义进而分析得出答案.【解答】解:2018的倒数是,故选:B.【知识点】倒数2.【分析】根据积的乘方,幂的乘方,负指数幂的定义一一判断即可解决问题;【解答】解:A、a3•a2=a5,正确,故本选项符合题意;B、(a3)2=a6,故本选项不符合题意;C、不是同类项不能合并,故本选项不符合题意;D、a﹣2=,故本选项不符合题意,故选:A.【知识点】负整数指数幂、幂的乘方与积的乘方、合并同类项、同底数幂的乘法3.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:函数y=中x﹣3≥0,所以x≥3,故选:C.【知识点】函数自变量的取值范围4.【分析】根据二次函数的性质y=a(x+h)2+k的顶点坐标是(﹣h,k)即可求解.【解答】解:抛物线y=3(x﹣2)2+5的顶点坐标为(2,5),故选:C.【知识点】二次函数的性质5.【分析】分别解不等式组进而在数轴上表示出来即可.【解答】解:,解①得:x<2,解②得:x≥﹣1,故不等式组的解集为:﹣1≤x<2,故解集在数轴上表示为:.故选:D.【知识点】在数轴上表示不等式的解集、解一元一次不等式组6.【分析】根据中位数,众数的定义即可判断.【解答】解:将数据从小到大排列:86,88,90,92,96,96,98;可得中位数为92,众数为96.故选:B.7.【分析】根据平行四边形的性质、三角形的重心的概念、多边形内角和的计算公式、圆内接四边形的性质判断即可.【解答】解:平行四边形的对角线互相平分,A是假命题;三角形的重心是三条边的中线的交点,B是假命题;五边形的内角和=(5﹣2)×180°=540°,C是真命题;圆内接四边形的对角互补,D是假命题;故选:C.【知识点】命题与定理8.【分析】三个点的纵坐标相同,由图象可知y=x2图象上点横坐标互为相反数,则x1+x2+x3=x3,再由反比例函数性质可求x3.【解答】解:设点A、B在二次函数y=x2图象上,点C在反比例函数y=(x>0)的图象上.因为AB两点纵坐标相同,则A、B关于y轴对称,则x1+x2=0,因为点C(x3,m)在反比例函数图象上,则x3=∴ω=x1+x2+x3=x3=故选:D.【知识点】二次函数图象上点的坐标特征、二次函数的图象、反比例函数图象上点的坐标特征、反比例函数的图象二、填空题(共8小题)9.【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【知识点】因式分解-运用公式法10.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.120000000=1.2【解答】解:120000000=1.2×108,故答案为:1.2×108.【知识点】科学记数法—表示较大的数11.【分析】由方程有两个不等实数根可得出关于k的一元一次不等式,解不等式即可得出结论.【解答】解:由已知得:△=4﹣4k>0,解得:k<1.故答案为:k<1.【知识点】根的判别式12.【分析】利用整体思想代入计算即可;【解答】解:∵a2+2a=1,∴3(a2+2a)+2=3×1+2=5,故答案为5.【知识点】代数式求值13.【分析】根据概率公式:P(A)=事件A可能出现的结果数:所有可能出现的结果数可得答案.【解答】解:任取一个数是负数的概率是:P=,故答案为:.【知识点】概率公式14.【分析】根据平行线的性质求出∠4,根据三角形内角和定理计算即可.【解答】解:∵a∥b,∴∠4=∠l=60°,∴∠3=180°﹣∠4﹣∠2=80°,故答案为:80°.【知识点】平行线的性质15.【分析】如图1,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论;如图2,同理可得正方形的边长,比较可得最大值.【解答】解:如图1,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12﹣x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴,∴,x=,如图2,四边形DGFE是正方形,过C作CP⊥AB于P,交DG于Q,设ED=x,S△ABC=AC•BC=AB•CP,12×5=13CP,CP=,同理得:△CDG∽△CAB,∴,∴,x=,∴该直角三角形能容纳的正方形边长最大是(步),故答案为:.【知识点】相似三角形的应用16.【分析】利用垂径定理对①进行判断;利用圆周角定理得到∠BOC=2∠A=60°,则利用扇形的面积公式可计算出扇形OBC的面积,于是可对②进行判断;利用切线的性质得到OC⊥CE,然后根据相似三角形的判定方法对③进行判断;由于AP•OP=﹣(OP﹣)2+,则可利用二次函数的性质对④进行判断.【解答】解:∵弦CD⊥AB,∴=,所以①正确;∴∠BOC=2∠A=60°,∴扇形OBC的面积==π,所以②错误;∵⊙O与CE相切于点C,∴OC⊥CE,∴∠OCE=90,∵∠COF=∠EOC,∠OFC=∠OCE,∴△OCF∽△OEC;所以③正确;AP•OP=(9﹣OP)•OP=﹣(OP﹣)2+,当OP=时,AP•OP的最大值为,所以④正确.故答案为①③④.【知识点】垂径定理、扇形面积的计算、圆周角定理、切线的性质、相似三角形的判定与性质三、解答题(共8小题)17.【分析】本题涉及零指数幂、乘方、特殊角的三角函数值、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣2×+1+=1﹣+1+=2.