人教版七年级数学工程问题

合集下载

人教版七年级上册一元一次方程应用题之工程问题

人教版七年级上册一元一次方程应用题之工程问题

一元一次方程应用题之工程问题工程问题:工程问题的基本量有:工作量、工作效率、工作时间。

关系式为:①工作量=工作效率×工作时间。

②工作时间=工作效率工作量,③工作效率=工作时间工作量。

工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t ,则工作效率为t1。

常见的相等关系有两种:①如果以工作量作相等关系,部分工作量之和=总工作量。

②如果以时间作相等关系,完成同一工作的时间差=多用的时间。

例题:例1.一水池装有甲、乙、丙三个水管,加、乙是进水管,丙是排水管,甲单独开需10小时注满一池水,乙单独开需6小时注满一池水,丙单独开15小时放完一池水。

现在三管齐开,需多少时间注满水池?例2.一项工程,甲队单独做需要10天完成,乙队单独做需要20天完成,两队同时工作3天后,乙队采用新技术,工作效率提高了25%,自乙队采用新技术后,两队还需要同时工作多少天才能完成这项工程?针对练习:1.某中学的学生自己动手整修操场,如果让初一学生单独工作,需要7.5小时完成;如果让初二学生单独工作,需要5小时完成。

如果让初一、初二学生一起工作1小时,再由初二学生单独完成剩余部分,共需几小时完成?2.一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共花12天完成,问乙做了几天?3.整理一批图书,由一个人做要40小时完成。

现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。

假设这些人的工作效率相同,具体先安排多少人工作。

4.某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?5.整理一批数据,由一个人做需80小时完成任务。

现在计划由一些人先做2小时,再增加5人做8小时,完成任务这项工作的3/4。

怎样安排参与整理数据的具体人数?行程问题行程问题中有三个基本量:路程、时间、速度。

人教版七年级上册数学第三章一元一次方程应用题——工程问题

人教版七年级上册数学第三章一元一次方程应用题——工程问题

人教版七年级上册数学第三章一元一次方程应用题——工程问题1.某建筑工地计划租用甲、乙两辆车清理建筑垃圾,已知甲车单独运完需要12天,乙车单独运完需要24天.甲车先运了3天,然后甲、乙两车合作运完剩下的垃圾.(1)甲、乙两车合作还需要多少天才能运完这些垃圾?(2)已知甲车每天的租金比乙车多100元,运完这些垃圾后建筑工地共需支付租金3900元,甲、乙两车每天的租金分别为多少元?2.现有一项工程,甲队单独完成需10天,乙队单独完成需6天.(1)若甲队单独做2天后两队再合作,则甲、乙两队再合作多少天才能把该工程完成?(2)在(1)的条件下,甲队每天的施工费用为500元,乙队每天的施工费用为600元,则完成此项工程需付给甲、乙两队共多少元?3.某城市平均每天产生垃圾700吨,由甲,乙两个垃圾处理厂处理.已知甲厂每小时可以处理垃圾55吨,每吨需费用10元;乙厂每小时可以处理垃圾45吨,每吨费用9元.(1)甲,乙两厂同时处理该城市的垃圾,每天需要多少时间完成?(2)如果该城市每天用于处理垃圾的费用为6700元,那么甲厂每天处理垃圾多少吨?4.某工人原计划每天生产45个零件,到预定期限还有220个零件不能完成.若提高工效20%,则到期将超额完成140个.此工人原计划生产零件多少个?预定期限是多少天?5.列方程解应用题:某车间原计划13小时生产一批零件,技术革新提升了产能,实际每小时多生产10件,用12小时不仅完成任务,而且还较原计划多生产了60件.求:原计划每小时生产的零件数.6.一项工程,如果由甲工程队单独做需要20天完成,乙工程队单独做需要12天完成.现在由甲队单独做4天,剩下的工程由甲、乙合作完成.(1)(列方程解答)剩下的部分合作还需要几天完成?(2)若该工程的总费用为240万元,根据实际完成情况,甲乙两工程队各得多少万元?7.现有甲、乙两个工程队共同铺设一段长为1350km的天然气管道.甲工程队每天铺设5km,乙工程队每天铺设7km,甲工程队先施工30天后,乙工程队也开始一起施工,乙工程队施工多少天后能完成这项工程?8.某地为了打造风光带,将一段长为360m的河道整治任务,由甲、乙两个工程队先后接力完成,共用时20天.已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多少天完成任务?9.我县更生路正在改造地下管线,该管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?10.有一些相同的房间需要粉刷墙面,一天4名一级技工去粉刷8个房间,结果其中有20平方米墙面未来得及粉刷;同样时间内2名二级技工粉刷了3个房间之外,还多粉刷了另外的20平方米墙面.已知每名一级工比二级工一天多粉刷15平方米墙面,求每名一级技工、二级技工每天各刷墙面多少平方米.11.整理一批图书,由一个人做需要120h完成,先计划由一部分人先做12h,然后再增加5人与他们一起做8个小时,完成这项工作.假设这些人的工作效率相同,具体应安排多少人工作?12.修一条公路,甲队单独修需要10天完成,乙队单独修需要12天完成,丙队单独修需要15天完成.现在先由甲队修2.5天,再由乙队接着修,最后还剩下一段路,由三队合修2天才完成任务.求乙队在整个修路工程中工作的天数.13.开凿一个山洞,甲队单独开凿8天完成,乙队单独开凿12天完成,现甲队单独开凿若干天之后留给乙队单独开凿,两队先后共用10天完成,甲乙两队各开凿几天?14.一项工程甲单独做需要10小时,乙单独做需要8小时,现甲单独做两小时后乙加入一起做,问这项工程完成共需几个小时?15.某项工程,如果让甲工程队单独工作需75天完成,如果让乙工程队单独工作需50天完成.如果让两个工程队一起工作15天,再由乙工程队完成剩余部分,共需多少天完成?(请列方程解应用题)16.一条地下管线,若由甲工程队单独完成需要12天,由乙工程队单独完成需要24天,先由乙工程队铺设3天,剩下的甲、乙合作完成.还需多少天铺设完这条管道?17.一项工程,甲单独做需20天完成,乙单独做需10天完成,现在先由甲乙合做4天后,剩下的部分由甲单独做完成,问一共需要做多少天完成任务?(列方程解应用题)18.为了便于广大市民晚上出行,政府计划用24天的时间在徒骇河大桥至下注段公路两侧修建路灯便民设施,若此项工程由甲队单独做需要40天完成,由乙队单独做需要20天完成.在甲队单独做了一段时间后,为了加快工程进度乙队也加入了工程建设,正好按原计划完成了此项工程,问此项工程甲队单独做了多少天19.甲、乙两人的工作效率之比为3:2,某项工作甲、乙合作7天后,乙再单独工作2天可以完成任务的一半,问甲、乙单独做各需几天才能完成这项工作?20.姐、弟二人录入一批稿件,姐姐单独录入需要的时间是弟弟的38,姐姐先录入了这批稿件的25,接着由弟弟单独录入,共用24小时录入完.问:姐姐录入用了多少小时?。

