轴的常用材料及主要力学性能
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴常用材料及主要力学性能
转轴:支承传动机件又传递转矩,既同时承受弯矩和扭矩的作用。
心轴:只支承旋转机件而不传递转矩,既承受弯矩作用。
(转动心轴:工作时转动;固定心轴:工作时轴不转动);
传动轴:主要传递转矩,既主要承受扭矩,不承受或承受较小的弯矩。
花键轴、空心轴:为保持尺寸稳定性和减少热处理变形可选用铬钢;
轴常用材料是优质碳素结构钢,如35、45和50,其中45号钢最为常用。不太重要及受载较小的轴可用Q235、Q275等普通碳素结构钢;受力较大,轴尺寸受限制,可用合金结构钢。受载荷大的轴一般用调质钢。
调质钢调质处理后得到的是索氏体组织,它比正火或退火所得到的铁素体混合组织,具有更好的综合力学性能,有更高的强度,较高的冲击韧度,较低的脆性转变温度和较高的疲劳强度。
调质钢:35、45、40Cr、45Mn2、40MnB、35CrMo、30CrMnSi、40CrNiMo;
大截面非常重要的轴可选用铬镍钢;高温或腐蚀条件下工作的轴可选用耐热钢或不锈钢;
在一般工作温度下,合金结构钢的弹性模量与碳素结构钢相近,为了提高轴的刚度而选用合金结构钢是不合适的。
轴的强度计算
轴的强度计算一般可分为三种:
1:按扭转强度或刚度计算;
2:按弯扭合成强度计算;
3:精确强度校核计算
1:按扭转强度或刚度计算
P
2.许用扭转角的选用,应按实际而定。参考的范围如下:要求精密,稳定的传动,取¢P=0.25~0.5(°)/m 一般传动,取¢P=0. 5~1 (°)/m;要求不高的传动,可取¢P大于1 (°)/m;
起重机传动轴¢P=15´~20´/m;
注:1. 表中P 值是考虑了弯曲影响而降低了的许用扭转剪应力。
2. 在下列情况下τP 取较大值、A 取较小值:弯矩较小或只受扭矩作用、载荷较平稳、无轴向载荷或
只有较小的轴向载荷、减速器的低速轴、轴单向旋转。反之,τP 取较小值,A 取较大值。 3. 在计算减速器的中间轴的危险截面处(安装小齿轮处)的直径时,若轴的材料为45号钢:取A=130 ~
165。其中二级减速器的中间轴及三级减速器的高速中间轴取A=155~165。 三级减速器的低速中间轴取A=130。
2:按弯扭合成强度计算;
注:校正系数Ψ值是由扭应力的变化来决定的;
扭应力不变时p p 11+-=σσψ≈0.3;扭应力按脉动循环变化时p
p
01σσψ-=≈0.6;扭应力按对称循环变化时1=ψ
当零件用紧配合装于轴上时,轴径应比计算值增大8~10%。
如果截面上有键槽时,应将求得的轴径增大,其增大值见表6-1-22。
如果轴端装有补偿式联轴器或弹性联轴器,由于安装误差和弹性元件的不均匀磨损,将会使轴及轴承受到附加载荷,附加载荷的方向不定。附加载荷计算公式见表6-1-23。
轴强度的精确校核是在轴的结构及尺寸确定后进行,通常采用安全系数校核法。
3.1 疲劳强度安全系数校核
疲劳强度安全系数校核的目的是校核轴对疲劳破坏的抵抗能力,在轴的结构设计后,根据其实际尺寸,承受的弯矩、转矩图,考虑应力集中,表面状态,尺寸影响等因素及轴材料的疲劳极限,计算轴的危险截面处的安全系数值是否满足许用安全系数值。轴的疲劳强度是根据长期作用在轴上的最大变载荷(其载荷循环次数不小于104)来计算,危险截面应是受力较大,截面较小及应力集中较严重的既实际应力较大的若干个截面。同一个截面上有几个应力集中源,计算时应选取对轴影响最大的应力源。校核公式见表6―1―24。