【知识点】零指数幂、实数的运算、特殊角的三角函数值18.【分析】首先根据四边形ABCD是平行四边形,判断出AB∥CD,且AB=CD,然后根据AE=CF,判断出BE=DF,即可推得四边形BFDE是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,且AB=CD,又∵AE=CF,∴BE=DF,∴BE∥DF且BE=DF,∴四边形BFDE是平行四边形.【知识点】平行四边形的判定与性质19.【分析】(1)把A的坐标代入反比例函数的解析式即可求得;(2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程求得b的值,进而求得a的值,根据待定系数法,可得答案.【解答】解:(1)由题意得,k=xy=2×3=6(2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b)∵反比例函数y=的图象经过点B(a,b)∴b=∴AD=3﹣.∴S△ABC=BC•AD=a(3﹣)=6解得a=6∴b==1∴B(6,1).设AB的解析式为y=kx+b,将A(2,3),B(6,1)代入函数解析式,得,解得,直线AB的解析式为y=﹣x+4.【知识点】反比例函数系数k的几何意义、待定系数法求一次函数解析式、待定系数法求反比例函数解析式、反比例函数图象上点的坐标特征、反比例函数的性质20.【分析】(1)直接利用腰鼓所占比例以及条形图中人数即可得出这次参与调查的村民人数;(2)利用条形统计图以及样本数量得出喜欢广场舞的人数;(3)利用“划龙舟”人数在样本中所占比例得出“划龙舟”所在扇形的圆心角的度数;(4)利用树状图法列举出所有的可能进而得出概率.【解答】解:(1)这次参与调查的村民人数为:24÷20%=120(人);故答案为:120;(2)喜欢广场舞的人数为:120﹣24﹣15﹣30﹣9=42(人),如图所示:;(3)扇形统计图中“划龙舟”所在扇形的圆心角的度数为:×360°=90°;(4)如图所示:,一共有12种可能,恰好选中“花鼓戏、划龙舟”这两个项目的有2种可能,故恰好选中“花鼓戏、划龙舟”这两个项目的概率为:.【知识点】列表法与树状图法、条形统计图、扇形统计图21.【分析】设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据时间=工作总量÷工作效率结合提前11天完成任务,即可得出关于x的分式方程,解之即可得出结论.【解答】解:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据题意得:﹣=11,解得:x=500,经检验,x=500是原方程的解,∴1.2x=600.答:实际平均每天施工600平方米.【知识点】分式方程的应用22.【分析】(1)构建直角△OMN,求ON的长,相加可得BN的长,即点M到地面的距离;(2)左边根据要求留0.65米的安全距离,即取CE=0.65,车宽EH=2.55,计算高GH的长即可,与3.5作比较,可得结论.【解答】解:(1)如图,过M作MN⊥AB于N,交BA的延长线于N,Rt△OMN中,∠NOM=60°,OM=1.2,∴∠M=30°,∴ON=OM=0.6,∴NB=ON+OB=3.3+0.6=3.9;即点M到地面的距离是3.9米;(2)取CE=0.65,EH=2.55,∴HB=3.9﹣2.55﹣0.65=0.7,过H作GH⊥BC,交OM于G,过O作OP⊥GH于P,∵∠GOP=30°,∴tan30°==,∴GP=OP=≈0.404,∴GH=3.3+0.404=3.704≈3.70>3.5,∴货车能安全通过.【知识点】解直角三角形的应用23.【分析】(1)由翻折可知:BE=EB′,再利用全等三角形的性质证明CD=BB′即可;(2)如图2中,结论:CD=2•BE•tan2α.只要证明△BAB′∽△CAD,可得==,推出=,可得CD=2•BE•tan2α;(3)首先证明∠ECF=90°,由∠BEC+∠ECF=180°,推出BB′∥CF,推出===sin(45°﹣α),由此即可解决问题;【解答】解:(1)如图1中,∵B、B′关于EC对称,∴BB′⊥EC,BE=EB′,∴∠DEB=∠DAC=90°,∵∠EDB=∠ADC,∴∠DBE=∠ACD,∵AB=AC,∠BAB′=∠DAC=90°,∴△BAB′≌CAD,∴CD=BB′=2BE.(2)如图2中,结论:CD=2•BE•tan2α.理由:由(1)可知:∠ABB′=∠ACD,∠BAB′=∠CAD=90°,∴△BAB′∽△CAD,∴==,∴=,∴CD=2•BE•tan2α.(3)如图3中,在Rt△ABC中,∠ACB=90°﹣2α,∵EC平分∠ACB,∴∠ECB=(90°﹣2α)=45°﹣α,∵∠BCF=45°+α,∴∠ECF=45°﹣α+45°+α=90°,∴∠BEC+∠ECF=180°,∴BB′∥CF,∴===sin(45°﹣α),∵=,∴=sin(45°﹣α).【知识点】几何变换综合题(2)将直线l的解析式代入抛物线F的解析式中,可求出x1、x2的值,利用一次函数图象上点的坐标特征可求出y1、y2的值,做差后即可得出y2﹣y1的值;(3)根据m的值可得出点A、B的坐标,利用对称性求出点A′的坐标.