第三章 第12课 一元一次方程与实际问题(6)(工程问题)-七年级上册初一数学(人教版)

第三章 第12课 一元一次方程与实际问题(6)(工程问题)-七年级上册初一数学(人教版)

第三章第12课一元一次方程与实际问题(6)(工程问题)-七年级上册初一数学(人教版)1. 引言一元一次方程是数学中的基础概念之一,对于解决实际问题具有重要意义。

本文将介绍七年级上册初一数学课程中的第三章第12课,重点讲解关于一元一次方程与实际问题的工程问题。

2. 工程问题的背景工程问题是实际生活中常见的一类问题,涉及到工程建设和实际情境。

通过建立一元一次方程,可以帮助解决这些工程问题,提供实际问题的解决思路,培养学生的数学建模能力。

3. 工程问题的基本步骤解决工程问题的基本步骤可以概括为以下几个方面:步骤一:理解问题在解决工程问题之前,我们首先要全面理解问题的背景和要求。

要仔细阅读问题,注意关键信息,明确问题的目标和限制条件。

步骤二:建立方程根据问题的要求,我们需要建立与实际情况相对应的一元一次方程。

要根据问题中提供的条件和约束,找到合适的变量,并建立方程模型。

步骤三:解决方程通过化简方程,使用代数运算的方法,解决一元一次方程,求得变量的具体取值。

在解题过程中要注意求解的准确性和合理性,运用适当的数学方法。

步骤四:检验答案解得方程后,要对结果进行检验,确保方程的解符合实际情况和问题要求。

可以将解得的结果代入原方程,看是否满足等式关系。

4. 工程问题示例问题描述某道路施工工地要修建一个长方形的围墙,长方形的周长是70米,宽度是10米。

围墙的高度质量比为1∶3,要求围墙的高度加上宽度的总和不超过50米。

请问这个围墙的高度是多少?解题过程步骤一:理解问题根据问题描述,我们知道该道路施工工地要修建一个长方形的围墙,围墙的周长是70米,宽度是10米。

而围墙的高度质量比为1∶3,要求围墙的高度加上宽度的总和不超过50米。

问题要求我们求解围墙的高度。

步骤二:建立方程首先,我们设围墙的长度为x,那么围墙的宽度就是10米。

根据周长的定义,周长等于围墙的长度加上围墙的宽度的两倍,即:周长 = 2 * (宽度 + 高度)将已知条件带入该方程,可得:70 = 2 * (10 + x)步骤三:解决方程通过化简方程,我们可以求得围墙的高度的表达式:70 = 20 + 2x 2x = 70 - 20 2x = 50 x = 25所以,围墙的高度是25米。

人教版数学七年级上册《工程问题》教学设计

人教版数学七年级上册《工程问题》教学设计

人教版数学七年级上册《工程问题》教学设计一. 教材分析人教版数学七年级上册《工程问题》是学生在学习了整数、分数、代数等基础知识后,进一步引导学生将实际问题抽象为数学模型,运用数学知识解决实际问题的章节。

本节内容主要包括工程问题模型的建立、工作效率、工作时间和工作总量三者之间的关系,以及应用这些知识解决实际问题。

教材通过丰富的例题和练习题,帮助学生掌握工程问题的解题方法,培养学生的数学应用能力。

二. 学情分析七年级的学生已经具备了一定的数学基础,对代数知识有一定的了解。

但是,学生对工程问题的理解还不够深入,需要通过实例和练习来逐步提高。

此外,学生可能对工作效率、工作时间和工作总量之间的关系有一定的困惑,需要通过具体例子和实际操作来加深理解。

三. 教学目标1.知识与技能:使学生掌握工程问题的基本模型,理解工作效率、工作时间和工作总量三者之间的关系,能够运用这些知识解决实际问题。

2.过程与方法:通过实例分析,让学生学会将实际问题抽象为数学模型,培养学生的数学抽象能力。

3.情感态度价值观:激发学生学习数学的兴趣,培养学生运用数学知识解决实际问题的能力。

四. 教学重难点1.重点:工程问题的基本模型,工作效率、工作时间和工作总量三者之间的关系。

2.难点:如何将实际问题抽象为工程问题模型,以及运用模型解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入工程问题,让学生在具体的情境中感受和理解工程问题的实质。