当轴的强度不能满足要求时,采取改进轴的结构,降低应力集中的方法解决,降低应力集中的主要措施表6―1―7,或采用不同的热处理及表面强化处理等工艺措施,或加大轴径,改变轴的材料来解决。
轴的材料内部可能存在不同程度的裂纹或其其它缺陷。一般裂纹的尺寸小于临界值时,暂时影响不大,但长期交变应力作用下,裂纹会作稳态扩展,达到临界值时,发生脆性破坏。
重要的轴,除了进行上述的计算和检查表面质量外,还要对内部进行无损探伤,如发现缺陷,应根据断裂力学计算或经验判断其寿命,决定是否可用。(机械工程手册二版1卷5篇)
注:d0为横孔直径;d为轴径。
的试件强化系数的值会有某些降低。
2氮化层厚度为0.01d时用小值;在(0.03~0.04)d时用大值。
3喷丸硬化系根据8~40mm试件求得的数据;喷丸速度低时用小值;速度高时用大值。
4滚子滚压系根据17~130mm试件求得的数据。
3.2 静强度安全系数校核
本方法的目的是校验轴对塑性变形的抵抗能力,既校核危险截面的静强度安全系数。
轴的静强度是根据轴上作用的最大瞬时载荷(包括动载荷和冲击载荷)来计算的。一般,对于没有特殊安全保护装置的传动,最大瞬时载荷可按电动机最大过载能力确定。危险截面应是受力较大,截面较小既静应力较大的若干截面。
SP
如果校核计算结果表明安全系数太低,可通过增大轴径尺寸及改用好材料等措施。以提高轴的静强度安全系数。
4 轴的刚度校核
轴在载荷作用下会产生弯曲和扭转变形,当变形超过某个允许值时,会使机器无法正常工作,要进行刚度校核,刚度校核分为扭转刚度和弯曲刚度。
4.1轴的扭转刚度
轴的扭转刚度校核是计算轴在工作时的扭转变形量,用每米轴长的扭转角Φ度量。
-1 要求不高Φ可大于 1(°)/m ;起重机传动轴Φ= 15´~20´/m 。 2 本表公式适用于剪切弹性模量G=79.4GPa 的钢轴。
4.2轴的弯曲刚度
轴在受载的情况下会产生弯曲变形,过大的弯曲变形会影响轴上零件的正常工作,如安装齿轮的轴,因轴变形会影响齿轮的啮合正确性及工作平稳性;轴的偏转角θ会滚动轴承的内外圈相互倾斜,如偏转角超过滚动轴承允许的转角,就显著降低滚动轴承的寿命;会使滑动轴承所受的压力集中在轴承的一侧,使轴径和轴承发生边缘接触,加剧磨损和导致胶合;轴的变形还会使高速轴回转时产生振动和噪音。
光轴的挠度和偏转角一般按双支点梁计算,计算公式列表6―1―44。
阶梯轴按当量直径d V 的光轴计算。当量直径d V 按表6―1―43公式计算。按当量法计算阶梯轴的挠度和偏转角,误差可达到+20%。所以对十分重要的轴应采用更准确的计算法,详见材料力学。
计算有过盈配合轴段的挠度时,应将该轴段与轮毂当作一整体考虑,取轮毂的外径作为轴的直径。
如轴上作用的载荷不在同一平面内,采将载荷分解为两互相垂直平面上的分量,分别计算两个平面内各截面的挠度(y x 、y y )和偏转角(θX 、θy ),然后用几何法相加(既2
2Y x Y Y Y +=
、
22Y x θθθ+=)。
在同一平面内作用有几个载荷,其任一截面的挠度和偏转角等于各载荷分别作用时该截面的挠度和偏转角的代数和(既Y=ΣY i 、θ=Σθi )。