①利用两点间的距离公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B为等边三角形;②根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P,设点P的坐标为(x,y),分三种情况考虑:(i)当A′B为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(ii)当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(iii)当AA′为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标.综上即可得出结论.【解答】解:(1)∵抛物线y=x2+bx+c的图象经过点(0,0)和(﹣,0),∴,解得:,∴抛物线F的解析式为y=x2+x.(2)将y=x+m代入y=x2+x,得:x2=m,解得:x1=﹣,x2=,∴y1=﹣+m,y2=+m,∴y2﹣y1=(+m)﹣(﹣+m)=(m>0).(3)∵m=,∴点A的坐标为(﹣,),点B的坐标为(,2).∵点A′是点A关于原点O的对称点,∴点A′的坐标为(,﹣).①△AA′B为等边三角形,理由如下:∵A(﹣,),B(,2),A′(,﹣),∴AA′=,AB=,A′B=,∴AA′=AB=A′B,∴△AA′B为等边三角形.②∵△AA′B为等边三角形,∴存在符合题意的点P,且以点A、B、A′、P为顶点的菱形分三种情况,设点P的坐标为(x,y).(i)当A′B为对角线时,有,解得:,∴点P的坐标为(2,);(ii)当AB为对角线时,有,解得:,∴点P的坐标为(﹣,);(iii)当AA′为对角线时,有,解得:,∴点P的坐标为(﹣,﹣2).综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(2,)、(﹣,)和(﹣,﹣2).【知识点】二次函数综合题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年湖南省岳阳市中考数学试卷一、选择题(本大题共8小题,每小题3分,满分24分,在每道小题给出的四个选项中,选出符合要求的一项)1.(3分)(2018•岳阳)2018的倒数是()A.2018 B.12018C.﹣12018D.﹣20182.(3分)(2018•岳阳)下列运算结果正确的是()A.a3•a2=a5 B.(a3)2=a5C.a3+a2=a5 D.a﹣2=﹣a23.(3分)(2018•岳阳)函数y=√x−3中自变量x的取值范围是()A.x>3 B.x≠3 C.x≥3 D.x≥04.(3分)(2018•岳阳)抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5) D.(2,﹣5)5.(3分)(2018•岳阳)已知不等式组{x−2<0x+1≥0,其解集在数轴上表示正确的是()A.B.C.D.6.(3分)(2018•岳阳)在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是()A.90,96 B.92,96 C.92,98 D.91,927.(3分)(2018•岳阳)下列命题是真命题的是()A.平行四边形的对角线相等B.三角形的重心是三条边的垂直平分线的交点C.五边形的内角和是540°D.圆内接四边形的对角相等8.(3分)(2018•岳阳)在同一直角坐标系中,二次函数y=x2与反比例函数y=1 x(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A.1 B.m C.m2D.1 m二、填空题(本大题共8小题,每小题4分,满分32分)9.(4分)(2018•桂林)因式分解:x2﹣4=.10.(4分)(2018•岳阳)2018年岳阳市教育扶贫工作实施方案出台,全市计划争取“全面改薄”专项资金120000000元,用于改造农村义务教育薄弱学校100所,数据120000000科学记数法表示为.11.(4分)(2018•岳阳)关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是.12.(4分)(2018•岳阳)已知a2+2a=1,则3(a2+2a)+2的值为.13.(4分)(2018•岳阳)在﹣2,1,4,﹣3,0这5个数字中,任取一个数是负数的概率是.14.(4分)(2018•岳阳)如图,直线a∥b,∠l=60°,∠2=40°,则∠3=.15.(4分)(2018•岳阳)《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是步.16.(4分)(2018•岳阳)如图,以AB为直径的⊙O与CE相切于点C,CE交AB 的延长线于点E,直径AB=18,∠A=30°,弦CD⊥AB,垂足为点F,连接AC,OC,则下列结论正确的是.(写出所有正确结论的序号)①BĈ=BD̂;②扇形OBC的面积为274π;③△OCF∽△OEC;④若点P为线段OA上一动点,则AP•OP有最大值20.25.三、解答题(本大题共8小题,满分64分,解答应写出文字说明,证明过程或演算步骤)17.(6分)(2018•岳阳)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣√2| 18.(6分)(2018•岳阳)如图,在平行四边形ABCD中,AE=CF,求证:四边形BFDE是平行四边形.19.