2.引导发现法:教师引导学生观察、分析实例,发现工程问题的解题规律。

3.练习法:通过大量的练习题,巩固学生对工程问题的理解和应用能力。

六. 教学准备1.教材:人教版数学七年级上册。

2.课件:制作相应的课件,用于辅助教学。

3.练习题:准备一些相关的练习题,用于课堂练习和课后巩固。

七. 教学过程1.导入(5分钟)利用生活实例,如修路、植树等,引出工程问题,让学生感受工程问题的实际意义。

2.呈现(10分钟)展示教材中的例题,引导学生观察、分析,发现工程问题的解题规律。

人教版七年级上册数学第三章一元一次方程应用题——工程问题训练

人教版七年级上册数学第三章一元一次方程应用题——工程问题训练

人教版七年级上册数学第三章一元一次方程应用题——工程问题训练1.有一批零件,甲单独生产需要40天完工,乙单独生产需要80天完工.(1)若甲、乙共同生产20天,乙再单独生产,求共需要多少天才能完工?(2)若乙因工作需要,他生产的时间不超过30天,求甲至少需要生产多少天才能完工?2.某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两修理组,甲修理组单独完成任务需要12天,乙修理组单独完成任务需要24天.()1若由甲、乙两修理组同时修理,需多少天可以修好这些套桌椅()2若甲、乙两修理组合作3天后,甲修理组因新任务离开,乙修理组继续工作.甲完成新任务后,回库与乙又合作3天,恰好完成任务.问:甲修理组离开几天?3.某石化工程公司第一工程队承包了铺设一段输油管道的工程,原计划用9天时间完成;实际施工时,每天比原计划平均多铺设50米,结果只用了7天就完成了全部任务.求:(1)按照原计划,平均每天铺设多少米?(2)这段输油管道有多长?4.为了保证某机场按时通航,通往机场公路需要及时翻修完工,已知甲队单独做需要10天完成,乙队单独做需要15天完成,若甲乙合作5天后,再由乙队单独完成剩余工作量,共需要多少天?5.为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成.已知甲、乙两车单独运完此垃圾,乙车所运趟数是甲车的2倍.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(2)若租用甲、乙两车各运12趟需支付运费4800元,且乙车每趟运费比甲车少200元.求单独租用一台车,租用哪台车合算?6.一项工程,甲队单独完成需60天,乙队单独完成需75天.(1)若甲队单独做24天后两队再合作,求:甲乙两队再合作多少天才能把该工程完成;(2)在(1)的条件下,甲队每天的施工费用为5000元,乙队每天的施工费用为6000元,求完成此项工程需付给甲、乙两队共多少元?7.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,求该班组原计划要完成的零件任务是多少个?8.一段长为250km的高速公路需要维修,现由甲、乙两个工程队先后接力完成,共用时15天,已知甲工程队每天维修20km,乙工程队每天维修15km.求甲、乙两个工程队分别维修了多长的高速公路?(用一元一次方程解决问题)9.甲、乙两人要各自在车间加工一批数量相同的零件,甲每小时可加工25个,乙每小时可加工20个.甲由于先去参加了一个会议,比乙少工作了1小时,结果两人同时完成任务,求每人加工的总零件数量.10.一项工程,甲队独做10h完成,乙队独做15h完成,丙队独做20h完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6h,问甲队实际工作了几小时?11.完成一项工作,如果安排两个人合做,要16天才能完成.开始先安排一些人做2天后,又增加1人和他们一起做4天,结果完成了这项工作的一半,假设这些人的工作效率相同.(1)开始安排了多少名工人?(2)如果要求再用4天做完剩余的全部工作,还需要再增加几人一起做?12.整理一批图书,由一个人完成需要20h.现计划由一部分人先做4h,然后增加4人与他们一起做2h,完成这项工作.假设这些人的工作效率相同.(1)先安排整理的人员有多少人?(2)先安排的这部分人员一共完成了多少工作量?13.某地为了打造风光带,将一段长为360米的河道整治任务交由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治16米,乙工程队每天整治20米,求甲、乙工程队分别整治了多长的河道?14.某工人计划在一定时间内加工一批零件,如果每天加工44个就比任务量少加工20个,如果每天加工50个则超额加工10个,求计划加工的天数15.整理一批图书,由一个人做要20 h完成.现计划由一部分人先做2 h,然后增加2人与他们一起再做4 h,完成了这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?16.一项工程,甲队单独做需18天,乙队单独做需24天,如果两队合作8天后,余下的工程由乙队完成。

人教版七年级上册数学一元一次方程应用题(工程问题)专题训练

人教版七年级上册数学一元一次方程应用题(工程问题)专题训练

人教版七年级上册数学一元一次方程应用题(工程问题)专题训练1.一项工作,如果由甲单独做,需7.5小时完成;如果由乙单独做.需要5小时完成.如7.整理一批图书,由一个人做要10小时完成.现计划由一部分人先做1小时,然后增加2人与他们一起做2小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?8.甲、乙两工程队共同承包了一段长4600米的排污管道铺设工程,计划由两工程队分别从两端相向施工.已知甲队平均每天可完成230米,乙队平均每天比甲队多完成115米.(1)若甲乙两队同时施工,共同完成全部任务需要几天?(2)若甲乙两队共同施工5天后,甲队被调离去支援其他工程,剩余的部分由乙队单独完成,则乙队需再施工多少天才能完成任务?9.一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天.(1)如果由这两个工程队从两端同时施工,需要多少天可以铺好这条管线?(2)如果先让甲乙工程队合作先施工(3)a +天,余下的工程再由甲工程队施工(42)+a 天,恰好完成该工程,求甲工程队一共参与了多少天?10.某项工程的承包合同规定:15天内完成这项工程,否则每超过1天罚款5000元.已知甲单独做30天完成,乙单独做20天完成,为此甲、乙两工程队商定共同承包这项工程.(1)若甲、乙两工程队全程合作,多少天能完成这项工程?(2)在两工程队合作完成这项工程的75%时,甲临时有其他任务被调走,余下的工程由乙单独完成,则这项工程能否在15天内完成?请说明理由.11.一段河道治理任务由A ,B 两个工程队完成.A 工程队单独治理该河道需16天完成,B 工程队单独治理该河道需24天完成,现在A 工程队单独做6天后,B 工程队加入合作完成剩下的工程,问B 工程队工作了多少天?17.某工厂有甲、乙两条加工相同原材料的生产线.甲生产线加工m吨原材料需要(2m+3)小时;乙生产线加工n吨原材料需要(3n+2)小时.(1)求甲生产线加工2吨原材料所需要的时间;(2)求乙生产线8小时能加工的原材料的吨数;(3)该企业把7吨原材料分配到甲、乙两条生产线,若两条生产线加工的时间相同,则分配到甲、乙生产线的吨数分别为多少?18.一项工程甲队单独做需要15天完成,乙队单独做需要30天完成.(1)求甲、乙两队合作完成该工程的天数;(2)现甲队先单独做3天,然后剩余工程由两个工程队合作完成.甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元,求最终需要分别向甲、乙两队支付工程款的钱数.(要求利用一元一次方程解决问题)19.课外活动时李老师来教室布置作业,有一道题只写了“学校校办厂需制作一块广告牌,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天”就停住了.根据以上信息解答下列问题:(1)两人合作需要_____天完成.(2)李老师选了两位同学的问题,合起来在黑板上写出:现由徒弟先做1天,再两人合作,完成后共得到报酬450元,如果按各完成工作量计算报酬,那么该如何分配?20.某工厂要制作一块广告牌,请来三名工人,已知甲单独做12天可完成,乙单独做20天可完成,丙单独做15天可完成.现在甲和乙合做了4天,余下的工作乙和丙两人合作完成,(1)余下的工作乙和丙两人合作多少天才能完成?(2)完成后,工厂支付酬金4800元,如果按各人完成的工作量计算报酬,那么应如何分配?参考答案:(2)甲中途离开了10天16.原计划36天完成任务.17.(1)7小时(2)2吨(3)分配到甲、乙生产线的吨数分别为4吨和3吨.18.(1)10天(2)最终需要向甲队支付38.5万元工程款,向乙队支付16万元工程款19.(1)2.4(2)师傅和徒弟各分225元20.(1)余下的工作乙和丙两人合作4天才能完成;(2)甲的报酬为1600元,乙的报酬为1920元,丙的报酬为1280元.。