(8分)(2018•岳阳)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.20.(8分)(2018•岳阳)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.21.(8分)(2018•岳阳)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?22.(8分)(2018•岳阳)图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC宽3.9米,门卫室外墙AB上的O点处装有一盏路灯,点O与地面BC的距离为3.3米,灯臂OM长为1.2米(灯罩长度忽略不计),∠AOM=60°.(1)求点M到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:√3≈1.73,结果精确到0.01米)23.(10分)(2018•岳阳)已知在Rt△ABC中,∠BAC=90°,CD为∠ACB的平分线,将∠ACB沿CD所在的直线对折,使点B落在点B′处,连结AB',BB',延长CD交BB'于点E,设∠ABC=2α(0°<α<45°).(1)如图1,若AB=AC,求证:CD=2BE;(2)如图2,若AB≠AC,试求CD与BE的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC绕点C逆时针旋转角(α+45°),得到线段FC,连结EF交BC于点O,设△COE的面积为S1,△COF的面积为S2,求S1S2(用含α的式子表示).24.(10分)(2018•岳阳)已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣√33,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=√33x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=43,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.2018年湖南省岳阳市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,满分24分,在每道小题给出的四个选项中,选出符合要求的一项)1.(3分)(2018•岳阳)2018的倒数是()A.2018 B.12018C.﹣12018D.﹣2018【考点】17:倒数.【专题】1 :常规题型;511:实数.【分析】直接利用倒数的定义进而分析得出答案.【解答】解:2018的倒数是1 2018,故选:B.【点评】此题主要考查了倒数,正确把握倒数的定义是解题关键.2.(3分)(2018•岳阳)下列运算结果正确的是()A.a3•a2=a5 B.(a3)2=a5C.a3+a2=a5 D.a﹣2=﹣a2【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法;6F:负整数指数幂.【专题】11 :计算题.【分析】根据积的乘方,幂的乘方,负指数幂的定义一一判断即可解决问题;【解答】解:A、a3•a2=a5,正确,故本选项符合题意;B、(a3)2=a6,故本选项不符合题意;C、不是同类项不能合并,故本选项不符合题意;D、a﹣2=1a,故本选项不符合题意,故选:A.【点评】本题考查积的乘方,幂的乘方,负指数幂的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.3.(3分)(2018•岳阳)函数y=√x−3中自变量x的取值范围是()A.x>3 B.x≠3 C.x≥3 D.x≥0【考点】E4:函数自变量的取值范围.【专题】11 :计算题;514:二次根式.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:函数y=√x−3中x﹣3≥0,所以x≥3,故选:C.【点评】本题考查了求函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.(3分)(2018•岳阳)抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5) D.(2,﹣5)【考点】H3:二次函数的性质.【专题】1 :常规题型;535:二次函数图象及其性质.【分析】根据二次函数的性质y=a(x+h)2+k的顶点坐标是(﹣h,k)即可求解.【解答】解:抛物线y=3(x﹣2)2+5的顶点坐标为(2,5),故选:C.【点评】本题考查了二次函数的性质,正确记忆y=a(x+h)2+k的顶点坐标是(﹣h,k)(a≠0)是关键.,其解集在数轴上表示正确的5.(3分)(2018•岳阳)已知不等式组{x−2<0x+1≥0是()A.B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【专题】1 :常规题型.【分析】分别解不等式组进而在数轴上表示出来即可.【解答】解:{x−2<0①x+1≥0②,解①得:x<2,解②得:x≥﹣1,故不等式组的解集为:﹣1≤x<2,故解集在数轴上表示为:.故选:D.【点评】此题主要考查了解一元一次不等式组,正确掌握解题方法是解题关键.6.(3分)(2018•岳阳)在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是()A.90,96 B.92,96 C.92,98 D.91,92【考点】W5:众数;W4:中位数.【专题】542:统计的应用.【分析】根据中位数,众数的定义即可判断.【解答】解:将数据从小到大排列:86,88,90,92,96,96,98;可得中位数为92,众数为96.故选:B.【点评】本题考查众数、中位数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.7.(3分)(2018•岳阳)下列命题是真命题的是()A.平行四边形的对角线相等B.三角形的重心是三条边的垂直平分线的交点C.五边形的内角和是540°D.圆内接四边形的对角相等【考点】O1:命题与定理.【专题】17 :推理填空题.【分析】根据平行四边形的性质、三角形的重心的概念、多边形内角和的计算公式、圆内接四边形的性质判断即可.【解答】解:平行四边形的对角线互相平分,A是假命题;三角形的重心是三条边的中线的交点,B是假命题;五边形的内角和=(5﹣2)×180°=540°,C是真命题;圆内接四边形的对角互补,D是假命题;故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.(3分)(2018•岳阳)在同一直角坐标系中,二次函数y=x2与反比例函数y=1 x(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A.1 B.m C.m2D.1 m【考点】G6:反比例函数图象上点的坐标特征;G2:反比例函数的图象;H2:二次函数的图象;H5:二次函数图象上点的坐标特征.【专题】31 :数形结合;534:反比例函数及其应用;535:二次函数图象及其性质.【分析】三个点的纵坐标相同,由图象可知y=x2图象上点横坐标互为相反数,则x1+x2+x3=x3,再由反比例函数性质可求x3.【解答】解:设点A、B在二次函数y=x2图象上,点C在反比例函数y=1x(x>0)的图象上.因为AB两点纵坐标相同,则A、B关于y轴对称,则x1+x2=0,因为点C(x3,m)在反比例函数图象上,则x3=1 m∴ω=x1+x2+x3=x3=1m故选:D.【点评】本题考查二次函数图象的轴对称性,二次函数图象上点纵坐标相同时,对应点关于抛物线对称轴对称.二、填空题(本大题共8小题,每小题4分,满分32分)9.(4分)(2018•桂林)因式分解:x2﹣4=(x+2)(x﹣2).【考点】54:因式分解﹣运用公式法.【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.10.(4分)(2018•岳阳)2018年岳阳市教育扶贫工作实施方案出台,全市计划争取“全面改薄”专项资金120000000元,用于改造农村义务教育薄弱学校100所,数据120000000科学记数法表示为 1.2×108.【考点】1I:科学记数法—表示较大的数.【专题】511:实数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.120000000=1.2【解答】解:120000000=1.2×108,故答案为:1.2×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(4分)(2018•岳阳)关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是k<1.【考点】AA:根的判别式.【专题】11 :计算题.【分析】由方程有两个不等实数根可得出关于k的一元一次不等式,解不等式即可得出结论.【解答】解:由已知得:△=4﹣4k>0,解得:k<1.故答案为:k<1.【点评】本题考查了根的判别式以及解一元一次不等式,解题的关键是得出关于k的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出不等式(或不等式组)是关键.12.(4分)(2018•岳阳)已知a2+2a=1,则3(a2+2a)+2的值为5.【考点】33:代数式求值.【专题】1 :常规题型;11 :计算题.【分析】利用整体思想代入计算即可;【解答】解:∵a2+2a=1,∴3(a2+2a)+2=3×1+2=5,故答案为5.【点评】本题考查代数式求值,解题的关键是学会用整体代入的思想解决问题,属于基础题.13.(4分)(2018•岳阳)在﹣2,1,4,﹣3,0这5个数字中,任取一个数是负数的概率是25.【考点】X4:概率公式.【专题】1 :常规题型.【分析】根据概率公式:P(A)=事件A可能出现的结果数:所有可能出现的结果数可得答案.【解答】解:任取一个数是负数的概率是:P=2 5,故答案为:25.【点评】此题主要考查了概率公式,关键是掌握公式.14.(4分)(2018•岳阳)如图,直线a ∥b ,∠l=60°,∠2=40°,则∠3= 80° .【考点】JA :平行线的性质. 【专题】17 :推理填空题.【分析】根据平行线的性质求出∠4,根据三角形内角和定理计算即可. 【解答】解:∵a ∥b , ∴∠4=∠l=60°,∴∠3=180°﹣∠4﹣∠2=80°, 故答案为:80°.【点评】本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.15.