人教版初中数学七年级上册第三章3.4.2工程问题与一元一次方程

人教版初中数学七年级上册第三章3.4.2工程问题与一元一次方程
பைடு நூலகம்
甲、乙两个工程队合力完成,已知甲工程队每天整治24m,乙工
程队每天整治16m。
问:甲的工作效率是:
乙的工作效率是:
甲乙的工作时间是:
甲的工作量是:
乙的工作量是:
自主探究:
例2.一项工作甲独做5天完成,乙独做10天完成,那么甲每天 的工作效率是 ,乙每天的工作效率是 ,两人合作3天 完成的工作量是 ,此时剩余的工作量是______.
例3.一项工作甲独做a天完成,乙独做b天完成,那么甲每 天的工作效率是 ,乙每天的工作效率是 ,两人合作 3天完成的工作量是 ,此时剩余的工作量是_______.
通常情况下,将工作总量看成单位“1”
自主探究:
例4.一条地下管线由甲工程队单独铺设需要12天,由乙工程队 单独铺设需要24天,如果甲、乙两个工程队同时施工,需要多 少天铺好这条管线?
第三章 一元一次方程
3.4 第2课时 工程问题与一元一次方程
复习回顾:
工程问题: 1.工程问题的3个基本量是:
2.(1)工作总量= (2)工作时间= (3)工作效率=
工作总量 工作时间 工作效率
3.通常情况下,将工作总量看成单位“1”
自主探究:
例1.某地为了打造风光带,将一段长为360m的河道整治任务由
例7.整理一批数据,由一个人做要80 h完成,现计划由一部分人先 做2 h,然后增加5人与他们一起做8 h,完成这项工作的3/4.假设这 些人的工作效率相同,具体应先安排多少人工作?
自主探究:
例8.某中学的学生自己动手整修操场,如果让七年级学生单独工 作,需要7.5h完成;如果让八年级学生单独工作,需要5h完成。 如果让七、年级学生一起工作1h,再由八年级学生单独完成剩 余部分,共需多少时间完成?

2024年人教版七年级数学上册《实际问题与一元一次方程(4)工程问题》课堂重难点精练

2024年人教版七年级数学上册《实际问题与一元一次方程(4)工程问题》课堂重难点精练

同学们,下课吧!
队单独做4天后两队合作.
(1)甲、乙两队合作多少天才能完成该工程?
解:(1)设甲、乙两队合作x天才能完成该工程.



根据题意,得 ×4+( + )x=1.


ቤተ መጻሕፍቲ ባይዱ
解得x=20.
答:甲、乙两队合作20天才能完成该工程.
3.一项工程,甲队单独完成需要40天,乙队单独完成需要50天,现甲
队单独做4天后两队合作.
(2)在(1)的条件下,甲队每天的施工费为3 000元,乙队每天的施
工费为3 500元,完成此项工程需付给甲、乙两队共多少元?
解:(2)甲队的费用为3 000×(20+4)=72 000(元).
乙队的费用为3 500×20=70 000(元),
72 000+70 000=142 000(元).
答:完成此项工程需付给甲、乙两队共142 000元.
人教版初中七年级数学上册课堂重难点精练
实际问题与一元一次方程
(4)工程问题
1.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9
个,如果每人做4个,那么比计划少7个.设计划做x个“中国结”,可
列方程( A )
+9 -7
A. =
6
4
-9 +7
B.

6
4
+9 +7
C. =
6
4
-9 -7
D.

6
4
2.一项工程,甲队单独完成需30天,乙队单独完成需45天,现甲队先
单独做20天,之后两队合作.甲、乙合作多少天才能把该工程完成?
解:设甲、乙合作x天才能把该工程完成.

人教版数学七年级上册3.4.1《工 程 问 题(2)》教学设计

人教版数学七年级上册3.4.1《工 程 问 题(2)》教学设计

人教版数学七年级上册3.4.1《工程问题(2)》教学设计一. 教材分析《工程问题(2)》是人教版数学七年级上册3.4.1的一个教学内容,主要让学生掌握工程问题的基本模型,并能运用基本的数量关系解决实际问题。

本节课的内容是在学生已经学习了《工程问题(1)》的基础上进行进一步的拓展,让学生更好地理解和掌握工程问题的解题方法。

二. 学情分析学生在进入七年级之前,已经初步掌握了基本的数学知识,对数学问题有一定的分析能力。

但是,对于工程问题的解决方法,部分学生可能还不是很清楚,需要通过本节课的学习,让学生进一步理解工程问题的基本模型和解题思路。

三. 教学目标1.让学生掌握工程问题的基本模型,理解工作总量、工作效率和工作时间之间的关系。

2.培养学生运用基本的数量关系解决实际问题的能力。

3.培养学生合作学习、积极思考的学习习惯。

四. 教学重难点1.重点:掌握工程问题的基本模型,理解工作总量、工作效率和工作时间之间的关系。

2.难点:如何运用基本的数量关系解决实际问题,以及如何将实际问题转化为工程问题的模型。

五. 教学方法采用问题驱动法,通过引导学生思考和解决问题,让学生掌握工程问题的基本模型和解题思路。

同时,采用合作学习的方式,让学生在小组讨论中,共同解决问题,培养学生的团队协作能力。

六. 教学准备1.准备相关的教学材料,如PPT、教案、练习题等。

2.准备一些实际问题,用于引导学生运用工程问题的模型进行解决。

七. 教学过程1.导入(5分钟)通过一个简单的实际问题,引导学生思考如何解决工程问题。

例如:某工程需要完成100个任务,甲、乙两人合作完成,甲每小时完成10个任务,乙每小时完成8个任务,问他们需要多少小时完成这项工程?2.呈现(15分钟)通过PPT呈现工程问题的基本模型,让学生理解工作总量、工作效率和工作时间之间的关系。

同时,给出一些实际问题,让学生尝试运用工程问题的模型进行解决。

3.操练(20分钟)学生在小组内合作解决一些实际问题,教师巡回指导,解答学生的疑问。

人教版七年级上数学一元一次方程实际问题——工程问题和配套问题

人教版七年级上数学一元一次方程实际问题——工程问题和配套问题

一元一次方程实际问题——工程问题和配套问题①在现实生活和生产中存在“产品配套”或“人员调配”问题,解决这类题的基本的等量关系是加工(或生产)的总量成比例。

②在工程问题中常见的数量关系:工作总量=工作效率 工作时间,各部分工作量总和等于1.1、某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,则原计划每小时生产多少件?2、某工厂第一车间的人数比第二车间人数的54少30人。