(4分)(2018•岳阳)《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是 6017步.【考点】SA :相似三角形的应用. 【专题】55:几何图形.【分析】根据正方形的性质得:DE ∥BC ,则△ADE ∽△ACB ,列比例式可得结论. 【解答】解:∵四边形CDEF 是正方形, ∴CD=ED ,DE ∥CF ,设ED=x ,则CD=x ,AD=12﹣x , ∵DE ∥CF ,∴∠ADE=∠C ,∠AED=∠B , ∴△ADE ∽△ACB ,∴DE BC =AD AC , ∴x 5=12−x 12, x=6017, ∴该直角三角形能容纳的正方形边长最大是6017(步), 故答案为:6017.【点评】此题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.16.(4分)(2018•岳阳)如图,以AB 为直径的⊙O 与CE 相切于点C ,CE 交AB的延长线于点E ,直径AB=18,∠A=30°,弦CD ⊥AB ,垂足为点F ,连接AC ,OC ,则下列结论正确的是 ①③④ .(写出所有正确结论的序号)①BĈ=BD ̂; ②扇形OBC 的面积为274π;③△OCF ∽△OEC ;④若点P 为线段OA 上一动点,则AP•OP 有最大值20.25.【考点】S9:相似三角形的判定与性质;M2:垂径定理;M5:圆周角定理;MC :切线的性质;MO :扇形面积的计算. 【专题】1 :常规题型.【分析】利用垂径定理对①进行判断;利用圆周角定理得到∠BOC=2∠A=60°,则利用扇形的面积公式可计算出扇形OBC 的面积,于是可对②进行判断;利用切线的性质得到OC ⊥CE ,然后根据相似三角形的判定方法对③进行判断;由于AP•OP=﹣(OP ﹣92)2+814,则可利用二次函数的性质对④进行判断. 【解答】解:∵弦CD ⊥AB ,∴BĈ=BD ̂,所以①正确; ∴∠BOC=2∠A=60°,∴扇形OBC 的面积=60⋅π⋅92360=272π,所以②错误;∵⊙O 与CE 相切于点C ,∴OC ⊥CE , ∴∠OCE=90,∵∠COF=∠EOC ,∠OFC=∠OCE , ∴△OCF ∽△OEC ;所以③正确;AP•OP=(9﹣OP )•OP=﹣(OP ﹣92)2+814,当OP=92时,AP•OP 的最大值为814,所以④正确.故答案为①③④.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了垂径定理、圆周角定理和切线的性质.三、解答题(本大题共8小题,满分64分,解答应写出文字说明,证明过程或演算步骤)17.(6分)(2018•岳阳)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣√2|【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】本题涉及零指数幂、乘方、特殊角的三角函数值、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣2×√22+1+√2=1﹣√2+1+√2=2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)(2018•岳阳)如图,在平行四边形ABCD中,AE=CF,求证:四边形BFDE是平行四边形.【考点】L7:平行四边形的判定与性质.【专题】14 :证明题.【分析】首先根据四边形ABCD是平行四边形,判断出AB∥CD,且AB=CD,然后根据AE=CF,判断出BE=DF,即可推得四边形BFDE是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,且AB=CD,又∵AE=CF,∴BE=DF,∴BE∥DF且BE=DF,∴四边形BFDE是平行四边形.【点评】此题主要考查了平行四边形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等.②判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.③判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.④判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.⑤判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等.19.(8分)(2018•岳阳)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.【考点】G7:待定系数法求反比例函数解析式;FA:待定系数法求一次函数解析式;G4:反比例函数的性质;G5:反比例函数系数k的几何意义;G6:反比例函数图象上点的坐标特征.【专题】534:反比例函数及其应用.【分析】(1)把A的坐标代入反比例函数的解析式即可求得;(2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b 的方程求得b 的值,进而求得a 的值,根据待定系数法,可得答案.【解答】解:(1)由题意得,k=xy=2×3=6 ∴反比例函数的解析式为y=6x.(2)设B 点坐标为(a ,b ),如图,作AD ⊥BC 于D ,则D (2,b )∵反比例函数y=6x的图象经过点B (a ,b )∴b=6a∴AD=3﹣6a .∴S △ABC =12BC•AD=12a (3﹣6a )=6 解得a=6 ∴b=6a =1∴B (6,1).设AB 的解析式为y=kx +b ,将A (2,3),B (6,1)代入函数解析式,得{2k +b =36k +b =1,解得{k =−12b =4, 直线AB 的解析式为y=﹣12x +4.【点评】本题考查了反比例函数,利用待定系数法求反比例函数的解析式,正确利用a,b表示出BC,AD的长度是关键.20.(8分)(2018•岳阳)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为120人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【专题】1 :常规题型.【分析】(1)直接利用腰鼓所占比例以及条形图中人数即可得出这次参与调查的村民人数;(2)利用条形统计图以及样本数量得出喜欢广场舞的人数;(3)利用“划龙舟”人数在样本中所占比例得出“划龙舟”所在扇形的圆心角的度数;(4)利用树状图法列举出所有的可能进而得出概率.【解答】解:(1)这次参与调查的村民人数为:24÷20%=120(人);故答案为:120;(2)喜欢广场舞的人数为:120﹣24﹣15﹣30﹣9=42(人),如图所示:;(3)扇形统计图中“划龙舟”所在扇形的圆心角的度数为:30120×360°=90°;(4)如图所示:,一共有12种可能,恰好选中“花鼓戏、划龙舟”这两个项目的有2种可能,故恰好选中“花鼓戏、划龙舟”这两个项目的概率为:1 6.【点评】此题主要考查了扇形统计图以及条形统计图的应用和树状图法求概率,正确列举出所有可能是解题关键.21.(8分)(2018•岳阳)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?【考点】B7:分式方程的应用.【专题】34 :方程思想;522:分式方程及应用.【分析】设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据时间=工作总量÷工作效率结合提前11天完成任务,即可得出关于x 的分式方程,解之即可得出结论.【解答】解:设原计划平均每天施工x 平方米,则实际平均每天施工1.2x 平方米,根据题意得:33000x ﹣330001.2x=11,解得:x=500,经检验,x=500是原方程的解, ∴1.2x=600.答:实际平均每天施工600平方米.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(8分)(2018•岳阳)图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC 宽3.9米,门卫室外墙AB 上的O 点处装有一盏路灯,点O 与地面BC 的距离为3.3米,灯臂OM 长为1.2米(灯罩长度忽略不计),∠AOM=60°.(1)求点M 到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD 保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:√3≈1.73,结果精确到0.01米) 【考点】T8:解直角三角形的应用. 【专题】55E :解直角三角形及其应用.【分析】(1)构建直角△OMN ,求ON 的长,相加可得BN 的长,即点M 到地面的距离;(2)左边根据要求留0.65米的安全距离,即取CE=0.65,车宽EH=2.55,计算高GH的长即可,与3.5作比较,可得结论.【解答】解:(1)如图,过M作MN⊥AB于N,交BA的延长线于N,Rt△OMN中,∠NOM=60°,OM=1.2,∴∠M=30°,∴ON=12OM=0.6,∴NB=ON+OB=3.3+0.6=3.9;即点M到地面的距离是3.9米;(2)取CE=0.65,EH=2.55,∴HB=3.9﹣2.55﹣0.65=0.7,过H作GH⊥BC,交OM于G,过O作OP⊥GH于P,∵∠GOP=30°,∴tan30°=GPOP =√3 3,∴GP=√33OP=1.73×0.73≈0.404,∴GH=3.3+0.404=3.704≈3.70>3.5,∴货车能安全通过.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会添加常用辅助线,在直角三角形解决问题,属于中考常考题型.23.(10分)(2018•岳阳)已知在Rt△ABC中,∠BAC=90°,CD为∠ACB的平分线,将∠ACB沿CD所在的直线对折,使点B落在点B′处,连结AB',BB',延长CD 交BB'于点E ,设∠ABC=2α(0°<α<45°).(1)如图1,若AB=AC ,求证:CD=2BE ;(2)如图2,若AB ≠AC ,试求CD 与BE 的数量关系(用含α的式子表示); (3)如图3,将(2)中的线段BC 绕点C 逆时针旋转角(α+45°),得到线段FC ,连结EF 交BC 于点O ,设△COE 的面积为S 1,△COF 的面积为S 2,求S 1S 2(用含α的式子表示).【考点】RB :几何变换综合题. 【专题】152:几何综合题.【分析】(1)由翻折可知:BE=EB′,再利用全等三角形的性质证明CD=BB′即可; (2)如图2中,结论:CD=2•BE•tan2α.