如果从第二车间调10人到第一车间,那么第一车间人数就是第二车间人数的43,求原来每个车间的人数。

3、某工厂男、女工人共70人,男工人调走10%,女工人掉入6人,这时,男、女人数正好相等,问:原来男、女工人各有多少人?4、甲队有工人272人,乙队有工人196人,如果要求乙队的人数是甲队人数的31,应从乙队调多少人到甲队?5、在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处总人数为在乙处总人数的2倍,则应调到甲处多少人?6、某中学甲、乙两班学生在开学时共有90人,如果从甲班转入乙班4人,则甲班的学生数是乙班的80%,那么开学时甲、乙两班分别有学生多少人?7、某工厂生产一批零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个,则原计划每天生产多少个零件?8、某班分组去两处植树,第一组26人,第二组22人。

现第一组在植树中遇到困难,需第二组支援。

问:第二组调去多少人去第一组,才能使第一组的人数是第二组的3倍,求应该从第二组抽调几人?9、甲仓库与乙仓库共存粮450吨,现从甲仓库运出存粮的60%,从乙仓库运出存粮的40%。

结果乙仓库所余的粮食比甲仓库所余的粮食多30吨。

则甲仓库原来存粮多少吨?10、程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁。

意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分一个,正好分完。

人教版七年级上册数学第三章一元一次方程应用题--工程问题

人教版七年级上册数学第三章一元一次方程应用题--工程问题

人教版七年级上册数学第三章一元一次方程应用题--工程问题1.学校举办一年一届的科技文化艺术节活动,需制作一块活动展板,请来两名工人,已知师傅单独完成需4天,徒弟单独完成需6天.现由徒弟先做1天,再两人合作,问还需几天可以完成这项工作?2.一项工程,甲公司单独做需要20天完成,乙公司单独做所用时间是甲公司的1.5倍.(1)若甲、乙两公司合作完成这项工程需要多少天?(2)若甲、乙两公司合作完成这项工程,在第10天结束时,甲公司有别的任务,不能继续合作,剩余部分由乙公司单独完成,则乙公司还需要做几天?3.同一建设工地,在甲处劳动的有25人,在乙处劳动的有17人,现调来30人支援,使得甲处的人数是乙处人数的2倍少3人,问该如何分配调来的30人?4.某建筑工地计划租用甲、乙两辆车清理建筑垃圾,已知甲车单独运完需要15天,乙车单独运完需要30天.甲车先运了3天,然后甲、乙两车合作运完剩下的垃圾.(1)甲、乙两车合作还需要多少天运完垃圾?(2)已知甲车每天的租金比乙车多100元,运完垃圾后建筑工地共需支付租金3950元.则甲、乙车每天的租金分别为多少元?5.某车间接到一批限期(可以提前)完成的零件加工任务.如果每天加工150个,则恰好按期完成;如果每天加工200个,则可比原计划提前5天完成.(1)求这批零件的个数;(2)车间按每天加工200个零件的速度加工了m个零件后,提高了加工速度,每天加工250个零件,结果比原计划提前6天完成了生产任务,求m的值.6.完成一项工作,如果安排两个人合做,要16天才能完成.开始先安排一些人做2天后,又增加1人和他们一起做4天,结果完成了这项工作的一半,假设这些人的工作效率相同.(1)开始安排了多少名工人?(2)如果要求再用4天做完剩余的全部工作,还需要再增加几人一起做?7.学校修建运动场,让甲工程队单独做需要15天完成,让乙工程队单独做需要10天完成.(1)如果让甲、乙工程队合做3天后,剩下的工程由乙工程队完成,还需要多少天?(2)已知甲队每天的费用为1000元,乙队每天的费用为1600 元,从节约资金的角度,认为是甲、乙队单独做,还是两队合做完成?8.学校有一批桌椅需要维修,现有甲、乙两个维修队,甲每天能维修16套,乙每天比甲多维修8套,甲单独完成维修任务比乙单独完成维修任务多用10天,问:学校这批需要维修的桌椅一共有多少套?9.茶厂用A B、两型机器同时生产一批相同的盒装茶叶(由若干听包装而成).已知3台A型机器一天生产的听装茶叶,包装成20盒后还剩2听,2台B型机器一天生产的听装茶叶,包装成15盒后还剩1听,每台A型机器比B型机器一天少生产4听茶叶.求每盒包装多少听茶叶?10.学校校办工厂需制作一块广告牌,请来师徒二人,已知师傅单独完成需4天,徒弟单独完成需6天,现由徒弟先做一天,再两人合作,完成后共得到报酬900元,如果按各人完成的工作量计算报酬,那么该如何分配11.某校七年级科技兴趣小组计划制作一批飞机模型,如果每人做6个,那么比计划多做了10个,如果每人做5个,那么比计划少做了14个.该兴趣小组共有多少人?计划做多少个飞机模型?12.整理一批图书,如果由一人单独做要用28h,现先安排一部分人用lh整理,随后又增加5人和他们一起又做了2h,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少?13.政府准备修建一条公路,若由甲工程队单独修需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元.(1)甲、乙两工程队合作修建需几个月完成?(2)合作修建共耗资多少万元?14.甲乙两个工程队承包了地铁某标段全长3900米的施工任务,分别从南,北两个方向同时向前掘进。

人教版七年级下册数学二元一次方程组应用题(工程问题)

人教版七年级下册数学二元一次方程组应用题(工程问题)