只要证明△BAB′∽△CAD ,可得BB′CD =AB AC =1tan2α,推出2BE CD =1tan2α,可得C D=2•BE•tan2α; (3)首先证明∠ECF=90°,由∠BEC +∠ECF=180°,推出BB′∥CF ,推出EO OF =BE CF =BEBC=sin (45°﹣α),由此即可解决问题; 【解答】解:(1)如图1中,∵B 、B′关于EC 对称, ∴BB′⊥EC ,BE=EB′,∴∠DEB=∠DAC=90°, ∵∠EDB=∠ADC , ∴∠DBE=∠ACD ,∵AB=AC ,∠BAB′=∠DAC=90°, ∴△BAB′≌CAD , ∴CD=BB′=2BE .(2)如图2中,结论:CD=2•BE•tan2α.理由:由(1)可知:∠ABB′=∠ACD ,∠BAB′=∠CAD=90°, ∴△BAB′∽△CAD ,∴BB′CD =AB AC =1tan2α, ∴2BE CD =1tan2α, ∴CD=2•BE•tan2α.(3)如图 3中,在Rt △ABC 中,∠ACB=90°﹣2α, ∵EC 平分∠ACB ,∴∠ECB=12(90°﹣2α)=45°﹣α,∵∠BCF=45°+α,∴∠ECF=45°﹣α+45°+α=90°, ∴∠BEC +∠ECF=180°, ∴BB′∥CF ,∴EO OF =BE CF =BEBC =sin (45°﹣α), ∵S 1S 2=EO OF , ∴S 1S 2=sin (45°﹣α). 【点评】本题考查几何变换综合题、等腰直角三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、平行线等分线段定理、锐角三角函数等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.24.(10分)(2018•岳阳)已知抛物线F :y=x 2+bx +c 的图象经过坐标原点O ,且与x 轴另一交点为(﹣√33,0).(1)求抛物线F 的解析式;(2)如图1,直线l :y=√33x +m (m >0)与抛物线F 相交于点A (x 1,y 1)和点B (x 2,y 2)(点A 在第二象限),求y 2﹣y 1的值(用含m 的式子表示);(3)在(2)中,若m=43,设点A′是点A 关于原点O 的对称点,如图2.①判断△AA′B 的形状,并说明理由;②平面内是否存在点P ,使得以点A 、B 、A′、P 为顶点的四边形是菱形?若存在,求出点P 的坐标;若不存在,请说明理由. 【考点】HF :二次函数综合题.【专题】537:函数的综合应用.【分析】(1)根据点的坐标,利用待定系数法即可求出抛物线F 的解析式; (2)将直线l 的解析式代入抛物线F 的解析式中,可求出x 1、x 2的值,利用一次函数图象上点的坐标特征可求出y 1、y 2的值,做差后即可得出y 2﹣y 1的值; (3)根据m 的值可得出点A 、B 的坐标,利用对称性求出点A′的坐标. ①利用两点间的距离公式(勾股定理)可求出AB 、AA′、A′B 的值,由三者相等即可得出△AA′B 为等边三角形;②根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P ,设点P 的坐标为(x ,y ),分三种情况考虑:(i )当A′B 为对角线时,根据菱形的性质(对角线互相平分)可求出点P 的坐标;(ii )当AB 为对角线时,根据菱形的性质(对角线互相平分)可求出点P 的坐标;(iii )当AA′为对角线时,根据菱形的性质(对角线互相平分)可求出点P 的坐标.综上即可得出结论.【解答】解:(1)∵抛物线y=x 2+bx +c 的图象经过点(0,0)和(﹣√33,0),∴{c =013−√33b +c =0,解得:{b =√33c =0,∴抛物线F 的解析式为y=x 2+√33x .(2)将y=√33x +m 代入y=x 2+√33x ,得:x 2=m ,解得:x 1=﹣√m ,x 2=√m ,∴y 1=﹣13√3m +m ,y 2=13√3m +m ,∴y 2﹣y 1=(13√3m +m )﹣(﹣13√3m +m )=23√3m (m >0). (3)∵m=43,∴点A 的坐标为(﹣2√33,23),点B 的坐标为(2√33,2).∵点A′是点A 关于原点O 的对称点, ∴点A′的坐标为(2√33,﹣23). ①△AA′B 为等边三角形,理由如下:∵A (﹣2√33,23),B (2√33,2),A′(2√33,﹣23),∴AA′=83,AB=83,A′B=83,∴AA′=AB=A′B,∴△AA′B为等边三角形.②∵△AA′B为等边三角形,∴存在符合题意的点P,且以点A、B、A′、P为顶点的菱形分三种情况,设点P 的坐标为(x,y).(i)当A′B为对角线时,有{x−2√33=2√33×2y=23,解得:{x=2√3 y=23,∴点P的坐标为(2√3,23);(ii)当AB为对角线时,有{x=−2√33y−23=23+2,解得:{x=−2√33y=103,∴点P的坐标为(﹣2√33,103);(iii)当AA′为对角线时,有{x=−2√33y+2=23−23,解得:{x=−2√33y=−2,∴点P的坐标为(﹣2√33,﹣2).综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(2√3,23)、(﹣2√33,103)和(﹣2√33,﹣2).。

相关文档
最新文档