人教版七年级下册数学二元一次方程组应用题(工程问题)1.为了打造环湖风光带,现有一段长为88米的河道清淤任务,由甲、乙两个工程队先后接力完成.甲工程队每天清理10米,乙工程队每天清理8米,共用时10天,则甲乙工程队各清理了几天?2.某村经济合作社决定把22吨竹笋加工后再上市销售,刚开始每天加工3吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工5吨,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?3.某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售.该公司的加工能力是:每天可以精加工6吨或者粗加工16吨.现计划用15天完成加工任务.(1)该公司应安排几天精加工,几天粗加工,才能按期完成任务?(2)如果每吨蔬菜粗加工后的利润为1000元,精加工后为2000元,那么照此安排,该公司出售这些加工后的蔬菜共获利多少元?4.要修一段420千米长的公路.甲工程队先干2天乙工程队加入,两队再合干2天完成任务;如果乙队先干2天,甲、乙两队再合干3天完成任务,问甲、乙两个工程队每天各能修路多少千米?5.甲、乙两人共同制作--批零件,甲一共制作了2000个零件,乙比甲少制作了1 10,已知甲的工作效率比乙高25%,完成任务的时间比乙少5天,求甲、乙各花了多少时间完成任务.6.有一段长为180米的道路工程,由A,B两个工程队接力完成,A工程队每天完成15米,B工程队每天完成20米,共用时10天, 求A,B两工程队各完成多少米.7.李师傅加工1个甲种零件和1个乙种零件的时间是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟求李师傅加工2个甲种零件和4个乙种零件共需多少分钟.8.一项工程甲单独做需12天完成,乙单独做需18天完成,计划甲先做若干天后离去,再由乙完成,实际上甲只做了计划时间的一半便因事离去,然后由乙单独承担,而乙完成任务的时间恰好是原计划时间的2倍,求原计划甲、乙各做多少天?9.一家商铺进行维修,若请甲、乙两名工人同时施工,6天可以完成,共需支付两人工资5700元,若先请甲工人单独做4天,再请乙工人单独做7天也可完成,共需付给两人工资5450元()1甲、乙工人单独工作一天,商铺应分别支付多少工资?()2单独请哪名工人完成,商铺支付维修费用较少?10.某超市的地面需要铺设地砖,经询问得知:若请甲、乙两个工程队同时施工,8天可以完成,需付两工程队的费用共8000元;若先请甲工程队单独做6天,再请乙工程队单独做,则乙工程队12天可以完成,需付两工程队的费用共7920元.问:(1)甲、乙两工程队单独工作一天,超市应各付多少元?(2)单独请哪个工程队,超市所付费用较少?11.蕲春新长途客运站准备在七一前建成营运,后期工程若请甲乙两个工程队同时施工,8 天可以完工,需付两工程队施工费用7040 元;若先请甲工程队单独施工 6 天,再请乙工程队单独施工12 天可以完工,需付两工程队施工费用6960 元.(1)甲、乙两工程队施工一天,应各付施工费用多少元?(2)若想付费用较少,选择哪个工程队?若想尽早完工,选择哪个工程队?12.修建某一建筑时,若请甲、乙两个工程队同时施工,5天可以完成,需付两队费用共3 500元;若先请甲队单独做3天,再请乙队单独做6天可以完成,需付两队费用共3 300元.问:(1)甲、乙两队每天的费用各为多少?(2)若单独请某队完成工程,则单独请哪队施工费用较少?13.甲乙两人检修一条长270米的自来水管道,甲每小时比乙多检修10米,两人从管道两端同时开始检修,3小时完成任务,甲、乙两人每小时各检修多少米?14.一家商店准备进行装修,若请甲、乙两个装修队同时施工,8天完成,需付两队共3520元费用;若先请甲队单独做6天,再请乙队单独做12天可以完成,需付两队共3480元费用.(1)甲、乙两队工作一天,商场各应付多少元?(2)单独请哪个队装修,商场所付费用最少?15.太原市积极开展“举全市之力,创建文明城市”活动,为2020年进入全国文明城市行列莫定基础.某小区物业对面积为3600平方米的区域进行了绿化,整项工程由甲、乙两个林队先后接力完成,甲园林队每天绿化200平方米,乙园林队每天绿化160平方米,两队共用21天.求甲乙两个园林队在这项绿化工程中分别工作了多少天.16.一工地计划租用甲、乙两辆车清理淤泥,从运输量来估算,若租两车合运,10天可以完成任务,若甲车的效率是乙车效率的2倍.()1甲、乙两车单独完成任务分别需要多少天?()2已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元.试问:租甲乙车两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由.17.在凉山州“精准扶贫”工作中,甲、乙两个工程队先后接力为某扶贫村庄修建一条2100米长的公路袁甲队每天修建150米,乙队每天修建250米,一共用10天完成援求甲、乙工程队各修建了多少天?18.疫情期间某工厂紧急生产某种消毒液,有甲、乙两套不同的生产设备.若甲设备生产1天,乙设备生产6天,共生产了2 000吨消毒液;若同时使用甲、乙两种设备生产4天,也能生产2 000吨消毒液.求甲、乙设备每天各能生产多少吨消毒液?19.某服装厂接到生产一批防护服的任务,甲车间单独完成需15天,甲车间生产2天后,由于疫情紧急,需提前5天完成任务,乙车间加入共同生产正好如期完成(1)乙车间单独完成这批防护服需几天?(2)若甲车间平均每天生产200套防护服,问乙车间平均每天生产防护服多少套?20.在某外环公路改建工程中,某路段长6140米,现准备由甲、乙两个工程队拟在25天内(含25天)合作完成,已知两个工程队各有20名工人(设甲、乙两个工程队的工工程队1天、乙工程队2天共修路400米;甲工程队2天、乙工程队3天共修路700米.(1)试问:甲、乙两个工程队每天分别修路多少米?(2)甲、乙两个工程队施工8天后,由于工作需要需从甲队调离m人去其他工程工作,总部要求在规定时间内完成,请问:甲工程队最多可以调离多少人?。

人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练(含答案)

人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练(含答案)

人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练1.一项工作,如果由甲单独做,需6小时完成;如果由乙单独做,需要5小时完成.如果让甲、乙两人一起做1小时,再由乙单独完成剩余部分,还需多长时间完成?2.一项道路工程,甲队单独做9天完成,乙队单独做天完成.现在甲、乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,则乙队还需几天才能完成?3.整理一批图书,由一个人做要10小时完成.现计划由一部分人先做1小时,然后增加2人与他们一起做2小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?4.某地为了打造风光带,将一段长为的河道整治任务分配给甲,乙两个工程队先后接力完成,共用时天,已知甲工程队每天整治,乙工程队每天整治.求:(1)甲,乙两个工程队分别整治了多长的河道?(2)甲、乙两工程队各整治河道的天数.5.甲、乙两队修一座桥,如果由甲队单独完成,需要15天;如果由乙队单独完成,需要30天.现在由甲队单独做了3天后,承办方接到通知,需要加快修桥进度,后续工程由甲、乙两队共同完成,则甲、乙两队后续需要合作多少天才能修完这座桥?6.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务?12360m 2024m 16m7.将一批工业最新动态信息输入管理储存网络,甲单独完成需要4小时,乙单独完成需要6小时.(1)如果让甲、乙合作,需几小时完成这项工作任务的一半?(2)如果乙先做90分钟,然后甲、乙合作,还需多长时间才能完成这项工作?8.某工程队修一条隧道,计划每天修600米,20天完成,而实际每天多修25%,实际可以提前几天完成?(用比例解)9.一项工程,甲单独做需20天完成 ,乙单独做需15天完成,现在先由甲、乙合作若干天后,剩下的部分由乙独做,先后共用12天,请问甲做了多少天?10.修一条高速公路,甲队修了全长的60%,乙队修了全长的30%,甲队比乙队多修27千米,这条公路全长多少千米?11.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.正常情况下,甲、乙两人能否履行该合同?12.为了打赢蓝天保卫战,某市环保局对一段长的河道进行整治,整治任务由甲、乙两个工程队来完成.已知甲工程队每天完成,乙工程队每天完成.(1)若该任务由甲、乙两个工程队合作完成,则整治这段河道需要多少天?(2)若甲工程队先单独整治一段时间后离开,剩下的由乙工程队来完成,两队共用时天,求甲、乙工程队分别整治了多长的河道.13.修一条公路,甲单独完成需要20天,乙单独完成需要12天,甲先修4天后,为加快工程进度,乙加入,二人合作完成余下的任务,问还需多少天完成?(列方程解)2400m 30m 50m 6020.某信息管理中心,在距下班还剩4小时的时候,接到将一批工业最新动态信息输入管理储存网络的任务,甲单独做需6小时完成,乙单独做需4小时完成:(1)甲乙合作需要小时完成?(2)若甲先做30分钟,然后甲、乙合作,则甲、乙合作还需多少小时才能完成工作?(3)若甲先做30分钟,然后甲、乙合作1小时,这时又接到新的工作任务,必须调走一人,问剩下那人能否在下班之前完成这项工作?参考答案:。

3.4实际问题与一元一次方程第2课时工程问题人教版七年级数学上册

3.4实际问题与一元一次方程第2课时工程问题人教版七年级数学上册

1.一项工程甲独做要 40 天完成,乙独做要 50 天完成,甲先独做 4
天,然后两人一起做 x 天完成这项工程,则所列方程正确的是 ( )
A.4x0+5x0=1
B.440+40+x 50=1
C.440+5x0=1
D.440+4x0+5x0=1
1.一项工程甲独做要 40 天完成,乙独做要 50 天完成,甲先独做 4
3.整理一批图书,由一个人做要40小时完成.现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人 工作?
4 实际问题与一元一次方程
3.整理一批图书,由一个人做要40小时完成.现在计划由一部分 4 实际问题与一元一次方程
如果平均每天生产23套服装,那么就可超过订货任务20套,这批服装的订货任务是多少套?原计划多少天完成? 6.某制衣厂接受一批服装订货任务,如果按计划天数进行生产,平均每天生产20套服装,那么就比订货任务少生产100套;
6.某制衣厂接受一批服装订货任务,如果按计划天数进行生产,平均每天生产20套服装,那么就比订货任务少生产100套;
12<15,因此两人能履行合同. 6.某制衣厂接受一批服装订货任务,如果按计划天数进行生产,平均每天生产20套服装,那么就比订货任务少生产100套;
工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t,那么工作效率为______.
工工作作? 量些=___人_____的__×工工作时作间;效率相同,具体应先安排多少人工作?
3.整理一批图书,由一个人做要40小时完成.现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人 工作?

人教版七年级上册实际问题与一元一次方程-工程问题(教案)

人教版七年级上册实际问题与一元一次方程-工程问题(教案)
3.重点难点解析:在讲授过程中,我会特别强调工程问题中的工作效率、工作时间、工作总量之间的关系,以及如何列出正确的一元一次方程这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与工程问题相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示工程问题中的工作效率、工作时间、工作总量之间的关系。
人教版七年级上册实际问题与一元一次方程-工程问题(教案)
一、教学内容
本节课选自人教版七年级上册数学教材第五章“实际问题与一元一次方程”中的工程问题。教学内容主要包括以下两个方面:
1.工程问题的基本概念:通过实例引出工程问题的特点,使学生理解并掌握工程问题中的工作效率、工作时间和工作总量之间的关系。
2.应用一元一次方程解决工程问题:结合教材例题和练习题,让学生掌握如何将工程问题转化为数学模型,列出相应的一元一次方程,并通过求解方程来解决实际问题。
具体内容包括:
(1)教材例题:某工程队计划完成一项工程,若甲、乙两队合作,需要4天时间;若甲、乙两队分别单独完成,甲队需要6天,乙队需要8天。求甲、乙两队单独完成工程的效率。
(2)课后练习:根据工程问题的特点,设计相关练习题,巩固学生对一元一次方程解决工程问题的应用。
二、核心素养目标
1.培养学生运用数学知识解决实际问题的能力,使学生能够从现实情境中抽象出数学模型,提高数学建模的核心素养。
三、教学难点与重点
1.教学重点
(1)理解工程问题的基本概念,掌握工作效率、工作时间和工作总量之间的关系。
(2)学会将工程问题转化为数学模型,列出相应的一元一次方程。
(3)掌握求解一元一次方程的方法,并能将其应用于解决工程问题。

人教版数学七年级上册《工程问题》教案1

人教版数学七年级上册《工程问题》教案1

人教版数学七年级上册《工程问题》教案1一. 教材分析《工程问题》是人教版数学七年级上册的一章内容,主要介绍了工作效率、工作时间和工作总量之间的关系。

本章内容在日常生活中应用广泛,有助于学生培养解决实际问题的能力。

本节课是本章的第一次课,主要讲解工程问题的基本概念和基本公式。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,但是对于工程问题的理解还需要通过具体的例子来引导。

学生在学习本节课的内容时,需要将实际问题与数学知识相结合,从而更好地理解工作效率、工作时间和工作总量之间的关系。

三. 教学目标1.让学生理解工程问题的基本概念,掌握基本公式。

2.培养学生将实际问题转化为数学问题,并运用数学知识解决问题的能力。

3.培养学生合作学习的习惯,提高学生的团队协作能力。

四. 教学重难点1.重点:工程问题的基本概念,基本公式的运用。

2.难点:将实际问题转化为数学问题,并运用数学知识解决。

五. 教学方法采用问题驱动的教学方法,通过具体的例子引导学生理解工程问题的基本概念和基本公式,再通过练习题巩固所学知识,最后通过实际问题拓展学生的思维。

六. 教学准备1.准备相关的例子和练习题。

2.准备PPT,用于展示例题和知识点。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题:工程问题。

例如,某工厂生产一批产品,甲乙两人合作生产,甲每小时生产10个,乙每小时生产8个,问两人合作需要多少时间才能完成生产任务?2.呈现(10分钟)通过PPT展示工程问题的基本概念和基本公式。

解释工作效率、工作时间和工作总量之间的关系,并给出具体的例题进行解释。

3.操练(10分钟)让学生独立完成PPT上的练习题,巩固所学知识。

教师巡回指导,解答学生的疑问。

4.巩固(5分钟)通过小组合作的形式,让学生解决一些实际问题。

例如,某工程需要完成一项任务,甲乙两人合作,甲每小时完成3个单位的工作量,乙每小时完成2个单位的工作量,问两人合作需要多少时间才能完成任务?5.拓展(5分钟)引导学生思考:在实际生活中,还有哪些问题可以运用工程问题的知识来解决?让学生举例说明,并讨论解决方法。

人教版七年级数学上册第1课时产品配套问题和工程问题

人教版七年级数学上册第1课时产品配套问题和工程问题
用列表或画图来帮助理解题意
例 (教材P100例1变式)某车间有工人660名,生产 一种由1个螺栓和两个螺母组成的配套产品,每 人每天平均生产螺栓14个或螺母20个.如果你是 这个车间的车间主任,你应分配多少人生产螺栓, 多少人生产螺母,才能使生产出的螺栓和螺母刚 好配套?
分析:本题找出等量关系为:生产的螺栓数×2 =生产的螺母数,把相关的代数式代入即可列方 程. 解:设分配x人生产螺栓,(660-x)人生产螺母, 依题意得14x×2=(660-x)×20,解得x=275. 所以660-x=385. 答:应分配275人生产螺栓,385人生产螺母.
方法点拨:此题考查了一元一次方程的应用, 得到螺栓数量和螺母数量的等量关系是解决本 题的关键.
快速对答案
提示:点击 进入习题
14
2 13
3
详细答案 点击题序
1.一件工作,甲单独做需 6 天完成,乙单独做需 12 天完成,若甲、乙一起做,则需 4 天完成. 2.一个道路工程,甲队单独施工 9 天完成,乙队单 独施工 24 天完成.现在甲乙两队共同施工 3 天,因 甲另有任务,剩下的工程由乙队完成,则乙队还需
知识要点 列方程解决实际问题
意义或步骤 在配套问题中,相关
示例
联的几个量之间具有 如1个螺钉配2个螺母;
面配4条桌腿;
这个数量关系就是列 劳动力调配等.
方程的主要根据.
工程问题的基本量:工作量、_工__作_
_效__率__、工作时间. 工程问题的基本数量关系为:工作 如两队 工程 总量= 工作效率 ×工作时间;合作 共同修 问题 的效率=各自单独做的效率的和. 筑一条 当工作总量未给出具体数量时,常 公路等 设总工作量为“ 1 ”,分析时可采
13 天才能完成.

工程问题-人教版七年级数学上册教案

工程问题-人教版七年级数学上册教案

工程问题-人教版七年级数学上册教案
一、教学目标
1.理解工程问题的含义;
2.能够灵活运用多种解决工程问题的方法;
3.能够运用工程问题所学知识,解决实际生活中的问题;
4.培养学生分析、解决实际问题的思想和能力。

二、教学重点
1.理解工程问题的含义;
2.能够运用多种解决工程问题的方法。

三、教学难点
1.能够灵活运用所学方法,解决实际生活中的问题。

四、教学内容及时间
章节名称时间
第二章第一节工程问题2课时
第二章第二节工程问题解法3课时
五、教学方法
1.探究式学习法;
2.讨论式学习法;
3.课堂演示与讲解相结合。

六、教学过程
一、引入
教师通过实际案例,向学生介绍工程问题的概念和存在的问题。

二、探究
教师通过提出实际生活中的工程问题,让学生分组展开探究和讨论。

并引导学生总结探究过程,将所学方法掌握。

三、巩固
教师布置一些例题,让学生独立完成,并进行课堂讲解。

四、拓展
教师将一些应用更广泛的工程问题提出,让学生进行探究和思考,并引导学生总结所学方法的适用范围。

七、教学评估
1.课堂完成情况;
2.课堂表现情况;
3.课后作业完成情况。

八、作业布置
1.完成教师布置的练习;
2.根据实际生活中的问题,自己寻找解决办法进行总结。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学工程问题
备课时间:2013年11月19日备课组:七年级数学
上课时间:第12周星期三执教老师:向清旺陈春凤王本江杨春艳向庶
学习目标:1. 会根据实际问题中数量关系列方程解决实际问题,熟练掌握一元一次方程的解法
2. 培养学生数学建模能力,分析问题、解决问题的能力。

学习重点:用一元一次方程解决工程等问题。

学习难点:实际问题中,如何建立等量关系,并根据等量关系列出方程。

学习要求:1. 阅读课本P101的例5;
2.完成书上的填空;
3.限时25分钟完成本导学案(独立或合作);
4.课前在组内交流展示,组长对组员进行等级评价。

一、自主学习:
1.一件工作,如果甲独做a小时完成,则甲独做1小时,完成全部工作量的__________ . 2.工作量、工作时间、工作效率之间有怎样的关系?
(1)工作量=___________ ×_____________ ;
(2)工作时间=___________ ÷_____________ ;
(3)工作效率=___________ ÷_____________ 。

3.水池一个进水管,8小时可以注满空池,池底有一个出水管,12小时可以放完满池的水,如果同时打开进水管和出水管,那么,多少小时可以把空池注满?
提示:(1)注满一池水的工作量为“____”.
(2)进水管工作效率为________ ,出水管工作效率为________ .
(3)若设经过x小时可以注满水池,则进水管的进水量为______________ ,出水管的出水量为_____________ .
(4)相等关系为:___________ -___________= 1 ,则列出方程为:__________________________ ,解得:x=________ .
二、合作探究:
1.阅读教材P101,并完成下列填空:
(1)把总工作量看着______ ;
(2)人均效率为_______ ,若设先安排x人工作4小时,则完成的工作量为___________ ,再增加2人和前一部分人一起做8小时,完成的工作量为______________ ,
(3)这段工作分两段完成,两段完成的工作量之和为____________________________ .
则列方程为__________________________________ .你会解吗?试一试。

提示:①此时工作量=人均效率×人数×工作时间②如果一件工作分几段完成,则各阶段工作量的和=总工作量。

思考:你还能用其他的方法解吗?试一试。

2.一个道路工程,甲队单独施工8天完成,乙队单独施工12天完成,现在甲、乙两队共同施工4天,由于甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?
3.解方程:
3132232235x x x +-+-=-
4.若a -12a -与225
a +-的值互为相反数,则a 值为_______ . 5.小王抄写一份材料,每分钟抄写30个字,若干分钟可以抄完,当抄写了
25的时候,决定提高效率50%,结果提前20分钟完成,则这份材料有__________字。

三、能力提升:
一项工程,甲独做需9 天完成,乙单独做12 天完成,丙单独做需15 天完成,若甲、丙先做
3天后,甲因故离开,由乙接替甲的工作,要完成这项工作的
56
,还需要多少天?
四、学习小结:
五、课后作业:
1.习题3.3 第9、10题
2.已知关于x 的方程(m +2)
||1m x -+5=0 是一元一次方程,求方程533132x m mx m +--=的解。

相关文档
最新文档